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Abstract

Rice has the unique ability to express a-amylase under anoxic conditions, a feature that is critical for successful

anaerobic germination and growth. Previously, anaerobic conditions were shown to up-regulate the expression of

Amy3 subfamily genes (Amy3B/C, 3D, and 3E) in rice embryos. These genes are known to be feedback regulated by

the hydrolytic products of starchy endosperm such as the simple sugar glucose. It was found that oxygen deficiency

interferes with the repression of Amy3D gene expression imposed by low concentrations of glucose but not with

that imposed by higher amounts. This differential anoxic de-repression depending on sugar concentration suggests

the presence of two distinct pathways for sugar regulation of Amy3D gene expression. Anoxic de-repression can be
mimicked by treating rice embryos with inhibitors of ATP synthesis during respiration. Other sugar-regulated rice

a-amylase genes, Amy3B/C and 3E, behave similarly to Amy3D. Treatment with a respiratory inhibitor or anoxia also

relieved the sugar repression of the rice CIPK15 gene, a main upstream positive regulator of SnRK1A that is critical

for Amy3D expression in response to sugar starvation. SnRK1A accumulation was previously shown to be required

for MYBS1 expression, which transactivates Amy3D by binding to a cis-acting element found in the proximal region

of all Amy3 subfamily gene promoters (the TA box). Taken together, these results suggest that prevention of

oxidative phosphorylation by oxygen deficiency interferes with the sugar repression of Amy3 subfamily gene

expression, leading to their enhanced expression in rice embryos during anaerobic germination.
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Introduction

Rice (Oryza sativa) is the only cereal that has the ability to

germinate and grow while submerged, a characteristic

observed in only a few plant species (Perata et al., 1997).

Anaerobic tolerance in plants is known to be closely asso-

ciated with the maintenance of energy metabolism (Webb

and Armstrong, 1983; Ricard et al., 1991). Therefore,
a sufficient supply of metabolizable sugars is probably very

important for the embryonic axis of submerged rice seed-

lings to overcome the low energetic efficiency of fermenta-

tion. Since only limited amounts of metabolizable sugars

are present in pre-germinated seeds, mobilization of the

starchy endosperm is critical to support the growth of non-

photosynthetic embryonic tissues.

One of the features clearly distinguishing rice from other

cereals is its ability to mobilize endosperm starch under

anaerobic conditions (Guglielminetti et al., 1995a, b). The

importance of sugar availability has been demonstrated in

anaerobic germination. For example, the inability of wheat

seeds to undergo anaerobic germination and the very
stunted anaerobic growth of rice CIPK15 knockout mutants

are related to their inability to mobilize endospermal starch

under anoxia, because exogenous supplementation with glu-

cose or sucrose rescues these plants under anoxic conditions

(Perata et al., 1993; Lee et al., 2009). Therefore, even though

the ability to undergo germination and post-germinative

growth under anaerobic conditions is likely to be the result
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of many physiological and biochemical processes, the ability

to mobilize starch anaerobically is essential for the growth

of anoxia-tolerant cereals such as rice.

a-Amylase initiates the breakdown of intact starch

granules from the endosperm, releasing glucose polymers in

the form of amylose and amylopectin, which can be further

digested by various hydrolases into soluble sugars. These

sugars are mobilized to the embryonic axis, where they are
utilized as carbon and energy sources for shoot and root

apical meristems that differentiate and grow to become the

seedling. Therefore, by controlling the rate of mobilization

of the starchy endosperm, a-amylase plays a critical role in

the germination process (Bewley and Black, 1994). Rice

a-amylases are encoded by 10 separate genes belonging to

three subfamilies (Amy1, 2, and 3) (Huang et al., 1990).

Rice a-amylase gene expression during aerobic germination
has been well characterized. For example, the analyses of

steady-state mRNA levels and in situ hybridization have

shown that the expression of each member of the a-amylase

multigene family is spatially and temporally regulated

during aerobic germination and seedling growth (Karrer

et al., 1991; Hwang et al., 1999). All genes of the Amy1 and

2 subfamilies of rice appear to be under phytohormonal

control because the cis-acting gibberellic acid (GA) response
element (GARE; 5#TAACAG/AA3#) is conserved in their

promoters (unpublished data). In fact, transcription of

Amy1A, a major a-amylase, is positively stimulated by GA,

and this action is antagonized by abscisic acid (ABA)

(O’Neill et al., 1990; Itoh et al., 1995). In contrast, all pro-

moters of Amy3 subfamily genes lack the GARE, suggest-

ing that their regulation is independent of GA/ABA control

(unpublished data). In fact, Amy3D promoter activity in
isolated embryos does not increase in response to exogenous

GA (Karrer and Rodriguez, 1992). Instead, Amy3 sub-

family genes are under sugar regulation in which their

expression is strongly induced in the absence of sugars but

is repressed by various sugars produced during endosperm

mobilization (Karrer and Rodriguez, 1992; Yu et al., 1992;

Thomas and Rodriguez, 1994). This can explain the tran-

sitory expression pattern of Amy3 subfamily genes in
scutellar tissue during aerobic germination (Hwang et al.,

1999). For example, in the initial stage of aerobic germina-

tion, Amy3D is expressed because no sugar is available

around the embryo, but as endosperm starch is mobilized

during the germination process, the increasing amount of

sugars around the embryo inhibits Amy3D expression.

Intriguingly, this transitory expression pattern of Amy3

subfamily genes disappears during anaerobic germination
(Hwang et al., 1999). For example, steady-state levels of

Amy3B/C, 3D, and 3E increase by the fourth day and are

sustained to the sixth day during anaerobic germination,

instead of rapidly disappearing after 1 d in aerobic con-

ditions. Sustained high expression of Amy3 subfamily genes

during anaerobic conditions appears to be very important

for anaerobic endosperm mobilization, since their relative

contribution to a-amylase production becomes much greater
(Perata et al., 1997). In addition to rice seeds, rice anoxic

coleoptiles also showed strong induction of the Amy3D gene

in an RNA profiling study (Lasanthi-Kudahettige et al.,

2007). Very little is known, however, about the ability of rice

to express a-amylase under anaerobic conditions.

In this study, the correlation between sugar regulation of

Amy3 subfamily genes (including Amy3D) and their

sustained high expression in a limited oxygen environment

was investigated. The data demonstrate that sugar regula-

tion of Amy3 subfamily gene expression is modulated by
oxygen availability. For example, various respiration inhib-

itors as well as anaerobic growth conditions allow the ex-

pression of Amy3 subfamily genes even in the presence of

glucose. These data indicate that inhibition of oxidative

phosphorylation interferes with the repression of Amy3

subfamily gene expression by the sugars produced during

germination, probably through de-repression of CIPK15

expression, resulting in augmented expression during anaer-
obic germination

Materials and methods

Rice whole seed and rice embryo treatments

Whole rice seeds (Oryza sativa L. cv. Dongjin) or rice embryos
manually dissected from the seed with a razor blade were surface
sterilized as described in Hwang et al. (2005).
For aerobic germination, 70–100 sterilized whole seeds were

placed on three layers of 3MM Whatman paper soaked with 10
mM CaCl2 solution. For anoxic treatment, the same amount of
seeds was submerged in 10 mM CaCl2 solution under N2 gas. Rice
embryos were harvested from whole seeds on the indicated days,
frozen with liquid N2, and used for extraction of total RNA.
For embryo experiments, 70–100 manually dissected rice em-

bryos were incubated on three layers of 3MM Whatman paper
soaked with 10 mM CaCl2 containing glucose or another sugar at
the indicated concentration. For anoxic treatment, ;70–100
embryos were submerged in 10 mM CaCl2 solution under N2 gas,
either with or without glucose at the indicated concentration as
described above. The molarity of sugar was adjusted to be the
same for all experiments by supplementing with mannitol.

Chemical treatments

Sodium azide (NaN3) and 2,4-dinitrophenol (DNP) were pur-
chased from Sigma-Aldrich Korea (Yongin, Korea).

Rice suspension cultures

Suspension-cultured rice cells (O. sativa L. cv. Dongjin) were
kindly provided by Jong-Seong Jeon’s lab in Kyung Hee Univer-
sity (Yongin, Korea). The suspension-cultured cells were main-
tained in AA2 culture medium (Thompson et al., 1986) and
subcultured every 10 d by transferring ;3–5 ml packed volume of
the cells to 20 ml of fresh AA2 medium and actively shaking at 150
rpm, 28 �C in the dark. For any chemical treatment, 5-day-old
cells of subcultures were washed twice with AA2 without glucose
and then transferred to a flask containing 20 ml of AA2 medium
with various sugars or other chemicals. Flasks were shaken at 150
rpm, 28 �C in the dark. For anoxic treatment, cells were
transferred to flasks under N2 gas containing 20 ml of AA2
medium with various sugars and other chemicals, and incubated at
28 �C without shaking in the dark.

RNA analysis

Total RNA was isolated from harvested rice embryos by grinding
with a mortar and pestle in liquid N2. The finely ground powder
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was dissolved in 6 ml of TLE/SDS buffer (0.18 M TRIS, 0.09 M
LiCl, 4.5 mM EDTA, 1% SDS, pH 8.2), vortexed vigorously, and
incubated on ice for 10 min. The same volume of TLE-buffered
phenol and chloroform was added and it was vigorously vortexed
and placed on ice for 30 min. Nucleic acids were recovered by ethanol
precipitation and then dissolved in 1 ml of RNase-free H2O. Total
RNA was specifically separated from DNA and other contaminants
by the TRI Reagent from Molecular Research Center, Inc.
(Cincinnati, OH, USA). RNA was precipitated with 100% ethanol
and its concentration was determined spectrophotometrically. A 25
lg aliquot of total RNA was size-fractionated through a 1%
formaldehyde–agarose gel, blotted onto a positively charged nylon
membrane (Amersham, Piscataway, NJ, USA), and exposed to
UV light of 1200 kJ/cm2 to fix the RNA to the membrane.
A probe specific for the Amy3D gene was prepared by PCR

using a primer set (Table 1) that primarily amplifies the 3#-
untranslated region (UTR) of the Amy3D gene, using Amy3D
cDNA (pOS137) as a template (O’Neill et al., 1990). The probe
was labelled non-radioactively using a digoxigenin (DIG) non-
radioisotope labelling protocol (Roche Diagnostics, Mannheim,
Germany). The specificity of this Amy3D probe has been pre-
viously demonstrated (Hwang et al., 1999). PCR was carried out
using a thermal controller (PTC-100; MJ Research, Waterdown,
MA, USA) with a 2 min pre-denaturing step at 95 �C followed by
30 cycles of amplification, with a 30 s denaturing step at 95 �C,
a 30 s annealing step at 55 �C, and a 2 min extension step at 72 �C.
The final extension step was 5 min at 72 �C.
Pre-hybridization of the membrane was performed for 5 h in

Ultrahyb solution (Ambion, Austin, TX, USA) at 42 �C.
Hybridization was started by adding the heat-denatured DIG-
labelled probe to the pre-hybridization solution and was per-
formed overnight. Washing and detection were performed using
the DIG Wash and Block buffer set from Roche Diagnostics
(Mannheim, Germany) as described in the company’s recommen-
ded protocol.

Quantitative real-time PCR

First-strand cDNA was synthesized with 1 lg of total RNA using
a Maxim kit (iNtRON Biotechnology, Seongnam, Korea) and an
oligo(dT) primer. Real-time quantitative reverse transcription-
PCR (qRT-PCR) was carried out using the Mx3000P� Real-time
PCR system (Stratagene, La Jolla, CA, USA). Detection of real-
time RT-PCR products was done by staining with SYBR Green
(Takara Bio, Otsu, Japan) following the manufacturer’s recom-
mendations. A 1 lg aliquot of first-strand cDNA was used as the
template for PCR. The PCR cycling conditions were 40 cycles after
a 10 min pre-denaturing step at 95 �C, with a 30 s denaturing step
at 95 �C, a 1 min annealing step at 60 �C, and a 1 min extension
step at 72 �C. The final extension step was 5 min at 72 �C. The
relative quantification method was used to evaluate quantitative
variation between the triplicates examined. The relative amplifica-
tion of the rice actin gene was used as an internal control to
normalize all data. The gene-specific primers used for quantitative
PCR are listed in Table 1.

Respiration rate measurement

The respiration rate of suspension-cultured rice cells was deter-
mined by an oxygen electrode (Rank Brothers, Cambridge, UK)
using 1 ml of medium containing ;200 ll packed volume of cells.
The total protein concentration was measured by the Bradford
method (Bradford, 1976).

ATP measurement

The concentration of ATP present in each of the samples was
determined using a bioluminescent detection reagent (ENLITEN
rLuciferase/Luciferin; Promega). Suspension-cultured cells (200 ll
packed volume) were ground with a mortar and pestle in liquid

N2, resuspended in 800 ll of grinding buffer (100 mm KH2PO4 at
pH 7.8, 1 mm EDTA, 7 mm b-mercaptoethanol), vortexed, spun
down quickly at 14 000 pm for 5 min, and the supernatant was
used for the assay. A 100 ll aliquot of luciferase/luciferin reagent
was added to 10 ll of the sample and luminescence was measured
by a luminometer (Tuner Biosystems, Sunnyvale, CA, USA) using
a 10 s integration. The amount of ATP present in the sample was
calculated from the measured relative light units (RLU) using a
standard curve. The total protein amount contained in the sample
was determined by the Bradford method (Bradford, 1976).

Results

Anoxic conditions perturb the sugar regulation
of Amy3D in the embryo, causing a sustained increase
in its expression

Since there is some variation in the anoxic responses of dif-

ferent rice varieties (Magneschi et al., 2009), the anoxic

induction of Amy3D was first examined in the embryos of

intact germinating seeds of Dongjin, a variety that was used

in the experiments. Amy3D expression was examined in rice
embryos dissected from aerobically or anaerobically germi-

nating seeds on the indicated days of germination (Fig. 1A).

In embryos from aerobically germinated seeds, Amy3D was

weakly and transiently expressed. For example, its expres-

sion was detectable from day 1 of germination until day 2,

and became undetectable by the fourth day of germination.

The expression level of Amy3D from intact seeds was much

lower than that from pre-isolated embryos without sugar
(Fig. 1B), suggestive of tight sugar regulation by sugars

newly released from endosperm digestion or pre-existing

sugars around the embryo in intact seeds. In contrast, in the

embryos of anaerobically germinated seeds, Amy3D expres-

sion increased prominently at day 1, and it continued at

least to the fourth day of germination when no Amy3D tran-

scripts were detectable from aerobically germinated seeds.

Since Amy3D expression, which is repressible by sugars,
was enhanced and sustained in anaerobic conditions, experi-

ments were carried out to investigate whether the sugar

regulation of Amy3D gene expression was influenced by

oxygen deficiency. Pre-isolated rice embryos were incubated

in different amounts of sugar in the presence or absence of

Table 1. List of the primers used in this study

Target gene Primer sequence

DIG labelling Amy3D FW 5#-CGGGATAGTCATGCTCAAACCAG-3#

RV 5#-GATTTTTTACTGCATCCTGAACCTG-3#

qPCR Amy3D FW 5#-GTAGGCAGGCTCTCTAGCCTCTAGG-3#

RV 5#-GATTTTTTACTGCATCCTGAACCTG-3#

Amy3B/C FW 5#-AGCAAGCTGAAAATCCTTGCTGCTGA-3#

RV 5#-TAATTGTTGCCGTGAGCAACGACATG-3#

Amy3E FW 5#-AGGAAGGCCTCAGGGTTCCTGCCGGT-3#

RV 5#-TCTCGCAGCAAAATTGCATGAT-3#

CIPK15 FW 5#-TAAGCCTTCAAAATTCTTCG-3#

RV 5#-TATAAACAAAACCAGGACTC-3#

Actin FW 5#-ATGAAGATCAAGGTGGTCGC-3#

RV 5# GTACTCAGCCTTGGCAATCC-3#
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oxygen for 1 d, and the steady-state levels of Amy3D

mRNA were examined (Fig. 1B). In aerobic conditions, the

expression of Amy3D was primarily controlled by the sugar

level; it was strongly expressed in the absence of sugar and

repressed in its presence. Surprisingly, anaerobic conditions

were able to interfere significantly with this sugar regulation

pattern. Anoxic conditions abolished the repression of

Amy3D expression imposed by the presence of glucose at
concentrations <80 mM, though it did not relieve Amy3D

suppression resulting from glucose concentrations >165 mM.

These results indicate that limited oxygen availability can

counter the ability of lower concentrations of glucose to

repress Amy3D gene expression, and they raise the possibility

that sugar regulation of Amy3D can occur through two

distinct pathways. The physiological concentrations of sugar

in the scutellum tissues are considered in the Discussion.

Inhibition of oxidative phosphorylation perturbs sugar
regulation of Amy3D expression in the embryo

To identify anoxic factors that alter sugar regulation of the

Amy3D gene, it was determined whether respiratory inhib-

itors could mimic the anoxic effect on Amy3D gene expres-

sion. Respiratory inhibitors such as sodium azide (NaN3)

and potassium cyanide (KCN) inhibit cytochrome c oxidase

by forming a complex with the iron ion in the cytochrome

oxidase. As shown in Fig. 2, co-treatment with NaN3

successfully de-repressed Amy3D expression in rice embryos
incubated in 80 mM glucose solution for 1 d. KCN also

showed the same de-repression effect (data not shown).

Since these metabolic inhibitors interfere with the action of

all different kinds of metal-containing oxidases (Beevers,

1961), another kind of respiratory inhibitor was employed to

determine the effect of inhibiting oxidative phosphorylation.

2,4-Dinitrophenol (DNP) is an uncoupler that prevents the

synthesis of ATP through the cytochrome c oxidase pathway
by dissipating the proton gradient across mitochondrial

cisternae. Like NaN3 and KCN, DNP also effectively

released glucose repression, indicating that de-repression of

the Amy3D gene by metabolic inhibitors is due to inhibition

of oxidative phosphorylation. These results suggest that the

inhibition of oxidative phosphorylation can cross-talk with

the sugar-dependent regulation of Amy3D expression.

Inhibition of oxidative phosphorylation also interferes
with the sugar regulation of other Amy3 subfamily
genes, which show enhanced expression during
anaerobic germination

In addition to Amy3D, the expression of other Amy3

subfamily genes is known to be controlled by sugar levels

Fig. 2. Effects of oxidative phosphorylation inhibitors on the sugar

regulation of the Amy3D gene in isolated rice embryos. Rice

embryos were manually harvested from whole seeds and in-

cubated on Whatman paper layers soaked with 10 mM CaCl2
containing sugar (80 mM glucose or mannitol) with or without the

respiratory inhibitors sodium azide (NaN3) or 2,4-dinitrophenol

(DNP) at the indicated concentrations for 1 d in the dark. The

presence or absence of glucose is indicated as + or –. The

transcript levels of Amy3D were detected as described in Fig. 1.

The total amount of RNA loaded is indicated by rRNA stained with

ethidium bromide.

Fig. 1. Modulation of Amy3D expression by oxygen availability.

(A) Expression of Amy3D in rice embryos during aerobic or

anaerobic germination. For aerobic germination, rice seeds were

placed on Whatman paper layers soaked with 10 mM CaCl2
solution at 28 �C in the dark. For anoxic treatment, rice seeds

were submerged in 10 mM CaCl2 solution under N2 gas at 28 �C
in the dark. The presence or absence of O2 is indicated as + or –.

After germinating in the presence or absence of oxygen, rice

embryos were harvested at the indicated times from whole seeds

and subsequently frozen with liquid N2. The transcript levels of

Amy3D were examined from total RNA isolated from frozen tissues

by using a probe specific to the 3# UTR. The total amount of RNA

loaded is indicated by rRNA stained with ethidium bromide.

(B) Effect of anoxia on the sugar regulation of Amy3D expression in

isolated rice embryos. Amy3D mRNA levels were examined in

pre-isolated embryos incubated in various concentrations of

glucose (0–330 mM) under aerobic and anaerobic conditions. For

aerobic treatment, rice embryos were first manually dissected from

whole seeds with a razor blade and incubated on Whatman paper

layers soaked with 10 mM CaCl2 containing glucose at the

indicated concentrations. For anoxic treatment, rice embryos were

submerged in 10 mM CaCl2 solution at the same glucose

concentrations as described above. The total sugar molarity was

adjusted to be the same for all experiments by supplementing with

mannitol. The presence or absence of O2 is indicated as + or –.

The transcript levels of Amy3D were detected as described above.

The total amount of RNA loaded is indicated by rRNA stained with

ethidium bromide.
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(Karrer and Rodriguez, 1992; Thomas and Rodriguez,

1994). Therefore, experiments were performed to determine

whether the sugar regulation of those genes would also be

affected by anoxia or co-treatment with a respiration in-

hibitor (Fig. 3). Real-time quantitative PCR indicated that

the expression of both Amy3B/C and Amy3E was repressed

by glucose ;20-fold, but either oxygen deficiency or co-

treatment with a respiratory inhibitor allowed those genes
to be highly expressed even in the presence of glucose, as

observed withAmy3D. These data indicate that de-repression

of the glucose effect by the inhibition of oxidative phosphor-

ylation is not unique to Amy3D gene regulation, and that

this interference with the repression of Amy3 subfamily

gene expression results in a prominently enhanced and

sustained expression pattern during the anaerobic germina-

tion of rice seeds.

Prevention of oxidative phosphorylation abolishes the
sugar regulation of CIPK15, an upstream positive
regulator of SnRK1A

Activation of Amy3D expression under starvation condi-

tions requires an accumulation of SNF1-related protein

kinase (SnRK1A), a yeast SNF1 (sucrose non-fermenting-1)

orthologue in rice. Recently, another rice protein kinase,

CIPK15 (calcineurin B-like protein-interacting protein ki-

nase), was demonstrated to be necessary for SnRK1A

accumulation under starvation conditions. Intriguingly, the
transcript levels of CIPK15 are regulated by sugar similarly

to those of Amy3D. Since CIPK15 is a more upstream

signalling component than SnRK1A, and its expression

itself is under the control of sugar, experiments were con-

ducted to examine whether the sugar regulation of CIPK15

expression is also affected by anoxia or inhibition of

oxidative phosphorylation (Fig. 4). Both anoxic conditions

and the respiratory inhibitor NaN3 relieved the repressive

effect of sugar on CIPK15 transcription, as was observed

for Amy3D expression, suggesting that anoxic de-repression

of Amy3D expression may be a result of anoxic interference

with the sugar regulation of CIPK15.

De-repression of Amy3D by metabolic inhibitors is not
due to inhibition of sugar utilization

In addition to glucose, various other sugars are known to

repress the expression of sugar-regulated genes (Sheen,

1990; Graham et al., 1994; Umemura et al., 1998). Some of
these sugars (mannose, galactose, and fructose) were tested

for their ability to repress Amy3D gene expression. All three

sugars showed a repressive effect on Amy3D expression, and

the repressive effect of 80 mM galactose and fructose could

be prevented by co-treatment with NaN3 (Fig. 5A). In

contrast, the repression of Amy3D expression induced by 80

mM mannose could not be relieved by NaN3 treatment.

Previously, mannose was reported to be more effective at
repressing sugar-regulated genes (Jang and Sheen, 1994).

Similarly, the expression of the Amy3D gene was found to

be much more sensitive to mannose than glucose in the pres-

ent system. Since de-repression of the sugar effect by oxygen

deficiency was sugar concentration dependent (as shown in

Fig. 1B), the effect of oxygen deprivation on Amy3D repres-

sion imposed by a lower concentration of mannose was ex-

amined. Although 0.5 mM mannose was too low to repress
the Amy3D gene, 1–5 mM mannose potently suppressed

Amy3D expression. This repression by mannose over the

lower concentration range (1–5 mM) was fully de-repressible

by NaN3, indicating that mannose-dependent repression

works in the same manner as that of glucose (Fig. 5B).

Next, the respiration efficacy of these three sugars was

compared to examine whether they could be efficiently

Fig. 3. Effects of respiratory inhibition on sugar regulation of Amy3 subfamily genes in isolated rice embryos. Rice embryos were

incubated in 10 mM CaCl2 solution containing 80 mM glucose or mannitol with or without 0.5 mM NaN3. The presence or absence of

glucose, O2, and NaN3 is indicated as + or –. Total RNA was isolated from rice embryos from each treatment and used for first strand

synthesis. Real-time quantitative PCR was performed to measure the transcript levels of each Amy3 subfamily gene using the gene-

specific primers described in Table 1. The expression ratio between Amy3D, Amy3B/C, or Amy3E and the rice actin gene in 80 mM

glucose medium under aerobic conditions was set to 1 as a control. The expression ratios in other conditions are given relative to the

control. The error bars represent the standard deviation of the mean (n¼3).
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metabolized by rice cells (Fig. 6). Suspension-cultured rice

cells were starved for 3 d and then supplied with each sugar

for 2 d. Then, the recovery of the respiration rate of the

starved cells was examined using an oxygen electrode. In

cells starved for 5 d, the respiration rate dropped to ;30%

of the rate before starvation. As expected, cells fed with
glucose showed full recovery of respiration within 2 d.

Galactose and fructose, which repressed Amy3D expression,

were also able to recover respiration rates to the level of

non-starved cells, suggesting that they were actively utilized

by the suspension-cultured cells. In contrast, mannose sup-

plementation could not recover respiration in the starved

cells at all, indicating that rice cells are incapable of

respiring mannose as an energy source. Therefore, the de-
repression effect induced by the respiratory inhibitors does

not appear to be due to preventing rice cells from respiring

the co-treating sugar. Instead, the metabolic inhibitors may

exert their effect by perturbing the pre-existing cellular

energy status.

Anoxia and respiratory inhibition rapidly alter cellular
ATP levels

Next, experiments were conducted to determine whether the

cellular ATP levels were perturbed in rice cells in which

glucose repression was relieved by anoxia or respiratory

inhibitor treatment. Since it is impossible to measure the

ATP levels only in the epithelium tissue of the embryo, rice

suspension cells derived from scutellar tissue were em-

ployed. Previously, it was demonstrated that these scutel-

lum-derived rice suspension cells display the same sugar

regulation of Amy3D gene expression as do intact seeds

(Huang et al., 1993). One day of treatment with anoxia or

an oxidative phosphorylation inhibitor also de-represses the

glucose effect on Amy3D gene expression in suspension-

cultured rice cells (Fig. 7A). As shown in Fig. 7B, these
treatments also lowered the ATP levels in the suspension

cells to 30–60% of the glucose control.

Discussion

Phytohormonal control of a-amylase genes, which plays
a central role in the endospermal digestion of cereal seeds

during aerobic germination, has been extensively studied

and remains one of the best examples of hormonal control

of plant gene expression (Lovegrove and Hooley, 2000).

However, despite the importance of anaerobic amylolytic

activity during the anaerobic germination of rice seeds, not

much is known about the anaerobic regulation of a-amylase

gene expression. In this study, the anoxia-enhanced expres-
sion of Amy3 subfamily genes, which are under the control

of sugar, was investigated. A previous study using in situ

hybridization with an Amy3D antisense strand probe

specifically localized Amy3D transcripts only to the scutellar

epithelium of the embryo, which is a single layer of

Fig. 5. Sugar concentration-dependent de-repression of mannose

effects by respiratory inhibition. Rice embryos were manually

harvested from whole seeds and incubated on Whatman paper

layers soaked with 10 mM CaCl2 containing (A) 80 mM of each

indicated sugar or (B) mannose from 0.5 mM to 5 mM with or

without 0.5 mM NaN3 for 1 d in the dark. The presence or

absence of NaN3 is indicated as + or –. The transcript levels of

Amy3D were detected as described in Fig. 1. The total amount of

RNA loaded is indicated by rRNA stained with ethidium bromide.

Fig. 4. Effects of respiratory inhibition on CIPK15 expression. Rice

embryos were incubated in 10 mM CaCl2 solution containing

80 mM glucose or mannitol with or without 0.5 mM NaN3 for 18 h.

The presence or absence of glucose, O2, and NaN3 is indicated +

or –. Total RNA was isolated from rice embryos from each

treatment and used for first-strand synthesis. Real-time quantita-

tive PCR was performed to measure the transcript levels of

CIPK15 using the gene-specific primers described in Table 1. The

expression ratio between CIPK15 and the rice actin gene in

80^mM glucose under aerobic conditions was set to 1 as

a control. The expression ratios in the other conditions are given

relative to the control. The error bars represent the standard

deviation of the mean (n¼3).
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palisade-shaped cells in close contact with the starchy

endosperm (Ranjhan et al., 1992). Since the actual amount

of sugars available in the scutellum during germination is

unclear, a wide range of sugar concentrations (0–330 mM)

in the incubation media were tested to examine the effect of

oxygen deprivation on sugar regulation. It was found that

oxygen deficiency released the repression of Amy3D expres-
sion due to glucose <80 mM (Fig. 1B). Because of the

technical difficulty of specifically monitoring the local sugar

content in a rice embryo, the steady-state levels of soluble

sugars in the scutellum during germination can only be

speculative. It is estimated that the amount of sugars there

is unlikely to exceed 80 mM significantly during anaerobic

germination. For example, total soluble sugar concentra-

tions in rice seed endosperm during anoxic germination
have been previously determined to be between 20 mM and

70 mM, depending on the rice variety (Huang et al., 2003).

Chen et al. (2006) also reported that the soluble sugar

content in the endosperm was ;200 mM throughout the

aerobically germinating period (up to 8 d). Since the anaer-

obic amylolytic activity of rice seed is <1/4 of the aerobic

activity (Hwang et al., 1999), the assumption for the sugar

content is not unreasonable. Previously, Loreti et al. (2003)
observed that Amy3D could not be expressed well in the

presence of 100 mM glucose under anoxia. This observation
led them to propose that rice embryos were able to express

Amy3D highly in anaerobically germinated seeds because

the amount of sugar produced during anaerobic germina-

tion was not sufficient to repress the gene. In the present

test, it was observed that Amy3D expression was completely

repressible by glucose concentrations of ;20 mM (data not

shown). Therefore, considering this high sensitivity of

Amy3D expression to low levels of sugar, de-repression of
the sugar effect by oxygen deficiency probably leads to an

increase in the expression of Amy3 subfamily genes (in-

cluding Amy3D) during anaerobic germination.

The fact that anoxic de-repression of the glucose effect

does not occur in a high-sugar environment (as shown in

Fig. 2) suggests that sugar may regulate Amy3D expression

via two distinct pathways. Actually, plant cells appear to

have several different ways to sense the sugar available to
them (Rolland et al., 2006). Both biochemical and genetic

evidence suggest that hexokinase plays the role of a sugar

sensor and triggers the repression response in many sugar-

regulated genes in higher plants (Jang et al., 1997; Moore

et al., 2003; Cho et al., 2007). Several lines of evidence

imply that the sugar regulation of Amy3D expression also

involves the rice hexokinase(s). For example, Umemura

Fig. 7. Effects of respiratory inhibition on the sugar regulation of

Amy3D expression and on the ATP levels in suspension-cultured

cells. Suspension cells cultured for 5 d were incubated in AA2

medium containing 20 mM glucose or mannitol with or without

0.5 mM NaN3 or O2 for 1 d in the dark. The presence or absence

of glucose, O2, and NaN3 is indicated as + or –. Total RNA was

extracted from suspension-cultured rice cells of each treatment

and used for northern analysis of Amy3D gene expression. The

transcript levels of Amy3D were detected as described in Fig.1.

Cell extracts from the same treatment were used to determine the

ATP levels.

Fig. 6. Effects of various sugars on the respiration rate of

suspension-cultured rice cells. Seven-day-old rice suspension-

cultured cells were washed with sugar-free AA2 medium, in-

cubated in sugar-free AA2 medium for 3 d, transferred to AA2

medium containing one of the indicated sugars, and then kept for

2 d in the dark with active shaking. ‘Non-starved’ and ‘starved’

indicate cells cultured in normal sucrose-containing medium or in

sugar-free medium for 5 d, respectively. The respiration rate of the

suspension-cultured cells was determined using an oxygen

electrode. The error bars represent the standard deviation of the

mean (n¼3).
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et al. (1998) demonstrated that the Amy3D promoter was

repressed only by the sugars that serve as a substrate for

hexokinase. Also glucosamine, a hexokinase inhibitor, can

alleviate the glucose repression of Amy3D. Recently, a tran-

sient expression study using rice protoplasts demonstrated

that OsHXK5 and OsHXK6 (Oryza sativa Hexokinase 5 and

6), which are evolutionarily related to a well-characterized

glucose sensor in Arabidopsis (AtHXK1), modulate the sugar
regulation of the Amy3D gene (Cho et al., 2009). Although

the exact mode of action of hexokinase in sugar signalling

is still not understood, the metabolic utilization of sugars

is not likely to be involved in it (Rolland et al., 2006).

Recently, dual targeting of hexokinase to the nucleus has

been demonstrated in Arabidopsis (Cho et al., 2006) and rice

(Cho et al., 2009), suggesting that hexokinase-mediated sugar

regulation of gene expression may occur directly through
translocation of sugar-bound hexokinase to the nucleus.

On the other hand, cells are also likely to perceive the

abundance of sugars by sensing the cellular energy status,

since sugars serves as a major metabolic fuel (Halford et al.,

1999; Halford and Hey, 2009). For example, SnRK is

a plant Ser/Thr protein kinase, similar to SNF1 in yeast

and AMPK (AMP-activated protein kinase) in mammals,

and has been suggested to act as a metabolic sensor in the
global control of plant carbon metabolism (Halford et al.,

2003; Polge and Thomas, 2007; Baena-Gonzalez and Sheen,

2008; Halford and Hey, 2009; Jossier et al., 2009).

Extensive studies have revealed several signalling compo-

nents involved in the sugar regulation of Amy3D gene

expression (Lu et al., 2002, 2007; Chen et al., 2006; Lee

et al., 2009). Previously, Lu et al. (2007) demonstrated that

SnRK1A serves as a positive regulator for Amy3D ex-
pression. For example, SnRK1A protein accumulation is

required for the activation of Amy3D expression under

starvation conditions. This kinase acts positively upstream

of MYBS1, which binds to the TA box (5#TATCCA3#) of
the Amy3D gene promoter and activates expression in re-

sponse to sugar starvation. An RNA interference assay also

indicated that rice SnRK1A is necessary for the expression

of MYBS1. Therefore, SnRK1A accumulation under star-
vation conditions induces MYBS1 expression, resulting in

Amy3D gene expression. Most importantly, transient ex-

pression assays in rice embryos demonstrated that SnRK1A

expression was able to relieve the repression of Amy3D

imposed by sugar (Lu et al., 2007). Recently, another rice

protein kinase, CBL (calcineurin B-like protein)-interacting

protein kinase (CIPK15), was found to be required for the

post-transcriptional accumulation of SnRK1A in response
to starvation (Lee et al., 2009). It is intriguing that the

expression of rice CIPK15 is under sugar regulation, which

is also abolished by treatment with a respiratory inhibitor

or anoxia (Fig. 4). Previously, transient expression assays

have revealed that CIPK15 can effectively release the sugar-

dependent repression of the Amy3D promoter (Lee et al.,

2009). Therefore, anoxic de-repression of CIPK15 expres-

sion drives the accumulation of SnRK1A, which induces
MYBS1 expression, allowing for the anoxic expression of

Amy3D in the presence of sugar. The de-repression of other

Amy3 subfamily genes by anoxia (Fig. 3) appears to work

in the same way as that of Amy3D, since the proximal

regions of all their promoters contain a TA box, which is

a MYBS1-binding site under the control of SnRK1A.

It has been demonstrated that the anoxic de-repression of

Amy3D is due to oxygen deficiency-induced interference

with oxidative phosphorylation (Fig. 2). It is unknown how

the inhibition of oxidative phosphorylation cross-talks with
the sugar regulation of Amy3D expression. It is unlikely

that the decrease in ATP production negatively affects

hexokinase-mediated sugar signalling. Recent biochemical

and genetic evidence strongly suggests that the catalytic

activity of hexokinase is not necessary for sugar signalling

in Arabidopsis (Moore et al., 2003). In rice, catalytically

inactive mutants of OsHXK5 and OsHXK6 were still able to

rescue a glucose-sensitive seedling phenotype in the Arabi-

dopsis glucose-insensitive gin2-1 background and also allow

sugar regulation of Amy3D gene expression (Cho et al., 2009).

This indicated that hexokinase is able to repress Amy3D

expression without being able to phosphorylate glucose.

One possibility is that the inhibition of respiration per-

turbs energy metabolism, which prevents cells from sensing

the abundance of sugars available to them. Such an ener-

getic perturbation may be reflected in the transcriptional
induction of CIPK15, which in turn drives a signalling cas-

cade that induces Amy3D gene expression. SnRK1A may

function in parallel or cooperatively with CIPK15 in re-

sponse to energy disturbances, since this enzyme may have

an evolutionarily conserved role as a sensor of cellular

energy. In yeast and mammals, SNF1 and AMPK are

activated by energy deficiencies represented by a high AMP/

ATP ratio, and they act as metabolic sensors that re-adjust
the energy homeostasis (Hardie and Hawley, 2001; Hardie

et al., 2006). Therefore, they are known to respond to various

environmental stresses (such as sugar starvation and hypoxia,

among other things) that can affect the metabolic status.

It is not clear why anoxia cannot abolish the repression of

Amy3D expression induced by high levels of sugar. One

possibility is a signalling competition between energy defi-

ciency and sugar-bound hexokinase to promote and inhibit
Amy3D transcription, respectively. Energy deficiency-driven

signalling for Amy3D transcriptional activation may com-

pete with repression signalling triggered by sugar-bound

hexokinase. If one signal rules over the other, depending on

the sugar environment, differential anoxic de-repression of

Amy3D expression may take place. For example, if re-

pression from sugar-bound hexokinase increases along with

an increase in the amount of sugars, it may prevail against
the activation signalling from a decrease in energy levels due

to anoxia-induced oxidative phosphorylation inhibition. It

was previously shown that as a phosphorylatable substrate

of hexokinase, mannose much more effectively represses the

expression of photosynthetic genes under control of hexoki-

nase-mediated sugar regulation than glucose (Jang and

Sheen, 1994). In Amy3D regulation, mannose repression

appears to be much more difficult to counteract by re-
spiratory inhibition (Fig. 5). For example, anoxia was able

fully to abolish the repressive effect of 80 mM glucose on
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Amy3D, but it was unable to counteract the effect of

mannose even at 10 mM (data not shown).

In this study, it was demonstrated for the first time that

inhibiting oxidative phosphorylation disrupts the sugar-

dependent regulation of rice a-amylase gene expression,

probably by de-repressing the sugar effect on CIPK15 tran-

scription, which leads to the accumulation of a positive

regulator of Amy3D expression (SnRK1A). This explains
the increased expression of Amy3 subfamily genes in em-

bryo tissues during anaerobic germination, which is very

important for rice to be able to grow in the underwater

environment. Future studies are necessary to determine

whether and how a rice cell is able to link changes in

metabolic status to transcriptional changes in CIPK15 and

SnRK1A activity.
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