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Abstract

Large genomes with elevated mutation rates are prone to accumulating deleterious mutations more rapidly than
natural selection can purge (Muller’s ratchet). As a consequence, it may lead to the extinction of small populations.
Relative to most unicellular organisms, cancer cells, with large and nonrecombining genome and high mutation rate,
could be particularly susceptible to such “mutational meltdown.” However, the most common type of mutation in
organismal evolution, namely, deleterious mutation, has received relatively little attention in the cancer biology
literature. Here, by monitoring single-cell clones from HeLa cell lines, we characterize deleterious mutations that
retard the rate of cell proliferation. The main mutation events are copy number variations (CNVs), which, estimated
from fitness data, happen at a rate of 0.29 event per cell division on average. The mean fitness reduction, estimated
reaching 18% per mutation, is very high. HeLa cell populations therefore have very substantial genetic load and, at this
level, natural population would likely face mutational meltdown. We suspect that HeLa cell populations may avoid
extinction only after the population size becomes large enough. Because CNVs are common in most cell lines and
tumor tissues, the observations hint at cancer cells’ vulnerability, which could be exploited by therapeutic strategies.
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Introduction

It is now generally accepted that somatic mutations promot-
ing cell proliferation is the ultimate driving force of tumor
evolution. In addition to the driver mutations, which provide
cells a fitness advantage, mutations of no fitness consequen-
ces (or neutral “passenger” mutations) are believed to be
common as well (Ling et al. 2015; Tao et al. 2015; Li et al.
2017). Intriguingly, the most common type of mutations in
organismal evolution, namely, deleterious mutations (Li
1997), receives little attention in the cancer biology literatures
despite the strong signal in cancer genome sequences (Wu
et al. 2016). As aforementioned, the driver/passenger nomen-
clature excludes this class of mutations, which may be re-
ferred to as negative drivers (Wu et al. 2016). Although
negative driver mutations may be several times more

common than positive drivers among single nucleotide var-
iants (SNVs; Wu et al. 2016), SNVs in coding regions occur
rather infrequently, at no>0.01 per genome per cell division.
In this study, we aim to detect deleterious copy number
variation (CNV) mutations, which occur at a much higher
rate than SNVs.

Under most circumstances, deleterious mutations are
eliminated by natural selection shortly after their emergence
and have little evolutionary consequences. However, there are
cases that natural selection cannot purge the cells carrying
deleterious mutations fast enough as they accumulate. The
best-known circumstances are large genomes with high mu-
tation rates, small population sizes, and in the absence of
recombination (Muller 1964; Charlesworth 1978; Haigh
1978; Lynch and Gabriel 1990; Bachtrog and Gordo 2004).
Human tumor cells meet all these conditions. First, the
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human cancer genomes, larger than those of most unicellular
organisms, have correspondingly higher mutation rates per
cell. Second, during the tumorigenesis the cell population size
is usually very small (Wu et al. 2016; Chen et al. 2018). Lastly,
recombination allows natural selection to operate efficiently
in removing individual deleterious mutations. Somatic cells
do not recombine and selection has to operate at the level of
whole genome, thus, canceling out selection on deleterious
and advantageous mutations of the same cell. This phenom-
enon is often referred to as the Hill–Robertson effect (Hill and
Robertson 1966; Felsenstein 1974; Hartl and Clark 2007).

In populations of nonrecombining genomes, deleterious
mutations will accumulate as no genome can reduce the
mutation number via recombination. A population’s fitness
peak is thus determined by its least loaded class; that is, the
individuals (or cells) with the smallest number of deleterious
mutations. Evolution does not reverse the accumulation of
mutations and is compared with a ratchet mechanism
(Muller 1964; Felsenstein 1974; Haigh 1978). When the least
loaded class has one more deleterious mutation than in
previous generations, it is said that Muller’s ratchet has ad-
vanced one notch (Gordo and Charlesworth 2000a;
Charlesworth 2012). If the ratchet continues to advance,
outpacing the ability of natural selection to reign in the
mutation accumulation (MA), a possible consequence is
the so-called mutational meltdown (Lynch and Gabriel
1990; Gabriel et al. 1993; Lynch et al. 1993) whereby the
population would evolve to extinction.

Direct measurements of the effects of individual mutations
in vivo are challenging. Nevertheless, an assessment of their
collective action is possible, given a system that generates
such variants at an appreciable rate. HeLa cells present such
a system because it has been extensively cultured and exhibits
a short doubling time and aggressive growth. In this study,
HeLa cells are not used to reveal the process of tumorigenesis
but mainly a model for addressing the underlying evolution-
ary forces, which needs to be powerful enough to be mea-
sured in laboratory settings.

We examined variation in growth rates among individual
HeLa cells by monitoring clones from a common ancestral
population. To interpret the variation, we performed whole
genome sequencing of the clones. The genomic variation
reveals that the growth rate is associated with the total length
and number of CNVs. We perform computer simulations of
cell growth to estimate deleterious mutation rate and the
average fitness decrease per mutation. Our results suggest
that human cells that have been cultured for a sufficiently
long period of time still generate deleterious mutations in the
form of CNVs at a high rate and a high-intensity level. For
such systems, the operation of Muller’s ratchet leading to
mutational meltdown might be plausible.

Results

Genetic Variation in Growth Rate in a HeLa Cell
Population
To ensure genomic homogeneity of the initial population, we
first established a HeLa cell line (E6) derived from an ancestral

cell line (JF; supplementary fig. S1, Supplementary Material
online). When E6 population size reached �5� 104 cells (af-
ter 15–16 divisions), five single-cell clones were generated
from E6 and established in culture. When the clone cultures
reached 106–107 cells, we measured cell proliferation rate of
these clones using the MTT assay. The B8 and G3 clones
proliferated faster than E3, E7, and G2, suggesting that cells
within E6 were heterogeneous (fig. 1A). Because these clones
were all descendants of E6, which originated from a single cell
and experienced only 15–16 divisions, our results indicate
that heterogeneity in cell growth can be generated in a very
short period of time in cancer cells.

To test whether variation in growth rates among clones is
heritable, we isolated 39 cells from B8 (fast-growing clone)
and 40 cells from E3 (slow-growing clone), and monitored
their growth from a single cell for seven days. Approximately
23% of B8 and 50% of E3 cells died out within seven days
(supplementary fig. S2, Supplementary Material online), due
to either damage caused during cell isolation or genetic
defects. Furthermore, most cell lines with growth rates< 0.6
died within 2 months. Thus, only 60% of B8 and 27% of E3
cells survived for more than two months.

Whereas the growth rates of cells from a single origin var-
ied greatly, the progeny of the fast-growing clone (B8) grew
faster on average than those of the slow-growing clone (E3;
fig. 1B; P-value¼ 0.004, KS test). Mean cell number among the
B8 progeny was 62.0 at day 7, whereas it was 17.3 among E3-
derived cell lines at the same time. The estimated heritability
was 0.24 (P-value¼ 0.003), implying a significant genetic con-
tribution to the growth rate phenotype. We further drew
�100 cells from one fast- (progeny D) and one slow- (prog-
eny C; supplementary fig. S2, Supplementary Material online)
growing derivative of B8 and monitored growth of each cell
clone for seven days. As expected, cells from the fast-growing
progeny had a higher mean growth rate than that from the
slow-growing descendants (P-value¼ 4� 10�11; fig. 1C) and
the heritability was 0.32 (P-value < 3� 10�11).

If mutations that slow cell proliferation frequently arises in
cancer cell populations, we would expect a decrease in pro-
liferation rates as the population is maintained. To test this,
we monitored growth of single cells that were randomly
drawn from cell populations at different time points. We first
set up six single-cell clones from B8 (supplementary table S1,
Supplementary Material online). After cell numbers reached
100–500 (8–10 cell divisions), 20–30% of the cells from each
population were randomly drawn and isolated into single
cells. The growth of these isolates was monitored for eight
days. This step was repeated when the size of the six popu-
lations exceeded 5,000 cells. In all six cases, the growth rates of
cells drawn at the first time point were higher than those
from the second time point (P-value¼ 1:08� 10�8,
ANOVA). In addition, in four out of six cases, growth rate
was higher at the first than at the second time point (sup-
plementary fig. S3, Supplementary Material online; t-test).

To test whether the slow-growing cells would be outcom-
peted by their fast-growing counterparts, we performed a
competition assay. The fast- and slow-growing cells with
the stable expression of different fluorescent proteins,
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Discosoma sp. red fluorescence protein (DsRed) or enhanced
green fluorescence protein (eGFP), were constructed, and
cocultured in different ratios. The expression of eGFP and
DsRed was used to distinguish the two types of cells in the
competition assay. Their proportions in populations were
monitored weekly over time using flow cytometry. We ran
the experiment for eight weeks. Regardless of the initial pro-
portions, the fast-growing cells always outgrew the slow-
growing cells in our coculture assays over time (fig. 1D and
E), suggesting that fast cells indeed possessed higher fitness
than the slow ones.

Figure 1 demonstrates that a cancer cell population can
generate heterogeneity in growth rate within several cell rep-
lications, even starting from a single cell. Moreover, the major-
ity of these changes is heritable and reduce the fitness of cancer
cells (defined as proliferation rate), suggesting that the fitness
reduction we observed is largely genetically determined.

Cell Growth Rate Is Correlated with the Total Length
and Number of CNVs
To study the genetic basis of growth rate heterogeneity
among our cancer cell lines, we assessed genomic variation

in E6 and five of its descendant clones by constructing a
digital copy-number profile based on next generation se-
quencing reads. We focused on CNVs because single-
nucleotide mutation rates are too slow to produce significant
sequence variation during our short-duration culturing
experiments.

Because the sequence depth of these clones was only 10X,
CNVs found in each clone were presumably originated from
ancestral clone (see Materials and Methods). The number of
CNVs ranged from 2 (B8 and G3) to 9 with the average of 5.2
(supplementary table S2, Supplementary Material online).
The three slow-growing clones showed a clear increase in
the number and the total length of CNVs compared with
the E6 parental line (fig. 2, supplementary table S2,
Supplementary Material online), whereas the two fast-
growing clones were more similar to E6, suggesting that
that most CNVs are deleterious. As E6 experienced only
15–16 divisions before its five descendant clones were gener-
ated, above results also indicate that CNVs can be generated
in a very short period of time. To test this hypothesis, 11
clones derived from B8 with different growth rates between
day 1 and 8 were picked for further analyses (fig. 3A).

FIG. 1. Growth rate, survival rate and fitness of fast- and slow-growing cells. (A) Growth graphs of five descendant clones (B8, G3, E3, E7, G2) and the
ancestral clone (E6). The mean MTT assay read-out (the values of absorbance, y-axis) taken from day 1 to day 8 were plotted for each clone (8–12
replicates). Blue, red, and magenta lines represent growth graphs of fast, slow, and ancestral clones, respectively. Error bars represent 95%
confidence interval. (B) Proportion of progeny with different growth rates. The growth rates of 39 B8 (red) and 40 E3 (blue) single cell progeny
were monitored and calculated for seven days. The growth rates were represented by the slope value that calculated based on cell number
counting from 7 days’ cell culture (see Materials and Methods). (C) Growth rate of one slow- (C; red) and one fast- (D; blue) growing descendant of
B8 and its single-cell clones. Average growth rate of the cell clones from D (blue dots) is significantly higher than that of the clones from C (red dots)
(P-value¼ 4� 10�11, KS test). (D and E) Competition assay between slow- and fast-growing cells. The proportion (y-axis) of fast- (blue) and slow-
growing (red) cells in a mixed population was measured from week 1 to week 8 (x-axis) by flow cytometry.
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The growth rate of each clone was measured again by RTCA
iCELLigence when the population reached �106 cells (after
20–30 cell divisions). The results were highly correlated
(R2¼ 0.713, P-value< 0.01; fig. 3B) with the previous eight-
day measurements, demonstrating that variation in growth
rates among clones was consistent and not due to stochastic
fluctuation at different stages. We picked�20 cells from each
of the 11 clones and counted their chromosome numbers.
The karyotypes ranged from 38 to 113 chromosomes, with
most (72%) cells harboring between 55 and 70 chromosomes
(fig. 3C), indicating that they are triploid as shown in a pre-
vious study (Adey et al. 2013). Therefore, despite single-cell
origin, the progeny quickly generated aneuploidy within only
20–30 cell divisions, again illustrating frequent cytogenetic
change in cancer cells.

Although chromosome numbers varied among clones,
their distribution by combing all clones reconstituted the
chromosome distribution of their ancestor B8. The average
number of chromosomes in the fast-growing group (62.5)
was similar (P-value¼ 0.56, t-test) to the B8 clone (61.1),
whereas the slow-growing group (66.5) showed significantly
greater chromosome numbers than the fast-growing (P-
value< 0.01) and the ancestral (P-value¼ 0.04) clones
(fig. 3D). Consequently, although the number of observa-
tions is still small, figures 2 and 3 suggest that cancer cells
exhibit a very high rate of CNV generation and most of
these CNVs are deleterious, reducing the cells’ proliferative
ability.

Modeling Population Growth Attenuation
To understand MA rates in tumors, we need quantitative
estimates of deleterious mutation rates and effect distribu-
tions. Therefore, we constructed and applied a simple model
of cell growth and the MA process (see Materials and
Methods). Let Nt be the population size at day t, where
N0 ¼ 1, and Rt be the population growth rate at day t. For

each generation, a proportion of cells (l) generate new muta-
tions that decrease their growth rate. The average deleterious
effect of a mutation is s. We have

Nt ¼ Rt
0 1� lsð Þt t�1ð Þ=2; (1)

where R0 is the growth rate at day 0.
To estimate parameters of this model (R0, l, and s) we

randomly drew 18 single cells from B8 and monitored their
growth for 7–8 days (supplementary table S3, Supplementary
Material online). We divided these newly derived cell lines
into fast- (cell number> 100) and slow-growing (cell
number< 100) groups. We then conducted computer sim-
ulations to evaluate the parameters that best fit the observed
data (see Materials and Methods).

Using fast-growing cell data, we estimate posterior mean
of R0;fast ¼ 2:37 ðR0;fast 2 ½2:22; 2:52�Þ, lfast ¼ 0:29 ðlfast

2 ½0:26; 0:30�Þ, and sfast ¼ 0:18 ðsfast 2 0:17; 0:20½ �Þ
(supplementary table S3, Supplementary Material online).
Estimates from slow-growing cells R0;slow ¼ 2:00 ðR0;slow

2 ½1:66; 2:21�Þ, lslow ¼ 0:29 ðlslow 2 ½0:25; 0:33�Þ, and
sslow ¼ 0:18 ðsslow 2 0:16; 0:20½ �Þ are similar, except that
the initial growth rate is slower, as expected. The deleterious
mutation rate (l) of 0.29 (0.25, 0.33) suggests that there is
approximately one deleterious mutation for every 3–4 cell
divisions. Since l is scaled per cell division, the product of l
and s reflects fitness change per generation. Our estimates
indicate that the HeLa cells experience a 5% (4%, 6%) reduc-
tion in fitness for every generation (Crow 1958). Using point
estimates of l (0.29) and s (0.18), we fitted our model to the
growth rates observed in a range of experimental data (sup-
plementary fig. S2, Supplementary Material online) and esti-
mated initial growth rates (R0). Only cell lines that showed
monotonic increase in cell numbers were considered. The
estimation of R0, ranging from 1.64 to 2.54 in 43 sets of ex-
perimental data (supplementary table S4, Supplementary
Material online), suggested that the ancestral cell of slowest

FIG. 2. Copy number variation (CNVs) in five clones derived from E6. (A) The CNV regions in fast- (B8 and G3) and slow-growing (E3, E7, and G2)
clones are highlighted with grey rectangles. The y-axis is the ratio of copy number in a descendant clone divided by copy number in the ancestor, E6.
(B) Summary of CNV gain and loss among five descendant clones (see also supplementary table S2, Supplementary Material online).
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growing lineage had accumulated �2.2 [log (1.64/2.54)/log
(1–0.18)] more deleterious mutations than the ancestor of
fastest growing lineage.

To further empirically test the estimates of l, we picked 12
cells from B8, allowed them to divide once, and isolated each
daughter cell in a well of a 96-well plate. We then monitored
the growth of each of the 12 pairs of cells for four days (sup-
plementary fig. S4, Supplementary Material online). Four cell
pairs lost at least one of the daughters in the first four
days, probably due to injury during preparation. Of the
remaining eight pairs, two (h and i, supplementary fig. S4,
Supplementary Material online) exhibited different

proliferation rates between the daughter cell lineages. The
result suggests that there is approximately one deleterious
mutation in every four cell divisions in this cancer cell line,
which is very close to parametric estimates. Such a high del-
eterious mutation rate implies that many cells at day four
would carry deleterious mutations that reduce cell prolifera-
tion. To test this, each descendant of clone f was harvested
and resuspended into a 96-well plate. We monitored growth
of these progeny for another four days. As expected, the
majority of the surviving clones exhibited slower growth
than their ancestor f (supplementary fig. S5, Supplementary
Material online).

FIG. 3. Growth rate and chromosome number variation among single-cell clones generated from B8. (A) Cell numbers of single-cell clones from day
1 to day 8. The clones labeled in blue grow faster than the clones in red. (B) Correlation between growth rate I and II of single-cell clones. The growth
rate I (x-axis) was measured in the first eight days and the growth rate II (y-axis) measured by RTCA iCELLigence method when the cell populations
reached�106 cells. Each dot represents a single cell clone; only eight out of 11 clones were measured at the second time point. (C) Distributions of
chromosome numbers in cells from ancestral and descendant clones. Chromosome numbers (x-axis) of 20–30 cells randomly drawn from each
clone were counted. The black, blue, and red histograms each represent cells from the ancestral, fast, and slow progeny clones. (D) Chromosome
number in cells from the ancestral (B8) and the progeny clones. The black, blue, and red dots represent cells from the ancestral, fast (P_fast), and
slow (P_slow) progeny clones, respectively. *P< 0.05, **P< 0.01.
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Rapid Accumulation of Deleterious Mutations in
Different Types of Cancer Cell Lines
Interestingly, while R0 shows substantial variation among
Hela cell clones, estimates of l and d are similar, possibly
indicative of an intrinsic property of rapid cancer cell divi-
sion. To further test whether the property in the accumu-
lation of deleterious mutations is consistent in cancer cells,
we estimated the R0, l, and d in tumor cell lines from dif-
ferent cancer types by the same method (table 1). Although
the R0 are considerably variable, l and d are generally con-
sistent among cell lines, implying that a fitness reduction
(l� d) in a variety of cancer cells is close to our initial
estimate of 5% per generation.

Modeling Genetic Load in Long-term Cancer Growth
High deleterious mutation rate would raise an impression
that the HeLa cell lines may have gone extinct long ago. To
address this issue, we modeled the dynamic of “long-term”
cell growth starting from a single cell and monitored MA
within populations. The aim is to evaluate the level of ge-
netic load that affects cancer growth accompanied by con-
tinuous accumulation of deleterious mutations. In a total of
200 simulations, each population was originated from one
single cell and the mutation status of all cells within pop-
ulation was recorded until the population size of the clone
reached 5,000 (survived) or 0 (defected; fig. 4A, see Materials
and Methods).

Nineteen clones (9.5%; fig. 4B) were still survived after 180
generations (days). We then randomly chose one clone and
let it grew to the population size of 106 and the mutation
spectrum of this clone was obtained by randomly sampling of
1,000 cells (fig. 4C). As expected, the majority of cells (86.9%)
had accumulated at least one deleterious mutation com-
pared with their ancestral cell. The results also show that
the slowest growing cells have accumulated five more dele-
terious mutations than the fastest growing cells, indicating a
large diversity within the clone, a result similar to our obser-
vations in figures 1 and 3. Although most of the cells accu-
mulated deleterious mutations and were worse than the
ancestral cells, there were still 13.1% of cells that were
mutation-free. According to the least-loaded theory (Gordo
and Charlesworth 2000a), these growing number of
mutation-free cells can prevent the population from
extinction.

Discussion
The increase in mutation rate and genome instability is one of
the hallmarks during tumorigenesis, which not only generates
advantageous mutations (drivers), but also accumulates large
number of passengers that are neutral or deleterious.
However, it remains unknown, first, how many deleterious
mutations may accumulate in cancer cell populations. As the
fixed and high frequency mutations that calculated in cancer
genomic studies are usually advantageous or neutral for the
cell fitness, deleterious mutations are hardly detected in em-
pirical studies. The detection of a moderate proportion of
negative selective mutations in TCGA pan-cancer data indi-
cates the ignorance of deleterious mutations (Wu et al. 2016).
Second, deleterious mutations may arise at a high rate and
cannot be efficiently purged by natural selection in popula-
tions with no recombination, such as cancer cells (Haigh 1978;
Maynard Smith 1978; Kondrashov 1982; Charlesworth 1990;
Lynch and Gabriel 1990; Lynch et al. 1993; Wu et al. 2016). We,
herein, evaluate whether high mutation rate and the irrevers-
ible accumulation of deleterious mutations might lead to
mutational decay of cancer cell populations. Performing mul-
tiple single-cell progeny assays and extensively genotyping in
the clonal populations of HeLa cell lines, we estimate the rate
and effect of deleterious CNV mutations in cancer cell pop-
ulations. The results show that deleterious CNV mutations
appear at the rate that falls in the range of 0.26–0.33 per
genome per generation with the mean deleterious effect of
0.18 ([0.175, 0.187], 95% confidence interval), indicating the
high level of fitness reduction in cancer cell populations
(Fischer et al. 2011; McFarland et al. 2013; Lynch 2016).

While our observation that majority of mutations was
deleterious in cancer cell lines is similar to previous results
derived mainly from MA experiments in multi-cellular organ-
isms (Willi 2013; Katju et al. 2015; Lovell et al. 2017), these two
types of studies differ in two major aspects. First, genomes of
multi-cellular organisms evolve to ensure the survival and
reproduction of the whole organisms. Cancer cells evolve
from multi-cellular state toward a single-cell state that is dis-
tinct from their longstanding role. In that sense, similarities
between our results and those in microbes (Kibota and Lynch
1996) may be unsurprising. In addition, Cancer cells usually
exhibit a higher mutation rate than normal cells (Wu et al.
2016). While increased mutation rate likely imposes a cost, it
also permits cancer cells to evolve new properties, such as

Table 1. Fitness Reduction Per Cell Division in Different Cancer Cell Lines.

Cell Line Cancer Type Number of Clonesa R0
b lc sd lxs

Hela Cervical cancer 18 1.66–2.48 0.25–0.33 0.17–0.20 0.04–0.06
PC3 Prostate cancer 10 1.68–2.11 0.26–0.31 0.16–0.20 0.04–0.06
A204 Rhabdomyosarcoma 7 1.81–2.07 0.28–0.33 0.17–0.22 0.05–0.07
A375 Melanoma 17 2.14–2.64 0.26–0.34 0.16–0.23 0.05–0.08

NOTE.—To estimate parameters in equation (1), single cells were randomly chosen from different cancer cell lines (supplementary table S5, Supplementary Material online) and
their growth from day 0 to day 7 was monitored. Fitness reduction was evaluated based on the parameters estimated by applying computer simulations, which are described in
Results and Materials and Methods.
aThe number of single cell clones generated from different cancer cell lines.
bGrowth rate of cell population at day 0.
cDeleterious mutation rate.
dAverage deleterious effect of a mutation.
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poly- and aneuploidy and other CNVs than normal cells can
(Molaro and Malik 2017; Xu et al. 2017). A second major
difference is that most MA experiments have been conducted
under constant small population size (Ne¼ 1 or 10), includ-
ing a strong bottleneck effect under which mutations with
small effect, either deleterious or beneficial, can be stochasti-
cally fixed within populations. This stochasticity may explain
mixed results that have been observed in a few MA studies
(Shaw et al. 2000; Dickinson 2008; Woodruff 2013).

The mechanism of Muller’s ratchet is determined by the
population size (N), the mutation rate (l), and the selection
coefficient (s) (Haigh 1978; Gordo and Charlesworth 2000a).
Although we observed the high level of genetic load and the
population decay in cancer cell lines, further sophisticated
analysis, taken considering the key parameters, must be per-
formed to reveal the process and the consequences in the
tumors in patients. It may help reveal the process and the
consequences in the tumors in patients and develop a new
therapeutic regime for cancer.

The increase of N and s will let up the ratchet. Accordingly,
as the tumors grow, the operation of Muller’s ratchet may
slow down, leading to the absent of mutational meltdown.
Thus, tumor size would be positively correlated with the ma-
lignancy which has been shown in many cancer types, includ-
ing breast, kidney, pancreatic and lung cancers (Agarwal et al.
2008; Thompson et al. 2009; Narod 2012; Zhang et al. 2015).
On the contrary, the s could be small in a large tumor. In solid
tumors, the local cell populations do not migrate and are
highly structured. Selection can be more inefficient in solid

tumors than in nonsolid tumors such as leukemia, because
the cell populations are so spatially constrained that a selec-
tion sweep may not occur in solid tumors (Ling et al. 2015).
Other factors may interfere the process of Muller’s ratchet
and warrant further attention. For example, the occurrence of
advantageous mutations can effectively compensate the fit-
ness decay from Muller’s ratchet (Bachtrog and Gordo 2004).

Practically, mutation rate can be increased by targeting the
DNA repair system (Yaglom et al. 2014) or by regulating DNA
replication stress (Burrell et al. 2013). The increase of muta-
tion rate will accelerate the ratchet (Gordo and Charlesworth
2000a, 2000b; Lynch et al. 2016) which would in turn reduce
tumor fitness and make tumors more sensitive to anticancer
drugs (Pavel and Korolev 2017). For example, it has been
suggested that high mutation rate may associate with a
higher occurrence of neo-epitope formation and tumor im-
munogenicity. Thus, increase sensitivity to immune check-
point inhibitors (McGranahan et al. 2016; Palmieri et al.
2017), such as anticytotoxic T-lymphocyte antigen-4 (Van
Allen et al. 2015) and programmed cell death-1 (PD-1; Le
et al. 2015) antibodies.

However, for these strategies to be effective, an additional
layer of cancer biology needs to be considered. Muller’s
ratchet also explains the paradoxical relationship between
chromosomal instability and prognosis in ovarian, gastric,
and nonsmall cell lung cancer, with poorest outcome in
tumors with intermediate, rather than extreme chromosomal
instability (Birkbak et al. 2011). Cancer cells may benefit from
generating genetic variation paving the way for tumor

FIG. 4. Dynamics of cancer cell growth and their mutation distribution. (A) The growing trajectory of 200 tumor clones in silico. Each curve
represents the dynamic of one single cell clone from day 0. (B) Among 200 replicates, only 19 clones survived successfully whereas most of the
clones were defected (clone extinction). (C) The distribution of deleterious mutation number per cell from 1,000 selected cells. The demographic
parameters are R0¼ 2.0, l¼ 0.3, and s¼ 0.18.
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progression. The tumor populations, thus, must strike a del-
icate balance to maintain heterogeneity and at the same time
curb relentlessly increasing mutations which may be used to
develop a new therapeutic regime for cancer. Therapies that
directly target cell proliferation should be considered. In order
to maintain high proliferation rates, rapidly proliferating cells
need to increase their translational capacity and are depen-
dent on high rates of ribosome biogenesis (Ruggero and
Pandolfi 2003; Gentilella et al. 2015). Thus, inhibition of ribo-
some biogenesis could be a selective approach to cancer
therapy (Bywater et al. 2012; Cortes et al. 2016). More impor-
tantly, this effect is enhanced in cells with higher proliferation
rates, but less so in cells with lower proliferation rates.

Materials and Methods

Cell Culture and Single-cell Isolation
Cancer Cell lines, including HeLa cell lines, Human prostate
cancer cell line PC3, Human Rhabdomyosarcoma cell line
A204, and Human malignant melanoma cell line A375,
were obtained from the Culture Collection of the Chinese
Academy of Sciences, Shanghai, China. Cells were cultured in
DMEM Medium for HeLa cell, PC3 and A375, in medium of
McCoy’s 5A for A204 (Life Technologies) and supplemented
with 10% fetal bovine serum (FBS; Gibco, Life Technologies),
100 U/mL of penicillin, and 100 lg/mL of streptomycin at
37 �C with 5% CO2. Cells were trypsinized using 0.05% trypsin
at room temperature for 3 min. Cell counting was performed
with a hemocytometer. The cell suspensions were diluted
with medium to the final concentration of 1 cell per
100mL. Single cells were seeded into each well of a 96-well
cell culture plate and maintained at 37 �C with 5% CO2. After
incubating for 12 h, during which the cells attached to the
wells, the single-cell isolation was visually confirmed by mi-
croscopy. The number of cells in each well was counted every
day. When the cell colony became sufficiently large, cells were
transferred to 24-well plates, and subsequently transferred to
6-well plates and 10-cm culture dishes.

Karyotype Analysis
The cultured cells in a stage of active division were treated
with colchicine (200 ng/mL for 1 h at 37 �C, then harvested
and resuspended in 0.07 M KC1 for 30 min, and slowly added
10 drops of Carnoy’s fixative (3:1, methanol:acetic acid). The
suspended cell was dropped onto a slide, dried the slide rap-
idly, and stained with 4% DAPI for 5 min. At least twenty cells
were spread out in metaphase for karyotyping. Evaluation of
interphase nuclei was performed by OLYMPUS BX51 fluores-
cence microscope. Photographs were taken by CCD camera
with 40 or 100 times objective. Image-Pro Plus software was
used for digital image acquisition in the TIFF format, pseudo-
coloring and merging.

MTT Assay
Cells were suspended and seeded at the concentration of
�700 cells/100 ll/well in 96 well plate. A volume of 20 ll-
dissolved MTT was pipetted into each well. After being incu-
bated for 4 h at 37 �C in a humidified CO2 incubator, the

media was removed and 200 ll sterile DMSO was added to
each well. The absorbance values were then read at 570 nm
with a microplate spectrophotometer. The proliferation of
living cells was monitored based on absorbance values.

Real-time Cell Analysis Assay (RTCA)
Cells in 10% FBS media were seeded at a density of 5,000 per
well into a 16-well E-plate (ACEA) and incubated for 72 h at
37 �C in a humidified CO2 incubator. The impedance for each
well was monitored by the RTCA iCELLgence system (ACEA
Biosciences Inc.) for every 70 min. Relative impedance signal
level (represented as “cell index” in manufacturer’s software)
that indicated the number of cells was analyzed using the
RTCA Software 1.2 program (Roche Diagnostics). The cell
growth curves were automatically recorded on the
iCELLigence system in real time. The cell index was followed
for 3 days.

Measurement of Growth Rate
Population growth rate was estimated using the equation:

dNðtÞ
dt
¼ kN tð Þ; (2)

where NðtÞ is the total number of cells at time t, and k is a
constant coefficient. In MTT assay and RTCA, N(t) represents
the absorbance value (OD) and “cell index,” respectively. To
obtain a linear function, the cell numbers were converted to
logarithms to the base of Euler’s number e. The least-squares
method (LSM) was used to fit the linear regression in which
the slope (k) of the regression line would be the growth rate.

Whole Genome Sequencing and Analysis of CNV
Genomic DNA was extracted from 106 HeLa cells in E6 and
each of the E6 descendant clones (including G3, G2, B8, E7,
and E3) using QiagenAllpre DNA/RNA Mini Kit (Qiagen). The
genomic DNA (3 lg) was fragmented by Adaptive Focused
Acoustics on a Covaris E120 (Covaris Inc.). The range of prod-
uct size was from 250 bp to 350 bp. The fragmented DNA was
purified by Qiaquick PCR purification column and quantified
on 2100 Bioanalyzer by using the Agilent DNA 1000 kit
(Agilent Technologies, Palo Alto, CA, USA). The whole ge-
nome libraries were constructed by IlluminaTruseq DNA
sample preparation kit according to the manufacturer’s
instructions. Whole genome sequencing was performed using
the Illumina Hiseq 2000 in the Beijing Institute of Genomics
(BIG, Beijing, China). After quality control, the average read
depth was 10�. Reads were mapped to the human reference
genome (hg18) using BWA software (Version 0.4.9) with de-
fault parameters (Li and Durbin 2009).

The aligned reads were used as input of the Control-FREEC
software (Control-FREEC v10.3; http://bioinfo-out.curie.fr/
projects/freec/) for characterizing the large-scale chromo-
somal and segmental duplication and deletion events (>10
MB) in five descendant clones against E6. Control-FREEC was
run with the following parameters: window size, 100 kb; step
size, 50 kb; contaminationAdjustment¼ TRUE;
noisyData¼ TRUE; BAF calculation inactivated. To deter-
mine significant CNA calls, Wilcoxon test and
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Kolmogorov–Smirnov test (P-value< 0.01) were performed
using the script assess significance. Since HeLa is triploid and
some regions may contain 4–5 DNA copies (Adey et al. 2013),
the ratio for changes from three to two copies is 0.67 and
from three to four copies is 1.33. Similarly, the ratio for
changes from four to three copies is 0.75 and from four to
five copies is 1.25. Consequently, we set the relative ratios of
>1.2 for copy number gain and<0.8 for copy number lose in
the “MedianRatio” (fig. 2A, and supplementary table S2,
Supplementary Material online).

eGFP and DsRed Transfection
Cells with the stable expression of eGFP and DsRed were
constructed by transfecting with lentivirus vectors,
plenti6.3-MCS-IRES-eGFP and plenti6.3-MCS-IRES-DsRed
(Life Technologies), which contained a blasticidin resistance
gene and an eGFP or a Discosoma sp. red fluorescent protein
(DsRed) sequence. The expression of eGFP and DsRed were
used for labeling and distinguishing the two cells in the com-
petition assay. The vectors were packaged into the lentivirus
particles with infectious activity (Invitrogen). Before transfec-
tion, 2� 105 cells per well were incubated with DMEM in a
6-well plate. After incubating for 24 h, the medium was
replaced by the transfection medium that contained the len-
tivirus particles and polybrene with the concentration of
8mg/mL. The multiplicity of infection (MOI) value was 3.
After transfecting for 24 h, the cells were washed three times
with PBS, and cultured in the DMEM medium with blasticidin
of 10mg/mL for at least 4 weeks in order to select cells that
stably express eGFP and DsRed.

Isolation of Fast-growing and Slow-growing Cells
The CellTrace Violet Cell Proliferation Kit, for flow cytometry
(Thermo Fisher, C34557) was used for isolating the fast-
growing and slow-growing cells. Cells were labeled by the
cell-dye following the CellTrace Violet Cell Proliferation Kit
workflow after cell cycle synchronization arrested at G1/S
phase (double thymidine block). The labeled cells were con-
tinuously cultured for 7 days. At the 7th day after labeling, the
cells were detached by trypsin–EDTA solution and suspended
on culture medium. The BD Influx flow cytometer (BD) was
used to isolate the fast-growing and slow-growing cells. The
top 10% cells with strong fluorescence signals and bottom
10% cells with weak fluorescence signal were sorted as the
slow growing and fast-growing cells respectively. Analysis was
completed using the BD Influx flow cytometer with 405 nm
excitation and a 450/40 nm bandpass emission filter.

Competition Assay for Slow-growing Cell and
Fast-growing Cells
Fast-growing cells with stable eGFP expression (or DsRed ex-
pression) and the slow-growing cells with DsRed expression
(or eGFP expression) were mixed and cocultured at different
initiation ratios (1:1, 2:8, and 8:2). The proportions of the two
cell populations in the mixture were monitored by fluores-
cent intensity of DsRed and eGFP every 3 days by using flow
cytometry.

Modeling Population Dynamic of Cell Expansion
We construct and apply a simple model of cell growth and
MA process. We define Nt as population size at the day t,
where N0 ¼ 1, and Rt as the growth rate of population at day
t. In this case, Rt > 1 represents population increase and
Rt < 1 denotes population decrease. For each division, a
proportion of cells (l) generates new mutations which de-
crease growth rate of the cells. The average deleterious effect
of a mutation is s. Nt is denoted by

Nt ¼ Rt�1Nt�1: (3)

Rt and Rt�1 are given by a recursive function

Rt ¼ 1� lð ÞRt�1 þ lRt�1 1� sð Þ ¼ Rt�1 1� lsð Þ: (4)

Iterating equation (4) t times, Rt can be expressed as

Rt ¼ Rt�1 1� lsð Þ ¼ . . . ¼ R0 1� lsð Þt; (5)

where R0 is the growth rate at day 0. Substitute equation (5)
into equation (3) yields:

Nt ¼ Nt�1R0 1� lsð Þt�1

¼ N0

Yt

i¼1

R0 1� lsð Þi�1

¼ N0Rt
0 1� lsð Þ

t t�1ð Þ

2

: (6)

Since the experiments start from single cell isolation
(N0 ¼ 1), Nt can be derived as

Nt ¼ Rt
0 1� lsð Þt t�1ð Þ=2; for t ¼ 1; . . . ; 7: (7)

Estimate R0 and Fitness Reduction ls
In equation (7) Nt (t¼ 1, . . ., 7) can be obtained from ob-
served data, so R0 and ls can be expressed by Nt (t¼ 1, . . ., 7).
We then divide Nt�1 by Nt and divide Nt by Ntþ1:

Nt

Nt�1
¼ R0ð1� lsÞt�1

Ntþ1

Nt
¼ R0ð1� lsÞt

:

8>><
>>:

(8)

Combine two formulas in equation (8) and eliminate R0,
the fitness reduction ls can be calculated as

ls ¼ 1� Ntþ1Nt�1

N2
t

: (9)

Using linear regression model with the cell number
from 8 days, the fitness reduction ls can be approximated
as

ls ¼ 1�
X7

i¼1

Ntþ1Nt�1

N2
t

7
: (10)

To calculate R0, we substitute equation (9) into equation
(8). Then R0 can be expressed as
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R0 ¼
Ntþ1

Ntð1� lsÞt
: (11)

Cell Growth Simulation
We extended the previously described genetic load to simu-
late the cell growth with accumulation of deleterious muta-
tions. The simulation begins with a single cell. Each day, cells
attempt to divide and produce additional cells. The initial
growth rate, R0 (R0 2 ð1:0; 3:5�), follows a Poisson distribu-
tion. For each cell replication at day t, the number of growth
rate (Rt) which is randomly generated followed by mean
growth rate Rt. Rt > 1 represents cell proliferation, whereas
Rt ¼ 0 denotes cell death. During replication, a proportion of
cells (l) generates deleterious mutations. The mutations ac-
cumulated in the cells decreases the growth rate. The average
deleterious effect of a mutation is s. Therefore, the growth
rate of a cell population is reducing as a function of time. The
computational model is qualitatively similar to our mathe-
matical model, but considers much more complicated con-
ditions, that is, the fluctuations of the parameters (Rt, l, and
s) caused by their distributions.

When R0 is fixed and l and s are given, we can monitor the
cell number every day using the simulation model. In sum-
mary, we cultured 106 cell lines in the simulation with differ-
ent combinations of R0, l, and s. Comparing the 106 results
with observed data with HeLa cell lines, we used the
Approximate Bayesian Computation (ABC) method to select
optimal groups. The mean number of the selected groups
represent the estimated R0, l, and s.

Inference of R0, l, and d by ABC Method
Because of the complexity of the parameter space, we used
ABC method by comparing the simulated 106 cell lines with
observed data with HeLa to estimate R0, l, and s. ABC algo-
rithms are a group of methods for performing Bayesian infer-
ence without the need for explicit evaluation of the model
likelihood function. The algorithms can be used with implicit
computer models that generate sample data sets rather than
likelihoods (Beaumont et al. 2002; Wilkinson 2013). By using
ABC we can compute the posterior probability distribution of
a multivariate parameter H (H ¼ fR0; l; sg). A parameter
value Hi is sampled from its prior distribution fðHÞ to sim-
ulate a data set SðHiÞ, for i¼ 1, . . ., 106. A set of summary
statistics, the value that calculated from the data to represent
the maximum amount of information in the simplest possible
form, SðHiÞ is computed from the simulation. By using a
distance function q, we calculated the distance between Sð
HiÞ and observed data Sobs. If the distance between SðHiÞ
and Sobs is less than a given threshold, the parameter value Hi

is accepted. In order to set the threshold that which simu-
lations are accepted, we provide the tolerance rate �, which is
defined as the percentage of accepted simulation (Csillery
et al. 2010; Csill�ery et al. 2015).

The ABC inference scheme is:

(1) Sample a candidate parameter Hi ¼ fR0; l; sg
from the prior distribution fðHÞ;

(2) Simulate the growth process of the cell line Hi and
calculate the summary statistics Si;

(3) Compare the simulated data set SðHiÞ, with the ob-
served data Sobs, using a distance function q and tol-
erance rate �, if q SðHiÞ; Sobsð Þ < e, accept Hi;

(4) Go to 1.

Here are summary statistics S Hið Þ ¼ fsimulated
cell numbers of 7daysg. The observed summary statistics
Sobs ¼ fobserved 7days0 cell numbers from
experimentg. The prior distribution fðHÞ in our model
was R0 � Uniform½1:0; 3:5�, l � Uniform½0:05; 0:55
� and s � Uniform½0:01; 0:40�. The distance function q
we set was the Euclidean distance and the tolerance rate e
we set was 0.1%. As a whole 1,000 groups of Hi were
accepted.

By using different clones’ data from B8 as Sobs, we finally
calculated the parametric ranges of rapid proliferated
cells were R0;fast 2 ½2:22; 2:52�, lfast 2 ½0:26; 0:30�,
and sfast 2 0:17; 0:20½ �. Meanwhile, the parametric ranges
of defected cells were R0;slow 2 ½1:67; 2:21�,
lslow 2 ½0:25; 0:33�, and sslow 2 0:16; 0:20½ �.

Modeling Genetic Load in Long-term Cancer Growth
To assess how this high genetic load will affect the growth of
HeLa cell lines in a long run, we modeled the dynamic of long-
term cell growth in silicon. The simulation started from a
single cell. The growth rate (R0 ¼ 2:0), mutation rate
(l ¼ 0:3 per genome per cell division) and mutational effect
(d ¼ 0:18) are from our estimation above. As the clone grew,
we recorded the mutation number of each cell every day.
Because, in our previous simulation, clone seldom went ex-
tinction when its size reached 5,000, the simulation was
stopped when the clone reached 5,000 (survived) or went
extinction (defected). The simulation was repeated 200 times.
Next, we randomly chose one survived clone and let grow to
106 cells. A total of 1,000 cells were randomly picked from this
clone and their mutation profiles were recorded.

Data Availability
The raw sequence data reported in this paper have been
deposited in the Genome Sequence Archive (Wang et al.
2017) in BIG Data Center (Members 2017), Beijing Institute
of Genomics (BIG), Chinese Academy of Sciences, under ac-
cession numbers PRJCA000406 that are publicly accessible at
http://bigd.big.ac.cn/gsa.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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