
A
rticle

IQ-TREE: A Fast and Effective Stochastic Algorithm for
Estimating Maximum-Likelihood Phylogenies
Lam-Tung Nguyen,1,2 Heiko A. Schmidt,1 Arndt von Haeseler,1,2 and Bui Quang Minh*,1

1Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna,
Vienna, Austria
2Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria

*Corresponding author: E-mail: minh.bui@univie.ac.at.

Associate editor: Barbara Holland

Abstract

Large phylogenomics data sets require fast tree inference methods, especially for maximum-likelihood (ML) phylogenies.
Fast programs exist, but due to inherent heuristics to find optimal trees, it is not clear whether the best tree is found.
Thus, there is need for additional approaches that employ different search strategies to find ML trees and that are at the
same time as fast as currently available ML programs. We show that a combination of hill-climbing approaches and a
stochastic perturbation method can be time-efficiently implemented. If we allow the same CPU time as RAxML and
PhyML, then our software IQ-TREE found higher likelihoods between 62.2% and 87.1% of the studied alignments, thus
efficiently exploring the tree-space. If we use the IQ-TREE stopping rule, RAxML and PhyML are faster in 75.7% and 47.1%
of the DNA alignments and 42.2% and 100% of the protein alignments, respectively. However, the range of obtaining
higher likelihoods with IQ-TREE improves to 73.3–97.1%. IQ-TREE is freely available at http://www.cibiv.at/software/
iqtree.

Key words: phylogenetic inference, phylogeny, maximum likelihood, stochastic algorithm.

Introduction
Phylogenetic inference by maximum likelihood (ML) is widely
used in molecular systematics (Felsenstein 1981, 2004). It in-
volves the estimation of substitution model parameters,
branch lengths and tree topology. These parameters are usu-
ally estimated one after another with the tree topology being
the main parameter of interest. While efficient numerical
methods for estimating substitution model parameters and
branch lengths on a fixed tree exist (Yang 2000), finding the
optimal tree topology is an NP-hard combinatorial optimiza-
tion problem (Chor and Tuller 2005). Therefore, one has to
rely on search heuristics to find the “best” tree.

ML tree searches apply inter alia local tree rearrangements
such as nearest neighbor interchange (NNI), subtree pruning
and regrafting (SPR), or tree bisection and reconnection (TBR)
to improve the current tree (Guindon and Gascuel 2003;
Swofford 2003; Stamatakis 2006). Here, only modifications
that increase the tree likelihood (“uphill” moves) are allowed.
Such approaches are prone to be stuck in local optima (e.g.,
Swofford and Olsen 1990). The problem becomes more
severe if the local tree rearrangement method can only
generate a small number of trees in neighborhood of the
current tree. As a result, SPR algorithms often find trees
with higher likelihoods than those that are based on NNI
(Morrison 2007; Whelan and Money 2010; Money and
Whelan 2012). TBR is not often used due to its high compu-
tational demand.

Stochastic algorithms were developed to overcome
the problem of local optima encountered by hill-climbing
algorithms. Current ML implementations of stochastic algo-
rithms allow “downhill” moves (Salter and Pearl 2001; Vos
2003; Vinh and von Haeseler 2004) or maintain a population
of candidate trees (Lewis 1998; Zwickl 2006; Helaers and
Milinkovitch 2010) to avoid local optima. However, in
terms of both likelihood maximization and computation
time such implementations have been found not to perform
as well as SPR-based hill-climbing algorithms (Stamatakis
2006; Morrison 2007). The large variety of techniques
makes it difficult to combine them into effective and efficient
stochastic algorithms. While the possibilities to enhance a hill-
climbing algorithm are limited, the potential to improve the
effectiveness and efficiency of stochastic algorithms is not yet
fully explored.

New Approaches
This article presents a fast and effective stochastic algorithm
for finding ML trees. The core idea is to perform an efficient
sampling of local optima in the tree space. Here, the best local
optimum found represents the reported ML tree. To this end,
we combine elements of hill-climbing algorithms, random
perturbation of current best trees, and a broad sampling of
initial starting trees. Comparative analyses for many large
DNA and amino acid (AA) multiple sequence alignments
retrieved from TreeBASE (Sanderson et al. 1994) showed

� The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com Open Access
268 Mol. Biol. Evol. 32(1):268–274 doi:10.1093/molbev/msu300 Advance Access publication November 3, 2014

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/32/1/268/2925592 by guest on 10 April 2024

http://www.cibiv.at/software/iqtree
http://www.cibiv.at/software/iqtree
; Felsenstein
While
).
like
(
).
While
paper
http://creativecommons.org/licenses/by-nc/4.0/


that our new search strategy often achieves higher likelihoods
compared with RAxML (Stamatakis 2006) and PhyML
(Guindon et al. 2010).

Results

Benchmark Setup

Here, we compared the performance of our approach (im-
plemented in IQ-TREE 1.0) with the default tree searches
implemented in PhyML 3.1 and RAxML 7.3.5. To that end,
we downloaded multiple sequence alignments from
TreeBASE (Sanderson et al. 1994; accessed December 1,
2012) fulfilling the following criteria. First, the number of se-
quences must be between 200 and 800 for DNA and between
50 and 600 for AA alignments. Second, the alignment length
must be at least four (or two) times the number of sequences
in DNA (or AA) alignments. Third, the proportion of gaps/
unknown characters must be less or equal than 70%. Identical
sequences were discarded from the alignments keeping only
one. We obtained 70 DNA and 45 AA alignments (see sup-
plementary tables S1 and S2, Supplementary Material online).
The DNA alignment lengths range from 976 to 61,199 sites.
The AA alignment lengths were between 126 and 22,426 sites.

For all programs, we used GTR (general time reversible;
Lanave et al. 1984) and WAG (Whelan and Goldman 2001)
models for DNA and AA alignments, respectively. Rate het-
erogeneity followed the discrete G model (Yang 1994) with
four rate categories, where relative rates are computed as the
mean of the portion of the G distribution falling in the re-
spective category. To avoid numerical discrepancies between
different likelihood implementations, we used PhyML to com-
pute the log-likelihoods of the final trees based on parameters
produced by each program. We note that, for 92% of the trees
the differences in log-likelihoods recomputed by IQ-TREE and
PhyML are smaller than 0.01 and the maximal difference is

0.05 (supplementary fig S0, Supplementary Material online).
All analyses were performed on the Vienna Scientific Cluster
(VSC-2, vsc.ac.at).

Comparison with Equal Running Times

As RAxML and PhyML are considered as the two high-perfor-
mance ML tree-inference programs, we first benchmarked
IQ-TREE by restricting the running time of IQ-TREE to that
required by each RAxML and PhyML run. This is done to study
how efficiently IQ-TREE uses its search time compared with the
other programs. For each alignment, we ran RAxML ten times
and PhyML once (because the default tree search in PhyML is
deterministic). Subsequently, we ran IQ-TREE ten times for
each alignment with restricted CPU time. Then, we compared
for each alignment the average log-likelihood of trees produced
by IQ-TREE with those by the other two programs.

Figure 1 (and supplementary fig. S1, Supplementary
Material online) displays the pairwise log-likelihood difference
distributions for IQ-TREE versus RAxML (fig. 1a and b) and
PhyML (fig. 1c and d). Trees inferred with IQ-TREE for DNA
alignments had in 87.1% of the instances a higher likelihood
than RAxML-trees or PhyML-trees (fig. 1a and c). Although
these percentages are identical, the alignments for which IQ-
TREE found better trees if compared with RAxML or PhyML
are not the same (see supplementary fig. S1, Supplementary
Material online). For 12.9% of the alignments, RAxML or
PhyML found better trees.

For the AA alignments, IQ-TREE found higher likelihoods
in 62.2% if compared with RAxML (fig. 1b) and in 66.7% if
compared with PhyML (fig. 1d). Contrary to DNA we ob-
served 22.2% of the alignments where RAxML and IQ-TREE
found trees with negligible log-likelihood differences (<0.01).
This number is 13.3% when comparing PhyML with IQ-TREE.
In only 15.6% and 20% of the AA alignments, RAxML and

FIG. 1. Performance of IQ-TREE for fixed CPU times: (a, b) Display frequencies of log-likelihood differences for IQ-TREE minus RAxML for 70 DNA (a)
and 45 AA (b) alignments. (c) and (d) show the same if IQ-TREE is compared with PhyML. IQ-TREE’s CPU times were limited to those required by
RAxML and PhyML, respectively. The percentages on the dashed line in (b) and (d) represent the fraction of alignments where log-likelihood differences
are smaller than 0.01.

269

Fast and Effective Maximum-Likelihood Tree Inference . doi:10.1093/molbev/msu300 MBE
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/32/1/268/2925592 by guest on 10 April 2024

to
,
.,
s
Dec. 1st
Suppl.� Tabs.�
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
GTR
Suppl.� Fig.�
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
).
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
equal running times
Since
to
10
u
10
.
Suppl.� Fig.�
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
s
F
s
1b
F
s
1d
F
s
1c
to
Suppl.� Fig.�
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
).
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
to
F
to
F


PhyML performed better (with respect to tree log-likelihoods)
than IQ-TREE, respectively.

We note that the distributions in figure 1a, c, and d are
skewed to the right. Thus, our tree search strategy sometimes
leads to substantially better likelihoods.

In summary, based on the analysis of a large collection of
alignments, we demonstrate that IQ-TREE shows higher like-
lihoods in approximately three-quarters of the analyzed data.
The improvement is almost the same compared with RAxML
or PhyML. Because we fixed IQ-TREE’s running time to the
time the other programs needed, we conclude that the em-
ployed search strategy explores tree-space more efficiently.

Comparison with Different Running Time

We now discuss the performance of IQ-TREE if the CPU time is
not determined by RAxML or PhyML but rather by the default
stopping rule (see Materials and Methods). Thus, we compared
the differences in CPU times and the differences in log-likeli-
hoods (fig. 2 and supplementary fig. S2, Supplementary
Material online). Again, the analyses were based on average
of ten independent IQ-TREE and RAxML runs. Figure 2 is or-
ganized like figure 1 (RAxML vs. IQ-TREE results in the first row,
PhyML vs. IQ-TREE results in the second row, DNA alignments
left column, and AA alignments right column).

By allowing variable CPU time, the number of the align-
ments for which IQ-TREE found higher-likelihood trees than
RAxML or PhyML increases. For 97.1% of the DNA align-
ments, the likelihood is improved compared with RAxML
(fig. 2a) with the maximal average log-likelihood difference
of 109.5 (TreeBASE ID: M7964). For two DNA alignments, IQ-
TREE obtained trees with lower likelihoods than RAxML with
log-likelihood differences up to �8.9 (M2534).

This success in finding higher likelihoods comes at a cost;
IQ-TREE required longer CPU times than RAxML for 75.7% of
the DNA alignments. However, the situation is complicated;
the differences in average CPU times are highly variable, and
for some alignments, one program is much faster than the
other. For example, for the alignment M7024 IQ-TREE needed
4.2 h more than RAxML to finish, whereas RAxML required
8.3 h more to find an optimal tree for M14582. To finish all
ten repetitions for the 70 DNA alignments, IQ-TREE needed
2,020 CPU hours (~87 CPU days), whereas RAxML needed
1,870 CPU hours (~78 CPU days). This is an average CPU time
difference of less than 13 min per run.

Figure 2b displays the results for the 45 AA alignments. For
ten AA alignments (22.2%, cf. supplementary fig. S2b,
Supplementary Material online), IQ-TREE and RAxML inferred
trees with likelihood differences smaller than 0.01 for all ten
runs. For 73.3% of the AA alignments, IQ-TREE obtained higher
likelihoods than RAxML with a maximal log-likelihood differ-
ence of 21.9 (M11012). And for only 4.4% of the AA alignments,
the results were in favor of RAxML, with a maximum log-like-
lihood difference of�8.9 (M3114). In terms of computing time,
IQ-TREE obtained the result faster than RAxML in 57.8% of the
AA alignments, whereas RAxML was faster in 42.2%. In total,
IQ-TREE needed 2,042 CPU hours to complete all 450 runs,
whereas RAxML required 2,380 CPU hours. This is an excess of

16.6% compared with the CPU time of IQ-TREE. Thus, on
average RAxML needed 45 CPU minutes more per run. The
runtime ratios between IQ-TREE and RAxML range from 0.6 to
3.2 for DNA and from 0.5 to 1.9 for protein alignments.

Finally, figure 2c and d displays the results of IQ-TREE and
PhyML for the DNA and AA alignments, respectively. IQ-
TREE obtained higher likelihoods than PhyML for 91.4% of
the DNA and 77.8% of the AA alignments. PhyML obtained
higher likelihoods in 8.6% and 2.2% for DNA and AA, respec-
tively. Notably, the maximal log-likelihood differences in favor
of IQ-TREE were 280.5 (M4794) and 621.1 (M8630) for DNA
and AA, respectively. The maximal differences in favor of
PhyML were �6.3 (M9143) and �0.27 (M8175) for DNA
and AA, respectively.

With respect to computing times, PhyML was faster in
47.1% of the DNA and for all AA alignments, whereas IQ-
TREE was faster in 52.9% of the DNA alignments. PhyML
spent 357 and 61 CPU hours for all DNA and AA alignments,
respectively, compared with the average CPU times for IQ-
TREE of 202 and 204 h for all DNA and AA alignments, re-
spectively. However, in the shorter runtime PhyML produced
lower likelihoods for 77.8% of the AA alignments. The runtime
ratios between IQ-TREE and PhyML range from 0.3 to 2.5
(DNA) and from 2 to 7.5 (protein).

In addition, we ran PhyML ten times per alignment using a
random starting tree and SPR search strategy. Supplementary
figure S3, Supplementary Material online, shows the results. In
terms of computing time, PhyML ran slower than IQ-TREE for
98.6% DNA alignments but faster than IQ-TREE for 100% AA
alignments. With respect to log-likelihoods, IQ-TREE pro-
duced higher likelihoods than PhyML for 88.6% DNA and
93.3% AA alignments (an increase by 2.8% for PhyML on
DNA, but a decrease by 15.5% on AA). Hence, IQ-TREE per-
formed better than PhyML under both the default and
random starting tree options.

Discussion
We have combined well-known phylogenetic and combina-
torial optimization techniques into a fast and effective tree
search algorithm. The success of IQ-TREE results from two
factors: The new tree search strategy helps to escape local
optima and, thus, leads to trees with high likelihood and the
phylogenetic likelihood library (Flouri et al. 2014) reduces the
time for the likelihood computation. Given the same amount
of computing time, the efficient IQ-TREE implementation of
hill-climbing and stochastic NNI operations (see Materials
and Methods) computed trees with higher likelihood than
RAxML or PhyML in the majority of cases (up to 87.1% of the
benchmark data). This improvement is further boosted if the
internal stopping rule was used (up to 97.1%). The success of
IQ-TREE in finding trees with higher likelihoods is somehow
at odds with the discussion in the literature about the effec-
tiveness of NNI compared with SPR (Hordijk and Gascuel
2005; Guindon et al. 2010; Whelan and Money 2010). One
explanation for the very good performance of IQ-TREE is
possibly the introduction of the stochastic NNI. This
random perturbation of locally optimal trees helps to
escape local optima. The perturbed trees are then optimized

270

Nguyen et al. . doi:10.1093/molbev/msu300 MBE
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/32/1/268/2925592 by guest on 10 April 2024

Figs.
1c, 1d
to
different running time
F
Suppl.� Fig.�
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
).
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
10
F
F
-
 hours
;
 hours
10
2020
1870
 minutes
Suppl.� Fig.�
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
)
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
10
-
while
2042
2380
to
F
s
2d display
-
-
while
on
to
 hours
10
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
F
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
to


by hill-climbing NNI, thus allowing for the possibility to find
new and higher local optima. The combination of random
and deterministic elements for ML searches has been previ-
ously proposed in Vos (2003) and Vinh and von Haeseler
(2004).

In addition, we employed some elements of evolution
strategies (Rechenberg 1973) to allow for a broader explora-
tion of the tree space. To this end, we maintain a small pop-
ulation (candidate tree set) of locally optimal trees initially

generated from a large number of maximum parsimony (MP)
trees. Throughout the ML tree search, we continuously
update the candidate tree set with better trees. This extension
of the tree-search also contributes to the performance of IQ-
TREE.

It would be interesting to evaluate the relative importance
of all these heuristic optimization techniques implemented in
IQ-TREE, but this is beyond the scope of this article and will be
discussed in forthcoming technical publications.

FIG. 2. Performance of IQ-TREE for variable CPU times: The upper plots (a, b) show the performance of IQ-TREE against RAxML using the 70 DNA (a)
and 45 AA (b) alignments. The lower plots (c, d) show the same against PhyML. Each dot in the main diagrams represents for one alignment the mean
differences of the CPU times (y axis) and of the mean differences of log-likelihoods (x axis) of the reconstructed trees by the programs compared.
The whiskers at each point show the standard errors of the differences. The histograms at the top and the side present the marginal frequencies. Dots
to the right of the vertical dashed line represent alignments where IQ-TREE found a higher likelihood. If a dot is below the horizontal dashed line, the
reconstruction by IQ-TREE was faster. Percentages in the quadrants of histograms denote the fraction of alignments in that region. Percentages on
the dashed line reflect the number of alignments where log-likelihood differences are smaller than 0.01 (see [b] and [d]).

271

Fast and Effective Maximum-Likelihood Tree Inference . doi:10.1093/molbev/msu300 MBE
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/32/1/268/2925592 by guest on 10 April 2024

(
; 
paper


We also observed that the improvement in log-likelihood
differences is positively skewed for all comparative analyses
with the exception of the time constrained IQ-TREE versus
RAxML for AA data (fig. 1b). Thus, not only the average log-
likelihood improved with IQ-TREE but also for some align-
ments, the improvement is substantial. It would be interesting
to find out the characteristics of such alignments to further
improve ML tree reconstruction methods. Moreover, by using
many large alignments we show that the very good perfor-
mance of our search strategy is not limited to a few align-
ments. Based on our benchmark results, we are confident that
IQ-TREE will generally work very well.

We would like to point out that it is not enough to run
phylogenetic programs with a stochastic component only
once. RAxML and IQ-TREE showed some variation in the
log-likelihoods, if they were run several times (here ten
times) on the same alignment (fig. 2 and supplementary fig.
S2, Supplementary Material online). This observation implies
that both programs still finish sometimes in local optima and
one should rerun the programs as many times as possible. In
addition, we also offer the possibility to run IQ-TREE longer by
adjusting the corresponding parameter of the stopping rule
or by applying the statistical stopping rule suggested by Vinh
and von Haeseler (2004). Compared with other programs, our
results show that with the standard setting of the stopping
rule IQ-TREE can produce very good results, with a moderate
increase in running time.

The proposed tree search in IQ-TREE also improves the
accuracy of the recently introduced ultrafast bootstrap ap-
proximation approach (Minh et al. 2013). To further facilitate
large phylogenetic analyses, we also consider future develop-
ment of IQ-TREE for distributed computing platforms. The
highly independent components of our stochastic search al-
gorithm would allow us to implement an efficient paralleliza-
tion strategy (cf. Minh et al. 2005) with near-optimal speedup.
Thus, the running time of very large phylogenetic analyses
would then be greatly reduced.

In conclusion, IQ-TREE is a time and search efficient ML-
tree reconstruction program. It complements the collection
of available ML-programs and shows a better performance
with respect to the ML search than RAxML or PhyML.
However, as IQ-TREE is not always better than the other
programs, we recommend using all three programs.

Materials and Methods
In the following, we describe the ingredients of the fast tree
reconstruction method that are implemented in IQ-TREE.
We used the phylogenetic likelihood library (Flouri et al.
2014) for likelihood and parsimony computations. We first
describe our fast hill-climbing NNI algorithm that is repeat-
edly used throughout the tree search. Subsequently, we will
explain the initial tree generation and the stochastic NNI
process.

Hill-Climbing NNI

For the determination of locally optimal trees, we imple-
mented a fast hill-climbing NNI search. Our approach is

based on the work of Guindon and Gascuel (2003) where
they applied several NNIs simultaneously. The hill-climbing
NNI is a central element of the search strategy (fig. 3 box c).

NNI is a local tree rearrangement operation that swaps two
subtrees across an internal branch. Each inner branch defines
two distinct NNIs. Thus, for an unrooted bifurcating tree with
n taxa, there are 2(n-3) NNI-trees in the NNI-neighborhood of
that tree.

For a given tree (current tree), we first compute the ap-
proximate likelihoods of each NNI-tree by optimizing the re-
spective inner branch and the four adjacent branches. In the
following, we only consider NNIs that increase the tree like-
lihood compared with the current tree. We then create a list
of nonconflicting NNIs. Two NNIs are considered conflicting
if they operate on the same inner branch or adjacent
branches. The list is initialized with the best NNI. We then
add the next best NNI to the list if it does not conflict with
any existing NNI in the list otherwise we discard it. We repeat
this procedure until all NNIs have been processed.

Afterwards, we simultaneously apply all NNIs in the list to
the current tree and compute the likelihood of the resulting
tree by doing one tree traversal of ML branch length optimi-
zation. If the likelihood of the resulting tree is worse than the
likelihood of the best NNI-tree, we discard all topological
modifications except that of the best NNI in the list. Thus,
if the list is not empty, a new tree with higher likelihood will
be found. This tree will replace the current tree. Furthermore,
we tag the inner branches on the new current tree on which
NNIs were applied and perform the remaining procedure as
follows.

Instead of computing the full NNI-neighborhood we con-
duct a reduced NNI search on the new current tree, applying
the following heuristic to find a locally optimal tree. We only
compute the NNI-trees on inner branches that are at most
two branches away from the tagged branches. For such
admissible branches, we compute the list as described. If
the list is empty, a locally optimal tree has been found
and the hill-climbing search is finished. Otherwise, we
continue the reduced NNI search with the better tree as
described above.

Initial Tree Generation

Tree search heuristics typically start with a quickly built initial
tree that is subsequently improved. For example, PhyML
starts with a BIONJ tree (Gascuel 1997) whereas RAxML
starts with a stepwise addition tree (Farris 1970) using MP
(Fitch 1971) where the MP tree is further optimized with lazy
subtree rearrangement (Stamatakis 2006). To get a represen-
tative sample of plausible initial trees, we generate 100 parsi-
mony trees using the same strategy as RAxML. From the 100
trees, we collect all unique topologies and compute their
approximate likelihoods by doing one tree traversal of ML
branch length optimization. From the ranked list of ML
values, we select the top 20 trees and perform hill-climbing
NNI on each tree to obtain the locally optimal ML trees. We
then retain the top five topologies with highest likelihood in

272

Nguyen et al. . doi:10.1093/molbev/msu300 MBE
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/32/1/268/2925592 by guest on 10 April 2024

F
maximum likelihood 
10
F
Suppl.� Fig.�
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
re-run
to
-
since
 c
F
to
non-conflicting
tree generation
maximum parsimony (MP; 


the so-called candidate tree set C for further optimization
(fig. 3 box a).

A Stochastic NNI Step

The locally optimal trees in the candidate set C are randomly
perturbed to allow the escape from local optima. To this end,
we introduce a so-called stochastic NNI step (fig. 3 box b).
Here, we perform 0.5(n� 3) random NNIs on a tree T

randomly drawn from C, where n� 3 is the number of
inner branches. Then, we apply hill-climbing NNI to the per-
turbed tree to obtain a new locally optimal tree T* (fig. 3 box
c).

If T* has a higher likelihood than the best tree in C, we
replace that tree by T*. Moreover, the stochastic NNI success-
fully found a better tree, thus the number (count) of pertur-
bations after a new better tree was found is set to zero. If T*’s

FIG. 3. Flowchart for the stochastic search algorithm. The variable count counts the number of random perturbations (box b and box c) as a new best
tree was found.

273

Fast and Effective Maximum-Likelihood Tree Inference . doi:10.1093/molbev/msu300 MBE
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/32/1/268/2925592 by guest on 10 April 2024

F
s
s
F
,
 (Fig.
,
.


likelihood is higher than the likelihood for the worst tree in C,
then that tree is replaced by T*. Finally, C does not change if
the likelihood of T* is smaller than the smallest likelihood for
the trees in C. In the last two cases, the tree with the
highest likelihood did not change and count is increased
by one.

The tree search stops, if the current best tree has not
changed for count = 100 random perturbations. The flow-
chart of our stochastic tree search is summarized in figure 3.

Supplementary Material
Supplementary figures S0–S3 and tables S1 and S2 are avail-
able at Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org/).

Acknowledgments

The authors thank Tomas Flouri, Fernando Izquierdo-
Carrasco, and Alexandros Stamatakis for help with the phy-
logenetic likelihood library, Pablo A. Goloboff and an anony-
mous reviewer for helpful comments on the manuscript. The
computational results presented have been achieved using
the Vienna Scientific Cluster (VSC-2). This work was sup-
ported by the Austrian Science Fund—FWF (grant number
I760-B17) to B.Q.M. and A.v.H., and the University of Vienna
(Initiativkolleg I059-N) to L.-T.N. and A.v.H.

References
Chor B, Tuller T. 2005. Maximum likelihood of evolutionary trees is hard.

Lect Notes Comput Sci. 3500:296–310.
Farris JS. 1970. Methods for computing Wagner trees. Syst Zool. 19:

83–92.
Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum

likelihood approach. J Mol Evol. 17:368–376.
Felsenstein J. 2004. Inferring phylogenies. Sunderland (MA): Sinauer

Associates.
Fitch WM. 1971. Toward defining course of evolution—minimum

change for a specific tree topology. Syst Zool. 20:406–416.
Flouri T, Izquierdo-Carrasco F, Darriba D, Aberer AJ, Nguyen L-T, Minh

BQ, von Haeseler A, Stamatakis A. 2014. The phylogenetic likelihood
library. Syst Biol. Advance Access published October 30, 2014,
doi:10.1093/sysbio/syu084.

Gascuel O. 1997. BIONJ: an improved version of the NJ algorithm based
on a simple model of sequence data. Mol Biol Evol. 14:685–695.

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O.
2010. New algorithms and methods to estimate maximum-likeli-
hood phylogenies: assessing the performance of PhyML 3.0. Syst Biol.
59:307–321.

Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to
estimate large phylogenies by maximum likelihood. Syst Biol. 52:
696–704.

Helaers R, Milinkovitch MC. 2010. MetaPIGA v2.0: maximum likelihood
large phylogeny estimation using the metapopulation genetic algo-
rithm and other stochastic heuristics. BMC Bioinformatics 11:379.

Hordijk W, Gascuel O. 2005. Improving the efficiency of SPR moves in
phylogenetic tree search methods based on maximum likelihood.
Bioinformatics 21:4338–4347.

Lanave C, Preparata G, Saccone C, Serio G. 1984. A new method for
calculating evolutionary substitution rates. J Mol Evol. 20:86–93.

Lewis PO. 1998. A genetic algorithm for maximum-likelihood phylogeny
inference using nucleotide sequence data. Mol Biol Evol. 15:277–283.

Minh BQ, Nguyen MA, von Haeseler A. 2013. Ultrafast approximation
for phylogenetic bootstrap. Mol Biol Evol. 30:1188–1195.

Minh BQ, Vinh LS, von Haeseler A, Schmidt HA. 2005. pIQPNNI: parallel
reconstruction of large maximum likelihood phylogenies.
Bioinformatics 21:3794–3796.

Money D, Whelan S. 2012. Characterizing the phylogenetic tree-search
problem. Syst Biol. 61:228–239.

Morrison DA. 2007. Increasing the efficiency of searches for the maxi-
mum likelihood tree in a phylogenetic analysis of up to 150 nucle-
otide sequences. Syst Biol. 56:988–1010.

Rechenberg I. 1973. Evolutionsstrategie—optimierung technischer sys-
teme nach prinzipien der biologischen evolution. Stuttgart
(Germany): Frommann-Holzboog Verlag.

Salter LA, Pearl DK. 2001. Stochastic search strategy for estimation of
maximum likelihood phylogenetic trees. Syst Biol. 50:7–17.

Sanderson MJ, Donoghue MJ, Piel W, Eriksson T. 1994. TreeBASE: a
prototype database of phylogenetic analyses and an interactive
tool for browsing the phylogeny of life. Am J Bot. 81:183.

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylo-
genetic analyses with thousands of taxa and mixed models.
Bioinformatics 22:2688–2690.

Swofford DL. 2003. PAUP*. Phylogenetic analysis using parsimony (* and
other methods). Version 4. Sunderland (MA): Sinauer Associates.

Swofford DL, Olsen GJ. 1990. Phylogeny reconstruction. In: Hillis DM,
Moritz C, editors. Molecular systematics. Sinauer Associates:
Sunderland (MA). p. 411–501.

Vinh LS, von Haeseler A. 2004. IQPNNI: moving fast through tree space
and stopping in time. Mol Biol Evol. 21:1565–1571.

Vos RA. 2003. Accelerated likelihood surface exploration: the likelihood
ratchet. Syst Biol. 52:368–373.

Whelan S, Goldman N. 2001. A general empirical model of protein
evolution derived from multiple protein families using a maxi-
mum-likelihood approach. Mol Biol Evol. 18:691–699.

Whelan S, Money D. 2010. The prevalence of multifurcations in tree-
space and their implications for tree-search. Mol Biol Evol. 27:
2674–2677.

Yang Z. 1994. Maximum likelihood phylogenetic estimation from DNA
sequences with variable rates over sites: approximate methods. J Mol
Evol. 39:306–314.

Yang Z. 2000. Maximum likelihood estimation on large phylogenies and
analysis of adaptive evolution in human influenza virus A. J Mol Evol.
51:423–432.

Zwickl DJ. 2006. Genetic algorithm approaches for the phylogenetic
analysis of large biological sequence data sets under the maximum
likelihood criterion [Ph.D. dissertation]. Austin (TX): The University
of Texas at Austin.

274

Nguyen et al. . doi:10.1093/molbev/msu300 MBE
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/32/1/268/2925592 by guest on 10 April 2024

. 
.
=
F
Acknowledgements
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu300/-/DC1
http://www.mbe.oxfordjournals.org/
http://www.mbe.oxfordjournals.org/

