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Peptide hormones are secreted from endocrine
cells and neurons and exert their actions through
activation of G protein-coupled receptors to regu-
late a diverse number of physiological systems in-
cluding control of energy homeostasis, gastro-
intestinal motility, neuroendocrine circuits, and
hormone secretion. The glucagon-like peptides,
GLP-1 and GLP-2 are prototype peptide hormones
released from gut endocrine cells in response to
nutrient ingestion that regulate not only energy ab-
sorption and disposal, but also cell proliferation
and survival. GLP-1 expands islet mass by stimu-
lating pancreatic �-cell proliferation and induction
of islet neogenesis. GLP-1 also promotes cell dif-
ferentiation, from exocrine cells or immature islet
progenitors, toward a more differentiated �-cell
phenotype. GLP-2 stimulates cell proliferation in
the gastrointestinal mucosa, leading to expansion

of the normal mucosal epithelium, or attenuation of
intestinal injury in experimental models of intesti-
nal disease. Both GLP-1 and GLP-2 exert antiapo-
ptotic actions in vivo, resulting in preservation of
�-cell mass and gut epithelium, respectively. Fur-
thermore, GLP-1 and GLP-2 promote direct resis-
tance to apoptosis in cells expressing GLP-1 or
GLP-2 receptors. Moreover, an increasing number
of structurally related peptide hormones and neu-
ropeptides exert cytoprotective effects through G
protein-coupled receptor activation in diverse cell
types. Hence, peptide hormones, as exemplified by
GLP-1 and GLP-2, may prove to be useful adjunc-
tive tools for enhancement of cell differentiation,
tissue regeneration, and cytoprotection for the
treatment of human disease. (Molecular Endocrin-
ology 17: 161–171, 2003)

THE PROGLUCAGON GENE (see Fig. 1) encodes
the sequences of glucagon and several struc-

turally related glucagon-like peptides, collectively
referred to as the proglucagon-derived peptides
(PGDPs) (1, 2). Pancreatic glucagon is generated in
islet A cells via the action of prohormone convertase 2
and regulates hepatic glucose flux through control of
glycogenolysis and gluconeogenesis. In contrast, pro-
hormone convertase 1/3 expression in gut endocrine
cells results in the liberation of two larger peptides that
both contain the sequence of glucagon, oxyntomodu-
lin, and glicentin (Fig. 1), two intervening peptides, and
two glucagon-like peptides, GLP-1 and GLP-2 (3, 4).
In the brain, posttranslational processing liberates a
profile of PGDPs that overlaps the pattern seen in the
pancreas and gut (5, 6).

Although the metabolic actions of glucagon have
been clearly delineated over several decades, the
structural identity of the glucagon-like peptides re-
mained unclear until the molecular cloning of the
mammalian cDNAs and genes was reported in the
early 1980s (1, 2, 7). The peptide sequence of mam-
malian GLP-1 is identical in mice, rats, and humans.
The GLP-2 amino acid sequence is also highly con-
served, with only one (rat) or two (mouse) amino acid
differences compared with the human sequence (8).
Although initial studies of GLP-1 action using GLP-1
(1–37) or GLP-1(1–36)amide concluded that these
peptides were devoid of metabolic activities, subse-
quent experiments using N-terminal truncated pep-
tides beginning at the position 7 His residue revealed
that both GLP-1(7–36)amide and GLP-1(7–37) were
potent insulinotropic peptides both in vitro (9), and in
rodents, pigs, and human subjects in vivo (10–12).
Similarly, the actions of GLP-2 have been delineated
and are directed toward regulation of the function and
proliferation of the gut epithelial mucosa (13).

GLP-1 not only stimulates glucose-dependent insu-
lin secretion, but also increases somatostatin (14) and
inhibits glucagon secretion (15), gastric emptying (16),
and gastric acid secretion (17), and reduces food in-
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take after both intracerebroventricular (18) or periph-
eral administration (19). Similarly, GLP-2 promotes nu-
trient absorption and inhibits both gastric acid
secretion and gut motility when administered periph-
erally. Taken together, these actions of GLP-1 and
GLP-2 provide a scientific rationale for assessing the
effectiveness of these peptides, or structurally related
agonists, in the treatment of type 2 diabetes and in-
testinal insufficiency, respectively (20, 21).

EFFECTS OF GLP-1 ON CELLULAR
DIFFERENTIATION AND PROLIFERATION

�-Cell Differentiation and Exocrine Cell Lines

The actions of GLP-1 are mediated by the glucagon-
like peptide-1 receptor (GLP-1R), a 463-amino-acid
member of the G protein-coupled receptor (GPCR)
superfamily (22). GLP-1R is expressed on islet �-cells
(9, 22), and GLP-1R activation leads to activation of
cAMP and both protein kinase A-dependent and
-independent actions (23–25). In addition to enhance-
ment of proinsulin biosynthesis and insulin secretion in
islet cells, GLP-1 agonists induce features of cellular
differentiation in exocrine cell lines. Exposure of rat
AR42J cells to GLP-1 for 24–48 h leads to an initial
increase in levels of cAMP and cellular proliferation,
followed by cessation of proliferation and expression
of the islet hormones, insulin, glucagon, and soma-
tostatin, in up to 50% of cells (26). Furthermore, GLP-1
treatment also induced expression of mRNAs for glu-
cose transporter-2 (GLUT-2) and glucokinase, in as-
sociation with the capacity to release insulin in a glu-
cose-dependent manner (26). A similar set of
experiments was carried out using two pancreatic
ductal cell lines, rat ARIP and human PANC-1 cells
(27). GLP-1 or exendin-4 (a potent lizard GLP-1R ag-
onist) treatment for 72 h of ARIP cells, which express

endogenous pancreatic duodenal homeobox-1 (PDX-
1), promoted cell aggregation, with some heterogene-
ity in the number of cells responding (27). GLP-1 treat-
ment also induced insulin expression in a majority of
ARIP cells. Native PANC-1 cells that do not express
PDX-1 did not differentiate into insulin-producing cells
in response to GLP-1; however, transfection with
PDX-1 was sufficient for establishing GLP-1-depen-
dent differentiation into insulin-producing cells (27).
Furthermore, PANC-1 cells transfected with PDX-1
exhibited increased expression of the endogenous
GLP-1R.

The importance of PDX-1 and hepatocyte nuclear
factor-3� for GLP-1R-dependent cell differentiation
has also been examined in Capan-1 cells, derived
from a human pancreatic ductal carcinoma, which
express the GLP-1R. A subset, approximately 10% of
Capan-1 cells, normally contain insulin and/or gluca-
gon immunopositivity, and after several days of expo-
sure to 0.1 nM exendin-4, approximately 40% of the
cells exhibited immunopositivity for insulin and/or glu-
cagon (28). Treatment of Capan-1 cells with exendin-4
increased MAPK activity but not cell proliferation and
was associated with increased cAMP accumulation
and enhanced expression of glucokinase, GLUT-2,
BETA2/NeuroD, hepatocyte nuclear factor-3� (Foxa2),
and PDX-1. Exendin-4 promoted the nuclear localiza-
tion of PDX-1, which was abolished after coadminis-
tration of the protein kinase A (PKA) inhibitor H-89 (28).

GLP-1 agonists also enhanced islet cell differentia-
tion in the �-cell line �lox5, an immortalized cell line
derived from human islet �-cells infected with a retro-
virus encoding SV40 T antigen. Treatment of �lox5
cells expressing transfected PDX-1 with the GLP-1
agonist exendin-4 resulted in induction of insulin gene
expression; however, exendin-4 alone, in the absence
of PDX-1 expression, had no effect on cell differen-
tiation despite inducing expression of the cAMP re-
sponse element binding protein (29). Although ex-

Fig. 1. Structure of Mammalian Proglucagon and Tissue-Specific Processing of Proglucagon into the PGDPs
The numbers above and below the proglucagon sequence refer to specific amino acid residues within proglucagon. IP,

Intervening peptide.
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endin-4 treatment of cells in vitro before transplantation
under the kidney capsule was required for induction of
C-peptide secretion from engrafted cells, continuous
treatment with exendin-4 in vivo did not result in C-
peptide secretion, suggesting that sustained administra-
tion of exendin-4 was not invariably associated with en-
hanced �-cell function or survival (29).

�-Cell Differentiation and Fetal or Adult Islet
Precursors

Several studies have used fetal islet cell precursors to
examine whether exposure to GLP-1R agonists is as-
sociated with enhanced differentiation of previously
immature islet precursors. Incubation of fetal porcine
islet-like cell clusters (ICCs) with 100 nM GLP-1 for
periods ranging from hours to several days resulted in
enhanced glucose-stimulated insulin secretion, with
increased formation of �-cells from undifferentiated
cells, in association with increased numbers of
PDX-1� cells (30). Furthermore, transplantation of
GLP-1-treated ICCs into severe combined immunode-
ficient mice resulted in increased numbers of �-cells
that appeared functionally mature as assessed by
subsequent studies of glucose-induced insulin release
in vivo (30). Exendin-4 induced PDX-1 expression but
did not increase the number of insulin-immunopositive
cells in human ICCs prepared from 16- to 24-wk ges-
tation human fetal pancreata (31). After transplantation
of the human ICCs under the kidney capsule of athy-
mic rats, a 10-d treatment with exendin-4 was initiated
commencing 48 h after transplantation. Eight weeks
after ICC transplantation, the human ICCs from ex-
endin-4-treated rats exhibited glucose-stimulated in-
sulin secretion, whereas rats implanted with ICCs in
the absence of exendin-4 administration did not ex-
hibit increases in human C peptide after glucose chal-
lenge (31). Hence, these results suggest that admin-
istration of GLP-1 agonists promotes differentiation of
functional �-cells both in vitro and in vivo.

GLP-1Rs have also been detected, using both im-
munocytochemistry and RT-PCR, on a subpopulation
of nestin-immunopositive cells, designated nestin-
positive islet-derived progenitor (NIP) cells, within hu-
man pancreatic islets and ducts (32, 33). GLP-1 in-
creased intracellular calcium in nestin-positive cells at
basal (5.6 mM) but not high (20 mM) glucose, and these
actions were blocked by the GLP-1R antagonist ex-
endin(9–39). Expansion of NIP cultures for 7–12 d in
the presence of GLP-1 promoted changes in cell mor-
phology and the appearance of insulin-immunoposi-
tive cells in 5–30% of NIP cultures, effects that were
also blocked by the GLP-1R antagonist exendin(9–39).
Furthermore, approximately 30% of NIP clones
treated with exendin-4 exhibited increased insulin se-
cretion. Transfection of rat PDX-1 into long-term NIP
cultures enhanced GLP-1 responsivity as assessed by
insulin promoter activity. Intriguingly, NIP clones ex-
press the proglucagon gene when they approach con-
fluence and secrete GLP-1 into the culture medium,

raising the possibility that under some conditions,
GLP-1 may act in an autocrine or paracrine manner, to
regulate islet cell differentiation (33).

�-Cell Proliferation

The signal transduction mechanisms activated by the
GLP-1R coupled to islet cell proliferation have been
studied in immortalized mouse �TC-9 and rat INS-1
cells (34). Glucose and GLP-1 synergistically in-
creased the expression of immediate early genes, in-
cluding c-fos, c-jun, JunB, zif-268, and nur-77 in islet
INS-1 cells, and these effects were markedly attenu-
ated by the L-type Ca2� channel blocker nifedipine
(34). GLP-1 also increased thymidine incorporation,
phosphatidylinositol 3-kinase (PI-3K) activity, and
PDX-1 DNA binding in a dose-dependent manner, and
these actions were blocked by the PI-3K inhibitors
wortmannin and LY294002 (35). GLP-1 together with
glucose increased levels of PDX-1, GLUT-2, glucoki-
nase, and insulin mRNAs in INS-1 cells and GLP-1R
activation increased the nuclear translocation of
PDX-1 and enhanced PDX-1 binding to insulin pro-
moter elements in RIN1046–38 islet cells (36). Further-
more the proliferative effects of GLP-1 were not con-
fined to INS-1 cells but were also demonstrated in
primary rat islet cell cultures (35).

Analysis of specific signal transduction pathways
activated by GLP-1 using INS-1 cells, MIN6 cells, and
normal rat �-cells demonstrated increased ERK 1/2,
p38 MAPK, and protein kinase B activities in associ-
ation with nuclear translocation of the atypical protein
kinase C (PKC) � isoform in both INS-1 cells and in
normal rat �-cells (37, 38). Functional evidence impli-
cating a role for PKC� in GLP-1-stimulated islet cell
proliferation derives from observations that a domi-
nant negative PKC� protein attenuated, whereas ex-
pression of a constitutively active PKC� mutant stim-
ulated, islet cell proliferation (37).

The importance of GLP-1 for stimulation of islet cell
proliferation was originally demonstrated in lean 20-d-
old normoglycemic mice (Umea �/?) after 2 d of
GLP-1 administration (39). Similarly, once daily admin-
istration of exendin-4 stimulated islet neogenesis and
�-cell proliferation in normal rats whereas daily admin-
istration of exendin-4 for 10 d after partial pancreate-
ctomy decreased blood glucose and stimulated pan-
creatic regeneration in rats via enhancement of islet
neogenesis and �-cell proliferation (40). Remarkably,
glucose tolerance remained significantly improved
even several weeks after cessation of exendin-4 treat-
ment (40). GLP-1 agonists also stimulated �-cell pro-
liferation, expansion of �-cell mass, and islet neogen-
esis in both young and old Wistar rats, in association
with increased islet PDX-1 expression and islet insulin
content (41). Treatment of neonatal Goto-Kakizaki rats
with GLP-1 or exendin-4 from d 2–6 resulted in stim-
ulation of �-cell neogenesis and proliferation as mea-
sured by 5-bromo-2�-deoxyuridine labeling, with per-
sistent expansion of �-cell mass detected at 2 months
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of age despite the transient short-term exposure to
GLP-1R agonists within the first week of life (42).
Short-term 5-d neonatal exposure to GLP-1 or ex-
endin-4 also stimulated islet neogenesis in Wistar rats
treated with a single dose of streptozotocin (STZ) at
birth (43). Similarly, administration of exendin-4 to
db/db mice lowered blood glucose, enhanced islet
neogenesis, up-regulated PDX-1 expression, and in-
creased �-cell mass (44). Comparable results were
obtained after treatment of db/db mice with the long
acting GLP-1 analog NN221 (45). Treatment of db/db
mice twice daily with sc NN2211 200 �g/kg for 2 wk
significantly increased the �-cell proliferation rate and
�-cell mass (45). Enhanced GLP-1R signaling appears
to promote increased PDX-1 transcription in vivo, as
treatment of transgenic mice containing a PDX-1 pro-
moter-LacZ transgene with exendin-4 for 14 d resulted
in increased pancreatic LacZ expression, predomi-
nantly localized to epithelial cells surrounding large
and small pancreatic ducts (44).

The physiological importance of GLP-1R activity for
islet proliferation has been examined in GLP-1R
knockout (GLP-1R�/�) mice. Although islet area is
normal in the absence of GLP-1R signaling, GLP-
1R�/� mice exhibit decreased numbers of large islets
and abnormal islet topography, with significantly in-
creased numbers of centrally located �-cells (46). To
examine whether GLP-1R�/� �-cells exhibit a re-
duced capacity for proliferation in response to a met-
abolic stress, �-cell mass was determined in insulin-
resistant ob/ob:GLP-1R�/� double-mutant mice (47).
These experiments revealed marked up-regulation of
insulin gene expression and significantly increased is-
let numbers and islet area despite the absence of a
functional GLP-1R in leptin-deficient GLP-1R�/�
mice (47). In contrast, GLP-1R�/� mice exhibit more
severe hyperglycemia and impaired �-cell regenera-
tion after partial pancreatectomy (48). Hence, the im-
portance of endogenous GLP-1R signaling for the
adaptive islet proliferative response to metabolic
stress and pancreatic injury appears context specific.

GLP-2 AND STIMULATION OF INTESTINAL
EPITHELIAL PROLIFERATION

Although the GLP-2 sequence is highly conserved in
mammalian proglucagon genes, initial characteriza-
tion of anglerfish pancreatic islet cDNAs revealed the
presence of sequences encoding GLP-1 but not
GLP-2, suggesting that the biological activity of GLP-2
may be unimportant in certain species (7). Later stud-
ies demonstrated that alternative RNA splicing gives
rise to GLP-2-containing mRNA transcripts in fish,
chicken, and lizards (8, 49), and daily GLP-2 adminis-
tration was subsequently shown to promote crypt cell
proliferation leading to expansion of the intestinal mu-
cosal epithelium in mice (50).

The histological consequences of repeated GLP-2
administration are most evident in the small intestinal

epithelium, which exhibits elongated villi due predom-
inantly to enhanced crypt cell proliferation and de-
creased enterocyte apoptosis (51, 52). GLP-2-treated
murine enterocytes appear longer and exhibit in-
creased numbers of microvilli (53). The proliferative
effects of GLP-2 have been demonstrated in the small
bowel of mice, rats, pigs, and humans after exogenous
peptide administration (50, 54–56). Furthermore,
GLP-2 is also weakly mitogenic for cells in the stom-
ach and colon (57, 58).

The proliferative effects of exogenous GLP-2 con-
tribute to intestinal epithelial regeneration in the setting
of small-bowel enteritis (59–63) and colitis (64) and
after major small-bowel resection (56, 65, 66). In-
creased circulating levels of GLP-2 are associated
with development of small-bowel hyperplasia in ex-
perimental rodent diabetes (67), and immunoneu-
tralization of GLP-2 reduced small-bowel epithelial
proliferation in diabetic rats (68). The presence of
enteral nutrients is not required for the trophic effects
of GLP-2, as exogenous GLP-2 enhances the mass
of the small-bowel epithelial mucosa in normal or tu-
mor-bearing rats maintained on parenteral nutrition
(69, 70).

THE GLP-2 RECEPTOR (GLP-2R) AND CELL
PROLIFERATION

The molecular cloning of the cDNA encoding the
GLP-2R has enabled delineation of mechanisms cou-
pling GLP-2R activation to intestinal cell proliferation.
The GLP-2R is structurally related to the glucagon
and GLP-1 receptors and is coupled to cAMP gener-
ation in cells expressing a transfected human or rat
GLP-2R (71, 72). Exogenous GLP-2 increased AP-1-
dependent transcriptional activity and immediate early
gene expression and weakly stimulated cell prolifera-
tion in BHK fibroblasts expressing a stably transfected
rat GLP-2R (71, 72). The GLP-2R is expressed in a
highly tissue-specific manner predominantly in the
gastrointestinal tract (71, 73). A combination of immu-
nocytochemistry and in situ hybridization experiments
has localized GLP-2R expression to human enteroen-
docrine cells and murine enteric neurons (73, 74). In
the murine gut, GLP-2 stimulates division of columnar,
and not mucous progenitor cells, in association with
activation of nuclear c-fos expression in enteric gan-
glia, followed by subsequent fos activation in crypt
cells that do not directly express the GLP-2R (74).
Hence, the GLP-2-dependent stimulation of intestinal
epithelial proliferation in vivo appears indirect (Fig. 2)
and is regulated by as yet unidentified downstream
mediators of GLP-2 action (13, 75).

GLP RECEPTOR SIGNALING AND APOPTOSIS

The demonstration that administration of GLP-1 or
GLP-2 leads to expansion of islet or intestinal epithelial
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mass, respectively, has fostered studies directed at
determining whether these peptides exert their effects
via stimulation of cell proliferation alone or via both
enhanced proliferation and decreased apoptosis (Fig.
2). Although the number of detectable apoptotic islet
and intestinal epithelial cells is normally low in unin-
jured normal tissue, induction of experimental islet or
intestinal injury leads to increased numbers of apopto-
tic cells in the endocrine pancreas and gut epithelium.
Treatment of rat islets with the GLP-1 analog NN2211
reduced cytokine-induced apoptosis in vitro (76), and
GLP-1 increased cell survival and reduced caspase
activation in BHK fibroblasts expressing a transfected
GLP-1R (77). Similarly, treatment of mice with ex-
endin-4 reduced �-cell apoptosis induced by STZ,
whereas GLP-1R�/� mice exhibit increased suscep-
tibility to STZ-induced �-cell apoptosis (77). Further-
more, exendin-4 directly reduced the extent of apo-
ptotic cell death in purified rat �-cells exposed to a
combination of cytotoxic cytokines, consistent with a
direct action for �-cell GLP-1R signaling in promoting
resistance to cellular apoptosis (77).

The antiapoptotic properties of GLP-1 agonists
have been demonstrated in Zucker diabetic rats and
db/db mice. A 2-d continuous infusion of recombinant
GLP-1 was associated with a marked increase in islet
size and �-cell mass, formation of new islet-like clus-
ters, and extraislet insulin-positive cells (78). GLP-1-
treated rats exhibited increased numbers of Ki-67-
positive cells in both the endocrine and exocrine pan-
creas, with aggregates of mitotic cells detected in
association with small and medium-sized islets. GLP-
1-treated rats also exhibited reduced numbers of ap-

optotic cells in the exocrine parenchyma. Remarkably,
the percentage of apoptotic �-cells in this study was
found to be greater than 20% and was significantly
reduced in rats treated with GLP-1 (78). Treatment of
normoglycemic db/db mice with daily exendin-4 for 2
wk prevented the progression to hyperglycemia, in
association with increased �-cell mass, enhanced
numbers of 5-bromo-2�-deoxyuridine� islet cells, and
reduced numbers of Tunel� apoptotic �-cells (79).
Exendin-4-treated rats also exhibited increased levels
of pancreatic Akt1 and p44 MAPK and reduced ex-
pression of activated caspase-3 (79).

The antiapoptotic actions of GLP-1 agonists have
been demonstrated in cultured fetal rat hippocampal
neurons that exhibit GLP-1-dependent increases in
cAMP formation. Both GLP-1 and exendin-4 signifi-
cantly reduced the extent of glutamate-induced cell
death in short-term cultures of hippocampal neurons
(80). Furthermore, both GLP-1 and exendin-4 reduced
depletion of choline acetyltransferase immunoreactiv-
ity, a marker for cholinergic neurons in the basal fore-
brain, after administration of ibotenic acid (80). Hence,
the demonstration that GLP-1R activation reduces cell
death in transfected fibroblasts, islet �-cells, and neu-
rons suggests that direct coupling to antiapoptotic
signaling pathways may represent a generalized fea-
ture of GLP-1R action in diverse cell types (Fig. 3).

Considerable experimental evidence from animal
studies in vivo, and experiments with transfected cells
in vitro links activation of GLP-2R signaling to
attenuation of apoptotic pathways. The nonsteroidal
antiinflammatory agent indomethacin induces crypt
compartment apoptosis in the murine small- and

Fig. 2. GLP-2 Actions in the Gastrointestinal Mucosal Epithelium
The actions of GLP-2 are predominantly indirect and mediated by activation of GLP-2Rs in enteroendocrine cells or enteric

neurons.
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large-bowel epithelium, and pretreatment of mice with
a GLP-2 analog markedly reduced mortality, de-
creased the extent of mucosal injury, and suppressed
the appearance of apoptotic cells in the gut epithelium
(59). Furthermore, administration of the cytotoxic che-
motherapeutic agents irinotecan or 5�-fluorouracil pro-
duces significant epithelial damage and apoptosis in a
position-dependent manner along the crypt-to-villus
axis that was markedly attenuated by pretreatment
with a potent GLP-2 agonist (81). Exogenous GLP-2
infusion also reduced epithelial apoptosis in the small
bowel of premature parenterally fed piglets (55).

Heterologous cells that express a transfected
GLP-2R exhibit enhanced survival after external injury
in the presence of GLP-2, which reflects decreased
cellular apoptosis. BHK-GLP-2R cells exposed to cy-
cloheximide exhibit reduced viability, morphological
features of apoptosis and DNA laddering, and reduced
viability; these parameters are markedly attenuated
after incubation with GLP-2 agonists (82). Further-
more, GLP-2 reduced activation of caspase-3,
caspase-8, and caspase-9, decreased poly(ADP-
ribose) polymerase cleavage, and reduced mitochon-
drial cytochrome c release in BHK-GLP-2R cells in
vitro (82). The antiapoptotic effects of GLP-2 in the
setting of cycloheximide-induced injury were cAMP
dependent yet protein kinase A independent. Similarly,
GLP-2 increased cell survival after cycloheximide in
the presence of the phosphatidylinositol 3-kinase, and
MAPK inhibitors LY294002 and PD98054, respectively
(82).

The direct antiapoptotic effects of GLP-2 in BHK
cells do not require activation of the survival kinase

Akt, p90Rsk, or p70 S6 kinase, as GLP-2 reduced
caspase activation and cytochrome c release after
LY294002 in the absence of Akt, p90Rsk, or p70 S6
phosphorylation. GLP-2R activation in BHK-GLP-2R
cells is coupled to inhibition of glycogen synthase
kinase 3 (GSK-3) through phosphorylation of Ser21 in
GSK-3� and Ser9 in GSK-3� in a PI-3K-independent,
PKA-dependent manner. GLP-2 also reduced the
magnitude of LY294002-induced mitochondrial local-
ization of the proapoptotic Bcl family Bad and Bax
proteins and stimulated Bad phosphorylation at
Ser155 in a PI-3K-independent, PKA-dependent man-
ner (83). Although the antiapoptotic properties of
GLP-2 have not yet been directly demonstrated in gut
endocrine cells or enteric neurons, the structurally re-
lated pituitary adenylate cyclase activating peptide
(PACAP) promotes neuronal survival via cAMP-depen-
dent mechanisms in sympathetic neurons (84).

GPCRs, PEPTIDE HORMONES, AND
ENGAGEMENT OF APOPTOTIC PATHWAYS

Several peptide hormones structurally related to the
glucagon-secretin superfamily exert either pro- or anti-
apoptotic actions in diverse cell types (Table 1). Glu-
cose-dependent insulinotropic peptide exerts both
proliferative and antiapoptotic actions in the immortal-
ized INS-1 islet cell line (85), and PACAP promotes
neuronal survival in cerebellar neurons (86). Vasoac-
tive intestinal peptide (VIP) reduces apoptosis in ovar-
ian follicles (87), and both VIP and PACAP reduced

Fig. 3. Proliferative and Antiapoptotic Effects of GLP-1 and GLP-2 in the Pancreas and Intestine, Respectively
GLP-1 stimulates cell proliferation in pancreatic ductal cells and islets, and exerts antiapoptotic actions on islet �-cells and

neurons. GLP-2 stimulates intestinal crypt cell proliferation and inhibits apoptosis in the crypt and enterocyte compartments of
the gut epithelium.
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thymocyte apoptosis induced by glucocorticoid with-
drawal (88) and inhibited Fas ligand expression and
NF-�B activation in T lymphocytes in a cAMP-depen-
dent manner (89). Similarly, antiapoptotic actions have
been detected after activation of CRH (90), FSH (91),
adrenomedullin (92), gastrin (93), TSH (94), and sub-
stance P/neurokinin-1 (95) receptors, whereas recep-
tors for angiotensinogen 1 (96), opioids (97), calcitonin
gene-related peptide (98), natriuretic peptide(s) (99),
PTH (100), and somatostatin (101) have been linked to
enhanced apoptosis in diverse cell types. Hence, con-
trol of cell survival via peptide hormone-activated
GPCR signaling (Table 1) may be an increasingly rec-
ognized mode of action of specific regulatory peptides
in diverse cell types.

UNANSWERED QUESTIONS AND FUTURE
RESEARCH DIRECTIONS

The available evidence clearly indicates that activa-
tion of GLP receptors (Figs. 2 and 3), and more
broadly, related classes of GPCRs, may be impor-
tant determinants of cell survival, particularly in the
setting of tissue injury. For example, adrenergic re-
ceptor signaling modifies cardiomyocyte survival in
a ligand- and receptor-specific manner (102, 103),
and vasoactive peptides including endothelin, an-
giotensin II, VIP, atrial natriuretic peptide, and ad-
renomedullin exert both trophic and either pro- or
antiapoptotic actions through specific subclasses of
GPCRs (104). Considerable evidence implicates
progressive �-cell failure as an inevitable feature
accompanying the progression of type 2 diabetes in
affected human subjects (105). Accordingly, strate-
gies directed at enhancing islet neogenesis and
�-cell proliferation, and/or preservation of existing
�-cell mass via reduced susceptibility to apoptosis
may prove to be useful in preventing loss of �-cell
function in the diabetes clinic. Whether chronic ther-
apy with GLP-1 agonists will prove useful for en-
hancement or preservation of �-cell mass in patients
with type 2 diabetes will require long-term clinical

studies and/or improvements in our currently limited
ability to assess �-cell mass in human subjects.
Similarly, it remains unclear whether GLP-1 agonists
may enhance cell preservation and reduce �-cell
apoptosis in the setting of islet transplantation. Fur-
thermore, the signal transduction pathways acti-
vated by the GLP-1R in human ducts or �-cells that
transduce proliferative or antiapoptotic signals have
not yet been determined. In contrast to the direct
actions of GLP-1 on islet cell survival, the trophic
and antiapoptotic actions of GLP-2 leading to ex-
pansion of the intestinal epithelial mucosa are
largely indirect (Fig. 3), and the identity of the spe-
cific downstream mediators that convey GLP-2-
activated mitogenic and cytoprotective signals to
the stomach and small and large intestinal epithe-
lium remain unknown. Furthermore, the emerging
clinical use of long acting GLP analogs, with inher-
ent proliferative and antiapoptotic actions, suggests
that ongoing surveillance of tissues such as the
pancreatic ductal (GLP-1) or colonic (GLP-2) epithe-
lium appears prudent. Given the emerging interest in
the therapeutic use of GLP analogs for the treatment
of diabetes and intestinal disease, a more detailed
understanding of the cellular pathways coupling
GPCR signaling to control of cell proliferation and
survival seems warranted.
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