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Although members of the fibroblast growth factor (FGF) family and their receptors have well-
established roles in embryogenesis, their contributions to adult physiology remain relatively un-
explored. Here, we use real-time quantitative PCR to determine the mRNA expression patterns of all
22 FGFs, the seven principal FGF receptors (FGFRs), and the three members of the Klotho family of
coreceptors in 39 different mouse tissues. Unsupervised hierarchical cluster analysis of the mRNA
expression data reveals that most FGFs and FGFRs fall into two groups the expression of which is
enriched in either the central nervous system or reproductive and gastrointestinal tissues. Interest-
ingly, the FGFs that can act as endocrine hormones, including FGF15/19, FGF21, and FGF23, cluster in
a third group that does not include any FGFRs, underscoring their roles in signaling between tissues.
We further show that the most recently identified Klotho family member, Lactase-like, is highly and
selectively expressed in brown adipose tissue and eye and can function as an additional coreceptor for
FGF19. This FGF atlas provides an important resource for guiding future studies to elucidate the
physiological functions of FGFs in adult animals. (Molecular Endocrinology 24: 2050–2064, 2010)

Fibroblast growth factors (FGFs) are polypeptides
found in metazoan organisms ranging from nema-

todes to humans. They were discovered as mitogens for
fibroblasts (1) and today are recognized as having myriad
effects including prominent roles in embryonic develop-
ment and organogenesis (2). The human/mouse FGF gene
family comprises 22 members (FGF1–23), with FGF15
being the mouse ortholog of human FGF19 (we will refer
to this member as FGF15/19 unless referring specifically
to either the mouse or human ortholog). Based on phylo-
genetic analysis, the mouse and human FGF families can
be divided into seven subfamilies: the FGF1 subfamily
consisting of FGF1 and FGF2; the FGF4 subfamily con-
sisting of FGF4, -5, and -6; the FGF7 subfamily consisting

of FGF3, -7, -10, and -22; the FGF8 subfamily consisting
of FGF8, -17, and -18; the FGF9 subfamily consisting of
FGF9, -16, and -20; the FGF11 subfamily consisting of
FGF11, -12, -13, and -14; and, the FGF15/19 subfamily
consisting of FGF15/19, -21, and -23 (3, 4).

With the exception of FGF11 subfamily members,
the FGFs are secreted proteins that mediate their bio-
logical responses by binding to and activating cell sur-
face FGFRs. Members of the FGF11 subfamily, also
known as FGF homologous factors, are functionally
distinct from the other FGFs in that they interact with
the cytoplasmic C-terminal tails of voltage-gated so-
dium channels to modulate channel gating and subcel-
lular trafficking (5). The mammalian FGFR genes
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(FGFR1–FGFR4) encode single-pass membrane-span-
ning tyrosine kinases with an extracellular ligand-bind-
ing domain, a transmembrane domain, and an intracel-
lular kinase domain. The ligand-binding domain is
composed of three Ig-like domains (D1–D3). The re-
gion encompassing D2 and D3 of the FGFRs mediates
FGF binding affinity and specificity. FGFR1, -2, and -3
have two alternative exons (b and c) encoding the
second half of D3 that are spliced in a tissue-specific
fashion (6 – 8). This splicing event plays a crucial role in
dictating FGF-FGFR binding specificity. Conse-
quently, there are a total of seven principal FGFRs,
termed FGFR1b, -1c, -2b, -2c, -3b, -3c, and -4, each
activated by a unique subset of FGFs.

Most of the 18 secreted FGFs interact with high affin-
ity with heparan sulfate glycosaminoglycans (HSGAGs),
which are either membrane anchored or present in the
extracellular matrix (7). FGFRs also interact with
HSGAGs via D2. These interactions are necessary for
efficient FGF-FGFR binding and dimerization (8). The
binding to HSGAGs also limits the diffusion of FGFs from
their cells of origin, thereby restricting them to either
autocrine or paracrine actions (7, 9). Members of the
FGF15/19 subfamily, however, are atypical in that they
interact only weakly or not at all with HSGAGs, permit-
ting them to escape from the extracellular matrix and
function in an endocrine manner (10). To compensate for
their poor HSGAG binding affinity, these endocrine FGFs
require Klotho proteins as coreceptors (11). Klothos are
type I transmembrane glycoproteins with extracellular re-
gions that contain �-glycosidase-like domains. Klotho
was discovered as a suppressor of aging in mice (12).
Disruption of the Klotho gene causes a premature aging
phenotype (12), whereas transgenic mice that overexpress
Klotho exhibit increased resistance to oxidative stress
(13) and a significant extension of lifespan (14). Recent
studies have revealed multiple functions of Klotho, most
notably as a coreceptor for FGF23 (15, 16). �-Klotho was
identified based on sequence similarity to Klotho (17). It
is required as a coreceptor for FGF15/19 and FGF21 (10,
18–20). Recently, the Lactase-like (Lctl) gene, which is
also referred to as Klotho/lactase-phlorizin hydrolase-re-
lated protein, was shown to encode a third member of the
Klotho family (21). Unlike Klotho and �-Klotho, Lctl
contains only a single �-glycosidase-like domain in the
extracellular region. It has not been determined whether
Lctl functions as a coreceptor for endocrine FGF
signaling.

FGFs have well-established roles in the regulation of
cell proliferation, migration, differentiation, and apo-
ptosis during embryonic development. However, sur-
prisingly little is known about FGF expression and

function in adults. In this report, we use real-time
quantitative PCR (qPCR) to determine the expression
profile of all 22 FGFs, the seven principal FGFRs, and
three Klotho family members in 39 different mouse
tissues and two mouse strains.

Results and Discussion

The mRNA levels of the FGFs and their receptors in 39
tissues derived from adult C57/Bl6 and 129x1/SvJ mice
were measured by qPCR. All tissues were from male
mice except for the female reproductive organs as pre-
viously described (22). Primer sets were designed and
validated as described in Materials and Methods, and
their sequences are provided in Supplemental Table 1
published on The Endocrine Society’s Journals Online
web site at http://mend.endojournals.org. The similar-
ity of gene profiles between the two mouse strains was
assessed by hierarchical cluster analysis, which showed
that all genes clustered together in the two strains (Sup-
plemental Fig. 1).

FGF gene subfamilies
The anatomical profiles of all FGF mRNAs in C57/

Bl6 mice grouped according to phylogenetic subfamily
are depicted in Figs. 1 and 2. Bar graphs indicate nor-
malized mRNA levels as arbitrary units, which were
obtained by dividing the averaged, efficiency-corrected
values for FGF mRNA gene expression by that for 18S
rRNA expression for each sample as described else-
where (23). The resulting values were multiplied by 105

for graphic representation. For the purposes of discus-
sion, we consider relative mRNA values equal to or
greater than 0.1 arbitrary unit to be high expression
whereas mRNAs with qPCR cycle times equal to or
greater than 34 are considered undetectable.

FGF1 subfamily (FGF1, 2)
Fgf1 and Fgf2 are both broadly expressed with abso-

lute mRNA levels of Fgf1 generally much higher than
those of Fgf2 (Fig. 1A). Fgf1 mRNA is highly expressed
throughout the central nervous system (CNS) and in kid-
ney, heart, liver, and lung. Fgf2 mRNA is most abundant
in white adipose tissue, heart, lung, aorta, and both male
and female reproductive tissues (Fig. 1A).

FGF4 subfamily (FGF4, -5, and -6)
FGF4 was originally identified as a rearranged human

oncogene after transfection of DNA from Kaposi’s sar-
coma into NIH 3T3 cell (24, 25). FGF4 protects mice
from lethal irradiation (26) and is implicated in maintain-
ing pluripotency of human embryonic stem cells (27).
Fgf4 is detected, albeit at very low absolute levels, in
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duodenum, ileum, and colon (Fig. 1B) (28), suggesting
that it may function in maintaining intestinal stem cells.
Fgf5 is highly expressed throughout the CNS and is also
present in the skin (Fig. 1B) (29), where it regulates hair
growth (30, 31). Mutations in the Fgf5 gene are associ-

ated with hair length phenotypes in canines (30, 32).
FGF6 is best known for its role in skeletal muscle physi-
ology including muscle regeneration (33) (reviewed in
Ref. 34). Consistent with this, Fgf6 is highly expressed in
muscle (Fig. 1B).
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FIG. 1. Anatomic expression profiles of FGF-1, -4, -7, and -8 subfamilies in mouse tissues from C57/Bl6 mice. qPCR data are presented as the
mean of triplicate measurements � SD.
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FGF7 subfamily (FGF3, -7, -10, and -22)
Fgf3, the product of the int-2 protooncogene (35), is

most abundantly expressed in the CNS including the spi-
nal cord, corpus striatum, and brain stem (Fig. 1C).

FGF7, also known as keratinocyte growth factor, is in-
volved in protecting and repairing epithelial tissues (36).
Fgf7 mRNA levels are highest in cerebrum, lung, vas de-
ferens, tongue, and skin (Fig. 1C). Fgf10 mRNA is abun-
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FIG. 2. Anatomic expression profiles of FGF-9, -11, and -19 subfamilies in mouse tissues from C57/Bl6 mice. qPCR data are presented as the
mean of triplicate measurements � SD.
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dant in the CNS, vas deferens, and lung. It is also highly
expressed in white adipose tissue, where it functions as an
adipocyte growth factor (37, 38). Fgf22 mRNA is highest
in the CNS and skin but only at very low absolute levels
(Fig. 1C) (39).

FGF8 family (FGF8, -17, and -18)
FGF8 was first identified as an androgen-inducible

growth factor present in steroid-dependent cancers (40,
41). Recently, FGF8 was implicated in GnRH deficiency
and GnRH neuron development in the hypothalamus
(42). Fgf8 mRNA levels are highest in ovary and testes
(Fig. 1D) (43, 44). Fgf17 mRNA is present at only very
low levels but is highest in brain (Fig. 1D) (45, 46), which
correlates with its function in social behavior (47). Fgf18
mRNA is highly expressed in the brain stem, spinal cord,
lung, heart, and skin (Fig. 1D).

FGF9 subfamily (FGF9, -16, and -20)
FGF9 was originally purified as a glia-activating factor

from a cultured human glioma cell line (48). In the CNS,
FGF9 is produced mainly by neurons and is a potent
mitogen and survival factor for numerous cell types (49).
Fgf9 is broadly expressed with high levels throughout the
brain and in kidney (Fig. 2A) (50, 51). Fgf16 is highly
expressed in olfactory bulb and in heart (Fig. 2A), where
it is required for cardiomyocyte proliferation (52). FGF20
is a neurotrophic factor expressed in the substantia nigra
pars compacta (53, 54) and is associated with Parkinson’s
disease (55). Fgf20 is expressed at low levels in a limited
set of tissues including adrenal (Fig. 2A).

Intracellular FGFs: FGF11 subfamily (FGF11, -12, -13,
and -14)

The intracellular FGFs are all very abundantly ex-
pressed in the CNS (Fig. 2B) (56, 57). This subfamily has
the highest overall expression level among all the FGF
subfamilies. Mutations in these genes are associated with
neurological abnormalities (5).

FGF15/19 subfamily (FGF15/19, -21, and -23)
FGF15/19, FGF21, and FGF23 are atypical FGFs in

that they function as endocrine hormones, they are the
transcriptional targets of nuclear receptors, and in the
adult mammal they have unique roles in governing lipid,
carbohydrate, and mineral metabolism (58). Although
Fgf15 mRNA is broadly expressed in the CNS during
development (59), it is not detectable in adult CNS.
Rather Fgf15 is highly and selectively expressed in ileum
(Fig. 2C), where it is released into the blood to regulate
bile acid homeostasis (60). FGF21 regulates carbohydrate
and fatty acid metabolism and is induced by fasting and
ketogenic diets in liver (61–63). In addition to liver, Fgf21

is very highly expressed in pancreas and testis (Fig. 2C)
(64, 65). Fgf23 is expressed, albeit at very low absolute
levels, in bone and thymus (Fig. 2C) (66–68). FGF23 is
secreted from the bone to regulate phosphate and calcium
homeostasis (69, 70).

FGF receptors
Fgfr1 and Fgfr2 are both very broadly expressed (Fig. 3,

A and B). The Fgfr1c isoform is highly expressed in most
tissues, whereas Fgfr1b mRNA levels are high only in the
cerebrum, tongue, preputial gland, vas deferens, and skin
(Fig. 3A) (71). For Fgfr2, the “c” isoform is predominant in
the CNS, whereas Fgfr2b and Fgfr2c are expressed at com-
parable levels in most other tissues (Fig. 3B).

The Fgfr3b and Fgfr3c isoforms have very different
expression patterns. Fgfr3b is most abundant in gastro-
intestinal (GI) tissues, liver, kidney, lung, and skin but
only at very low absolute levels. In contrast, Fgfr3c is
highly expressed throughout the CNS and in lung and
kidney (Fig. 3C).

Fgfr4 is highly expressed in kidney, liver, and adrenal
(Fig. 3D) (72). Fgfr4 is also highly expressed in the lung (Fig.
3D), where it cooperates with Fgfr3 to promote the forma-
tion of alveoli during postnatal lung development (73).

Klotho family coreceptors

Klotho
Klotho binds to FGFR1c, FGFR3c, and FGFR4 to

form a receptor complex for FGF23 (15, 16). Klotho is
very abundantly expressed in kidney (Fig. 4A), where it
has well-established roles in regulating phosphate, cal-
cium, and vitamin D metabolism (12, 74, 75). Klotho is
also expressed, albeit at much lower levels, throughout
the CNS and in thyroid (Fig. 4A) (12).

�-Klotho
Mice defective in �-Klotho have increased bile acid

synthesis and small gall bladders, phenotypes that are also
manifest in mice lacking FGFR4 or FGF15 (60, 76–78).
�-Klotho interacts with FGFR4 to form a functional re-
ceptor for FGF15/19 (10, 18, 79, 80). �-Klotho also com-
plexes with FGFR1, -2, -3, and -4 to form receptors for
FGF21 (10, 18–20, 81). �-Klotho expression is high in
enterohepatic tissues including liver, gall bladder, colon,
and pancreas (Fig. 4A) (17). It is also highly expressed in
both white and brown adipose tissue (Fig. 4A), which is
consistent with known effects of FGF15/19 and FGF21
on these tissues (63, 82, 83).

Lctl
A third member of the Klotho family, Lctl, was previ-

ously shown to be highly expressed in kidney and skin
(21). Although we detected Lctl mRNA in kidney, we did
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not detect it in skin (Fig. 4A). The reason for this discrep-
ancy is not known. In our profiling studies, Lctl is highly
expressed in only brown adipose tissue and eye (Fig. 4A).
Unlike Klotho and �-Klotho, Lctl has only a single �-gly-
cosidase-like domain, raising the question as to whether it
functions as a coreceptor for the endocrine FGFs. To ad-
dress this issue, we first tested for interactions be-
tween Lctl and the FGFRs. Human embryonic kidney
(HEK)293 cells, which do not express any of the Klotho
family members, were transfected with expression plas-
mids for Lctl and the various FGFR isoforms, and coim-
munoprecipitation experiments were performed. Lctl in-
teracted efficiently with FGFR1b and -1c and FGFR2c
and -4 (Fig. 4B). This interaction pattern is similar to that
between Klotho and the FGFRs (15).

We next examined whether Lctl-FGFR complexes can
be activated by the endocrine FGFs. In HEK293 cells

transfected with an Lctl expression plasmid, FGF19 treat-
ment caused ERK1/2 phosphorylation whereas FGF21
and FGF23 did not (Fig. 4C). This effect of FGF19 was
dependent on the presence of Lctl (data not shown and
Refs. 15 and 18). In dose-response analysis done in
HEK293 cells transfected with an Lctl expression plas-
mid, FGF19 caused ERK1/2 phosphorylation at concen-
trations as low as 30 ng/ml (Fig. 4D, lanes 1–6). The
efficacy of ERK1/2 phosphorylation caused by FGF19
was comparable in HEK293 cells transfected with either
Lctl or �-Klotho (compare lanes 6 and 8) and less than
that caused by FGF21 in HEK293 cells transfected with
�-Klotho (compare lanes 6 and 10). That FGF19 can sig-
nal through Lctl-FGFR complexes is intriguing in light of
the known effects of FGF15/19 in tissues in which Lctl is
expressed, namely brown adipose tissue and eye. In obese
mice, FGF15/19 causes weight loss by activating thermo-
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FIG. 3. Anatomic expression profiles of FGFRs in mouse tissues from C57/Bl6 mice. qPCR data are presented as the mean of triplicate
measurements � SD.
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genesis in brown adipose tissue (82, 83). FGF15/19 reg-
ulates patterning and growth of the retina and the differ-
entiation and growth of the lens in both zebrafish (84)
and chicken (85).

FGF-binding protein 1 (FGFBP1)
FGFBP1 was originally cloned from A431 cancer cell

lines as a protein that binds reversibly to FGF1 and FGF2
(86). More recently it was shown to also bind FGF7, -10,
and -22 (87). FGFBP1 facilitates the release of FGFs from
the extracellular matrix and their presentation to FGFRs,
thus enhancing FGF activity (88). Fgfbp1 mRNA is abun-
dant in the GI tract, with highest levels in the colon, stom-
ach, and ileum (Fig. 4A). Fgfbp1 is also highly expressed
in the eye (Fig. 4A).

Distribution of FGFs and FGFRs in tissue systems
The distribution of the FGFs and receptors across tis-

sue systems is summarized in Fig. 5, A and B, and dis-
cussed below.

CNS (eye, brainstem, cerebellum, cerebrum, corpus
striatum, olfactory bulb, spinal cord,
hypothalamus, pituitary)

The FGFs play prominent roles in the CNS (89). For
example, during the past decade, much evidence has
emerged supporting the involvement of the FGF system in
psychiatric disorders (90, 91). However, most of this
work has been restricted to FGF1 and FGF2. We show
that many of the FGFs are abundantly expressed in adult
CNS (Fig. 5A). The expression of some of the FGFs, in-
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cluding Fgf5 and Fgf9 and the intracellular FGFs (FGF11
subfamily), is enriched in the CNS. The high levels of
intracellular FGF mRNAs in the CNS correlate well with
their function in controlling neuronal excitability (92).
Whereas most of the FGFs are expressed at high levels
across different parts of the CNS, others are enriched in
particular parts of the brain such as Fgf7 in cerebellum
and Fgf16 in olfactory bulb.

Fgfr1, Fgfr2, and Fgfr3 are also highly expressed in the
CNS (Fig. 5B). Interestingly, the c isoforms of these re-
ceptors are predominant in brain, with only the cere-

bellum expressing high levels of a b
isoform, namely Fgfr1b. Among the
Klotho family, only Klotho is highly ex-
pressed in brain tissues. Lctl is highly ex-
pressed in eye.

Endocrine system (adrenal,
thyroid)

Fgf1, which acts as a thymocyte mi-
togen and is elevated in thyroid hyper-
plasia and neoplasia (93–95), is highly
expressed in adult thyroid as is Fgf9.
Although Fgf12 and Fgf13 are both
highly expressed in thyroid gland ac-
cording to our strict definition, their
expression in thyroid is much lower
than in other tissues. Fgf20 is selec-
tively expressed in adrenal, although its
absolute expression level is low.

Both the adrenal and thyroid express
Fgfr1c and Fgfr2c at high levels. The ad-
renal also expresses Fgfr4 whereas the
thyroid gland expresses Fgfr2b. Al-
though Klotho mRNA appears to be
high in thyroid, we cannot exclude the
possibility that this reflects tissue con-
tamination from parathyroid gland,
where Klotho is known to be abundantly
expressed (96). FGF23 acts on the para-
thyroid gland to suppress production
and secretion of PTH (96).

GI system (tongue, stomach,
duodenum, jejunum, ileum, colon,
gall bladder, pancreas)

Fgf7 is highly expressed in tongue as is
Fgf15 in ileum and Fgf21 in pancreas. As
in the thyroid gland, Fgf12 and Fgf13 are
expressed in GI tissues but only at levels
that are much lower than those in other
tissues. Fgf4 is selectively expressed in the
GI tract albeit only at very low levels.

Fgfr1c, Fgfr2b, and Fgfr2c are highly expressed in multi-
ple GI tissues, whereas Fgfr1b is highly expressed in tongue.
Fgfr3b and Fgfr4 are expressed in GI tissues, including colon
and gall bladder, but at relatively low absolute levels.
�-Klotho is highly expressed in colon, gall bladder, and pan-
creas. These findings are consistent with FGF15/19 causing
gall bladder filling (76) and proliferation in colon (97, 98),
and FGF21 blocking chemically induced pancreatitis (65).
Interestingly, Fgfbp1 is selectively expressed in the GI system
with high expression levels in stomach, ileum, and colon.
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FIG. 5. Tissue distribution of FGFs and FGFRs in adult mouse. A, FGF expression by tissue
system. B, FGFR and Klotho coreceptor expression by tissue system. Expression levels in
different tissue systems are indicated. Normalized FGF mRNA expression levels were defined
as absent if the cycle time value was more than 34, low if the level was below 0.01 arbitrary
units, moderate if the level was between 0.01 and 0.1, and high if the level was equal to or
greater than 0.1 arbitrary units. Tissue systems are defined as CNS (eye, brainstem,
cerebellum, cerebrum, corpus striatum, olfactory bulb, spinal cord, hypothalamus, and
pituitary), endocrine (adrenal and thyroid), GI (tongue, stomach, duodenum, jejunum, ileum,
colon, pancreas, and gall bladder), metabolic (liver, kidney, brown and white adipose tissue),
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structural (muscle, bone, and skin). Tissues were pooled from C57/Bl6 mice (n � 6).
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Metabolic system (liver, kidney, and brown and
white adipose tissue)

Fgf1 is very highly expressed in liver, and both Fgf1
and Fgf9 are abundant in kidney. Fgf10 is highly ex-
pressed in white adipose tissue, where it promotes adipo-
genesis (38). Both Fgf13 and Fgf14 are highly expressed in
brown adipose tissue. Fgf21 is highly expressed in liver,
pancreas, and brown adipose tissue, and Fgf12 mRNA
levels are high in white adipose tissue and kidney.

Fgfr1c is the predominant FGFR in brown and white
adipose tissue and kidney. Fgfr2b, Fgfr2c, and Fgfr4 are
major FGFRs in liver. Fgfr3c is highly expressed in kidney
as is Fgfr4. Klotho is expressed at high levels in the kid-
ney, where it serves as a coreceptor for FGF23 (15, 16).
�-Klotho is highly expressed in liver and both white and
brown adipose tissue, where it likely serves as a corecep-
tor for FGF15/19 and FGF21 (63, 82, 83). As described
above, Lctl is highly expressed in brown adipose tissue,
where it may contribute to the effects of FGF15/19 on
metabolic rate (82).

Immune system (spleen, thymus)
Although Fgf7 and Fgf10 are required for development

of the thymus (99, 100), expression of these and most of
the other FGFs and FGFRs is relatively low in adult thy-
mus and spleen (Fig. 5, A and B). Fgf13 and Fgf14 are
both highly expressed in thymus. Fgfr1c is highly ex-
pressed in spleen as are Fgfr2b and Fgfr2c in thymus.

Reproductive system (ovary, uterus, epididymus,
preputial gland, prostate, seminal vesicles, testis,
vas deferens)

FGF signaling regulates the proliferation and differen-
tiation of testicular cells, the induction of spermatogene-
sis, and the development of epididymus and prostate (re-
viewed in Ref. 101). The male reproductive duct system
(epididymus and vas deferens) and accessory glands (sem-
inal vesicles, prostate gland, and preputial gland) have
similar FGF and FGFR expression patterns. All these tis-
sues express Fgf1, Fgf2, Fgf7, and Fgf10. The intracellular
FGFs, Fgf12, Fgf13, and Fgf14, and the endocrine FGF,
Fgf21, are highly expressed in the testis. FGF7 and FGF10
were previously shown to be important in the growth and
development of the reproductive ducts and accessory
glands by acting on FGFR2b (reviewed in Refs. 102 and
103), which is highly expressed in epididymus, preputial
gland, prostate, and vas deferens. Fgfr1b, Fgfr1c, and
Fgfr2c are also expressed at high levels in male reproduc-
tive tissues.

In the female reproductive tissues, Fgf1, Fgf12, and
Fgf13 are highly expressed in ovary, whereas Fgf13 is also
highly expressed in uterus. Fgfr1c, Fgfr2b, and Fgfr2c are
highly expressed in both ovary and uterus.

Among the Klotho family of proteins, Klotho is highly
expressed in ovary and testes as is �-Klotho in testis,
implying roles for the endocrine FGFs in reproductive
function.

Cardiovascular system (heart, aorta, lung)
Fgf1, Fgf12, and Fgf18 are highly expressed in both

heart and lung, whereas Fgf13, Fgf14, and Fgf16 are ex-
pressed in heart, and Fgf7 and Fgf10 are expressed in
lung. FGF7 is implicated in the repair of lung tissue (104–
106) whereas FGF10 and FGF18 are implicated in lung
development (107, 108). Among the FGFs, only Fgf13 is
highly expressed in aorta. Heart, lung, and aorta all ex-
press Fgfr1c at high levels, whereas lung also expresses
Fgfr2b, Fgfr2c, and Fgfr3c, and aorta expresses Fgfr2c.
Notably, FGFR2b is a receptor for FGF7 and 10 (109,
110). Interestingly, �-Klotho is abundantly expressed in
aorta, suggesting that FGF15 and/or FGF21 may affect
blood vessel physiology in adult mice. FGF15 is known to
be required for proper development of the cardiac out-
flow tract (111).

Structural system (bone, muscle, skin)
Fgf6 and Fgf13 are highly expressed in muscle, and

Fgf12, Fgf13, and Fgf18 are abundantly expressed in
skin. Although bone expresses only very low levels of
FGFs, it is a major source of FGF23, which regulates
phosphate, calcium, and vitamin D metabolism (112).
Skin expresses Fgfr1b and Fgfr2b as well as Fgfr2c. Bone
and muscle express Fgfr1c whereas bone also expresses
Fgfr2c. None of the Klotho family proteins are highly
expressed in structural tissues.

Hierarchical clustering of FGFs and FGFRs
To further investigate the potential physiological func-

tions of FGFs and their receptors, unsupervised hierarchi-
cal clustering of the expression data was performed. Clus-
tering of the FGFs and FGFRs resulted in a dendrogram
with two main branches (Fig. 6A). Cluster I represents
FGFs and FGFRs that are abundantly expressed in CNS,
whereas Cluster II includes ones that are abundant in
reproductive and GI tissues. Cluster I includes Fgfr1c and
Fgfr3c, the FGF1 and FGF9 subfamilies, and Fgf3 and
Fgf22 from the FGF7 subfamily. Based on published FGF-
FGFR interaction data (113), these findings are consistent
with FGF1 and 2 signaling through FGFR1c, and FGF1,
2, 9, 16, and 20 acting through FGFR3c.

Cluster II includes Fgfr1b, Fgfr2b, Fgfr2c, Fgfr3b, and
Fgfr4 together with Fgf7 and Fgf10 from the FGF7 sub-
family and Fgfbp1 (Fig. 6A). FGF7 and 10 bind to
FGFR2b with highest affinity but also interact with
FGFR1b (113). FGF10 was shown to induce proliferation
in L6 myoblasts in an FGFR1b-dependent manner (71). It
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is interesting that Fgfbp1 clusters with Fgf7 and Fgf10,
because FGFBP1 interacts with both these FGFs and
enhances their ability to promote epithelial repair pro-
cesses (87).

Notably, the endocrine FGFs segregate from all of the
FGFRs (Fig. 6A), suggesting that their major function is to
signal across tissues. Interestingly, each of the endocrine
FGFs clustered with a canonical FGF: Fgf21 with Fgf8
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FIG. 6. Cluster analysis of FGF and FGFRs. A, Unsupervised hierarchical clustering of FGFs and FGFRs based on tissue expression. qPCR data were
clustered using average linkage with Pearson correlation coefficient using Matrix 1.28 software as described in Materials and Methods. B,
Unsupervised hierarchical clustering of FGFRs and Klotho family coreceptors based on tissue expression. qPCR data were clustered using average
linkage with Pearson correlation coefficient using Matrix 1.28 software.
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(high expression in testis), Fgf15 with Fgf4 (high expres-
sion in GI tissues), and Fgf23 with Fgf6 (high expression
in muscle and bone). Whether there is functional signifi-
cance to this colocalization remains to be investigated.

Hierarchical clustering was also performed with ex-
pression data for the FGFRs and Klotho family members
(Fig. 6B). Klotho clustered most closely with Fgfr1c and
Fgfr3c, which it interacts with to form receptors for
FGF23 (16). The coexpression of Klotho, Fgfr1c, and
Fgfr3c throughout the CNS raises the interesting possibil-
ity that FGF23 acts on these tissues. Similarly, the clus-
tering of Lctl with Fgfr1c suggests that these two proteins
may form a receptor for FGF15/19 in tissues such as
brown adipose tissue and eye.

�-Klotho clustered most closely with Fgfr4, with
which it forms a high-affinity receptor complex for
FGF15/19 in tissues including liver, colon, and gall blad-
der. The coexpression of �-Klotho and Fgfr4 in adrenal
suggests that FGF15/19 might also influence steroidogen-
esis. �-Klotho is known to form complexes with FGFR1c
and FGFR3c that interact efficiently with FGF21 (19, 20,
81). Although �-Klotho did not cluster with either Fgfr1c
or Fgfr3c, its coexpression with these receptors in brown
and white adipose tissue, skin, ovary, and testis suggests
that these tissues may be targets for FGF21. In this regard,
it is interesting that Fgf21 is also highly expressed in testis,
where it may act in a paracrine fashion.

In summary, we have surveyed genes encoding FGFs,
FGFRs and associated proteins for their expression across
39 different adult mouse tissues. Although it is difficult to
compare our results with those of previous publications
due to the variety of techniques employed and the differ-
ent definitions of what constitutes meaningful expression,
in Supplemental Tables 2 and 3 we have overlaid our data
with those in the literature. For the purposes of this com-
parison we have limited the literature references to those
in which gene expression is measured in mouse or rat
tissues. Two general conclusions emerge from these ta-
bles: First, we detected expression of FGFs and related
genes in nearly all tissues where they have been previously
reported. Notable discrepancies include Lctl and Fgfbp1
in skin. The basis for these differences is unclear. Second,
we detected expression of FGFs and related genes in many
tissues where they had not been previously described. An
important strength of our approach is that the data are
both quantitative and comprehensive, thus permitting di-
rect comparison of gene expression across tissues in a
manner that was not previously possible. Although the
current study is comprehensive in the number of tissues
examined, an important limitation is that whole tissues
were used. Thus, genes expressed in small subsets of cells
within whole tissues are likely to be missed. Determining

the specific cell types in which the FGFs and associated
proteins are expressed is an important future step. Nev-
ertheless, this atlas provides a useful resource and hypoth-
esis-generating tool for those studying FGF action in adult
animals.

Materials and Methods

Animals and tissue collection
All experiments were performed with the approval of the

Institutional Animal Care and Use Committee of the University
of Texas Southwestern Medical Center, which assures that all
animal use adheres to federal regulations as published in the
Animal Welfare Act (AWA), the Guide for the Care and Use of
Laboratory Animals (Guide), the Public Health Service Policy,
and the US Government Principles Regarding the Care and Use
of Animals. C57/BL6 and 129�1/SvJ mice (6 wk of age) were
purchased from The Jackson Laboratory (Bar Harbor, ME),
and were killed at 8–9 wk of age killed at lights on. Tissues were
harvested as previously described (22).

RNA preparation and cDNA synthesis
All tissues, except pancreas, were snap frozen on liquid ni-

trogen and stored at �80 C until RNA extraction using RNA
Stat60 (TelTest, Friendswood, TX). Pancreas RNA was pre-
pared immediately due to high ribonuclease content. Total RNA
was pooled in equal quantities for each tissue (n � 6). RNA
pools from male mice were used for all tissues except ovary and
uterus. Genomic DNA contamination was eliminated by de-
oxyribonuclease (DNAse) treatment using DNAse I (Roche, In-
dianapolis, IN). cDNA for qPCR assays was prepared from 2.4
�g DNased RNA using SuperScript RT III (Invitrogen, Carls-
bad, CA) in a final volumr of 100 �l. After cDNA synthesis,
ribonuclease-free water was added to increase the sample vol-
ume to 300 �l. Before pooling, RNA samples from difficult-to-
dissect tissues were assayed for tissue-specific markers to ensure
their tissue fidelity as described elsewhere (22).

Primer design and qPCR
Individual FGFs, FGFR, Klothos, and 18S rRNA expression

levels were measured in triplicate wells of a 384-well reaction
plate with 10 ng cDNA per well on an Applied Biosystems
7900HT (Applied Systems, Foster City, CA) with SYBR Green
chemistry. Primer concentrations were 75 nM for 18S rRNA and
150 nM for all others. Primer sets were designed and validated as
described elsewhere (23). For FGFRs, primer pairs were de-
signed to detect receptor b and c isoforms selectively. Primer
pairs are provided in Supplemental Table 1. Universal cDNA
standards generated from mouse RNA (BD CLONTECH, Palo
Alto, CA) were used for all analyses, except for FGF3, -4, -5, -6,
-8, -15, -16, -17, -21, -23, and Lctl because of their limited
expression.

qPCR data were analyzed by ABI instrument software
SDS2.1 (ABI Advanced Technologies, Inc., Columbia, MD).
Baseline values of amplification plots were set automatically,
and threshold values were kept constant to obtain normalized
cycle time and linear regression data. mRNA with cycle times
equal to or greater than 34 were determined to be below the
limit of detection. PCR efficiencies were calculated from the
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slope of the resulting standard curves. Normalized mRNA levels
are expressed as arbitrary units and were obtained by dividing
the averaged, efficiency corrected values for mRNA expression
by that for 18s rRNA (22). The resulting values were multiplied
by 105 for graphic representation. Error bars represent experi-
mental error and were calculated based on the SDs of the average
value from triplicate sample wells (22).

Hierarchical clustering
Unsupervised clustering was performed on the normalized

RNA levels by calculating the Pearson’s centered correlation
coefficient followed by average linkage analysis using Matrix
1.28 software (gift from Dr. Luc Girard, University of Texas
Southwestern Medical Center, Dallas, TX) as described else-
where (22). For pair wise correlation, Pearson correlation r val-
ues were computed between the expression pattern of every pair
of genes. Data were hierarchical clustered with GEPAS web
resource using unweighted pair group method with arithmetic
mean and Pearson coefficient distance.

Expression vectors
cDNA containing the mouse Lctl was cloned into the pEF1

vector (Invitrogen) with a FLAG-epitope tag at the C termi-
nus. Expression vectors for mouse FGFRs were described
previously (15).

Immunoprecipitation and immunoblotting
Immunoprecipitation and immunoblotting experiments

were performed as described elsewhere (15). HEK293 cells were
maintained in DMEM supplemented with 10% fetal bovine
serum. Subconfluent HEK293 cells were transfected with ex-
pression vectors for Lctl and FGFRs 36 h before the experiments
by using Lipofectamine (Invitrogen) as carrier. Cells were lysed
in buffer containing phosphatase and proteinase inhibitors as
previously described (22). After a portion of each cell lysate
sample was saved for immunoblotting with anti-V5 antibody,
the cell lysates were incubated with anti-V5-agarose beads (Sig-
ma-Aldrich, St. Louis, MO) at 4 C for 3 h. The beads were
washed four times with Tris-buffered saline containing 1% Tri-
ton X-100 (TBST); bead-bound proteins were eluted with Lae-
mmli sample buffer, electrophoresed, and then transferred to
Hybond C Extra membrane (Amersham Biosciences, Piscat-
away, NJ). The protein blots were incubated with anti-V5 anti-
body (Invitrogen). Chemiluminescence signals were developed
with the SuperSignal West Dura system (Pierce Chemical Co.,
Rockford, IL).

Lctl functional analysis
Subconfluent HEK293 cells were transfected with expression

vectors for Flag-tagged Lctl or �-Klotho using Lipofectamine as
carrier (Invitrogen). After 36 h, cells were serum starved over-
night and then treated with recombinant human FGF19, -21, or
-23 for 15 min. Cell lysates were subjected to immunoblot anal-
ysis using anti-phospho-p44/42 MAPK (ERK1/2) antibody (Cell
Signaling Technology, Beverly, MA), anti-ERK antibody (Cell
Signaling), or anti-Flag.
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59. Gimeno L, Brûlet P, Martı́nez S 2003 Study of Fgf15 gene expres-

sion in developing mouse brain. Gene Expr Patterns 3:473–481
60. Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL,

McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA,
Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA 2005 Fibroblast
growth factor 15 functions as an enterohepatic signal to regulate
bile acid homeostasis. Cell Metab 2:217–225

61. Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS,
Maratos-Flier E 2007 Hepatic fibroblast growth factor 21 is reg-
ulated by PPAR� and is a key mediator of hepatic lipid metabolism
in ketotic states. Cell Metab 5:426–437

62. Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara
V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard
RD, Burgess SC, Hammer RE, Mangelsdorf DJ, Kliewer SA 2007
Endocrine regulation of the fasting response by PPAR�-mediated
induction of fibroblast growth factor 21. Cell Metab 5:415–425

63. Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic
R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens
RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li
DS, Mehrbod F, Jaskunas SR, Shanafelt AB 2005 FGF-21 as a
novel metabolic regulator. J Clin Invest 115:1627–1635

64. Nishimura T, Nakatake Y, Konishi M, Itoh N 2000 Identification
of a novel FGF, FGF-21, preferentially expressed in the liver. Bio-
chim Biophys Acta 1492:203–206

65. Wente W, Efanov AM, Brenner M, Kharitonenkov A, Köster A,
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