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Abstract

In nature, no single plant completes its life cycle without encountering environmental stress. When plant cells surpass

stress threshold stimuli, chemically reactive oxygen species (ROS) are generated that can cause oxidative damage or

act as signals. Plants have developed numerous ROS-scavenging systems to minimize the cytotoxic effects of ROS.

The role of sucrosyl oligosaccharides (SOS), including fructans and the raffinose family oligosaccharides (RFOs), is

well established during stress physiology. They are believed to act as important membrane protectors in planta. So far

a putative role for sucrose and SOS during oxidative stress has largely been neglected, as has the contribution of the

vacuolar compartment. Recent studies suggest a link between SOS and oxidative defence and/or scavenging. SOS
might be involved in stabilizing membrane-associated peroxidases and NADPH oxidases, and SOS-derived radicals

might fulfil an intermediate role in oxido-reduction reactions taking place in the vicinity of membranes. Here, these

emerging features are discussed and perspectives for future research are provided.
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Introduction

Plant cells are challenged with hyperactive compounds

derived from oxygen, the so-called reactive oxygen species

(ROS) (Mittler et al., 2004; Couée et al., 2006). ROS include

singlet oxygen (1O2), superoxide oxygen (O2�–), hydroxyl

radical (OH�), and hydrogen peroxide (H2O2), generated as

by-products of photosynthesis and respiration (Mittler
et al., 2004). ROS production is directly connected to many

metabolic processes in various subcellular compartments,

especially chloroplasts, peroxisomes, and mitochondria

(Fig. 1) (Bartoli et al., 2004).

Chloroplasts and peroxisomes are the major ROS gener-

ators under excess light (Asada, 2006). It has been estimated

that under normal physiological conditions, chloroplasts can

generate ;150–250 lmol of H2O2 mg�1 chlorophyll h�1

(Wang and Song, 2008). Mitochondria can produce O2�– in

the dark (Bartoli et al., 2004; Møller et al., 2007), rapidly

inducing mitochondrial morphology transitions and leading

to cell death (Scott and Logan, 2008). In addition, NADPH

oxidases release ROS in the apoplast (Bolwell et al., 2002).

The participation of the vacuole in oxidative stress has

been totally neglected by most authors, but not by all

(Mittler et al., 2004). However, it should be realized that

vacuoles occupy >95% of the cell volume in many plant

cells. Moreover, the vacuole/tonoplast shows unusual struc-

tural adaptations under stress, triggering several stress-
defensive mechanisms (Valluru et al., 2008). Accordingly,

vacuoles accumulate a mixture of strong antioxidant com-

pounds (anthocyanins, phenolics, malate etc.; Kytridis and

Manetas, 2006), probably fulfilling unanticipated roles in

redox buffering.

ROS production can be accelerated by various environ-

mental stresses, leading to lipid peroxidation and photo-

oxidative damage (Murata et al., 2007; Takahashi and
Murata, 2008). These stresses have different effects on

antioxidants (Kellos et al., 2008). Stress stimuli can reduce

CO2 fixation, and impair net consumption of ATP and

NADPH, generating singlet oxygen and causing photo-

damage to photosystem II (PSII; Hideg et al., 2002). The
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increase in ROS concentration, in turn, activates antiox-
idants as well (Foyer and Noctor, 2005). Interestingly, stress

stimuli seem to accelerate the photodamage to PSII by

inhibiting its repair (Nishiyama et al., 2006; Murata et al.,

2007; Takahashi and Murata, 2008). However, due to their

sessile lifestyle, plants have developed a plethora of mecha-

nisms to minimize oxidative damage under stress (see below).

In addition to well-known antioxidants, antioxidative

defence systems and proteasome-dependent proteolytic
systems (Møller et al., 2007; Xiong et al., 2007), small

water-soluble sugars such as glucose and sucrose are now

recognized as crucial compounds in coordinating plant

developmental responses under oxidative stresses. In addi-

tion, other important water-soluble carbohydrates derived

from sucrose [sucrosyl oligosaccharides (SOS)] include

raffinose family oligosaccharides (RFOs) and fructans. As

well as their role as sources of carbon and energy, which
can back up growth and development during impaired

metabolic activity, SOS have been assigned versatile regula-

tory functions at both the cellular and whole-organism level

by controlling cellular metabolism, growth and develop-

ment, and stress resistance of plants (Nishizawa et al., 2008;

Valluru and Van den Ende, 2008).

SOS and the enzymes associated with their metabolism

might interact in indirect ways with ROS signalling path-
ways. Indeed, small soluble sugars and the enzymes associ-

ated with their metabolic pathways are widely believed to be

connected to oxidative stress and ROS signalling pathways
(Couée et al., 2006; Sulmon et al., 2006; Suzuki and Mittler,

2006; Takahashi and Murata, 2008). Furthermore, it cannot

be excluded that fructans and RFOs themselves might act as

signals in pathways associated with stress tolerance (Van

den Ende et al., 2004).

Here, the putative direct roles of SOS as primary ROS

scavengers in the vicinity of cellular membranes, in close

association with other key role players in antioxidative
defence systems, are discussed. The modulating effects of

fructans and RFOs are consistent with many observations

scattered throughout the literature.

SOS: a role in stress physiology

Raffinose, a a-galactosyl extension of sucrose, is nearly

ubiquitous in plants (Keller and Pharr, 1996). The smallest

RFOs, raffinose and stachyose, are synthesized in the

cytoplasm. Both depend on galactinol [a-D-Gal-(1/1)-L-

myo-inositol], the product of galactinol synthase (GolS).

Raffinose synthase (RafS) catalyses the reversible transfer of
a galactosyl unit from galactinol (donor substrate) to sucrose

(acceptor substrate) (Lehle and Tanner, 1973). Subsequently,

raffinose is used as an acceptor in the galactinol-dependent

stachyose biosynthetic reaction catalysed by stachyose syn-

thase (Peterbauer et al., 1998). In contrast, the syntheses of

Fig. 1. Various intracellular sources of ROS (H2O2) in a plant cell. CW, cell wall; ETC, electron transport chain; H2O2 hydrogen peroxide;

OH� hydroxyl radical; O2�–, superoxide ion; PS, photosystems I and II; PM, plasma membrane; SOD, superoxide dismutase; TCA,

tricarboxylic acid cycle.
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the higher DP (degree of polymerization) RFOs (>DP 4) are

galactinol independent. The enzyme galactan:galactan galac-

tosyltransferase (GGT) catalyses the direct transfer of a

terminal galactosyl residue from one RFO molecule to

another, resulting in the next higher and lower RFO

oligomers, respectively (Haab and Keller, 2002; Tapernoux-

Luthi et al., 2004).

Fructans are sucrose-derived fructose polymers occur-
ring in ;15% of flowering plants (Hendry, 1993) as well

as in a wide range of bacteria and fungi (Martinez-

Fleites et al., 2005). Fructans are believed to be synthe-

sized in the central vacuole (Frehner et al., 1994), but an

involvement of pre-vacuolar vesicles cannot be excluded

(Kaeser 1983). Fructan biosynthesis is initiated by sucro-

se:sucrose 1-fructosyltransferase (1-SST), donating a fruc-

tosyl moiety from one sucrose to another (Edelman and
Jefford, 1968; Van den Ende and Van Laere, 1996). This

process yields the trisaccharide 1-kestose, the simplest inulin

with b(2,1)-linkages, which can be elongated further by

adding b(2,1)-and/or b(2,6)-linked fructosyl moieties by other

fructosyl transferase (FT) enzymes such as 1-FFT, 6G-FFT,

and 6-SFT. Depolymerization of fructans is executed by

fructan exohydrolases (FEHs). Different types of FEHs

(1-FEH, 6-FEH, 6-KEH, and 6&1-FEH) have recently been
described in fructan- and non-fructan-containing plants

(De Coninck et al., 2007; Van Riet et al., 2008).

Fructans fulfil protective physiological roles in plants

(Hendry, 1993; Morvan-Bertrand et al., 2001; Le Roy et al.,

2007). During stresses, fructans can strongly interact with

cell membranes through direct hydrogen bonding (Hincha

et al., 2000, 2003). The surface-active effects of both inulin-

and levan-type fructans contrast strongly with the maximal
effects observed for trehalose, sucrose, and glucose. Inulin-

type fructans show a deep interaction with membranes

compared with levan-type fructans due to their variable

molecular weight (Hinrichs et al., 2001) and flexible random

coil structures (Vereyken et al., 2003). Fructans prevent

lipid condensation and cessation of the phase transition by

reducing the molecular motions of the lipid head groups

(Vereyken et al., 2003). RFOs fulfil similar physiological
roles in plants, and were shown to be involved in

desiccation tolerance in seeds (Keller and Pharr, 1996).

Both RFOs and fructans are believed to protect biological

membranes under stress (Hincha et al., 2002, 2003).

Links between oxidative stress and carbon
metabolism

ROS and sugar signalling: a delicate balance

Soluble sugars such as glucose and sucrose have long been

considered to play versatile roles in plants (Rolland et al.,

2006). Recently, the remodelling of carbon metabolism in
Arabidopsis is interpreted as an emergency strategy under

oxidative stress (Scarpeci and Valle, 2008). Higher photo-

synthetic activity induces both the generation of ROS and

massive accumulation of soluble sugars. Therefore, sugars

themselves might be effective candidates for the oxidative

burst in tissues exposed to a wide range of environmental

stresses.

Endogenous sugar availability can feed the oxidative-

pentose phosphate pathway (OPP; Debnam et al., 2004;

Couée et al., 2006), which can trigger ROS scavenging.

Glucose 6-phosphate dehydrogenase (G6PDH), catalysing

the first reaction in the OPP pathway, has been postulated

to affect the redox poise of the chloroplast as well as the
capacity to detoxify ROS (Debnam et al., 2004). Sugars can

replenish NADPH, needed for monodehydroascorbate re-

ductase (MDAR) and glutathione reductase (GR) (Nishikawa

et al., 2005). The effects of soluble sugars on gene expression

are mediated through sugar-specific signalling pathways

(Couée et al., 2006). Interestingly, the responses to sugars

and oxidative stress are not only co-linked, but also affect

scores of stress-responsive genes (Price et al., 2004). More-
over, sugar availability can enhance ascorbate (ASC) bio-

synthesis (Nishikawa et al., 2005), perhaps due to the

enhanced rate of respiration (Millar et al. 2003).

Conclusively, so far the protective effects of soluble

sugars related to oxidative stress have been considered as

indirect effects of sugar signalling, triggering the production

of specific ROS scavengers.

Sucrose: an underestimated antioxidant capacity
against ROS?

In vitro studies demonstrated that the ID50 values (the

concentration of a compound required to inhibit OH�-
catalysed hydroxylation of salicylate by 50% of the maxi-

mum yield observed in the absence of the compound) for

galactinol (3.1 mM) and raffinose (2.9 mM) are similar to

that of glutathione (GSH) (3.0 mM) and smaller than that

of ASC (16.4 mM: Nishizawa et al., 2008), two classical

antioxidants. Strikingly, when compared with other sugars,

the strongest antioxidant capability was detected for sucrose

(ID50: 2.7 mM), in line with earlier observations (Smirnoff
and Cumbes, 1989). OH� are highly reactive radicals, which

retrieve H� from virtually any organic compound to form

water. In sugars, OH� preferentially attack HO–C–H link-

ages (Morelli et al., 2003). Accordingly, when sugars are

compared at the same molar concentration, their free

radical-scavenging capacity is strongly correlated with their

total number of hydroxyl groups, explaining why sucrose

(eight OH groups) is better compared with glucose and
fructose (five OH groups). In a similar vein, lower DP

fructans as soluble polyhydroxy compounds might be even

more efficient in radical quenching (see Fig. 2). The identity

of the liberated oxidized sucrose free radicals (OSFRs)

might be diverse, and their exact nature and stability

deserve further investigation. However, OSFRs are slower

reacting radicals compared with OH� radicals and seem to

undergo several possible reactions to form more stable non-
radical compounds or, alternatively, to regain their reduced

forms (Green, 1980; Gray and Mower, 1991).

These in vitro studies convincingly demonstrate the ROS-

scavenging capacity of sucrose, strongly suggesting that

similar reactions can also occur in planta. At low
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concentrations, sucrose might serve as a substrate or signal

for stress-induced alterations, while at high concentrations
it can function directly as a protective agent (Uemura and

Steponkus, 2003). The mechanism of OH� scavenging might

be linked to the presence of stable OSFRs. However, these

sugar radicals may easily regenerate in vivo (see later),

providing higher stability of the sucrose and a more efficient

quenching of the OH�. These processes might be of particular

importance in vacuoles of sugar-accumulating tissues such as

sugar beet and sugar cane, in phloem-associated tissues, or in
any cells with enhanced sucrose concentrations.

So far, sucrose has not been recognized as an antioxidant

compound. One of the reasons for this is the fact that so far

research efforts have been almost entirely focused on

Arabidopsis. Quite exceptionally, when compared with most

other plants, Arabidopsis contains very low sucrose concen-

trations that cannot be substantially elevated under mild

stress conditions (own unpublished observations), suggest-
ing that the sucrose concentration is rather strictly con-

trolled in this species. Instead, Arabidopsis rapidly diverts

excess carbon to RFOs (Klotke et al., 2004) and/or to

starch (Mita et al., 1995).

ROS and RFOs: a link in Arabidopsis

Recently, RFO sugars as well as galactinol have been

proposed to fulfil important roles in oxidative stress defence

in plants (Morsy et al., 2007; Nishizawa et al., 2008) and

seeds (Buitink et al., 2000; Bailly et al., 2001; Lehner et al.,

2006). In Arabidopsis, seven genes belonging to the GolS

family were identified, among these, GolS1 and 2 mRNAs

were detected in mature seeds that were induced by stresses

in leaf tissues, while GolS3 mRNA seems to be induced by

cold stress (Panikulangara et al., 2004). Overexpression of

GolS1, GolS2, GolS4, and RafS2 in transgenic Arabidopsis

increased the galactinol and raffinose concentrations and

resulted in effective ROS-scavenging capacity and oxidative

stress tolerance (Nishizawa et al., 2008). Concomitantly, the

levels of the antioxidants ASC and GSH also increased.

Moreover, lipid peroxidation was significantly lower than in

wild-type plants (Nishizawa et al., 2008). Further, these

transgenic plants exhibited higher PSII activities, compared

with wild types, and responded positively to high light and

chilling conditions. These results strongly suggest that

endogenous galactinol and raffinose can act as antioxidants/

Fig. 2. Possible scavenging mechanisms of fructans and sucrose in oxidative stress defence. ASC, ascorbate; DHA, dehydroascorbate;

GSH, reduced glutathione; GSSG, oxidized glutathione; H2O2, hydrogen peroxide; O2�–, superoxide ion; OH� hydroxyl radical; OFFRs,

oxidized fructan free radicals; OSFRs, oxidized sucrose free radicals; OPC, oxidized phenolic compounds; SOD, superoxide dismutase;

PC, phenolic compounds; PRX, peroxidase; V, vacuole; C, cytoplasm; A, apoplast.
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osmoprotectants in planta, leading to increased tolerance to

oxidative stress (methylviologen treatment).

Chloroplasts generate massive ROS under stress. O2�–, as

an initial ROS, is readily converted into OH� and H2O2. This

stimulates a battery of antioxidant systems capable of

removing ROS from the chloroplasts, such as flavonoids

(Agati et al., 2007), and ASC and GSH (Asada, 2006). The

accumulation of raffinose in chloroplasts (Santarius and
Milde, 1977; Lineberger and Steponkus, 1980; Heber and

Heldt, 1981) indicates that raffinose transporters (cf. ASC

and GSH transporters; Pignocchi and Foyer, 2003) might

exist in chloroplast membranes (Heber and Heldt, 1981) but

so far they have not been characterized. Similarly, the

question of whether sucrose is present inside plastids has

long been debated. Gerrits et al. (2001) have introduced

sucrose-metabolizing enzymes into plastids. These experi-
ments suggested substantial sucrose entry into plastids.

Previously, raffinose was shown to protect photophosphory-

lation and electron transport of chloroplast membranes

against freezing, desiccation, and high temperature stress

(Santarius, 1973), strongly suggesting that chloroplastic

RFOs might be operating as ideal ROS scavengers. The

oxidized RFO radicals might be regenerated by ASC or other

reducing antioxidants such as flavonoids (Agati et al., 2007).

ROS and fructans: a new link?

Mounting evidence has been generated over the last decade

that fructans might protect plants against freezing/drought
stresses (Hincha et al., 2000, 2003). The putative roles of

fructans localized in the vacuole (Kawakami et al., 2008)

and in the apoplast (Van den Ende et al., 2005; Valluru

et al., 2008) were established, and a role in oxidative stress

defence has been proposed (Parvanova et al., 2004). These

studies suggest that fructans act directly as ROS scavengers

(Fig. 2) or indirectly by stimulating other specific antiox-

idative defence mechanisms. Interestingly, changes in fruc-
tan concentrations showed a close relationship with changes

in antioxidant (ASC and GSH) concentrations in immature

wheat kernels (De Gara et al., 2003; Paradiso et al., 2006),

strongly suggesting a link with well-known antioxidant

systems, and may occupy an integral part of a complex ROS-

scavenging concept.

So far, fructans are not recognized as ‘typical’ antiox-

idants in plants. However, hot water extracts of the fructan
plants Chlorophytum borivillianum (Govindarajan et al.,

2005) and Arctium lappa (edible burdock: Duh, 1998)

showed strong antioxidant properties, acting as effective

radical scavengers in in vitro tests. Moreover, these extracts

showed prominent bioactive properties in animal studies

(Kardosova et al., 2003). These data strongly suggest that

vacuolar fructans, like vacuolar anthocyanins, could fulfil

a role in redox regulation processes.
Since the vacuole harbours both peroxidases (Prx; Mittler,

2002; Sottomayor et al., 2004) and fructans (Frehner et al.,

1984), a Prx-dependent oxidation of fructans seems possible

in the vacuole of fructan-containing plants. Unlike ASC and

phenolic compounds (PCs), fructans and other carbohydrates

lack a double bond in their ring structure, which probably

prevents them from acting as suitable substrates for Prx or

oxidase enzymes. However, carbohydrate oxidase enzymes,

oxidizing reducing sugars, have been characterized from

fructan-containing plants (Custers et al., 2004), but vacuolar

forms that prefer non-reducing carbohydrates such as

fructans have not yet been reported. In the absence of such

evidence for specific fructan oxidase or Prx enzymes, it seems
reasonable to speculate that fructan oxidation could be

initiated by O2�–, OH�, and OOH�, retrieving H� to form

water and generating oxidized fructan free radicals (OFFRs).

Two mechanisms have been postulated to explain the

origin of the initiator radicals in the vacuole, and these two

systems are not mutually exclusive (Sottomayor et al., 2004).

The first possibility is the diffusion of excess cytoplasmic

H2O2 through the tonoplast. Tonoplastic aquaporins may
facilitate H2O2 uptake (Reisen et al., 2003; Bienert et al.,

2007). Independent studies on isolated tonoplast fractions

have repeatedly demonstrated the presence of membrane-

associated Prx or class III peroxidases [barley peroxidase

gene (Prx7), Kristensen et al., 2001; Catharanthus roseus

peroxidase (CRPrx), Sottomayor and Ros Barcelo, 2003;

Arabidopsis thaliana peroxidase (AtPrx34), Zimmermann

et al., 2004; Catharanthus roseus peroxidase 1 (CrPrx1),
Costa et al., 2008]. Importantly, these peroxidases are

localized on the inner face of the tonoplast (Sottomayor

et al., 2004), which can readily attack incoming H2O2,

generating a blend of ROS (OH� and OOH�) by the

hydroxylic cycle of these peroxidases (Passardi et al., 2004;

Dunand et al., 2007). At the same time, these radicals might

oxidize many vacuolar compounds likely to complement

the classical ASC–ascorbate peroxidase (APX) system
(Yamasaki and Grace, 1998; Grace and Logan, 2000).

A second possible mechanism of ROS generation involves

the action of a tonoplastic NADPH oxidase. These enzymes

are considered as major ROS producers in the plasma

membrane (PM), but proteomic studies have documented

the presence of these enzymes in the tonoplast as well

(Carter et al., 2004; Whiteman et al., 2008). Consistently,

O2�–, the first product generated by this enzyme, has been
detected in the tonoplast (Romero-Puertas et al., 2004).

Taken together, it can be hypothesized that a tonoplastic

NADPH oxidase might use the cytoplasmic NADPH to

transfer electrons across the membrane to form O2�–, as

described in lysosomes (Chen, 2002) and phagocytic

vacuoles in animal cells (Behe and Segal, 2007). This O2�–
could be transformed to the less toxic H2O2 spontaneously

or via tonoplast-associated superoxide dismutase (SOD)
(Shi et al., 2007).

After generation by membrane-bound oxidases and per-

oxidases, ROS present a great danger for these membranes

(lipid peroxidation). Fructans can protrude deep into

membranes (deeper than sucrose) as described (Valluru and

Van den Ende, 2008), contributing to membrane stabiliza-

tion. It is hypothesized that these membrane-associated

fructans might also be ideally positioned to react with these
radicals, to form OFFRs, in this way preventing lipid

peroxidation (Fig. 2). However, these OFFRs might be
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rapidly reduced again to fructans by the ‘classical’ antioxi-

dant ASC or by other vacuolar antioxidants (PCs and

anthocyanins). Such an ‘NADPH oxidase/Prx/fructan/PC’

system within the tonoplast (NADPH oxidase), associated

with the inner side of the tonoplast (Prx/fructan/PC), and

present in the vacuolar lumen (fructan/PC) could be

elegantly linked with the cytoplasmic redox systems (Fig.

2). It may operate as a unique scavenging and salvaging
system, preventing lipid degradation, in this way ensuring

membrane stabilization and contributing to cell survival by

removing excess H2O2 that is formed in or diffused into

vacuoles. Indeed, it has been shown that plant cell viability

depends on the functional status of the vacuole and intact

vesicular trafficking (Surpin and Raikhel, 2004). A similar

scavenging system has also been proposed before for

phenoxy radicals (Mehlhorn et al., 1996; Takahama, 2004).
Recently, a role for trehalose in protection against ROS was

also demonstrated (Nery et al., 2008).

Regeneration of OFFRs into fructans might be an

important aspect for efficient quenching of ROS. Vacuolar

compounds such as flavonoids (e.g. anthocyanins) might be

involved in reduction of OFFRs into fructans. Indeed,

flavonoids may also act as antioxidants (Kytridis and

Manetas, 2006; Pourcel et al., 2007) and a strong correla-
tion was found between flavonoid content and freezing

tolerance (Korn et al., 2008). Previous knock-out experi-

ments revealed that raffinose alone could not account for

the observed freezing tolerance (Zuther et al., 2004). It is

proposed here that perhaps the combination of sugars and

(different) flavonoids might be essential to establish freezing

tolerance in this species. Indeed, conjugated flavonoid

compounds have been shown to have a stronger scavenging
effect on ROS than their respective monomers, and thus

seem to moderate the pro-oxidant properties of antiox-

idants (Kang, 2007). As a new concept, it can be hypothe-

sized that both sugars and phenolic compounds form part

of an integrated redox system, quenching ROS and

contributing to freezing tolerance (see further Fig. 2).

It should be noted that under stress, a tonoplast vesicle-

derived exocytosis (TVE) (Valluru et al., 2008) might be
operating as an efficient system to carry fructans (and

sucrose) from the vacuole to the PM in plants (Fig. 2). A

similar vesicular transport from lysosomes to the cell

surface was described in animal cells (Wubbolts et al.,

1996). Therefore, and perhaps even more importantly, a very

similar system involving PM-localized NADPH oxidase and

soluble sugars such as fructans (and perhaps Prx: Mika and

Lúthje, 2003) might fulfil significant roles in preserving PM
stability. Such a system might greatly contribute to stress

tolerance and signalling pathways controlling apoplastic

H2O2 concentrations, regulating defence responses (Orozco-

Cardenas et al., 2001) as well as growth and development

by cell wall modifications (Passardi et al., 2004).

The model depicted in Fig. 2 depends on high sucrose

concentrations (as a substrate for fructan biosynthesis by

FTs), oxygen availability, and on the presence of PCs.
Consistent with the present model, much higher fructan

levels are generated under hypoxia (Albrecht et al., 2004), to

keep OFFR levels high despite the reduced OH� generation.

However, the model cannot work under complete anoxia.

Indeed, it was found that fructans are totally degraded

under these circumstances (Albrecht et al., 2004). Consistent

with the model, H2O2 seems to accumulate in vascular

tissues such as leaf veins (Fryer et al., 2002; Slesak et al.,

2008). Strikingly, phloem-associated tissues typically form

a major site of storage for several sugar compounds,
including sucrose and fructans (Wang and Nobel, 1998;

Van den Ende et al., 2000).

The relevance of the concept might be validated from the

studies carried out on transgenic non-fructan tobacco plants

carrying FTs (SacB gene, Konstantinova et al., 2002;

Parvanova et al., 2004; 1-SST, Li et al., 2007) which showed

more resistance to frost. Closer observations elucidated that

transformants are able to maintain oxidative compounds
such as malondialdehyde–an end-product of lipid peroxida-

tion and H2O2–within the controlled range to cope with

oxidative damage (Parvanova et al., 2004; Li et al., 2007).

So far, the reasons behind the partial degradation of

fructans in cold-induced (0–5 �C) autumn chicory roots, a very

well studied physiological response (Van Laere and Van den

Ende, 2002), remained obscure. Indeed, these growth-

arrested plants do not need carbon skeletons or osmotic
adjustments. According to the hypothesis presented here, it is

now proposed that the partial degradation of longer DP

fructans increases the total number of molecules (fructose,

sucrose, and lower DP fructans) to increase scavenging

capacities and deal with the increased oxidative stress under

chilling. Indeed, longer DP fructans might be too extended,

part of these molecules being too far away from the

tonoplast, the actual place of ROS generation. Similarly, the
introduction of yeast invertase in potato increased the sugar

concentration, contributing to chilling tolerance (Deryabin

et al., 2007). Supporting the same idea, the breakthrough

manuscript of Kawakami et al. (2008), introducing wheat

1-SST in the non-fructan plant rice, convincingly demon-

strated that transgenic rice plants became more tolerant to

chilling. The stabilizing effect of fructans on membranes

might be of crucial importance during freezing (subzero
temperatures) but probably not during chilling. Therefore,

the proposed ROS-scavenging concept could probably ex-

plain the chilling tolerance observed in transgenic rice.

Strikingly, both 1-SST introduction (Kawakami et al., 2008)

and heat shock-mediated APX expression (Sato et al., 2001)

can protect rice plants against chilling injury.

Conclusions and perspectives

Exposure to environmental stress often results in increased

production of ROS in plants. The plant’s capacity to

delineate these toxic compounds depends on the metabolic

responsiveness of defensive mechanisms. Both enzymatic
and non-enzymatic defence pathways can detoxify ROS.

Sucrose and SOS (including fructans and RFOs) fulfil

various functional roles in plant metabolism. SOS might

either directly detoxify ROS in chloroplasts and vacuoles or

indirectly stimulate the classic antioxidative defence
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systems. As a new concept, it can be hypothesized that the

synergistic interaction of SOS and phenolic compounds

forms part of an integrated redox system, quenching ROS

and contributing to stress tolerance, especially in tissues

with high soluble sugar concentrations. However, the exact

chemical identity and stability of the SOS radicals remain

obscure and need further exploration. Furthermore, it can

be expected that SOS-related scavenging mechanisms would
affect ROS signalling pathways. How such signalling

cascades control the survival, or death, of plants would be

a fascinating perspective.
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