
Journal of Experimental Botany, Vol. 70, No. 22 pp. 6521–6537, 2019
doi:10.1093/jxb/erz223  Advance Access Publication June 7, 2019
This paper is available online free of all access charges (see https://academic.oup.com/jxb/pages/openaccess for further details)

© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial 
re-use, please contact journals.permissions@oup.com

REVIEW PAPER

Undervalued potential of crassulacean acid metabolism for 
current and future agricultural production

Sarah C. Davis1,2,*, , June Simpson3, Katia del Carmen Gil-Vega3, Nicholas A. Niechayev4,  
Evelien van Tongerlo5, Natalia Hurtado Castano6, Louisa V. Dever7 and Alberto Búrquez8

1  Voinovich School of Leadership and Public Affairs, Ohio University, Athens, OH, USA
2  Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
3  Department of Genetic Engineering, Cinvestav Unidad Irapuato, Irapuato, Guanajuato, México
4  Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
5  Horticulture and Product Physiology, Wageningen University, Wageningen, The Netherlands
6  School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
7  Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
8  Instituto de Ecología, Universidad Nacional Autónoma de México, Unidad Hermosillo, Sonora, México

*  Correspondence: daviss6@ohio.edu

Received 5 December 2018; Editorial decision 2 May 2019; Accepted 3 May 2019

Editor: Kevin Hultine, Desert Botanical Garden, USA

Abstract

The potential for crassulacean acid metabolism (CAM) to support resilient crops that meet demands for food, fiber, 
fuel, and pharmaceutical products far exceeds current production levels. This review provides background on five 
families of plants that express CAM, including examples of many species within these families that have potential 
agricultural uses. We summarize traditional uses, current developments, management practices, environmental tol-
erance ranges, and economic values of CAM species with potential commercial applications. The primary benefit of 
CAM in agriculture is high water use efficiency that allows for reliable crop yields even in drought conditions. Agave 
species, for example, grow in arid conditions and have been exploited for agricultural products in North and South 
America for centuries. Yet, there has been very little investment in agricultural improvement for most useful Agave 
varieties. Other CAM species that are already traded globally include Ananas comosus (pineapple), Aloe spp., Vanilla 
spp., and Opuntia spp., but there are far more with agronomic uses that are less well known and not yet developed 
commercially. Recent advances in technology and genomic resources provide tools to understand and realize the tre-
mendous potential for using CAM crops to produce climate-resilient agricultural commodities in the future.

Keywords:   Agave, agroecosystems, aloe, cacti, crops, drought, Opuntia, orchid, pineapple, vanilla, water use efficiency.

Introduction

Crassulacean acid metabolism (CAM) is a photosynthetic 
pathway observed in plant families all around the world in 
many climates (Winter and Smith, 1996; Silvera et  al., 2010; 
Edwards and Ogburn, 2012), but it is not widely recognized 
as a characteristic that is favorable for agricultural plants. The 
wide temperature and moisture tolerance ranges exhibited in 

many CAM plants would, however, be advantageous for crops 
grown in locations with extreme weather events, especially 
where drought occurs. The increasing frequency of droughts, 
floods, and extreme temperatures occurring as a result of cli-
mate change (Kirtman et al., 2013; Naumann et al., 2018) are 
already motivating breeders and biotechnologists to develop 
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more resilient varieties of common commodity crops. While 
most crop improvement strategies emphasize increased pro-
duction of crops already in production, an alternative strategy 
could involve diversifying investments to develop more re-
silient crop species (Davis et al., 2018). This article reviews the 
potential of CAM crops to support more sustainable and re-
silient agricultural markets.

The expression of CAM in plants ranges from weak to strong, 
with some plants reverting to CAM only when under stress 
(facultative) and other plants operating with CAM constitu-
tively through the entire life cycle (e.g. Agave spp.). Some plant 
families, like Portulacaceae and Bromeliaceae, include species 
with a wide range of CAM expression from constitutive CAM 
to no CAM at all. Species within the Portulacaeae family range 
from C4 to CAM (e.g. Koch and Kennedy, 1980; Holtum et al., 
2017) and species within the Bromeliaceae range from C3 to 
CAM (e.g. Crayn et al., 2015). The plasticity of CAM and the 
wide-ranging expression of CAM have led to some debate 
about the evolutionary rise and permanence of this condition 
in plants. While a comprehensive phylogenetic count of CAM 
plants has not been completed, CAM has been discovered in 
over 34 families (Winter and Smith, 1996) and frequently oc-
curs in succulent plants, which in total are represented in 70 
flowering plant families (Nyffeler et al., 2008). Increasing rec-
ognition of CAM in many plant taxa underscores the potential 
for CAM to be exploited for agricultural production (Borland 
et al., 2009; Davis et al., 2014; Yang et al., 2015b).

Of the 168 crop product categories that are inventoried by 
the Food and Agriculture Organization of the United Nations, 
only four are sourced from CAM plants (agave fibers, pine-
apples, sisal, and vanilla) (FAO, 2018). In the last agricultural 
census of United States cropland, only 1 of 26 specified crops 
of importance was a CAM crop (pineapple), with 42 farms 
reporting production of pineapple and no acreage specified 
(USDA NASS, 2018). With over 2 million farms reporting data 
from the census (USDA NASS, 2018), the portion dedicated 
to CAM crops is insignificant (0.002%). Given this perspective, 
it is perhaps not surprising that plant physiological research, 
agricultural management, and crop production models have 
thus far focused primarily on C3 and C4 plants while CAM has 
received far less attention. As a result, the potential for CAM to 
improve sustainable agricultural production is under-realized, 
particularly considering that about 6% of all vascular plants use 
CAM (Winter and Smith, 1996).

The potential production of high-yielding CAM plants has 
been described for over four decades (e.g. Kluge and Ting, 1978), 
but there is a resurgent interest in the potential of CAM species 
for agriculture with recent studies of crops such as Agave spp. (e.g. 
Davis et al., 2010, 2016; Holtum et al., 2011) and Opuntia spp. (e.g. 
Owen and Griffiths, 2014; Cushman et al., 2015). Here, we re-
view these well-known and high yielding species along with less 
recognized CAM species that have potential for supplying com-
mercial agricultural products even under conditions with rapidly 
progressing climate change. We first review current geographic 
ranges of production, uses, management strategies, environmental 
tolerance ranges, and other characteristics of CAM species that 
have market value. We then review technological developments 
that can support agricultural improvements in CAM crops.

CAM species with agricultural value

Agavoideae (Asparagaceae)

Agave species are currently cultivated for multiple agricultural 
markets that include fiber, sweeteners, beverages, food, and or-
namentals. Traits of some of the more widely recognized spe-
cies are summarized in Table 1. The Agave genus is endemic 
to the Americas. Of the 200 described species, 150 are found 
in Mexico plus a further 36 subspecies, bringing the number 
of taxa reported in Mexico to 186 (García-Mendoza, 2007). 
Natural populations of Agave species are found in around 
75% of Mexican territory and are most abundant in arid and 
semiarid regions of the central and northern states. The flowers 
of most species (cacayas) are edible. The warm, humid states of 
Tabasco, Campeche, and Quintana Roo lack natural popula-
tions although many species have been introduced as orna-
mentals, and for cultivation in some cases. Agave spp. are now 
dispersed throughout the world.

The Agave genus is divided into two subgenera: Agave and 
Littaea, mainly distinguished by their paniculate or spicate in-
florescences, respectively. While the subgenus Littaea contains 
only 47 species, the subgenus Agave is the largest with 103 
species that are further divided into specific groups, and the 
group Rigidae contains most of the commercially exploited 
species (Gentry, 1982). García-Mendoza (2007) reports that 
many Agave species show local endemism with up to 69% of 
the described taxa growing only within very specific regions 
bounded by 1–3° latitude and longitude. Specific habitats are 
diverse, ranging from sea-level to 3400 m above sea-level, and 
include both arid and semi-arid zones, exposed areas within 
forests, and river banks; but the plants are most abundant in 
xerophilous regions. Agaves can grow on both igneous and 
sedimentary type soils but are found principally on limestone.

In Mexico, Agave species have been exploited for food, 
fiber, construction materials and fermented beverages since 
the pre-hispanic era and were of such importance to the an-
cient cultures that they were represented by their own deity: 
the goddess Mayahuel. Today Agave species remain as icons 
of Mexican culture and are prominent in art and cinematog-
raphy. Although currently the best-known Agave products are 
undoubtedly tequila and mezcal, the fiber industry was even 
more commercially important in the 19th and early 20th cen-
tury. Many other applications have been identified for potential 
exploitation, including the extraction of antimicrobial com-
pounds such as sapogenins, precursors for steroid hormone 
synthesis (Sidana et al., 2016) and extraction of fructan poly-
mers (inulins/agavins) for use as dietary supplements (Huazano 
and López, 2015).

Agaves are exploited at three different levels in Mexico: har-
vested from the wild, semi-domesticated, or grown industri-
ally. Subsistence farmers exploit wild agaves of many species 
for different purposes, with population densities ranging from 
20–1500 plants per hectare in forested land and reaching up 
to 3000 plants per hectare in grassland. Local residents are en-
couraged not to overexploit resources by replacing harvested 
plants, harvesting only mature plants, and protecting plants and 
their pollinators from animals and fire. In some cases, such as 
A. victoria-reginae (Martínez-Palacios et al., 1999), species are in 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/70/22/6521/5489301 by guest on 10 April 2024



Agricultural potential of CAM plants  |  6523

Ta
b

le
 1

. 
S

um
m

ar
y 

of
 v

ar
ie

tie
s,

 u
se

s,
 e

nv
iro

nm
en

ta
l t

ol
er

an
ce

 r
an

ge
s,

 m
an

ag
em

en
t r

eq
ui

re
m

en
ts

, d
ev

ot
ed

 la
nd

 a
re

a,
 a

nd
 e

co
no

m
ic

 v
al

ue
 o

f C
A

M
 s

pe
ci

es
 w

ith
 p

ot
en

tia
l a

gr
ic

ul
tu

ra
l i

m
po

rt
an

ce

S
p

ec
ie

s
N

um
b

er
 o

f 
va

ri
an

ts
U

se
s/

p
ro

d
uc

ts
O

p
ti

m
al

  
Te

m
p

 (°
C

)
Te

m
p

er
at

ur
e 

to
l-

er
an

ce
  

ra
ng

e 
(°

C
)

O
p

ti
m

al
  

an
nu

al
  

ra
in

fa
ll 

(m
m

)

A
ve

ra
g

e 
 

an
nu

al
 r

ai
nf

al
l 

in
 g

ro
w

in
g

  
re

g
io

n 
(m

m
)

Fe
rt

ili
ze

r 
 

re
q

ui
re

d
C

en
te

r 
o

f 
 

d
iv

er
si

ty
M

ec
ha

ni
ze

d
 

ha
rv

es
t 

La
nd

 a
re

a 
 

cu
rr

en
tl

y 
 

d
ed

ic
at

ed
  

(h
a)

C
ur

re
nt

  
ec

o
no

m
ic

 
va

lu
e 

 
(m

ill
io

n 
U

S
$ 

ye
ar

−
1 )

A
ga

ve
 a

m
er

ic
an

a 
L.

a
10

O
rn

am
en

ta
l, 

pu
lq

ue
, fi

be
r,  

an
ti-

in
fla

m
at

or
y,

 a
nt

i-

ca
rc

ig
en

ic
, a

nt
io

xi
da

nt
, 

st
er

oi
da

l, 
bi

oe
th

an
ol

25
 d

ay
/1

5 
ni

gh
t

−
9–

>
50

53
0

60
0–

80
0

U
nk

no
w

n,
 

br
oa

d 
to

le
ra

nc
e

N
or

th
er

n 
M

ex
ic

o 

an
d 

S
ou

th
w

es
te

rn
 

U
S

A

N
o

N
on

e 
co

m
-

m
er

ci
al

U
nk

no
w

n

A
ga

ve
 a

ng
us

tif
ol

ia
 

H
aw

.b

>
20

M
es

ca
l, 

br
oo

m
s,

 fi
be

r 
or

 

te
xt

ile
s,

 p
ul

qu
e,

 ro
pe

22
–3

8
5–

50
 

12
5–

16
80

U
nk

no
w

n,
 n

ot
 

us
ua

lly
 a

pp
lie

d

O
ax

ac
a

N
o

~
24

9
20

6

A
ga

ve
 fo

ur
cr

oy
de

s 

Le
m

.c

3
Fi

be
r 

fo
r 

te
xt

ile
s,

 ro
pe

, 

fu
el

,  

sa
nd

al
s,

 c
on

st
ru

ct
io

n

18
–3

6
−

2–
40

 
50

0–
10

00
U

nk
no

w
n,

 

le
av

es
 a

nd
 b

a-

ga
ss

e 

Yu
ca

ta
n

N
o

~
15

 0
00

12
.6

A
ga

ve
 m

ap
is

ag
a 

Tr
el

.d

1
P

ul
qu

e,
 fi

be
r, 

ca
tt

le
 fe

ed
, 

fo
od

, c
on

st
ru

ct
io

n

12
–1

6
 

70
0

 
U

nk
no

w
n,

 

m
an

ur
e 

C
en

tr
al

 M
ex

ic
o

N
o

N
on

e 
co

m
-

m
er

ci
al

U
nk

no
w

n

A
ga

ve
 s

al
m

ia
na

 O
tt

o 

ex
 S

al
m

-D
yc

ke

4
P

ul
qu

e,
 m

es
ca

l, 
fo

od
, 

je
w

el
le

ry
, t

oy
s,

 d
ec

or
-

at
io

n,
 o

rn
am

en
ta

ls
, f

ue
l, 

po
ul

tic
e

12
–1

6
 

 
12

5–
80

0
U

nk
no

w
n

S
an

 L
ui

s 
P

ot
os

i 

an
d 

H
id

al
go

N
o

~
59

 0
00

0.
06

3

A
ga

ve
 s

is
al

an
a 

P
er

rin
ef

2
Fi

be
r 

fo
r 

te
xt

ile
s,

 o
rn

a-

m
en

ta
l, 

m
ed

ic
in

e

35
–4

0
5–

40
12

00
50

0–
80

0
Va

ria
bl

e
U

nk
no

w
n,

 

in
tr

od
uc

ed
 fr

om
 

M
ex

ic
o

N
o

33
1 

33
0

11
1

A
ga

ve
 te

qu
ila

na
 

W
eb

er
 v

ar
. a

zu
lg

7
Te

qu
ila

, f
ue

l, 
sw

ee
te

ne
rs

30
 d

ay
/1

5 
ni

gh
t

−
3–

>
50

 
70

0
40

–6
0 

kg
 N

 

ha
−

1  y
ea

r−
1 , 

ot
he

r 
nu

tr
ie

nt
s 

de
pe

nd
 o

n 
so

ils

Ja
lis

co
N

o
33

0 
00

0
31

4

A
lo

e 
sp

p.
h

36
0 

sp
ec

ie
s

B
ur

ns
, d

ig
es

tió
n,

 in
-

fla
m

m
at

io
n,

 w
ou

nd
s,

 

di
ab

et
es

, i
m

m
un

ity
, 

an
tit

um
or

ig
en

ic
, c

os
-

m
et

ic
s,

 o
rn

am
en

ta
l, 

ph
yt

or
em

ed
ia

tio
n

Va
ria

bl
e

Va
ria

bl
e

15
0 

m
l k

g−
1  

pl
an

t

>
10

0
M

an
ur

e 
us

ed
 a

t 

5–
10

 M
g 

ha
−

1

S
ou

th
er

n 
A

fri
ca

, 

A
ra

bi
an

 p
en

in
su

la

P
ar

tia
lly

 
10

0 
(ra

w
) 1

25
 

00
0 

(in
 p

ro
du

ct
s)

A
lo

e 
ba

rb
ad

en
si

si
 

 
19

–2
7

10
–3

0
19

00
–3

00
0

 
80

–4
0–

80
 o

r 

N
P

K

 
P

ar
tia

lly
 

 

A
na

na
s 

co
m

os
us

 

(L
.) 

M
er

ril
l j

5 
va

rie
tie

s,
 1

3 

cu
lti

va
rs

Fr
ui

t, 
be

ve
ra

ge
s,

 fi
be

r 

or
 te

xt
ile

s,
 m

ed
ic

in
e,

 

po
is

on
, fi

sh
in

g 
lin

e,
 n

et
s,

 

ha
m

m
oc

ks

30
 d

ay
/2

0 
ni

gh
t

0–
>

35
60

0
 

25
–1

00
 k

g 
N

 

ha
−

1  to
 s

oi
l, 

20
0–

60
0 

kg
 N

 

ha
−

1  y
ea

r−
1  to

 

le
av

es
; 2

5–
10

0 

kg
 P

 h
a−

1

G
ui

an
a 

S
hi

el
d 

in
 

S
ou

th
 A

m
er

ic
a

P
ar

tia
lly

1 
12

2 
52

0
33

51

C
ac

ta
ce

ae
 

fa
m

ily
 (e

xc
ep

t 

O
pu

nt
ia

)k

>
>

10
0 

w
ild

 

sp
ec

ie
s,

 1
2 

do
m

es
tic

at
ed

, 

m
an

y 
m

an
-

ag
ed

O
rn

am
en

ta
l (

bo
th

 p
ot

te
d 

an
d 

la
nd

sc
ap

e 
pl

an
ts

), 

fru
it,

 m
ed

ic
in

al
 u

se
, c

er
e-

m
on

ia
l u

se

Va
ria

bl
e,

 b
ut

 

m
ai

nl
y 

dr
y-

tr
op

ic
al

 1
5–

35

Va
ria

bl
e,

 0
–>

50
ca

 5
00

50
–5

00
B

ro
ad

 to
le

r-

an
ce

, w
el

l-

dr
ai

ne
d 

so
ils

M
ex

ic
o,

 S
ou

th
 

A
m

er
ic

a

N
o

U
nk

no
w

n 

ac
re

ag
e 

un
de

r 

cu
lti

va
tio

n.
 

M
illi

on
s 

of
 h

a 
in

 

w
ild

 p
op

ul
at

io
ns

U
nk

no
w

n,
 b

ut
 

lik
el

y 
in

 th
e 

ra
ng

e 

of
 2

0–
20

0.
 R

ap
-

id
ly

 in
cr

ea
si

ng

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/70/22/6521/5489301 by guest on 10 April 2024



6524  |  Davis et al.

S
p

ec
ie

s
N

um
b

er
 o

f 
va

ri
an

ts
U

se
s/

p
ro

d
uc

ts
O

p
ti

m
al

  
Te

m
p

 (°
C

)
Te

m
p

er
at

ur
e 

to
l-

er
an

ce
  

ra
ng

e 
(°

C
)

O
p

ti
m

al
  

an
nu

al
  

ra
in

fa
ll 

(m
m

)

A
ve

ra
g

e 
 

an
nu

al
 r

ai
nf

al
l 

in
 g

ro
w

in
g

  
re

g
io

n 
(m

m
)

Fe
rt

ili
ze

r 
 

re
q

ui
re

d
C

en
te

r 
o

f 
 

d
iv

er
si

ty
M

ec
ha

ni
ze

d
 

ha
rv

es
t 

La
nd

 a
re

a 
 

cu
rr

en
tl

y 
 

d
ed

ic
at

ed
  

(h
a)

C
ur

re
nt

  
ec

o
no

m
ic

 
va

lu
e 

 
(m

ill
io

n 
U

S
$ 

ye
ar

−
1 )

O
pu

nt
ia

 fi
cu

s-
in

di
ca

 l
81

Fo
od

, b
ev

er
ag

es
, c

os
-

m
et

ic
s,

 fo
ra

ge
, p

ha
rm

a-

ce
ut

ic
al

s

25
 d

ay
/1

5 
ni

gh
t

−
7–

65
50

0
 

50
–1

00
 k

g 
N

 

ha
−

1  y
ea

r−
1 , 

10
–3

0 
kg

 P
 

ha
−

1  y
ea

r−
1 , 

20
–5

0 
kg

 K
 

ha
−

1  y
ea

r−
1 , 

10
–5

0 
kg

 h
a−

1  

ye
ar

−
1 , C

a 
at

 

pl
an

tin
g

C
en

tr
al

 M
ex

ic
o

N
o

>
60

0 
00

0
25

20

O
rc

hi
da

ce
ae

 fa
m

ily
m

>
29

 0
00

 s
pe

-

ci
es

O
rn

am
en

ta
l (

bo
th

 c
ut

 

flo
w

er
s 

an
d 

po
tt

ed
 

pl
an

ts
), 

fo
od

, m
ed

ic
in

al
 

us
e,

 c
er

em
on

ia
l u

se

Va
ria

bl
e

Va
ria

bl
e

Va
ria

bl
e

Va
ria

bl
e

Va
ria

bl
e

Tr
op

ic
al

 h
um

id
 

cl
im

at
es

O
nl

y 
fo

r 
or

na
m

en
ta

l
 

Va
ni

lla
 M

ill.
n

10
7 

sp
ec

ie
s

Fo
od

, s
pi

ce
, m

ed
i-

ci
ne

, w
ov

en
 fi

gu
re

s 
an

d 

ba
sk

et
s

21
–3

2
10

–3
3

>
15

00
>

15
00

U
nk

no
w

n,
 

m
ul

ch
 a

nd
 

co
m

po
st

 

C
en

tr
al

 M
ex

ic
o

N
o

93
 1

19
76

2

a  G
en

tr
y,

 1
98

2;
 O

ca
ña

-N
av

a 
et

 a
l.,

 2
00

7;
 E

sc
am

illa
-T

re
vi

ño
, 2

01
2;

 H
am

is
sa

 e
t a

l.,
 2

01
2.

b  G
en

tr
y,

 1
98

2;
 C

ol
un

ga
-G

ar
cí

aM
ar

ín
 e

t a
l.,

 1
99

9;
 A

gu
irr

e 
et

 a
l.,

 2
00

1;
 B

au
tis

ta
-C

ru
z 

et
 a

l.,
 2

00
7;

 E
gu

ia
rt

e 
an

d 
S

ou
za

, 2
00

7;
 P

al
om

in
o 

et
 a

l.,
 2

00
7;

 Z
iz

um
bo

-V
illa

rr
ea

l a
nd

 C
ol

un
ga

-G
ar

cí
aM

ar
ín

, 2
00

7;
 

R
iv

er
a-

Lu
go

 e
t a

l.,
 2

01
8.

c  C
ol

un
ga

-G
ar

cí
aM

ar
ín

 e
t a

l.,
 1

99
3;

 C
ol

un
ga

-G
ar

cí
aM

ar
ín

 a
nd

 M
ay

-P
at

, 1
99

3;
 Ir

is
h 

an
d 

Iri
sh

, 2
00

0.
d  C

ru
z-

R
am

íre
z 

et
 a

l.,
 2

00
6;

 A
gu

ila
r-

Ju
ár

ez
 e

t a
l.,

 2
01

4.
e  G

en
tr

y,
 1

98
2;

 O
ca

ña
-N

av
a 

et
 a

l.,
 2

00
7;

 A
gu

ila
r-

Ju
ár

ez
 e

t a
l.,

 2
01

4;
 E

sp
ar

za
-I

ba
rr

a,
 2

01
5.

f  G
en

tr
y,

 1
98

2;
 D

eb
na

th
 e

t a
l.,

 2
01

0.
g  V

al
en

zu
el

a-
Za

pa
ta

, 1
99

4;
 V

al
en

zu
el

a-
Za

pa
ta

, 1
99

7;
 M

an
ci

lla
-M

ar
ga

lli 
an

d 
Ló

pe
z,

 2
00

6;
 B

au
tis

ta
-C

ru
z 

et
 a

l.,
 2

00
7;

 P
im

ie
nt

a-
B

ar
rio

s 
et

 a
l.,

 2
00

7;
 H

ol
tu

m
 e

t a
l.,

 2
01

1;
 N

úñ
ez

 e
t a

l.,
 2

01
1.

h  G
rin

dl
ay

 a
nd

 R
ey

no
ld

s,
 1

98
6;

 A
hl

aw
at

 a
nd

 K
ha

tk
ar

, 2
01

1;
 L

io
nt

ak
is

 e
t a

l.,
 2

01
6;

 K
at

er
er

e,
 2

01
8.

i  S
ah

a 
et

 a
l.,

 2
00

5;
 A

hl
aw

at
 a

nd
 K

ha
tk

ar
, 2

01
1.

j  B
ar

th
ol

om
ew

 e
t a

l.,
 2

00
2;

 M
in

g 
et

 a
l.,

 2
01

5;
 F

A
O

S
TA

T,
 2

01
8.

k  C
as

as
 a

nd
 B

ar
be

ra
, 2

00
2;

 N
er

d 
et

 a
l.,

 2
00

2.
l  N

ob
el

 a
nd

 Is
ra

el
, 1

99
4;

 N
ob

el
, 2

00
2;

 N
ob

el
 a

nd
 D

e 
la

 B
ar

re
ra

, 2
00

3;
 G

rif
fit

h,
 2

00
4;

 S
tin

tz
in

g 
an

d 
C

ar
le

, 2
00

5;
 F

eu
ga

ng
 e

t a
l.,

 2
00

6;
 A

gu
ile

ra
-B

ar
re

iro
 e

t a
l.,

 2
01

3;
 Y

an
g 

et
 a

l.,
 2

01
5a

; A
rb

a 
et

 a
l.,

 2
01

7;
 

In
gl

es
e 

et
 a

l.,
 2

01
7.

m
 A

rd
itt

i, 
19

92
; D

e 
La

 C
ru

z 
M

ed
in

a 
et

 a
l.,

 2
00

9;
 S

ilv
er

a 
et

 a
l.,

 2
00

9;
 S

w
ar

ts
 a

nd
 D

ix
on

, 2
00

9;
 D

e 
et

 a
l.,

 2
01

4;
 F

ay
, 2

01
8.

n  F
ou

ch
é 

an
d 

Jo
uv

e,
 1

99
9;

 C
am

er
on

, 2
01

1.

Ta
b

le
 1

. 
C

on
tin

ue
d

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/70/22/6521/5489301 by guest on 10 April 2024



Agricultural potential of CAM plants  |  6525

danger of extinction due to overexploitation, but in other cases 
local inhabitants are the stewards of traditional customs that 
sustainably exploit Agave spp.

Semi-domesticated plants are sexually or asexually propa-
gated and usually managed by subsistence farmers with small 
plots of land. Agave species are actively planted and often serve 
as fences to protect property. They can be grown in combin-
ation with other crops or natural vegetation and are of different 
ages allowing farmers to harvest each year without the need 
to wait 8–10 years until all plants reach maturity. Farmers har-
vest and replace only mature plants and some organic fertilizer 
may be added, but input and labor costs are low allowing the 
farmers to obtain acceptable income. This low intensity man-
agement (with few inputs required) is common for production 
of pulque in Mexico State, Hidalgo, and Puebla from fer-
mented Agave sap using essentially the same methods as were 
used in pre-hispanic times. Large species with long life cycles, 
such as A. americana, A. mapisaga, A. atrovirens, and A. asperrima, 
are harvested just before flowering; the apical meristem is re-
moved and part of the stem hollowed out. The sap is extracted 
and left to ferment and on average 300 liters of sap can be 
obtained from a plant over a 3-month period. Pulque is a rela-
tively cheap beverage consumed as an alternative to beer and 
has seen a revival as young Mexicans begin consciously up-
holding traditional customs (Escalante et al., 2016).

Plants cultivated on an industrial scale are exclusively asexu-
ally propagated and planted in monoculture with intensive 
management (fertilization, weed and pathogen control). Until 
recently, most plantations were initiated using offsets, but cur-
rently some large-scale producers are turning to in vitro propa-
gated germplasm in order to ensure homogeneity and eliminate 
diseases. Large-scale production of mezcal is associated with 
different Agave species in different regions of Mexico. The 
most important of these are A. pacífica (now synonymous with 
A.  vivipara L.) in Sonora, A.  salmiana in Zacatecas, San Luis 
Potosí, and Guanajuato (Aguirre et  al., 2001; Aguilar-Juárez 
et al., 2014), and members of the ‘A. angustifolia complex’ in 
Oaxaca (Bautista-Cruz et al., 2007; Cruz-García et al., 2013). 
The renewed interest in mezcal has led to registration of each 
region and species with a controlled denomination under the 
auspices of the Mezcal Regulatory Council.

Tequila, undoubtedly the best known ‘mezcal’, is produced 
under a separate, strictly controlled denomination of origin 
overseen by the tequila regulatory council (CRT, 2018) that 
states that tequila can only be produced using the cultivar 
A.  tequilana Weber var. azul in designated counties of five 
Mexican states: Jalisco, Guanajuato, Nayarit, Michoacán and 
Tamaulipas. Crop yields from plantations in the tequila pro-
ducing region are estimated to be around 22 Mg ha−1 year−1 
(Davis et al., 2014). Agave tequilana is by far the most efficient 
species in terms of production of alcohol given the higher 
levels of fructan accumulation and shorter life cycle in com-
parison with species used for mezcal.

Fertilization requirements for Agave grown commercially in 
Mexico depend on soil composition, plant age, and growth 
rate. Often urea is applied to provide nitrogen, but phosphorus 
and potassium are also required in some regions (Holtum 
et al., 2011). Some studies show that A. tequilana productivity 

is limited by low nitrogen, phosphorus, potassium, and boron 
in soil, and that disk ploughing decreases the levels of organic 
carbon, nitrogen, and phosphorus in A.  tequilana plantations 
in Western Central Mexico (Bautista-Cruz et  al., 2007). Soil 
nutrient levels can affect both plant growth and the flavor of 
tequila (Núñez et al., 2011).

Harvesting of Agaves on an industrial scale is still labor inten-
sive. Agave tequilana plants flower between 5–8 years after plan-
ting whereas mezcal species will usually take at least 7 years. 
Flowering, from February to May, signals the end of the Agave 
life cycle and inflorescences are removed manually soon after 
emergence to preserve accumulated carbohydrates. Flowering 
is not homogeneous and farmers can choose to harvest over 
several years to maximize the sugar content of plants or har-
vest the whole plantation including plants not ready to flower 
and with lower sugar content. Plants are harvested by manu-
ally removing the leaves and transporting the stem or head for 
sugar extraction and fermentation. Agave tequilana stems usu-
ally weigh around 40–90 kg with a sugar content of 30° brix 
(Zuñiga-Estrada et al., 2018) whereas mezcal species can reach 
over 200 kg but have a sugar content of between 6 and 21° 
brix depending on the species.

Asexual reproduction of A. tequilana and mezcal species has 
led to a narrow germplasm base that makes Agave plantations 
extremely vulnerable to pests and pathogens, the most common 
of which are Phyllophaga spp., Pseudococcus spp., Acutaspis agavis, 
Agathymus rethon, Strategus oleus, and Scyphophorus acupunctatus. 
Pest management strategies include weed control, soil handling, 
nutrition, and black light traps. Biological control involving 
Beauveria bassiana, Metarhyzium anisopliae, and Chilocorus cacti 
has also been used in addition to the application of chem-
ical insecticides. Common pathogens include wilt (Fusarium 
spp.), grey spot (Cercospora spp.), stem rot (Erwinia spp.), leaf 
spot (Botryodiplodia spp., Phytophtora spp., and Alternaria spp.), 
and fungicides or chemical treatments are applied for control 
(Bernal et al., 2006; Rulfo et al., 2007).

In addition to Agave species exploited specifically for spirits 
and pulque, other species are notable for their current and poten-
tial exploitation for production of bioenergy, pharmaceuticals, 
and fibers. For example Agave americana L. is most commonly 
used as an ornamental and to a lesser extent for pulque and 
fiber production, but has recently been introduced as a biofuel 
crop for semi-arid conditions (Davis et al., 2016). Because of its 
high antioxidant activity, extracts from A. americana leaves are 
used in traditional medicine as an anti-inflammatory agent and 
studies have shown anti-carcinogenic and antioxidant proper-
ties (Hamissa et al., 2012). Saponins, tigogenin, and hecogenin 
are also extracted from the waste residues of A. americana fibers 
for synthetic steroid hormones (Escamilla-Treviño, 2012). This 
species could potentially be more widely exploited by pharma-
ceutical and cosmetic industries.

Hard fibers produced from Agave are often indistinctly re-
ferred to as henequen or sisal, but several different Agave species 
are associated with fiber production. In Mexico A. fourcroydes 
has been used since pre-hispanic times in the Mayan culture of 
the Yucatán peninsula for production of henequen (Colunga-
GarcíaMarín and May-Pat, 1993; Colunga-GarcíaMarín et al., 
1999; Colunga-GarcíaMarín, 2003). Spanish colonists largely 
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ignored fiber production from Agave until the invention of 
the automatic harvesting/binding machine (1845) for hay and 
wheat in the USA led to huge demand for twine that was safe 
for animals. From 1850 onwards, plantations in Mexico were 
the source of >85% of henequen fiber and machines for de-
cortication were introduced. At the height of production in 
1910–1915, >150 800 tons of fiber were produced annually 
and >659 million plants were grown. With the introduction of 
synthetic fibers after World War II, the industry declined and 
the technology was sold to Brazil (Evans, 2007). Most of the 
henequen ‘haciendas’ and plantations are currently abandoned 
or being developed as hotels and restaurants to cater to the 
tourist industry (Evans, 2007). Current interest in natural fibers 
and products could represent an opportunity to reinvigorate 
the industry in Mexico in order to become competitive with 
China and Brazil, where production of Agave for fiber has re-
cently increased (FAO, 2018).

Agave sisalana Perrine, which probably originated in Chiapas 
by hybridization between A.  angustifolia and A.  kewensis 
(Gentry, 1982), is named for the port of Sisal in Yucatán, 
Mexico from where it was originally exported during the 19th 
century for development of fiber production in India, Africa, 
and Brazil. The A. sisalana cultivar Hildana was widely used in 
East Africa, but a high yielding hybrid, H11648 ((A. amaniensis 
× A. angustifolia) × A. amaniensis), has replaced A. sisalana in 
Tanzania and other regions of Africa and is now the genotype 
cultivated in China (Bos and Lensing, 1973).

Tanzania, the most important producer of sisal until the 
1960s, has now been overtaken by Brazil (Brink and Achigan-
Dako, 2012). For fiber production, plantations are initiated 
from either offsets or bulbils, but in vitro propagation is also 
possible. Seed plants are usually around 30–40  cm tall and 
have around 15 leaves. Planting can be carried out both in 
the dry season (March to May) and in the rainy season (June 
to September). Density of planting is between 3000 and 4000 
plants per hectare, and in some cases double rows are planted 
and/or legumes are intercropped. Plants begin to be harvested 
between 3 and 7 years after planting and between 9 and 12 
leaves are harvested at 6-month intervals. Annual crop yields 
of sisal are estimated to be 13 Mg ha−1 year−1 in commercial 
production (Davis et al., 2014).

Aloaceae

Aloe species are widely used CAM plants, with records dating 
back to Sumerian clay tablets from 2100 BC, and extensive use 
by ancient Egyptian, Arab, Greek, Roman, and Indian cultures 
(Sánchez-Machado et al., 2017). Today, the extracted tissues are 
processed for treatment of radiation (burn) injuries (Rao et al., 
2017; Silva et al., 2014), gastrointestinal issues (Xu et al., 2016; 
Boudreau et  al., 2017), inflammation (Vázquez et  al., 1996), 
wounds (Choi et al., 2001), diabetes (Bunyapraphatsara et al., 
1996; Tabatabaei et al., 2017), and mitigation of immune system 
weakening associated with HIV–AIDs (Olatunya et al., 2012), 
and it even has antitumorigenic properties (Hussain et al., 2015; 
Shalabi et  al., 2015). Aloe spp. are also consumed as a health 
food and beverage, commonly appear as an ingredient in cos-
metics (Javed and Atta-ur-Rahman, 2014), and can be used as 

a bioabsorbant of pollutants in ecosystems (Giannakoudakis 
et  al., 2018). The long list of commonly known, novel, and 
sometimes exaggerated uses of Aloe fuels demand on a global 
scale (Liontakis et  al., 2016; Katerere, 2018). The global in-
dustry for Aloe spp. in raw form has been estimated to be about 
125 million US dollars, the volume of industry for finished 
products is alleged to be around 110 billion US dollars, and 
Americans alone spent almost 40 billion US dollars on related 
products in 2008 (Ahlawat and Khatkar, 2011).

While still closely related to plants found in the Liliaceae 
family, plants within the Aloe genus are now assigned to the 
family Aloaceae, which contains over 360 species all inter-
changeably referred to by the common name aloe vera (Eshun 
and He, 2004; Sánchez-Machado et  al., 2017). The plants 
within the Aloe genus originate from southern Africa, but 
many of the medicinal varieties have diversity centered in the 
Arabian peninsula (Grace et al., 2015). Aloaceae species typic-
ally have succulent, tapered leaves attached directly to a cen-
tral stem forming simple rosettes. The leaves often have spines 
along margins and on both abaxial and adaxial surfaces and 
have a thick rind that surrounds a clear gel-like mesophyll. 
These morphological traits allow for Aloe to survive in arid 
habitats, and δ13C values reveal that Aloe performs CAM con-
stitutively (Winter et al., 2005), which is likely an adaptation to 
use water with extreme efficiency under drought conditions.

Though many plants found within the Aloaceae family can 
be considered economically important, many of these spe-
cies are wild-cultivated (Nejatzadeh-Barandozi et  al., 2012). 
Of these species, Aloe perryi Baker, Aloe ferox, Aloe arborescens, 
and Aloe barbadensis Miller are all medicinal. The latter is also 
commonly found in commercial production, and has a variant, 
A. arborescens Mil. var. natalensi Berger (Eshun and He, 2004; 
Nejatzadeh-Barandozi et  al., 2012; Sánchez-Machado et  al., 
2017), that is poorly understood.

Aloe barbadensis Miller
Aloe barbadensis Mil. has so far been demonstrated to have the 
greatest medicinal value within the Aloaceae family (Eshun 
and He, 2004). It is cultivated on a large scale in South 
Africa, Madagascar, Arabia, and India in well-draining soils 
(Nejatzadeh-Barandozi et  al., 2012), and is a perennial crop 
that requires two years to reach maturity with a lifespan of 
12 years (Ahlawat and Khatkar, 2011). It reproduces mostly by 
clonal pups but may also produce a single inflorescence season-
ally with long yellow to orange flowers that are pollinated by 
the long beak of a sunbird (Rathod et al., 2014). Once matured, 
leaves can be harvested four to six times per year with plan-
ting density of 10 000–20 000 plants per hectare (Yepes et al., 
1993; Añez and Vásquez, 2005). Silva et al. (2010) performed a 
study in which irrigation treatments were applied in 20, 15, 10, 
and 5% of the mean evaporative demand measured in a field 
site (Chile) that receives an annual precipitation rate of about 
100 mm year−1. At the optimal treatment of 15% evaporative 
demand added, 17.1 g of A. barbadensis gel could be produced 
per liter of water and 76.2 tons of gel could be harvested per 
hectare of 4-year-old plants (Silva et al., 2010).

Aloe barbadensis grows well in saline conditions and can 
even be irrigated with seawater (Jin et al., 2007). Nitrogen and 
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phosphorous additions have been shown to increase growth 
and gel content (Pareek et al., 1999), and an N–P–K of 80–40–
80 is sufficient for growth (Saha et al., 2005). The addition of 
mycorrhizal fungal symbionts has been shown to increase ni-
trogen and phosphorus uptake in this species (Tawaraya et al., 
2007). Aloe barbadensis is highly productive with low water 
input, but like other CAM crops, also suffers from a lack of 
cold tolerance. Even brief frost events are enough to kill most 
accessions of A.  barbadensis (Grindlay and Reynolds, 1986). 
However, A. barbadensis has relatively few pests and pathologic-
ally only suffers from surface fungal infections and bacterially 
caused soft rotting (Ahlawat and Khatkar, 2011).

The worldwide cultivation and radiation of A. barbadensis 
has given rise to an unknown amount of accessions, many 
of which have adapted unique traits within their new en-
vironments that may prove to be beneficial crop traits for 
future breeding programs (Nayanakantha et al., 2010; Tripathi 
et al., 2011; Nejatzadeh-Barandozi et al., 2012; Chandra and 
Choudhary, 2014). Furthermore, the diversity of species 
within the Aloaceae family gives rise to the possibility of 
breeding new varieties with desired traits, as in the case of 
A. barbadensis, a diploid, rarely tetraploid, species (Nejatzadeh-
Barandozi and Akbari, 2013), amenable to genomic editing 
techniques (Nadakuduti et al., 2018). Efforts to enhance the 
efficiency in extracting over 200 different chemicals (Ahlawat 
and Khatkar, 2011) would lead to an increase in economic 
return from A. barbadensis (Rana et al., 2018) because of the 
many medicinal applications. Further research is needed for 
a better understanding of the environmental limitations to 
productivity of Aloe.

Cactaceae

Cacti are not only showy, strange, and uniquely modified plants, 
they are also important agricultural and wild harvested species. 
A large proportion of the flora traditionally used in the dry-
tropical and subtropical Americas are cacti. For example, of the 
762 edible fruit species reported for Mexico, the largest share, 
almost 12% (88 species), are cacti (Segura et al., 2018). The in-
ventory reported is far from complete and does not mention 
many of the species regularly used by many indigenous groups 
(see for example Felger and Moser, 1985; Luque et al., 2017). 
These additional species might easily duplicate the number of 
useful cacti species in Mexico. All the harvested species de-
scribed by Segura et al. (2018) are reported as wild, but many 
have suffered some form of manipulation (Casas and Barbera, 
2002). Opuntia is by far the most important agricultural cactus 
crop. The young developing pads of many Opuntioid species, 
as well as Nopalea are prepared as greens, and their fruits are 
relished throughout the world. Many Opuntia species are also 
used as animal fodder and to produce cochineal, the source of 
the natural dye carmine.

Almost all cactus fruits are edible, from the small, red or 
greenish fruits of Mammillaria species (named ‘chilitos’ in 
Mexico for their resemblance to miniature long and slender 
chilies) to the rich, sweet fruits of the pitahaya or dragon 
fruit (Hylocereus undatus and other Hylocereeae) now grown 
throughout the tropical world. Other edible parts of the plant 

include flower buds and flowers cooked to produce pickles 
(mainly from Ferocactus and columnar cacti); seeds that are 
eaten raw or toasted (for most cactus species); and the inner 
flesh, which is processed and candied (for Ferocactus and 
Echinocactus species) (Casas and Barbera, 2002). In addition, the 
woody ‘skeletons’ of opuntioid species and the ‘ribs’ of col-
umnar cactus species, as well as the wood of the larger species 
are used as substitutes for more traditional lumber products, 
both for purely utilitarian construction material and for fur-
niture and decorative purposes (Yetman, 2007). Recently, even 
saguaro-rib walking sticks have been marketed online.

Aside from species of Opuntia and Hylocereus, other species of 
cacti are rarely recognized as agriculturally important despite 
their widespread use. Among those harvested or domesticated 
for agricultural purposes, columnar cacti provide a significant 
resource, particularly for indigenous groups throughout the 
American continents (Yetman and Búrquez, 1996; Casas and 
Barbera, 2002). As happens with most CAM plants, cacti are 
superbly adapted to dry conditions, with high water use effi-
ciency (WUE), and columnar cacti represent the pinnacle of 
evolution in terms of size and performance under harsh con-
ditions (Gibson and Nobel, 1986; Nobel and Bobich, 2002; 
Mauseth, 2017). As a consequence, many columnar cacti spe-
cies are locally used as wild or semi-domesticated crops. Both 
in North and South America, columnar cacti represent im-
portant material and spiritual elements of many native cultures 
(Yetman, 2007). In both continents, columnar cacti species 
growing in natural communities have a variety of uses, from 
providing highly nutritious and energetic fruits to construc-
tion materials and shamanistic and medicinal uses. However, 
few columnar species have been domesticated and even fewer 
have attained a major role as agricultural produce because most 
harvesting happens in the wild with little or no management.

Most documented uses of columnar cacti published since 
the 1800s are purely ethnographic, describing the use of col-
umnar cacti resources by native cultures of the drylands of 
the Americas. For example, in the northwest of Mexico 
and southwest of the United States, the saguaro (Carnegiea 
gigantea) is a major cultural and food element for the O’odham 
(Thackery and Leding, 1929; Greene, 1936; Bruhn, 1971). 
Slightly further south into Mexico, the sahueso, also known 
with the generic name of cardón (Pachycereus pringlei) and the 
pitaya agria (Stenocereus gummosus) have been harvested for mil-
lennia by the Comcaac (seri) people (Felger and Moser, 1985; 
Hodgson, 2001). Inland, the organ pipe cactus (Stenocereus 
thurberi) is a major staple of Lower Pima, Yaqui and Mayo na-
tive Americans. Also, for the Mayo and the Guarijío, the etcho 
(Pachycereus pecten-aboriginum) is of paramount importance, 
and the sahuira (Stenocereus montanus) is a major staple and a 
primary construction material for southern Sonora and nor-
thern Sinaloa native people (Yetman, 2007). Further south into 
Mexico, dozens of species of columnar cacti are used in the 
same fashion by native indigenous people and by the Mexican 
mestizo population (Pérez-Negrón et al., 2014).

In South America, the use of columnar cactus resources 
is less widespread, but still very relevant to some indigenous 
groups. From disperse information, many South American col-
umnar cactus fruits are markedly less tasty and bland (although 
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not distasteful) when compared with the scrumptious, sweet, 
and juicy fruits of most North American columnar cactus spe-
cies. South American columnars usually have lower sugar con-
tent than North American species (less than 10% compared 
with 10–25% sugar). For example, the fruits of copao (Eulychnia 
acida) from northern Chile have less than 1% sugar content 
(Salvatierra et al., 2010) and the fruit of Jasminocereus thouarsii, 
endemic to the Galápagos Islands, is less than 3% sugar (AB, 
pers. obs.). The pasakanas and cardón fruits of Echinopsis spp., 
Corryocactus spp., and Browningia candelaris among other South 
American species are eaten with sugar added, and the acidity 
of the fruit of pichaja (Oreocereus leucotrichus) is cut with salt 
(Villagrán and Castro, 2003).

Despite the widespread use of columnar cacti, mainly for 
their delicious fruits, only a few species are described by 
Casas and Barbera (2002) as subject to domestication or in-
cipient husbandry. The use of most cactus species can be clas-
sified as ‘gathering of natural resources’. For context, the other 
categories of management include (i) tolerance actions dir-
ected to maintain useful plants, (ii) enhancement directed to 
further the presence of useful plants, and (iii) protection from 
competitors and predators, fertilizing, and pruning among 
other actions. In North America, about 12 cactus species are 
cultivated, all of them in central Mexico (Casas and Barbera, 
2002). In South America there is no record of widespread cul-
tivation of any species, but Echinopsis peruvianus is known to 
be closely associated to archaeological and present domestic 
environments (Albesiano and Kiesling, 2012).

The process of domestication and agricultural potential of 
columnar cactus species has been addressed by many authors. 
The agricultural potential of cactus species has been shown 
to be highly promising as new fruit crops for drylands as well 
as for animal feed and biomass production (Nerd et al., 1993, 
2002; Mason et al., 2015). However, despite their importance, 
there are very few statistics of production of cactus agricul-
tural products, and the production from columnar cacti is still 
largely unknown. Aside from major species related to internal 
or export markets, there is a paucity of studies estimating the 
volumes harvested for local, domestic consumption. Orozco 
(2007) presented compelling information on the economic 
impact of organ pipe cactus from recollection in indigenous 
and mestizo localities in Sonora, Mexico, reporting that the 
income from harvesting the fruits of this wild species could 
add up to 10 times the minimum wage at the time of the study. 
For the region of Quiotepec, at the lowest part of the valley 
of Cuicatlán in Oaxaca, Mexico, Pérez-Negrón et  al. (2014) 
showed that harvesting wild species of columnar cacti could 
complement up to one-third of the income from drylands 
agriculture with the harvest from the three most common col-
umnar cactus species.

A search at the Mexican Agrifood and Fisheries Information 
Service (Servicio de Información Agroalimentaria y Pesquera: 
https://www.gob.mx/siap) revealed that columnar cacti during 
2017 made up a dismally small proportion of the formal agri-
cultural economy. For example, the pitaya fruits, mainly from 
Stenocereus pruinosos, S. queretaroensis, and allied species in the 
states of Oaxaca, Jalisco, and Puebla are worth 3.5 million US 
dollars. For Hylocereus, during 2016, the states of Quintana 

Roo, Yucatán, and Puebla produced about 4200 metric tons 
with a mean value of 700 US dollars per ton. In comparison, 
during 2016, the production of Opuntia pads (nopalitos) for 
the internal market was close to 811  000 metric tons (70% 
produced in Mexico City and the state of Morelos), and ex-
ports of 45  000 metric tons were valued at 14 million US 
dollars (https://www.gob.mx/siap/articulos/nopalitos-en-
2016-se-vendieron-al-exterior-44-8-mil-toneladas). A  better 
comparison is with tunas and xoconostles, the fruits of Opuntia 
species, where annual production in 2017 was 470 000 metric 
tons, with the export market comprising 17 000 metric tons 
worth 8.9 million US dollars (https://www.gob.mx/siap). 
These figures, however, are probably gross underestimations of 
real harvesting rates because they do not include the much 
larger volume traded in informal markets, nor the harvest of 
wild and cultivated cacti products for domestic consumption.

Opuntia
Among the Cactaceae family, the genus Opuntia is the most 
abundant and widespread worldwide. Opuntia originated from 
Mesoamerica and comprises around 78 wild species, located 
mainly in the Meridional Highland Plateau of Mexico (Reyes-
Aguero and Aguirre-Rivera, 2011). There are an estimated 181 
cultivated species, distributed mainly in Mexico, North and 
South America, and introduced to the Mediterranean zone of 
Europe and Africa, as well as Australia (Majure et  al., 2012). 
Approximately 67% of the species of Opuntia have been do-
mesticated and are cultivated worldwide for human consump-
tion of their fruits (known as prickly pears in North America 
and tunas in South America).

Different wild and cultivated Opuntia species produce ed-
ible fruits such as O.  megacantha Salm-Dyck, O.  amyclaea 
Tenore, O.  streptancantha Lemaire, O.  stricta Haw, O.  dilennei 
(Ker Gawl.) Haw, O. schummanni Weber, and O. robusta Wendel 
(Arba et  al., 2017). However, O.  ficus-indica (L.) Mill is the 
cactus species with the highest degree of domestication and 
the greatest importance for agriculture in arid and semiarid 
regions of the world (Peña-Valdivia et al., 2012). It has been 
cultivated since prehistoric times and its domestication began 
around 14 000 years ago by the Mesoamerican civilizations in 
the south of the meridional Mexican highlands (Kiesling and 
Metzing, 2017). The determination of its taxonomic relation-
ships within the genus are scarcely known due to centuries of 
artificial selection with different purposes, favoring their hy-
bridization and polyploidy, leading to an enhancement of both 
fruit and cladode characteristics such as flavor, shape, color, size, 
and texture (Santos Díaz et al., 2017).

The flat stems or cladodes (also called nopales) of Opuntia 
spp. are an important food source for both humans and animals, 
with cultivation for this purpose in Mexico on 12 000 ha and 
an annual production ca 600  000 metric tons (Yahia, 2012). 
The commercial species are O.  ficus-indica and O.  inermis. 
Production for livestock forage improves the availability of 
fodder in dry areas, and the plants can supply the main source 
of water for the animals with approximately 180 tonnes ha−1 
year−1 of water (Dubeux et al., 2017).

The commercial varieties produced in Mexico for human 
consumption include Milpa Alta, COPENA V-1, COPENA 
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F-1, Atlixco, Jalpa, Esmeralda, and Blanco de Valtierrilla. This 
crop is ranked sixth in volume of production of vegetables and 
eighth in value of the production after the tomato, green chili, 
potato, onion, zucchini, and asparagus. The fresh product is 
sold in the domestic market with a consumption per capita of 
6.4 kg year−1, and used in different foods such as creams, soups, 
salads, stews, sauces, drinks, and desserts (Berger et  al., 2013; 
Dubeux et al., 2017).

The cladodes are harvested between 1 and 3  years after 
the planting, their weight ranges from 40 to 100 g, and they 
measure 11–20 cm in length. Due to CAM activity, the clad-
odes accumulate high amounts of acid during the night, so the 
best time of the day to harvest them is at dusk when the acidity 
is lower and the sugar content and pro-vitamins (A and C) are 
higher. In addition, the cladodes provide a source of minerals 
(calcium, sodium, potassium, iron) and fiber, making the nutri-
tional value high (Guzmán Loayza and Chávez, 2007).

In different regions of North America, Opuntia is produced 
as an emergency crop during drought seasons where grasses and 
cereals are senescent and cannot supply the cattle food needs. 
As a consequence of the variable rainfall, some maize producers 
adopted Opuntia cultivation, obtaining a consistent production 
that assures the stock of cattle feed on marginal lands, converting 
these locations into productive zones (Russell and Felker, 1987). 
The low protein and fiber content of cladodes requires other 
food sources as supplements (such as alfalfa, sorghum, cornmeal, 
maize, dry bean, and wheat, among others). According to López-
García et al. (2001), the daily consumption of cladodes for cattle 
and sheep is 15–95 kg day−1 per animal, which can be double 
under drier conditions and decreases in rainy periods due to the 
availability of other plants (grasses or grains).

Of the 200–300 species within the Opuntia genus (Arba 
et  al., 2017), field studies involving Opuntia ficus-indica have 
demonstrated some of the highest productivity values of any 
CAM species, with above-ground biomass values between 2.4 
and 47.3 Mg ha−1 year−1 (Dubeux et  al., 2006; Nobel et  al., 
1992; Sánchez et al., 2012). As an energy crop, O. ficus-indica 
has a lower potential for ethanol production compared with 
traditional energy crops, but a higher than average potential 
for methane production (Yang et al., 2015a; Santos et al., 2016). 
CAM-idling (Brulfert et al., 1987), root shrinkage (Nobel and 
Cui, 1992; Snyman, 2006), and stem succulence are all traits 
that provide O. ficus-indica with extraordinarily high drought 
resistance (Snyman, 2013).

The world-wide cultivation of O. ficus-indica in a variety 
of soil types for a variety of products has complicated ef-
forts to assess the exact fertilizer application that is optimal 
thus far. However, in O. ficus-indica, higher growth and fruit 
yield has been associated with higher calcium-to-nitrogen and 
potassium-to-nitrogen ratios, respectively, than that of common 
crop species (Galizzi et al., 2004), and growth is halted under 
saline conditions (Nerd et  al., 1991; Murillo-Amador et  al., 
2001). Opuntia ficus-indica is typically propagated clonally, a fea-
ture that contributes both to commercial production and to 
extreme invasiveness (Shackleton et  al., 2011). Several insect 
pests of O. ficus-indica exist including Cactoblastis cactorum and 
Dactylopius coccus (Annecke and Moran, 1978), the first serving 
as a biological control (Schartel and Brooks, 2018) and the 

second harvested from pads to produce carmine dye (Mazzeo 
et al., 2018), which was considered a luxury prior to the advent 
of synthetic dyes. Opuntia ficus-indica is primarily limited in 
range by cold tolerance, but other low yielding cold-tolerant 
relatives such as O.  ellisiana (Guevara et  al., 2003) may con-
tribute to an understanding of cold tolerance mechanisms in 
the Opuntia genus that may increase the productive range.

Opuntia ficus-indica is a xerophytic plant growing predomin-
ately in arid and semi-arid zones tolerating temperatures up to 
65 ºC, but it can also be found in extremely different environ-
mental conditions such as high altitudes in the Peruvian Andes, 
tropical regions of Mexico, and as far north as Canada. It is 
also adapted to poor and sandy soils with a pH of 6–7.5 and 
an adequate drainage (Duarte and Paull, 2015). WUE is very 
high, ranging from 4 to 100 mmol CO2 mol−1 H2O, compared 
with C3 and C4 plants (1–1.5 and 2–3 mmol CO2 mol−1 H2O, 
respectively), allowing growth in zones with a mean annual 
precipitation of 250–700 mm (Yahia and Sáenz, 2011; Duarte 
and Paull, 2015).

The production of Opuntia has been extended around the 
world and it has become an alternative crop in areas with 
deficient soil quality and with water deficit. In Mexico, the 
largest producer and consumer, Opuntia cultivation is concen-
trated mainly in three regions: Puebla, Valley of Mexico, and 
the Potosino-Zacatecano high plateau. The latter contrib-
utes about 50% of the total volume of national production 
(Méndez Gallegos and García-Herrera, 2006). The production 
of O. ficus-indica for human consumption and forage also oc-
curs in Brazil (40 000 ha), Tunisia (16 000 ha), Italy (2500 ha), 
and Chile (1100 ha), and in smaller areas in Morocco, Egypt, 
Algeria, Libya, South Africa, Bolivia, Argentina, Peru, Ecuador, 
the United States, Israel, Jordan, and Venezuela (Pimienta-
Barrios, 1994; Yahia and Sáenz, 2011).

The average yield of the commercially produced fruit 
(prickly pear) in Mexico is around 7 tons ha−1 with a range 
across different producing regions of 5–20 tons ha−1 (Méndez 
Gallegos and García-Herrera, 2006). The genotype–environ-
ment interaction in the regions where Opuntia is produced 
provides a higher diversity of cultivars with different character-
istics, such as shape, taste (acids and sweets), size, seed content, 
and presence of antioxidants (Russell and Felker, 1987; Inglese 
et al., 1995; Mondragon-Jacobo and Bordelon, 1996; Mejía and 
Cantwell, 2003). On the contrary, in most countries other than 
Mexico, the fruit production depends on one or two cultivars 
(Méndez Gallegos and García-Herrera, 2006).

Orchidaceae

Considered one of the largest families of angiosperms, the 
Orchidaceae comprises over 29 000 species and can be found 
in all inhabited continents (Swarts and Dixon, 2009; Hinsley 
et al., 2017), although they are most common in the tropics. 
Only a small number of genera are commercially cultivated, 
all of which belong to subtribes and genera that show CAM 
in their lineage. However, CAM cannot generally be assigned 
to the whole genus, since CAM may occur in some species 
but not in others (Arditti, 1992; Silvera et  al., 2009). Vanilla  
(Table 1) is the only genus that is commercially grown for its 
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edible fruit with relevant flavor and aroma compounds (De La 
Cruz Medina et al., 2009).

There are several other uses such as production of flour made 
from orchid tubers called salep in the eastern Mediterranean 
and Middle east, and chikanda cake in south-eastern Africa, 
and various orchids are used in traditional Chinese medi-
cine and health supplements (Fay, 2018). The orchids used for 
these purposes are harvested only from the wild. Although 
their use might be minor and limited to specific regions, there 
are growing concerns that collection and trade of these wild 
orchids will result in scarcity or even extinction (Liu et  al., 
2014; Fay, 2018).

The most common use of orchids is as ornamentals, and 
tackling the potential risk of extinction for certain species 
cannot be done without raising awareness in the horticultural 
community, including hobbyists, that actively search for rare 
species (Hinsley et al., 2015), and amongst international traders. 
The most important genera for cut orchids are Cymbidium, 
Oncidium, and Phalaenopsis, although the latter is mostly sold as 
a potted plant. Interestingly, orchids were considered a minor 
crop by the USDA until 1997, and no product information was 
collected (Lopez and Runkle, 2005). Phalaenopsis in particular 
is now considered an important commodity in the horticul-
tural sector. In the USA, 21 million potted Phalaenopsis plants 
were sold in 2012 (USDA, 2015), representing a wholesale 
value of 177 million US dollars, and accounting for 19% of the 
potted plant market. In Europe, 2017 figures from the Dutch 
flower auction (Royal Flora Holland, 2018) indicate that 135 
million Phalaenopsis plants were sold (53% of all house plants), 
representing a turnover of 494 million euros (32%).

Orchids clearly have important economic value, but orchid 
growers have only recently recognized the specialized man-
agement requirements of orchids that exhibit CAM. Studies 
on orchid production requirements (e.g. Cameron, 2011; De 
et al., 2014; Lopez and Runkle, 2005) indicate that physiology 
and growth under controlled conditions are limited. Detailed 
cultivation guides developed by breeders exist for only a few 
varieties, e.g. for Phalaenopsis (van der Knaap, 2005). The com-
mercial value of orchids offers the opportunity to combine 
the economic interest of companies with the need to further 
understand CAM expression.

Vanilla Mill.
Vanilla was originally domesticated in Mexico, where it played 
an important role as currency for trade within the Aztec em-
pire. After the Spanish and Portuguese colonization of Central 
and South America, the French in the 18th century started 
to export cuttings of Vanilla to their own colonies, such as 
Madagascar and Réunion. Because the natural pollinator, the 
Melipona bee, was not exported along with the plants, hand-
pollination became necessary to successfully produce vanilla 
beans (Fouché and Jouve, 1999; Cameron, 2011).

In commercial practice today, pollination is still done by 
hand, which is a delicate and time-consuming task. With only 
one flower per plant opening per day, this is a costly process. If 
successful, the bean needs to ripen for 9 months on the plant, 
and to be cured for another 3–6 months to reach the market-
able stage. Harvesting beans is also a labor-intensive task. The 

vines need to be checked daily to find mature beans that are 
ready for harvest. The harvested green vanilla beans undergo 
a curing process that consists of several steps and varies 
throughout different producer countries (e.g. Ramachandra 
Rao and Ravishankar, 2000; De La Cruz Medina et al., 2009; 
Wongsheree et al., 2013).

Considerable research has been done on curing to improve 
vanillin production and relevant biochemical pathways are 
well defined (Dignum et  al., 2001; Walton et  al., 2003; Yang 
et al., 2017), but the pre-harvest aspect is seriously neglected. 
Current descriptive information suggests that vanilla should 
not be cultivated in the same way as the most popular orchids; 
it should instead be grown in humid conditions with shade 
and constant high temperatures (e.g. Fouché and Jouve, 1999; 
Cameron, 2011; Havkin-Frenkel and Belanger, 2011). Very re-
cently, additional studies have described optimal growth con-
ditions (e.g. Díez et al., 2017; Ramírez-Mosqueda et al., 2017) 
and the possibility of production in greenhouses to ensure re-
liable quality of vanilla (Havkin-Frenkel and Belanger, 2011).

Climate conditions favorable for vanilla also stimulate growth 
of pathogens, fungi in particular, and present a challenge for 
production. Advances in phytopathology are needed to pre-
vent serious plant damage from pathogens that can cause crop 
losses of up to 80%. The most common pathogen is root and 
stem rot, often caused by Fusarium oxysporum, which has re-
sulted in plantation abandonment in some cases (Pinaria et al., 
2010; Cameron, 2011). Development of integrated disease 
management strategies is urgently needed in vanilla produc-
tion. Although certain wild types (e.g. V. pompona) and hybrids 
seem to be resistant to Fusarium, they fail to meet desired bean 
quality standards (Koyyappurath et al., 2016).

There is strong competition from artificially produced vanillin 
for flavoring foodstuffs, although natural vanilla is still superior 
and has many more flavor components than just vanillin. The 
increased demand of consumers for organic and fair trade prod-
ucts might have a positive effect on maintaining production of 
natural vanilla (Cameron, 2011; Havkin-Frenkel and Belanger, 
2011). This demand, combined with developing research on 
ecophysiology, phytopathology, and hybridization of vanilla, has 
the potential to improve vanilla agriculture in the future.

Bromeliaceae – Ananas comosus (L.) Merrill 
(pineapple)

While there are many plants in the Bromeliaceae family that 
are used ornamentally, Ananas comosus (L.) Merrill (pine-
apple) is the most important agricultural crop. Pineapples are 
probably the most well-known among CAM crops that are 
commercially produced because they are traded globally as 
common produce and have substantial economic value (Table 
1). While most pineapples are consumed as fresh fruit, can-
ning facilitates transport across long distances and has been 
used since the early 1900s (Rohrbach et al., 2002). Pineapples 
have been cultivated as intensively managed monocultures in 
Indonesia, The Phillipines, Thailand, and Hawaii for a century 
(Malezieux et al., 2002), but 88 countries currently produce 
pineapples, with Costa Rica and Brazil leading production in 
2016 (FAO, 2018).
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The center of diversity for pineapple and most plants in 
Bromeliaceae is most likely the Guiana Shield in South America, 
which includes northern Brazil (Coppens d’Eckenbrugge and 
Leal, 2002). In fact, pineapples are still harvested in the wild 
and intercropped with other plants in Brazil (Malezieux et al., 
2002). There are five varieties of the species Ananas comosus 
currently recognized (Coppens d’Eckenbrugge and Leal, 
2002), although at least 10 varieties were described by Griffin 
in 1806 (Rohrbach et al., 2002). The most widespread varieties 
in cultivation are commonly known as ‘Smooth Cayenne’ 
and ‘Queen’, both of which are native to the Americas but 
were then dispersed for agricultural markets throughout 
Europe (Rohrbach et al., 2002). Most cultivated pineapple is 
self-incompatible (Brewbaker and Gorez, 1967) and clonally 
reproduced,

The genome of pineapple was recently sequenced and pro-
vides insight into the evolutionary history of CAM (Ming 
et al., 2015). With the first genome-wide probe of an obligate 
CAM plant, pineapple emerged as a model for CAM expres-
sion and gene regulation patterns (Ming et al., 2015).

Of 1893 species (a little more than half of the total) in 
Bromeliaceae that were evaluated by Crayn et al. (2015), 20% 
had plant tissue δ13C values that were consistent with CAM 
activity. There are a wide range of CAM plants in this family 
that might be useful for fiber or other products, and some are 
cultivated from wild forests (e.g. Ticktin et  al., 2003). While 
there is potential for developing agricultural crops, non-timber 
forest products also have advantages for habitat conservation 
in many areas of the world where species of Bromeliaceae 
are found. Traditional uses of the many CAM varieties in this 
family are not consistently documented across the wide geo-
graphic range of distribution.

Technological advances that can facilitate 
agricultural production in the future

In response to increasing arid landscapes and the challenges 
of climate change, there is growing interest in the potential of 
CAM crops to be cultivated with reduced irrigation for food, 
fuel, and forage (Borland et al., 2015; Mason et al., 2015). Two 
strategies are suggested to meet the growing demand for food, 
bioenergy, and crops for other bioresources in a future climate: 
the improvement of current CAM crops, and the engineering 
of CAM into C3 or C4 crops as a means of improving their 
WUE (Borland et  al., 2014; Yang et  al., 2015b). Recent ad-
vances in the understanding of CAM gene expression lay the 
groundwork for potential genetic engineering of CAM to im-
prove crop tolerance (e.g. Amin et al., 2019; Lim et al., 2019).

To date, CAM crops have undergone the least amount of 
study (relative to C3 and C4 crops) to accomplish genetic im-
provements, develop models of crop efficiency, maximize yield, 
and improve commercial viability (Yan et al., 2011; Davis et al., 
2015). The potential of CAM to improve WUE in agricul-
ture has only recently been addressed using a systems-based 
approach. The relatively recent publication of CAM gen-
omes (Ming et al., 2015) and CAM physiological models (e.g. 
Owen and Griffiths, 2013) is providing a platform to direct 

engineering towards optimization of current CAM crops 
through identification and selection of genes controlling traits 
of interest (Heyduk et al., 2018; Lim et al., 2019).

Previous CAM models described metabolic level (Owen and 
Griffiths, 2013) and plant level (e.g. Nobel, 1984; Niechayev 
et al., 2019) processes, but Hartzell et al. (2018) recently devel-
oped the open source Photo3 model, which is the first model 
of productivity and WUE that uses a parallel structure for C3, 
C4, CAM, and C3/CAM intermediates that takes into account 
a wide range of environmental conditions, stomatal functioning, 
and a resistor–capacitor model of the soil–plant–atmosphere 
continuum (https://samhartz.github.io/Photo3/). Such holistic 
models allow better understanding of crop productivity across 
varying climate and ecological conditions and provide insights 
to direct further research and crop improvement approaches.

The emerging area of genomics-assisted breeding also 
offers many tools for crop improvement, including the use of 
DNA markers for marker aided selection via single nucleo-
tide polymorphisms and insertion deletions (InDels). High 
throughput DNA fingerprinting techniques, such as genotyping 
by sequencing, provide increased marker density, thus facilitating 
the identification of novel allelic variants for particular traits 
through linkage analysis or genome-wide association studies 
(Kole et al., 2015). The resolution provided enables better esti-
mates of phylogenetic relationships and kinship, which in turn 
contribute to a better understanding of the relationships between 
CAM and WUE over different eco-geographical locations.

Current genomic resources available for CAM crops 
improvement
Several possible models for the CAM genome have emerged 
in recent years. Pineapple is one of the most economically im-
portant CAM crops, and has whole genome sequencing avail-
able (Ming et al., 2015). Pineapple grows across a diverse range 
of climates with a broad range of genotypes and WUE, and 
as such contains a wealth of information that could be ex-
plored for investigating drought tolerance (Davis et al., 2015). 
Tsai et  al. (2017) highlight the progress in orchid genomics 
research, with interesting developments that include transcrip-
tome data investigating pod development in the prized vanilla 
orchid, Vanilla planifolia (Rao et al., 2014), and whole genome 
sequencing for the moth orchid Phalaenopsis equestris (Cai et al., 
2015; Albert and Carretero-Paulet, 2015). Heyduk et al. (2018) 
used comparative transcriptomics to determine gene expres-
sion difference between CAM and C3 species of orchids in the 
Erycina genus that are closely related.

Along with the pineapple and orchid genomes, the saguaro 
cactus has been sequenced, opening an avenue to exploring the 
genomic background of cacti and the chance for comparative 
genomic research among different CAM groups. In the case of 
the long-lived saguaro, researchers have found a genetic pattern 
that could explain why long-lived columnar cactus classifica-
tion using simple sets of markers is so intractable (Copetti et al., 
2017). Other CAM varieties have proved more difficult to se-
quence. The ploidy level across Agave species ranges from dip-
loid to octoploid and even aneuploid, making complete genome 
sequencing challenging (Simpson et al., 2011). Transcriptomic 
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comparisons of A. tequilana, adapted to semi-arid conditions, 
and A.deserti, adapted to xeric conditions, have been used to 
model the molecular and physiological adaptions to their en-
vironment for the development of bioenergy crops (Gross et al., 
2013). The comparison of diel transcriptome, proteome, and 
metabolome of A.  americana with C3 Arabidopsis (Abraham 
et al., 2016) provides valuable insights for the engineering of 
CAM into C3 plants for enhanced WUE. Further genomic 
and transcriptomic resources for A.  tequiliana and A. sisalana 
are discussed in Simpson et al. (2011) and Zhou et al. (2012). 
Kalanchoë fedtschenkoi has been suggested as a model species 
to study functional genomics of CAM because of the rela-
tively small genome and amenability to stable transformation. 
It displays developmental CAM, where its youngest leaves are 
C3-like and transition to become increasingly CAM as they 
age, with older leaves expressing full CAM. Genomic resources 
for Kalanchoë have facilitated the functional genomics of many 
CAM genes (Hartwell et al., 2016). The first transgenic CAM 
plants with down-regulated CAM-associated genes were made 
in K. fedtschenkoi using a hairpin RNA transgene RNAi ap-
proach for NAD malic-enzyme and pyruvate orthophosphate 
dikinase (Dever et al., 2015) and phosphoenol pyruvate kinase 
(Boxall et al., 2017). Genome editing through CRISPR/Cas9 
systems have recently been established for K. fedtschenkoi (Liu 
et  al., 2018). High throughput phenotyping and functional 
characterization of such lines is important for the genetic im-
provement of CAM plants and for the engineering of CAM 
into C3 plants.

Following whole genome sequencing of K. fedtschenkoi, Yang 
et al. (2017) analysed the genomic signatures of convergence 
shared between eudicot (Kalanchoë) and monocot (pineapple 
and orchid) CAM species. This comparative analysis provided 
evolutionary insights into molecular convergence and building 
blocks of CAM. Yang et al. (2017) identified genes predicted to 
have undergone convergent evolution during the emergence 
of CAM from C3 systems, representing crucial candidates for 
engineering CAM into plants with C3 photosynthesis. The 
results suggest that rewiring of the diel transcript abundance 
patterns for most of the candidate genes would be required, 
while amino acid mutations occurred in some other candidate 
genes (Yang et  al., 2017). The transcriptional and metabolite 
changes that occur during a drought-induced transition from 
C3 to CAM in the weak CAM plant Talinum triangulare are 
also demonstrated in Brilhaus et  al. (2016). Cascading tran-
scriptional changes are further described as fundamental for 
the expression of CAM in Erycina spp. (Heyduk et al., 2018). 
Experimental approaches are now required to investigate the 
effects of the C3-to-CAM transition and to determine the po-
tential for accelerating crop improvement.

Across the agricultural sector, the microbiome and rhizo-
sphere are areas of intensive study to increase nutrient avail-
ability and improve plant health and yield. Although key C3 
and C4 crops have undergone intense study, less work has been 
done on CAM to date. Genomic studies of symbiotic relation-
ships between soil bacteria and fungi in Agave and cacti have 
been suggested as factors that could influence species adapta-
tion to arid environments (Citlali et al., 2018). The main focus 
to date has been on the biogeography and local biodiversity 

of these microbial and fungal communities, and studies are 
now required to determine the benefits of a healthy root zone, 
rhizosphere, and phyllosphere microbiota to CAM crops.

Conclusion

The potential for CAM to support resilient agricultural pro-
duction far exceeds currently realized levels of production. 
Agave spp., cacti, orchids, and pineapples provide examples 
of CAM crops that have high yields, environmental benefits, 
substantial market value, and international trade networks (re-
spectively). Many CAM crops can thrive even with climate 
conditions that are intolerable for most C3 and C4 crop species, 
making these attractive agricultural commodities that can be 
expanded as climate change continues to progress.
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