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Preadipocyte factor-1 [Pref-1; also called Dlk1 (Delta-like protein 1)] is made as an epidermal
growth factor-repeat containing transmembrane protein that produces a biologically active sol-
uble form by TNF-�-converting enzyme (TACE)-mediated cleavage. Soluble Pref-1 activates the
MAPK kinase/ERK pathway. In adipose tissue, Pref-1 is specifically expressed in preadipocytes but
not in adipocytes and thus is used as a preadipocyte marker. Inhibition of adipogenesis by Pref-1
has been well established in vitro as well as in vivo by ablation and overexpression of Pref-1. SRY
(sex determining region Y)-box 9 (Sox9), a transcription factor expressed in preadipocytes to
suppress CCAAT enhancer binding protein � and (C/EBP) � expression, is required to be down-
regulated before adipocyte differentiation can proceed. By activating MAPK kinase/ERK, Pref-1
prevents down-regulation of Sox9, resulting in inhibition of adipogenesis. Furthermore, by induc-
ing Sox9, Pref-1 promotes chondrogenic induction of mesenchymal cells but prevents chondrocyte
maturation as well as osteoblast differentiation. Thus, Pref-1 directs multipotent mesenchy-
mal cells toward the chondrogenic lineage but inhibits differentiation into adipocytes as well
as osteoblasts and chondrocytes. Pref-1, encoded by an imprinted gene, has also been de-
tected in progenitor cells in various tissues during regeneration and therefore may have a
more general role in maintaining cells in an undifferentiated state. (Molecular Endocrinology
23: 1717–1725, 2009)

Excess adipose tissue leading to obesity has become a
severe public health threat. Adipose tissue develop-

ment can be affected by genetic background, hormonal
balance, diet, and physical activity. Adipose tissue mass
can increase when fat cells are increased in size due to
higher triacylglycerol accumulation. In addition, an in-
crease in fat cell number, arising from differentiation of
precursor cells into adipocytes, can also occur even in
adults as observed in severe human obesity and in rodents
fed a high-carbohydrate or high-fat diet (1–3).

Adipose tissue includes, not only adipocytes, but also
stromal vascular cells representing preadipocytes and
monocytes/macrophages as well as endothelial and other
cell types. Adipocytes specifically are thought to arise
from mesenchymal cells that undergo the commitment
and differentiation process, adipogenesis (4, 5). A recent

report suggests that, in adipose tissue, precursor fat cells
reside in the mural compartment of vasculature (6). Dur-
ing the last two decades, transcriptional events leading to
preadipocyte differentiation into adipocytes have been
extensively studied. Preadipocyte cell lines, including
3T3-L1 and 3T3-F442A, which can undergo adipocyte
differentiation upon treatment with adipogenic agents
comprised of synthetic glucocorticoid, dexamethasone
(DEX), isobutylmethylxanthine (IBMX), and insulin,
have been valuable in these studies (7–9). Peroxisome
proliferator-activated receptor � (PPAR�) and CCAAT
enhancer-binding protein (C/EBP) family of transcription
factors have been firmly established to play critical roles
in adipocyte differentiation (10–13). Early during adipo-
cyte differentiation, C/EBP� and C/EBP� are induced by
DEX and IBMX, respectively, which together then induce
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PPAR� and C/EBP� to activate various adipocyte mark-
ers that are required for adipocyte function (12, 14).
Thus, thiazolidinediones, synthetic ligands of PPAR�, can
enhance adipocyte differentiation in culture. Other tran-
scription factors have also been reported to either positive
or negatively regulate adipogenesis. Recently, the au-
thor’s laboratory reported that SRY (sex determining re-
gion Y)-box 9 (Sox9) present in mesenchymal cells and
preadipocytes suppresses expression of C/EBP� and
C/EBP�. Hence, suppression of Sox9 is necessary before
preadipocytes can undergo the differentiation process to
become adipocytes (15). Moreover, various growth fac-
tors/hormones can affect adipocyte differentiation by reg-
ulating expression of adipogenic transcription factors. In
fact, in addition to being the main site for energy storage
in mammals by storing triacyglycerol and releasing fatty
acids in times of need, adipose tissue secretes a wide array
of molecules that are involved in diverse physiological
processes including immune response, vascular function,
and energy homeostasis (16, 17). Among these factors are
leptin and adiponectin that are secreted from adipocytes.
Cytokines such as TNF-� and IL-6 are secreted from adi-
pocytes as well as macrophages, whereas preadipocyte
factor-1 [Pref-1; also called Dlk1 (Delta-like protein 1)] is
secreted from preadipocytes. Some of these factors may
also affect growth and development of adipose tissue by
autocrine/paracrine action.

This review focuses on the current knowledge of the
role of Pref-1 in the regulation of adipocyte differentia-
tion and mesenchymal cell fate and its signaling mecha-

nism, as well as its effect on pathological dis-
orders such as obesity and diabetes.

Pref-1 Structure

Pref-1 is synthesized as a protein of 385
amino acids containing a signal sequence at
the N terminus and a single membrane-span-
ning domain of amino acids 300-322. The
most striking structural feature of Pref-1 is in
the extracellular domain presence of six tan-
dem epidermal growth factor (EGF)-like re-
peats maintaining both the conserved spacing
of six cysteines for three disulfide bonding as
well as the other amino acids characteristic of
EGF-like repeat motif-containing proteins
(Fig. 1) (18). The EGF-like motif was origi-
nally described for EGF and other growth fac-
tors, which, by binding to EGF receptor, act as
signals for cell proliferation and differentia-
tion. However, Pref-1 does not contain the
conserved amino acid residues that are re-

quired for EGF receptor binding. Rather, Pref-1 shares
structural characteristics with another class of EGF-like
repeat-containing signaling proteins, the Notch/Delta/
Serrate family, that are involved in cell signaling and cell
fate determination (19). However, Pref-1 lacks the DSL
(Delta/Serrate/LAG-2) domain that is conserved in all
classic Notch ligands to mediate receptor-ligand interac-
tion for Notch (20, 21). Instead, the N-terminal tandem
EGF repeats of Pref-1 represent a DOS (Delta and OSM-
11)-motif, recently defined specialized tandem EGF re-
peats found in classic Notch ligands as well as in other
soluble and membrane-bound proteins reported to func-
tion in the presence of DSL containing Notch ligands in
this pathway (19, 22).

In preadipocytes, multiple transmembrane forms of
Pref-1, ranging from 50 to 60 kDa, are found in the cell
membrane due, in part, to posttranslational modifica-
tions containing N-linked oligosaccharides as well as
sialic acids in the extracellular domain. Moreover, there
are four major alternative splicing products of Pref-1
(Pref-1A–D) (Fig. 1) (23). In addition to the largest full-
length Pref-1 form, alternate splicing generates three ma-
jor shorter forms of Pref-1, each containing in-frame de-
letions in the extracellular juxtamembrane region or part
of the sixth EGF-like repeat domain. The relative abun-
dance of the different splice forms varies depending on the
tissue or developmental stage investigated (24).

Pref-1 is proteolytically cleaved at the extracellular do-
main at two sites to generate soluble forms of Pref-1 (25).

FIG. 1. Domain structure of Pref-1 isoforms. EGF (EGF-like repeat), S (signal
sequence), JM (juxtamembrane), TM (transmembrane domain), Cyto (cytoplasmic
region), and N (N-linked glycosylation sites). Cleavage sites are marked orange.
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Thus, the two larger alternate splice forms of Pref-1,
Pref-1A and Pref-1B, are cleaved at a juxtamembrane site
as well as at a site closer to the N terminus to generate a
larger 50-kDa and a smaller 25-kDa soluble form, respec-
tively. The smaller Pref-1C and Pref-1D, due to the larger
deletions that include the juxtamembrane processing site,
are cleaved only at the N-terminal site to generate only the
smaller 25-kDa soluble form but not the larger 50-kDa
form. In this regard, fetal antigen 1, the protein in fetal
circulation, likely corresponds to the larger soluble form
of human Pref-1 (26–28). Detection of the cleaved form
in circulation clearly validates Pref-1 processing and re-
lease shown in cultured cells. Using various inhibitors and
in vitro approaches, the author’s laboratory reported that
one of the ADAM family members, TNF-�-converting
enzyme (TACE, ADAM 17), can cleave Pref-1 at the jux-
tamembrane region to generate the large soluble form of
Pref-1 (29). Both basal and stimulated cleavage was inhib-
ited by the broad metalloproteinase inhibitor GM6001, also
suggesting that the cleavage of membrane Pref-1 is depen-
dent on a metalloproteinase. In addition, lentivirus-medi-
ated overexpression of TACE increased Pref-1 cleavage,
which produces the large soluble form. Conversely, small
interfering (siRNA)-mediated knockdown of TACE de-
creased the release of the large soluble form from the
membrane form (29). Moreover, this cleavage was not
detectable or was markedly decreased in cells bearing mu-
tated TACE or in cells transfected with TACE siRNA.
These data clearly demonstrate TACE-mediated cleavage
at the juxtamembrane in generating the large 50-kDa sol-
uble form of Pref-1. The release of the 50-kDa full extra-
cellular domain can be markedly enhanced by phorbol
ester treatment in a dose- and time-dependent manner,
indicating that increased Pref-1 cleavage is regulated by
protein kinase C activation (25). It is plausible that Pref-1
activity may be regulated at the proteolytic cleavage step
to generate the active form.

Inhibition of Adipocyte Differentiation
by Pref-1

Pref-1 is highly expressed in preadipocytes but decreases
during differentiation and is absent in mature adipocytes
(18, 30). In fact, the author’s laboratory originally cloned
Pref-1 from a 3T3-L1 preadipocyte cDNA library em-
ploying the selection criterion based on preadipocyte-spe-
cific expression. Pref-1 reflects the degree of adipocyte
differentiation in vitro and in vivo and thus is used as a
preadipocyte marker (6, 30–37). Pref-1 expression is
down-regulated specifically by a component of adipo-
genic agents, DEX. There is a close correlation between
DEX-mediated down-regulation of Pref-1 and efficacy of

DEX on differentiation of 3T3-L1 preadipocytes (38, 39).
Thus, in addition to inducing C/EBP�, DEX may promote
adipocyte differentiation by suppressing Pref-1 expres-
sion. Pantoja et al. (40) recently reported that DEX may
drive preadipocytes to an intermediate state that can then
undergo differentiation by IBMX treatment and, thus,
Pref-1, which is suppressed by DEX, may be a cell fate
determinant.

Studies utilizing various in vitro approaches have
clearly demonstrated the inhibitory role of Pref-1 in adi-
pocyte differentiation (18, 30). Constitutive expression of
Pref-1 in 3T3-L1 cells by stable transfection markedly
lowers the degree of adipocyte differentiation. Pref-1 pre-
vents lipid accumulation and expression of adipocyte tran-
scription factors such as PPAR� and C/EBP� as well as other
late adipocyte markers, including fatty acid synthase,
stearoyl-coenzyme A desaturase, and FABP4/aP2. Con-
versely, decreasing Pref-1 levels by transfection of anti-
sense sequence greatly enhances adipogenesis. In this re-
gard, the antiadipogenic activity of GH has been
attributed to the enhanced expression of Pref-1 through
FoxA2 activation (41). Overall, these studies demonstrate
that Pref-1 expression inhibits adipocyte differentiation
and that down-regulation of Pref-1 is a necessary step in
adipocyte differentiation.

Because soluble forms of Pref-1 can be generated by
cleavage of the extracellular domain, the results obtained
from transfection of full-length Pref-1 could not distin-
guish the effect of the membrane form of Pref-1 from
soluble Pref-1 in regulating adipocyte differentiation.
However, addition of the large soluble form purified from
mammalian cells transfected with the 50-kDa full-length
Pref-1 extracellular domain (referred to as “soluble Pref-
1”) fused to human Ig � constant (hFc) as well as Pref-1
extracellular domain fused to glutathione-S transferase
expressed in Escherichia coli can effectively inhibit adi-
pocyte differentiation. Moreover, unlike Pref-1A and
Pref-1B that can generate the 50-kDa soluble Pref-1,
Pref-1C and Pref-1D (that can produce only the 25-kDa
cleavage product, but not 50-kDa form) cannot inhibit
adipocyte differentiation (24). These observations clearly
show the inhibitory effect of the large soluble 50-kDa
protein, but not the full-length membrane form, on adi-
pocyte differentiation. More definitive evidence was pro-
vided by transfection of a noncleavable transmembrane
form of Pref-1A, constructed by the deletion of the 22
amino acids containing the putative TACE cleavage site at
the juxtamembrane region, confirming that the mem-
brane form of Pref-1 is not capable of inhibiting adipocyte
differentiation (24). Although further studies are needed,
because the smaller 25-kDa cleavage product is not effec-
tive in inhibiting adipocyte differentiation, the additional

Mol Endocrinol, November 2009, 23(11):1717–1725 mend.endojournals.org 1719

D
ow

nloaded from
 https://academ

ic.oup.com
/m

end/article/23/11/1717/2684040 by guest on 19 April 2024



N-terminal cleavage can be a means to inactivate the bi-
ologically active 50-kDa soluble Pref-1. As described be-
low, the similar developmental defects described in Pref-1
bac transgenic mice (42) to that of transgenic mice ex-
pressing only the 50-kDa soluble Pref-1 further argue that
the large soluble form is the biologically active form.
Therefore, it can be predicted that Pref-1 acts by binding
to a yet to be identified interacting protein/receptor that
may contain EGF-repeats that are presumably involved in
protein-protein interaction. As mentioned above, Pref-1
does not contain a DSL domain, which is required for
interaction with Notch, predicting that Pref-1 is not a
Notch ligand. In this regard, inhibition of Notch activa-
tion by Pref-1 has been reported (43). In addition, expres-
sion of full-length Pref-1 by using Gal4/UAS system in
Drosophila showed, contrary to mammalian Delta, in-
hibitory effects on Notch function in addition to other
unrelated phenotypes (44). On the other hand, a recent
study showed that Pref-1 could substitute for OSM-11 in
Caenorhabditis elegans development, suggesting not only
conservation of function of the DOS-motif, but its poten-
tial coactivating role in Notch/DSL ligand signaling (22).
These contradictory results of inhibition and stimulation
by Pref-1 on DSL ligand-induced Notch activation will
require further investigation. Moreover, Pref-1 effect on
expression of Hes-1, a downstream target of Notch, has
also been controversial at best (46, 47). Regardless, direct
interaction of biologically active Pref-1 with Notch has
not been demonstrated (43, 45). In fact, the author’s lab-
oratory could detect neither the changes in Hes-1 expres-
sion by Pref-1 nor the binding of Pref-1 to Notch (Wang,
Y., and H. S. Sul, unpublished results). Identification of
the Pref-1 interacting protein/receptor and biochemical
and functional evidence for its interaction with Pref-1 are
needed in elucidating Pref-1 action.

Pref-1 Activates the MAPK Kinase
(MEK)/ERK Pathway

Mouse embryo fibroblasts (MEFs) in culture can be dif-
ferentiated into adipocytes and have been employed by
researchers to investigate adipocyte differentiation. MEFs
isolated from Pref-1 knockout mice provide a system to
examine the signaling pathway for Pref-1 inhibition of
adipogenesis. Although there are reports that suggest
Pref-1 affects other growth factor/cytokine secretion and
function, its specific signaling pathway was largely un-
known (48, 49). Addition of the large soluble Pref-1- to
Pref-1-null MEFs increases phosphorylation of ERK in a
time- and dose-dependent manner (50). Pref-1-null
MEFs, as compared with wild-type MEFs, show signifi-
cantly higher degree of adipose conversion: compared

with the 50% differentiation of wild-type MEFs into adi-
pocytes, 90% of Pref-1-null MEFs can be differentiated
into adipocytes. Moreover, infection of lentivirus con-
taining the large soluble form of Pref-1 into Pref-1-null
MEFs decreases the degree of differentiation, confirming
the inhibitory effect of Pref-1 on adipogenesis. An initial
transient burst of ERK phosphorylation upon addition of
adipogenic agents has been found to be required for in-
duction of adipocyte differentiation (51, 52). However,
wild-type MEFs also have a low but significant second
increase in ERK phosphorylation peaking at d 2 that par-
allels the expression level of Pref-1 in these cells. This
second peak in ERK phosphorylation is absent in Pref-1-
null MEFs. Furthermore, a specific MEK inhibitor or
siRNA-mediated ERK depletion, after the first burst but
before the second peak of ERK activation, can prevent the
second ERK phosphorylation and also enhance adipocyte
differentiation of wild-type MEFs. Treatment of Pref-1-
null MEFs with the large soluble Pref-1 restores the second
ERK phosphorylation, resulting in inhibition of adipocyte
differentiation (50). These studies clearly demonstrate that
Pref-1 inhibition of adipogenesis is through activation of the
MEK/ERK pathway during differentiation (Fig. 2). Because
the soluble Pref-1 corresponding to the cleaved ectodo-
main containing the six EGF-like repeats is biologically
active, Pref-1 must interact with a yet to be identified
Pref-1 interacting protein/receptor, in order to activate
MEK/ERK pathway to inhibit adipocyte differentiation.
The identification of the putative Pref-1 interacting pro-
tein/receptor is critical for understanding Pref-1 activa-
tion of MEK/ERK as well as its inhibition of adipocyte
differentiation.

Pref-1 Induces Sox9 to Inhibit
Adipocyte Differentiation

Although expression of C/EBP� and PPAR� is suppressed
upon inhibition of adipogenesis by Pref-1, the specific
target of Pref-1 action for inhibition of adipocyte differ-
entiation was not known. During the search for Pref-1
targets by microarray analysis and other candidate ap-
proaches, Sox9 was identified as a downstream target of
Pref-1. Pref-1 treatment causes a rapid increase in Sox9
expression. Sox9, a member of the large Sox gene family,
belongs to the high-mobility group-box class of transcrip-
tion factors and is responsible for human campomelic
dysplasia, an autosomal-dominant condition of skeletal
malformation in which most XY patients have male to
female sex reversal (53, 54). Sox9 plays an important
role during embryogenesis and cellular differentiation
of various tissues, including testogenesis, chondrogen-
esis, and osteoblastogenesis. However, the role of
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Sox9 in adipocyte commitment/differentiation was not
known. Recently, it has been shown that, when treated
with adipogenic agents (DEX/IBMX/insulin), Sox9 ex-
pression decreases early during 3T3-L1 differentiation in
a pattern similar to Pref-1 (15). Down-regulation of Sox9
during adipocyte differentiation coincides with the early
induction of C/EBP� and C/EBP�. Overexpression and
short hairpin RNA-mediated knockdown of Sox9 clearly
demonstrated that Sox9 negatively regulates adipocyte
differentiation (15). It has also been revealed that Sox9
directly binds its binding sites at the promoter regions of
C/EBP� and C/EBP� genes, suppressing their transcrip-
tion. In this regard, sc implantation in mice of 3T3-F442A
cells that stably overexpress Sox9 does not form adipo-
cytes efficiently, whereas cells expressing Sox9 short hair-
pin RNA can form a greater number of adipocytes (15).
This clearly provided in vivo evidence for the inhibitory
role of Sox9 in adipogenesis. Sox9 may maintain cells in
the preadipocyte stage through suppressing C/EBP� and
C/EBP�, and Sox9 suppression is an early event in adipo-
cyte differentiation (Fig. 2). More importantly, it has also
been demonstrated that Pref-1 inhibits adipocyte differ-
entiation by preventing this down-regulation of Sox9 that
normally occurs during differentiation (15). The fact that
Sox9 is induced by ERK activation, and that inhibition of
ERK activation by Pref-1 prevents Sox9 induction further
support the notion that Sox9 is a downstream target of

Pref-1. Indeed, studies employing MEK inhib-
itors as well as siRNA approaches also pro-
vided evidence that, by activating MEK/ERK,
Pref-1 up-regulates Sox9 and thereby inhibits
adipocyte differentiation (15).

In Vivo Effect of Pref-1
on Adipogenesis and
Glucose/Insulin Homeostasis

The role of Pref-1 in adipogenesis has been
clearly shown by ablation of the Pref-1 gene in
mice (55) as well as by overexpression of Pref-1
in adipose tissue of transgenic mice (56, 57).
Both male and female Pref-1-null mice weighed
significantly less than wild-type mice at wean-
ing (55). However, Pref-1-null mice gained
body weight more rapidly. The weight of ma-
jor fat depots (inguinal, retroperitoneal, and
gonadal) was significantly higher in Pref-1-
null mice, indicating that the accelerated body
weight gain in Pref-1-null mice was due to an
increase in adipose tissue mass. Histological
analysis of fat depots revealed that adipocytes
from Pref-1-null mice were larger than those

from wild-type littermates. Moreover, mRNA levels of
late markers of adipocyte differentiation, stearoyl-coen-
zyme A desaturase and fatty acid synthase, were signifi-
cantly higher in adipose tissue from Pref-1-null mice, in-
dicating enhanced adipogenesis. Pref-1-null mice also
showed an enlarged fatty liver as well as increased circu-
lating levels of triglycerides, cholesterol, and free fatty
acids, characteristics usually associated with obesity.
Pref-1-null mice fed a high-fat diet develop impaired in-
sulin resistance and glucose intolerance when compared
with wild-type mice on the same diet (Wang, Y., and H. S.
Sul, unpublished results). Thus, studies of Pref-1 ablation
in mice demonstrate that ablation of Pref-1 enhances ad-
ipogenesis in vivo and support the proposed role of Pref-1
as a negative regulator of the adipogenesis.

Transgenic mice overexpressing the large soluble form
of Pref-1 as an hFc-fusion protein in adipose tissue have
been generated using the FABP4/aP2 promoter. These
transgenic mice showed a marked decrease in adipose
tissue mass and reduced expression of adipocyte markers
and adipocyte-secreted factors (56, 57). With decreased
adipose tissue development, as observed in lipodystrophy
mouse models, these mice suffered from hypertriglyceri-
demia, decreased glucose tolerance, and lower insulin
sensitivity. Mice ectopically expressing the Pref-1/hFc ex-
clusively in liver under the control of the albumin pro-

FIG. 2. Pref-1 inhibition of adipogenesis. Membrane-bound Pref-1A and Pref-1B
generate 50-kDa soluble Pref-1 by TACE-mediated cleavage at the juxtamembrane
region. Binding of the 50-kDa soluble Pref-1 to the putative Pref-1 receptor at the
preadipocyte membrane activates MEK/ERK which, in turn, increases Sox9
expression. Sox9 binds to its binding sites at the C/EBP� and C/EBP� promoter
regions to suppress their transcription, resulting in inhibition of adipocyte
differentiation.
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moter also showed a decrease in adipose mass and adipo-
cyte marker expression, suggesting a potential endocrine
mode of action of Pref-1 (56). Data from these in vivo
studies with Pref-1 knockout and transgenic mice models
are consistent with in vitro studies, strongly demonstrat-
ing the inhibitory effect of Pref-1 on adipogenesis. The
findings that both Pref-1-null and Pref-1-overexpressing
transgenic mice develop insulin resistance and glucose
intolerance also suggest that proper development of adi-
pose tissue and adipose tissue function are critical for
maintenance of glucose/insulin homeostasis.

Pref-1 Controls Mesenchymal Cell Fate

Pref-1-null mice display greater than 50% perinatal le-
thality, and the surviving animals show growth retarda-
tion, skeletal malformation, and other defects in addition
to increased adiposity (55). These phenotypes suggest
that Pref-1 may function in other developmental pro-
cesses including skeletal formation. MEFs and bone mar-
row mesenchymal stem cells can differentiate not only into
adipocytes but other mesenchymal derived cell types, includ-
ing chondrocytes and osteoblasts. Thus, these cells provide
an excellent system to examine mesenchymal cell commit-
ment and differentiation in vitro. In these cells, Pref-1
promotes chondrogenic induction but prevents chondro-
cyte maturation to become hypertrophic chondrocytes.
Pref-1 also inhibits osteoblast differentiation of MEFs
and bone marrow mesenchymal cells. Both Pref-1 abla-
tion and Pref-1 overexpression in mice cause bone mal-
formation with smaller skeletons (55, 56). In fact, this
potential role of Pref-1 can be predicted because Pref-1
up-regulates Sox9. It is well recognized that Sox9 plays an
essential role in recruiting mesenchymal cells to undergo
chondrogenic commitment and early chondrogenesis but
inhibits maturation into hypertrophic chondrocytes (58–
62). In this regard, inactivation of Sox9 before mesenchy-
mal condensation in mice results in complete prevention
of condensation and cartilage formation. Pref-1 has sim-
ilar but not additive effects to Sox9 on MEF commitment
and early differentiation into immature chondrocytes
(15). Moreover, in the absence of Sox9, Pref-1 cannot
bring chondrogenic induction in micromass culture, evi-
dence that Sox9 mediates the Pref-1 effect of chondro-
genic induction. It is noteworthy that Pref-1-null and
Pref-1-transgenic mice have smaller skeletons as seen in
Sox9 deficiency and Sox9 overexpression in mice. Pref-1-
null mice appear to have, albeit less severe, a phenotype in
skeletal development that resembles that found in Sox9
knockdown or mutated mice, whereas the phenotype of
Pref-1-transgenic mice has similarities to the Sox9 trans-
genic mouse model. In this regard, deficiencies in some of

the growth factors/hormones that affect skeletogenesis, at
least in part, through Sox9 regulation, also have less se-
vere phenotypes (61, 62). Pref-1 prevents Sox9 down-
regulation and thereby inhibits osteoblast differentiation
and the expression of the osteogenic transcription factor
Runx2. Progenitor cells in early mesenchymal condensa-
tions have dual differentiation potentials as they coex-
press Sox9 and Runx2. Runx2 is known to accelerate
chondrocyte maturation to become hypertrophic chon-
drocytes and promote osteogenesis (63). Because Runx2
exerts its function when Sox9 is down-regulated in hyper-
trophic chondrocytes or in osteoblasts, Pref-1 may inhibit
osteoblast differentiation by preventing down-regulation
of Sox9. Similar inhibition of osteoblast differentiation of
bone marrow mesenchymal cells by Pref-1 has also been
observed (64). Overall, Sox9 is a Pref-1 target that directs
multipotent mesenchymal cells to the chondrogenic lin-
eage but inhibits differentiation into mature chondrocytes
and osteoblasts as well as adipocytes.

Pref-1 is encoded by the imprinted gene (dlk1) and,
along with meg8, dat, gtl2, peg11, and antipeg11, is lo-
cated in an imprinted syntenic region of mouse chromo-
some 12, human chromosome 14, and sheep chromo-
some 18 (65–67). Paternal monoallelic expression of the
Pref-1 gene, due to differential methylation, is docu-
mented and evidenced in Pref-1-ablated heterozygous
mice (55). Interestingly, Pref-1-null and transgenic mice
show distinct defects similar to maternal uniparental di-
somy (UPD)12 and paternal UPD12 in mice, respectively,
and syntenic maternal and paternal UPD14 syndromes in
humans. Calipyge sheep with a mutation in chromosome
18 show decreased adiposity with elevated Pref-1 levels
(68). It appears that observed UPD syndromes are due, at
least in part, to altered expression of Pref-1. Although a
significant level of Pref-1 expression is detected in adults,
only in preadipocytes and in certain neuroendocrine types
of cells, Pref-1 is widely expressed in multiple mouse em-
bryonic tissues, such as liver, lung, tongue, pituitary, and
developing vertebrae (18) and placenta. Circulating
Pref-1 is defected in maternal serum in concentrations
that correlate with the number of fetuses in utero (26).
Thus, the human homolog of Pref-1, Dlk1, was purified
as fetal antigen 1 (27) from fetal circulation and was
shown to be expressed in a wide array of human embry-
onic tissues (28). However, after birth, expression of
Pref-1 is rapidly abolished in most tissues and becomes
restricted to certain type of cells that include preadipo-
cytes (18) and thymic stromal cells (47) as well as some
neuroendocrine types of cells such as pancreatic islet
�-cells (9), adrenal glands (10), and pituitary. Given the
role of imprinted genes in fetal growth and development
in general, and the expression of Pref-1 during embryonic
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development in a variety of tissues, Pref-1 undoubtedly
has a function beyond the regulation of adipogenesis or
even mesenchymal cell fate (69). In this regard, Pref-1 was
reported recently to be found in progenitor cell compart-
ments in many other cell types, specifically during regen-
eration, including bone marrow stem cells and hepato-
blasts, as well as in muscle satellite cells (70–81). Thus, as
in adipocyte and mesenchymal cell differentiation, Pref-1
may function as a soluble factor, maintaining proliferat-
ing cells in an undifferentiated state during development.

Conclusion

Both obesity and lipodystrophy are commonly associated
with pathologies including diabetes and cardiovascular
diseases. It is now recognized that adipose tissue is an
endocrine organ that secretes a wide variety of factors,
and dysregulated secretion affects adiopogenesis as well
as whole-body glucose/insulin homeostasis. Here, current
knowledge on the function of the preadipocyte secreted
protein Pref-1 is discussed. Pref-1 is synthesized and re-
leased from preadipocytes in both rodents and humans.
The inhibitory role of Pref-1 on adipogenesis, as well as its
effect on glucose/insulin homeostasis, has been demon-
strated in vivo by Pref-1-null and Pref-1-overexpressing
transgenic mice. A variety of experimental approaches
using 3T3-L1 cells and Pref-1-null MEFs clearly showed
that Pref-1 is processed by TACE to generate a biologi-
cally active soluble form containing the full ectodomain,
and the soluble form prevents differentiation into adipo-
cytes through activation of the MEK/ERK pathway. Re-
cently, the molecular events underlying the inhibition of
adipogenesis by Pref-1 have been revealed; Pref-1, via
MEK/ERK activation, maintains preadipocyte expression
of Sox9, which, by direct binding to the promoter regions,
suppresses C/EBP� and C/EBP� expression. Furthermore,
by regulating Sox9 expression, Pref-1 promotes multipo-
tent mesenchymal stem cells into the chondrogenic lin-
eage but inhibits chondrocyte and osteoblast as well as
adipocyte differentiation. Therefore, both ablation and
overexpression of Pref-1 in mice cause skeletal malforma-
tion. Although Pref-1 expression is restricted to preadi-
pocytes and a few neuroendocrine types of cells in adults,
Pref-1 is present in variety of embryonic tissues. Pref-1,
encoded by an imprinted gene expressed by the paternal
copy through differential methylation, may affect embry-
onic development. In this regard, Pref-1 is detected in
progenitor cells of different tissues especially during re-
generation, probably maintaining cells in an undifferen-
tiated state. Clearly, identification of the interacting pro-
tein/receptor through which Pref-1 signaling occurs is
critical and would represent a major advance in under-

standing the molecular mechanism underlying the func-
tion of Pref-1.
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