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Previous studies have found that at most human loci, ancestral alleles are ‘‘African,’’ in the sense that they reach their
highest frequency there. Conventional wisdom holds that this reflects a recent African origin of modern humans.

This paper challenges that view by showing that the empirical pattern (of elevated allele frequencies within Africa) is
not as pervasive as has been thought. We confirm this African bias in a set of mainly protein-coding loci, but find a smaller
bias in Alu insertion polymorphisms, and an even smaller bias in noncoding loci. Thus, the strong bias that was originally
observed must reflect some factor that varies among data sets—something other than population history. This factor may be
the per-locus mutation rate: the African bias is most pronounced in loci where this rate is high.

The distribution of ancestral alleles among populations has been studied using 2 methods. One of these involves
comparing the fractions of loci that reach maximal frequency in each population. The other compares the average fre-
quencies of ancestral alleles. The first of these methods reflects history in a manner that depends on the mutation rate. When
that rate is high, ancestral alleles at most loci reach their highest frequency in the ancestral population. When that rate is
low, the reverse is true. The other method—comparing averages—is unresponsive. Average ancestral allele frequencies are
affected neither by mutation rate nor by the history of population size and migration. In the absence of selection and
ascertainment bias, they should be the same everywhere. This is true of one data set, but not of 2 others. This also suggests
the action of some factor, such as selection or ascertainment bias, that varies among data sets.

Introduction

An interest in modern human origins has led many
geneticists to compare the frequencies of ‘‘ancestral alleles’’
in human populations. In a genetic sample from a single
locus, the ancestral allele is the allelic state of the last com-
mon ancestor (LCA). Previous work suggests that the vast
majority of human ancestral alleles are ‘‘African’’ in the
sense that they reach their highest frequency there. Geneti-
cists disagree, however, about what this implies. According
to some, it reflects a recent African origin of modern
humans (Takahata et al. 2001; Excoffier 2002; Satta and
Takahata 2002, 2004). According to others, it refutes this
view (Templeton 2002, p. 50).

This disagreement reflects in part the lack of any well-
developed theory. Takahata et al. (2001) and Satta and
Takahata (2002, 2004) have explored the effect on ancestral
alleles of various models of migration and population
history. Here, we consider another factor: the mutation rate
per locus.

In addition to this weakness of theory, our understand-
ing is also clouded by a tendency to conflate similar con-
cepts. In particular, the term ‘‘ancestral allele’’ is used in
2 senses. For some authors, the term refers to what we will
call the ‘‘narrow-sense ancestral allele’’ (NAA)—the allele
carried by the LCA of a sample. For others, the term refers
to the allele within the modern sample that differs least
from the NAA. We refer to this as the ‘‘broad-sense ances-
tral allele’’ (BAA). Although the distinction between them
is usually blurred, we show that these 2 forms of ancestral
allele can behave differently.

Finally, different authors use different methods for
comparing frequencies of ancestral alleles. One method,

which we call ‘‘comparing fractions,’’ first calculates the
fractions of loci at which the ancestral allele is most com-
mon in each subpopulation and then compares these frac-
tions. For example, Takahata et al. (2001) found that
ancestral alleles reached highest frequency in Africa at 9
of the 10 loci in their sample.

Others compare ancestral alleles using a different
method, which we call ‘‘comparing averages.’’ This method
first averages ancestral allele frequencies across loci within
each subpopulation and then compares these averages. For
example, Watkins et al. (2003) studied a sample of 100 Alu
loci. Within this sample, the mean ancestral allele fre-
quency was about 20% higher in Africa than in non-African
populations. Similar results were obtained by Mountain
et al. (1992) (using classical loci) and by Mountain and
Cavalli-Sforza (1994) (using restriction polymorphisms).
Comparing averages is confusingly similar to comparing
fractions, and the 2 methods yield similar results in these
examples. Yet, we will show that they differ in important
ways.

In what follows, we explore the effect of mutation rate
on ancestral alleles, first by 2 simple theoretical arguments
and then by computer simulation. In our exposition, ‘‘gene’’
will refer to a physical copy of some genetic locus, which
may or may not code for protein, and ‘‘allele’’ will refer
to any of the alternative forms that the genes at a given
locus may take. In sequence data, ‘‘allele’’ is a synonym
for ‘‘haplotype.’’

Three data sets
Data Set I

The first of our 3 data sets (table 1) was gleaned from
published literature. It includes most of the loci studied by
Takahata et al. (2001) and Satta and Takahata (2002, 2004),
but adds additional loci and omits those with samples of
fewer than 20 chromosomes. For the loci marked with a
dagger (�), we reestimated allele frequencies and used
DNAML (Felsenstein 2004) to infer the ancestral human
state of each locus. At these loci, we discarded a few
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DNA sequences that were ambiguous or incomplete. This
accounts for the minor differences between the values of
n and S in table 1 and those in the original publications.

Data Set II

The second data set consists of 100 Alu insertion poly-
morphisms (Watkins et al. 2003). At each locus, the Alu-
absent allele is the NAA.

Data Set III

The third data set consists of 38 loci, each comprising
about 500 bp of noncoding DNA sequence (Yu et al. 2002).
These loci are a subset of the 50 described by Yu et al. We
excluded 8 loci with substantial missing data and then elim-
inated all nucleotide positions with missing values. Several
of the resulting loci were monomorphic and were elimi-
nated for consistency with data sets I and II. We then used
PHASE 2.0.2 (Stephens et al. 2001) to infer haplotypes and

inferred ancestral states as described above, using chimpan-
zee (Chen and Li 2001) as an outgroup.

In analysis of data sets I and III, we ignore the statis-
tical error involved in determining which allele is ancestral.
There is no such error with data set II. In analyzing these
data, we encounter 2 sorts of tie. First, at some loci, 2 or
more alleles differ from the NAA by the same minimum
amount. In such cases, we treat all the tied alleles as a single
allele. Second, the maximum frequency of the AA some-
times occurs in more than one population. When k popula-
tions are tied at a locus, we allocate a fraction 1/k to each
tied population.

Comparing Fractions

Table 1 presents the raw data for data set I, one row
for each locus. For each locus, it shows the type (narrow
or broad) of AA and the number S of segregating sites.
For each population, it shows the number x of copies of
the AA, the haploid sample size n, and the frequency

Table 1
Data Set I: Counts and Frequencies of Ancestral Alleles

Locus NAA S Africa (x/n 5 p) Asia (x/n 5 p) Europe (x/n 5 p)

MAOAa * 5 1/40 5 0.025 0/33 5 0 0/73 5 0
FIXb * 6 11/18 5 0.611 13/13 5 1 3/5 5 0.6
ECPc * 7 4/42 5 0.095 1/34 5 0.029 0/32 5 0
EDNc * 9 3/40 5 0.075 0/34 5 0 0/60 5 0
ZFXd * 10 3/113 5 0.027 0/129 5 0 0/93 5 0
RRM2P4e,f 13 1/10 5 0.1 1/21 5 0.048 0/10 5 0
CCR5g,h * 15 23/116 5 0.198 11/108 5 0.102 5/48 5 0.104
MC1Rh,i * 16 70/148 5 0.473 17/168 5 0.101 5/356 5 0.014
TNFSF5f 16 1/10 5 0.1 0/21 5 0 0/10 5 0
AMELXf * 17 2/10 5 0.2 2/21 5 0.095 3/10 5 0.3
CYP1A2h,j * 17 1/60 5 0.017 0/102 5 0 1/46 5 0.022
PsGBAh,k 17 1/30 5 0.033 0/40 5 0 0/19 5 0
APXLf * 19 1/10 5 0.1 2/21 5 0.095 0/10 5 0
b-Globinl * 21 9/103 5 0.087 0/200 5 0 0/46 5 0
PDHA1m 25 1/16 5 0.063 0/13 5 0 0/6 5 0
Dmdn 28 1/10 5 0.1 0/21 5 0 0/10 5 0
Xq13.3h,o * 32 4/23 5 0.174 3/31 5 0.097 0/11 5 0
HFEp 41 2/20 5 0.1 0/20 5 0 0/20 5 0
Yh,q * 43 25/358 5 0.07 0/2150 5 0 0/316 5 0
MtDNAh,r * 177 1/143 5 0.007 0/319 5 0 0/99 5 0
apoBs * 123/194 5 0.634 41/448 5 0.092 98/442 5 0.222
apoEt * 286/1294 5 0.221 139/1538 5 0.09 323/2126 5 0.152

NOTE.—*, NAA; S, number of segregating sites (ignoring indels); x, number of copies of the AA; n, haploid sample size; and p, AA frequency (bold face indicates location

of maximum AA frequency for each locus).
a Balciuniene et al. (2001).
b Harris and Hey (2001).
c Zhang and Rosenberg (2000).
d Jaruzelska et al. (1999).
e Garrigan et al. (2005) (treating alleles B and C as a single allele).
f Hammer (2004).
g Bamshad et al. (2002).
h Frequencies and human LCA reestimated.
i Harding et al. (2000) and Rana et al. (1999).
j Wooding et al. (2002).
k Martinez-Arias et al. (2001).
l Harding et al. (1997).

m Harris and Hey (1999).
n Nachman and Crowell (2000) (intron 7 only).
o Kaessmann et al. (1999).
p Toomajian and Kreitman (2002).
q Hammer et al. (2001).
r Vigilant et al. (1991).
s Breguet et al. (1990) and Rapacz et al. (1991).
t Hallman et al. (1991) and Zekraoui et al. (1997).
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p5 x/n. Within each row, the largest value of p is printed in
bold type.

We used these data to calculate the fraction F of loci at
which the ancestral allele is most common in each subpop-
ulation. These values are shown in the upper-right panel of
figure 1. With this data set, the African F is much higher than
those of the other 2 populations. To evaluate the statistical
significance of this pattern, we fit the data to a null hypoth-
esis in which the ancestral allele is equally likely to reach
maximal frequency in any population. Our statistical test
is based on a goodness-of-fit statistic (Press et al. 1992,
p. 665),

H5
XK

i5 1

ðyi � miÞ2

vi
;

where i indexes populations, K 5 3 is the number of pop-
ulations, yi the number of loci whose ancestral allele reaches
maximal frequency in population i, and mi and vi the mean
and variance of yi under the null hypothesis. In the absence
of ties, yi would be binomial with parameters 1/K and L (the
number of loci). Thus, we use the binomial formulas mi 5
LK�1 and vi 5 LK�1(1 � K�1).

These formulas for mi and vi are only approximations
because our yi are only approximately binomial. (As ex-
plained above, some loci exhibit ties between populations,
and the yi are not all integers.) Consequently, we cannot
assume the usual chi-squared distribution. We generate
the sampling distribution of H by computer simulation.

Let xij represent the number of copies of the ancestral
allele of locus i in population j and nij the corresponding

haploid sample size. Our null hypothesis assumes that xij
is drawn from a binomial distribution with parameters zi
[the global allele frequency at locus i] and nij. We estimate
each zi from the allele frequency in the sample as a whole
and then repeatedly generate data sets by sampling from the
binomial distribution just described. Each simulated data
set is used to calculate yi and H. The tail probability P is
estimated by the fraction of 106 replicates in which the sim-
ulated H is at least as large as the observed one.

With data set I, the African F is far the largest, and this
African excess is highly significant (P 5 0.0002 for NAA
and P5 1 3 10�6 for BAA). Although our estimates differ
slightly because of the loci included, this is essentially the
result that led Takahata and Satta (Takahata et al. 2001;
Satta and Takahata 2002, 2004) to support an African origin
and Templeton (2002, p. 50) to reject it.

The other 2 panels on the right side of figure 1 repeat
this analysis using data sets II and III. The results are similar
but less extreme: the fraction of loci with African ancestral
alleles falls to 0.58 in data set II and to 0.42 in data set III.
The first of these values is a significant departure from the
null hypothesis (P 5 1.1 3 10�5), but the second is not.
Thus, the African excess is progressively less pronounced
in data sets II and III.

Before attempting to explain this difference, let us ap-
ply a different method: that of comparing averages.

Comparing Averages

Within each population, �p will refer to the average
across loci of ancestral allele frequencies. Several authors
have used this statistic to compare populations (Mountain
et al. 1992; Mountain and Cavalli-Sforza 1994; Watkins
et al. 2003), a process that we call ‘‘comparing averages.’’
We use it to compare populations in the panels on the left
side of figure 1. In data set I (upper left panel), African val-
ues are nearly twice as large as Eurasian ones. This African
excess falls to about 20% in data set II (middle left panel),
and it disappears altogether in data set III (lower left panel).
Thus, the 3 data sets present no consistent picture of the
relationship between African and Eurasian values of �p.

To make sure that these differences are not statistical
flukes, we used a randomization test to compare the African
value of �p with the average of European and Asian values. In
each repetition, we generated new data vectors by randomly
swapping the African and Eurasian values of p at each locus
and then calculated the absolute difference between the
means of the resulting data vectors. The tail probability, P,
is the fraction of 106 randomized absolute differences that
are at least as large as the observed difference. This method
showed that African and Eurasian values of �p differ signif-
icantly in data sets I and II but not in data set III (P5 0.018,
0.0008, and 3 3 10�5 for the NAA of data set I, the BAA of
data set I, and the NAA of data set II, respectively). Thus, the
African excess seen in data sets I and II is real. On the other
hand, it is not equally strong in all data sets. This implies the
action of some factor that varies among data sets. We con-
sider here the possibility that ancestral allele frequencies re-
spond to differences in mutation rate.

Although we have not measured the mutation rate,
we have measured the number S of segregating (i.e.,

FIG. 1.—Comparing averages (left panels) and comparing fractions
(right panels). Symbols: Af, Africa; As, Asia; Eu, Europe; �, NAA; and
w, BAA.
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polymorphic) sites at each locus. And because S tends to
increase with the per-locus mutation rate, it will serve as
a useful proxy. In data set I, S ranges from 5 to 44 among
autosomal loci and averages �S5 18.8. For the Alu loci (data
set II), the analog of the mutation rate is the rate of retro-
transposition. At any given site within the genome, this rate
is very low, and each Alu locus represents a single retro-
transposition. Thus, �S5 1 for data set II. The DNA sequen-
ces in data set III are short (;500 bp) and therefore
represent a smaller mutational target than do the loci in data
set I. Consequently, �S is also low—about 3—in data set III.
In short, the tendency for ancestral alleles to be African is
greatest where the mutation rate per locus is highest—in
data set I.

This does not prove that mutation rate underlies the
observed differences, but it does suggest that we ought
to take a closer look. We begin with simple theory.

Theory

In this section, we consider a single stylized gene ge-
nealogy (fig. 2), which relates 8 modern genes: 4 from pop-
ulation A (Africa) and 4 from population E (Eurasia). The
Eurasian genes share a long branch back to the LCA, re-
flecting a bottleneck in their ancestry, and are therefore cor-
related with each other. By contrast, the African genes are
uncorrelated. This captures, in exaggerated form, features
that we think characterize the gene genealogies of Africa
and Eurasia (Vigilant et al. 1991; Underhill et al. 2000).

Comparing Averages

If the number of loci is large, average allele frequen-
cies will approximate expected allele frequencies. These are
easy to calculate for the NAA.

Consider the event that gene E3 in figure 3 is a copy
of the NAA. Under the model of infinite sites, this event
occurs if and only if there is no mutation on the path that
separates the 2. This path is t generations long, so the prob-
ability that no mutation occurs is e�ut, where u is the per-
locus mutation rate. This is also the probability that E3

is a copy of the NAA. Furthermore, the distance from
every other gene to the LCA is also t. Consequently, every

gene in the sample is a copy of the NAA with this same
probability.

Within subpopulations, the expected frequency of the
NAA equals the probability that a gene drawn at random is
a copy of the NAA. But no matter which gene is chosen, this
probability is e�ut. Consequently, the expected frequency of
the NAA is the same—e�ut—within each subpopulation, no
matter how these subpopulations are defined. Comparing
averages thus tells us nothing about the location of the LCA.

This argument has assumed the model of infinite sites,
but that is not essential. One need only assume that the same
mutation rate prevails throughout the gene genealogy. The
argument makes no assumption about sample size or the
details of gene genealogy. Consequently, it holds for any
sample size and for any gene genealogy. Population history
affects samples of neutral genes only via its effect on gene
genealogy. Because our argument is unaffected by gene ge-
nealogy, it is also unaffected by population history. It does,
however, depend crucially on the absence of selection and
ascertainment bias.

This theory predicts that the average frequency (�p) of
the NAA will be the same in each subpopulation. With data
set III (fig. 1), we see just that. Results for data sets I and II,
on the other hand, are not as predicted. With those data sets,
�p is substantially greater in Africa than elsewhere. We sus-
pect that these differences reflect ascertainment bias, an is-
sue that we explore elsewhere (Rogers AR, Wooding S,
Batzer MA, Jorde LB, unpublished observation).

Comparing Fractions

As explained above, comparing fractions involves
asking what fraction of loci have ancestral alleles that reach
highest frequency in each subpopulation. To understand
how this method behaves, consider the special case illus-
trated in figure 4. This figure shows the same genealogy
as before but with different branches highlighted. The
Eurasian genes coalesce rapidly to a common ancestor.
In the limiting case, this happens so fast that we can ignore
mutations that fall in the dotted portion of the genealogy.

If the mutation rate per locus is high, the NAA will be
absent from the sample, so inference must be based on the
BAA—the modern allele that differs least from the NAA. If

FIG. 2.—A hypothetical gene genealogy reflecting the effects of an
African origin. The long branch leading to samples from population E re-
flects a bottleneck associated with the colonization by emigrants from pop-
ulation A.

FIG. 3.—The probability that E3 (or any other gene) carries the EAA
depends on the length t of the branch back to the LCA. (This branch is
emphasized.)
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the mutation rate is high enough, there will be no ties: each
horizontal solid line in figure 4 will carry a different number
of mutations. Consequently, each horizontal line has an
equal chance of giving rise to the BAA. The BAA is more
likely to fall in Africa (probability 4/5) than in Eurasia
(probability 1/5). The method of comparing fractions would
thus tell us that the ancestral allele is usually most common
in Africa. These results support the approach of Satta and
Takahata (Takahata et al. 2001; Satta and Takahata 2002,
2004), which involves comparing fractions.

On the other hand, the method of comparing averages
would find no difference between the populations, for the
expected frequency is the same—1/5—in both populations.
(The expected frequency is 4/5 3 1/4 1 1/5 3 0 5 1/5 in
Africa and 4/5 3 0 1 1/5 3 1 5 1/5 in Eurasia.) Thus, the 2
methods give very different answers in this example.

Consider now the case of low per-locus mutation rate.
If this rate is very low, only one mutation will fall within the
gene genealogy. As before, we assume that the dotted por-
tion of the genealogy is short enough to neglect. The single
mutation is thus equally likely to fall on each of the hori-
zontal solid lines. With probability 4/5, its descendants are
African. In that case, the frequency of the ancestral allele is
less than 1 in Africa but equals 1 in Eurasia. Thus, most loci
have Eurasian ancestral alleles. (The expected frequency,
however, is still the same in both populations.)

In summary, the method of comparing averages tells
us nothing about the location of the LCA, and the method of
comparing fractions gives results that depend on the muta-
tion rate. The ancestral allele will usually be most common
in the ancestral population if the per-locus mutation rate is
high, but in a descendant population if that rate is low.
These results rely on extreme assumptions, so it is impor-
tant to ask whether they hold more generally. To find out,
we turn next to computer simulations.

Computer Simulations
Methods

We employ computer simulations that run backwards
in time under the coalescent algorithm (Hudson 1990). Our
version is based on Rogers (1997). In each iteration, the
algorithm generates a gene genealogy with samples of
30 genes in each of several subpopulations. The algorithm
divides history into a series of epochs within which all
parameters are constant, as shown in table 2. Each row

describes an epoch, and epochs are numbered backwards
from the present. The length of an epoch is measured on
a mutational time scale by s5 2ut, where u is the per-locus
mutation rate and t is duration in generations. Thus, s meas-
ures time in units of 1/2u generations. The size of subpop-
ulation i is measured by hi 5 4uNi, where Ni is the diploid
subpopulation size during the epoch.

During the earliest epoch, 1, E was uninhabited and A
had size hA 5 1. Thus, this model assumes that subpopula-
tion A is ancestral.E becomes inhabited during the following
epoch, 0. During this epoch, A retains its size but E is only 1/
100 as large. There is no migration in either epoch.

Mutations obey the model of infinite sites (Kimura
1971). On a branch t generations in length, the number
of mutations is Poisson with mean ut, where u is the mu-
tation rate per locus. We ignore genealogies that receive no
mutations. In the others, we count the mutations between
each leaf (terminal node) and the LCA. Leaves that differ
by 0 mutations are copies of the NAA. Those that differ by
the minimum number of mutations are copies of the BAA.
When the minimum equals 0, there is no difference between
the 2 kinds of ancestral allele.

This model is not meant to be realistic. Instead, it gen-
erates gene genealogies similar to the one in figure 4. During
epoch 0, all genes in E usually coalesce rapidly into a single
line of descent, mimicking the long branch leading in figure
4 to the sample from E. A remains large in both epochs, so its
coalescent events occur slowly. They do not all occur at
once, as in the figure. Nonetheless, the simulated genealo-
gies agree with the figure in that genes in A tend to be less
correlated with each other than do genes in E. This is an
exaggerated version of the pattern often seen in human data,
where subpopulation A represents Africa and E Eurasia.

In table 2, the s and h parameters are proportional to
the per-locus mutation rate. Thus, if the mutation rate were
10-fold higher or if we looked at 10 times as much DNA,
these parameters would be 10 times as large. Consequently,
we can investigate the behavior of the model under different
mutation rates simply by rescaling s and h. In the simula-
tions below, we examine mutation rates corresponding to
values of S that span the range seen among nuclear loci
in table 1 and figure 1. The low end of this range is S 5
1, for Alus, and the high end is S 5 41, for locus HFE.

High per-locus mutation rate

For the case of a high mutation rate, we inflated the
parameters in table 2 by a factor of 10. The results are
shown in the upper 2 panels of figure 5. The panel on
the left shows �p, the mean frequency of the ancestral allele
across all simulated loci, and the panel on the right shows F,
the fraction of these loci in which the ancestral allele is most
common in the indicated subpopulation. The number of
segregating sites averaged �S 5 50.2, close to the highest

Table 2
Base Population History Parameters

Epoch s hA hE

0 1 1 0.01
1 N 1 0.00

FIG. 4.—Another view of the same gene genealogy, with long
branches highlighted.
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value of S seen among nuclear loci in the data. Thus, this
simulation describes loci with mutation rates that are high
but realistic.

Note first that for the NAA, the mean frequency (�p) is
almost identical in subpopulations A and E, in agreement
with the theoretical argument above. Although that argu-
ment makes no prediction about the mean frequency of
the BAA, the simulation provides no support for the view
that the BAA is on average more common in the ancestral
population. In this simulation, A is the ancestral population,
yet �p is higher in population E.

The upper-right panel of figure 5 shows the values of F
that we obtained from the same simulations. The ancestral
allele is African at a large majority of simulated loci. This
bias is strongest (89%) for the NAA but is also strong (75%)
for the BAA. These simulation results are consistent with
the theory, which predicted an African excess for the BAA
but made no prediction for the NAA. They are also in rough
agreement with data set I. The magnitude of the African
excess for the NAA (89%) is about right, and this excess
is apparent not only for the NAA but also for the BAA.
However, the simulated �S is high; we need to consider
lower mutation rates.

Intermediate Per-Locus Mutation Rate

Reducing the mutation rate (and thus each s and h
value) by an order of magnitude returns us to table 2.
The middle pair of panels in figure 5 shows the results
of simulations under this assumption. The mean number
of segregating sites drops to �S 5 5.1 (near the lower end

of the values in table 1), and the difference between pop-
ulations A and E disappears. It does not matter whether we
look at �p or F or whether we use the narrow or broad def-
inition of the ancestral allele: the 2 populations have nearly
the same value. With these mutation rates, ancestral alleles
are devoid of information about the location of the LCA.

Low Per-Locus Mutation Rate

We argued above that under low mutation rates, ances-
tral alleles should be most common not in the ancestral pop-
ulation but in a descendant one. To evaluate this claim, we
set each s and h parameter an order of magnitude lower than
its value in table 2. Among loci simulated under this as-
sumption, the number of segregating sites averaged �S 5
1.3 near the low end of the range of values represented
in our data.

The simulation results appear in the bottom pair of
panels in figure 5 and are just as predicted. The value of
F is higher in Eurasia rather than Africa at a majority
(;73%) of simulated loci. Thus, in low-mutation systems,
the conventional wisdom about ancestral alleles is precisely
backwards. In spite of these differences in F, the popula-
tions have essentially identical values of �p, also in agree-
ment with theory.

These results suggest a testable hypothesis. If modern
humans originated in Africa, then ancestral alleles should
usually be Eurasian at loci with low per-locus mutation
rates and consequently few segregating sites (low S). They
should usually be African at loci with high S. There is some
support for this hypothesis. Satta and Takahata (2004) list
a single locus at which the ancestral allele is most common
outside Africa, and this is a locus with only a single seg-
regating site. Our own table 1, however, excludes this locus
because of its small sample size and adds several others. In
our table, there is no obvious relationship between S and the
tendency of ancestral alleles to be African.

Discussion and Conclusions

Frequencies of ancestral alleles are compared either by
comparing fractions or by comparing averages. Each
method can be implemented using either of 2 definitions
(narrow and broad) of the ancestral allele. Until now, all
such studies have agreed that human ancestral alleles are
more common in Africa than in Europe or Asia (Mountain
et al. 1992; Mountain and Cavalli-Sforza 1994; Takahata
et al. 2001; Templeton 2002; Satta and Takahata 2002,
2004; Watkins et al. 2003). The present study reveals a more
complex pattern. There is a tendency for ancestral alleles to
reach their highest frequency in Africa, but this tendency is
not consistent across data sets. It is pronounced in data set I
but weak in data sets II and III. Ancestral alleles are appar-
ently affected by some factor that differs among data sets.
Because all data sets share the same population history, it is
dangerous to interpret these data solely in terms of history.

The pattern in these data parallels that of mean muta-
tion rate, which is higher in the first data set than in the latter
2. This led us to investigate the effect of per-locus mutation
rate on the distribution of ancestral alleles. In our model,
one subpopulation (called ancestral) has never experienced

FIG. 5.—Simulation results. Symbols: A, Africa; E, Eurasia; �, NAA;
and w, BAA.
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a bottleneck, whereas the other (called descendant) passed
through a bottleneck at the time the 2 populations separated.
For convenience, we refer to the ancestral population as
‘‘African’’ and to the descendant one as ‘‘Eurasian.’’

We proceed from theoretical arguments with extreme
assumptions to simulations in which these assumptions are
relaxed. The theory is not offered as a model of nature. In-
stead, it provides a context within which it is easy to see
how things work. The extreme assumptions of the theory
are relaxed in the simulations, yet the qualitative results
are the same. Thus, the intuition provided by the theory
appears relevant in a broader context.

The method of comparing fractions calculates the frac-
tion (F) of loci with African ancestral alleles. This fraction
is sensitive to the per-locus mutation rate, both in theory and
simulation. When the mutation rate is high, the African
fraction is large, in agreement with conventional wisdom.
Under low mutation rates, however, the conventional wis-
dom is incorrect: only a minority of loci have African an-
cestral alleles. This is consistent with the pattern in our data,
where the fraction of loci with African ancestral alleles is
highest in the data set with high mutation rate. On the other
hand, there is no apparent relationship between mutation
rate (as reflected by S) and the bias toward African ancestral
alleles within data set I. This discrepancy suggests a role for
some factor in addition to mutation rate.

These results do not apply to the mean (�p) of ancestral
allele frequencies within subpopulations. For the NAA, �p is
affected neither by mutation rate nor by the history of pop-
ulation size and migration rate. In the absence of selection
and ascertainment bias, there should be no difference in �p
between subpopulations. This conclusion rests on a model
that is quite general, making no assumptions about popu-
lation history and only weak assumptions about the muta-
tional process.

It explains a pattern that Mountain and Cavalli-Sforza
(1994, fig. 6) discovered in simulation results. In the ab-
sence of ascertainment bias, �p was the same in each sub-
population. We saw the same pattern in real data with
set III. A different pattern, however, appears in data sets
I and II. There, �p was much higher in Africa, contrary to
prediction. This discrepancy provides a second reason to
suspect that data sets I and II have been affected by ascer-
tainment bias or selection.

BAA and NAA behave similarly except when the per-
locus mutation rate is high. Then, the �p of the BAA does
respond to history, but not as is usually assumed. It tends to
be highest in the descendant population rather than the an-
cestral one.

The 2 discrepancies noted above suggest that some ad-
ditional factor is at work. In a separate publication (Rogers
AR, Wooding S, Batzer MA, Jorde LB, unpublished obser-
vation), we investigate the role of ascertainment bias in the
selection of loci. Yet even without that additional analysis,
the present study has shown that ancestral alleles are sen-
sitive to a factor—the mutation rate—that has nothing to do
with population history. This does not prove that ancestral
alleles are uninformative. Indeed, we have shown that an-
cestral alleles are usually most common in the ancestral
population if the per-locus mutation rate is high. It does,
however, show that these alleles respond to other influen-

ces, which must be understood before inferences about
history can be reliable.
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