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For decades, natural and synthetic glucocorticoids (GC) have been among the most commonly
prescribed classes of immunomodulatory drugs. Their unsurpassed immunosuppressive and
antiinflammatory activity along with cost-effectiveness makes these compounds a treatment
of choice for the majority of autoimmune and inflammatory diseases, despite serious side
effects that frequently accompany GC therapy. The activated GC receptor (GR) that conveys
the signaling information of these steroid ligands to the transcriptional machinery engages a
number of pathways to ultimately suppress autoimmune responses. Of those, GR-mediated
apoptosis of numerous cell types of hematopoietic origin and suppression of proinflammatory
cytokine gene expression have been described as the primary mechanisms responsible for the
antiinflammatory actions of GC. However, along with the ever-increasing appreciation of the
complex functions of the immune system in health and disease, we are beginning to recognize
new facets of GR actions in immune cells. Here, we give a brief overview of the extensive
literature on the antiinflammatory activities of GC and discuss in greater detail the unex-
pected pathways, factors, and mechanisms that have recently begun to emerge as novel
targets for GC-mediated immunosuppression. (Molecular Endocrinology 25: 1075–1086, 2011)

NURSA Molecule Pages: Nuclear Receptors: GR; Coregulators: SRC-1 � GRIP1 � AIB1 � CBP � p300;
Ligands: Dexamethasone � Hydrocortisone.

In 1948, a patient at St. Mary’s Hospital in Duluth, MN,
received the first injection of synthetic cortisol to treat

rheumatoid arthritis (RA). Two years later, Edward Kend-
all, Tadeus Reichstein, and Philip Hench received the Nobel
Prize in Physiology and Medicine for their roles in isolating,
synthesizing, and delivering cortisol (1, 2); more generally,
for discovering the antiinflammatory properties of glu-
cocorticoids (GC). Since then, GC have been used to
treat a great variety of inflammatory disorders, and
their therapeutic uses are ever widening. In 2008, over
44 million prescriptions for oral, topical, or inhaled GC
were written in the United States alone, and GC are a
standard in any situation where immunosuppression is
desired: after transplant surgery, during severe allergic
reactions or autoimmune flare-ups, and as a supple-
ment to certain chemotherapies (3). Much like the dis-
eases for which they are administered, the mechanisms

of action of these steroid molecules are extremely di-
verse. In fact, we now know that GC are immunomodu-
latory rather than indiscriminately immunosuppressive
and that their molecular functions are far more com-
plex than previously recognized. In this minireview, we
discuss published examples of GC effects on cytokine-
driven autoimmunity and highlight the emerging con-
cepts of their therapeutic mechanisms in various dis-
ease states.

GC Receptor (GR) Signaling

GC are a class of cholesterol-derived steroid molecules that
elicit an array of responses in virtually every tissue; indeed,
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GC are important for metabolism, circadian rhythm, repro-
duction, and immunity. An early indication of the effect of
GC on the immune system was based on the observation
that acute or chronic stress induced thymic atrophy, which
was later shown to result from cortisol-induced T-cell apo-
ptosis (4). GC signal through the GR, a steroid receptor
within a larger nuclear receptor (NR) family of ligand-
dependent transcription factors. In the absence of GC
hormone, GR is a transcriptionally inactive cytoplasmic
protein residing in an “aporeceptor” complex that in-
cludes heat shock protiens 70 and 90, immunophilins,
and p23 (5). Upon GR association with hormonal ligand,
this complex partially dissociates, enabling GR to trans-
locate into the nucleus, where it binds genomic GC-re-
sponse elements (GRE) and regulates transcription of as-
sociated genes (Fig. 1, right panel).

The GRE have been classified into three broad groups
(6). “Simple” palindromic GRE are composed of two spe-
cific inverted hexamers (AGAACA) separated by a 3-bp
linker to which GR binds, usually as a homodimer, and
acts as the sole DNA-bound regulator. “Composite”

GRE sequences provide a binding surface for GR along
with another regulator and may not resemble conven-
tional binding sites for either partner. “Tethering” GRE
are binding elements for other transcription factors, e.g.
activating protein (AP)1 or nuclear factor (NF)-�B, to
which GR is recruited through protein-protein interac-
tions. Although GR can either activate or repress tran-
scription from GRE of all three types, GR binding to a
palindromic GRE usually leads to transcriptional activation,
whereas GR recruitment to tethering sites typically effects
repression. Of note, repression of AP1 and NF-�B activities
via GR tethering (also known as “transrepression”) is
viewed as a critical component of the inhibitory effects of
GC on inflammatory and immune responses.

Similar toothermammalian transcription factors, including
NR, GR relies on cofactors (coactivators and corepressors) to
transduce hormonal signal to basal transcriptional machinery
and/or chromatin. These coregulators, which are critical for
transcriptional control in eukaryotes, encompass a variety
of proteins, whose molecular actions range from stabilizing
DNA-bound regulator complexes and recruiting compo-
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FIG. 1. A shared coregulator GRIP1 in the GR and type I IFN signaling networks. The three panels depict a GR signaling pathway (right) and the
TLR3/4-induced type I IFN production (center) and signaling (left) cascades. The GRIP1 domain structure is diagrammed at the bottom center.
Detailed description in the text. MKK, MAPK kinase; IKK, IkB kinase; JNK, Jun kinase; Tyk2, tyrosine kinase-2; MyD88, myeloid differentiation
primary response gene 88; TRIF, TIR-domain-containing adapter-inducing IFN-�.
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nents of basal machinery to nucleosome remodeling and
altering DNA topology. To date, nearly 250 coregulators
have been described for NR alone (7). One extensively stud-
ied family of coregulators, the p160 proteins (steroid recep-
tor coactivator-1/nuclear receptor coactivator (NCoA)1,
TIF2/glucocorticoid receptor-interacting protein (GRIP)1/
NCoA2, and NCoA3, were initially isolated in yeast two-
hybrid screens with agonist-activated ligand-binding do-
mains of several NR and shown to facilitate transcription by
recruiting histone-modifying enzymes, including cAMP re-
sponse element-binding protein-binding protein (CBP)/
p300 acetyl transferases and coactivator-associated arginine
methyl transferase-1 (reviewed in Refs. 8, 9). p160 proteins
were later shown to function as coactivators for multiple
transcription factors in addition to NR. Interestingly, differ-
ent transcription factors preferentially interact with different
p160, and these preferences are cell and target gene specific
(reviewed in Ref. 9). Furthermore, although all three p160
family members can function as coactivators, TIF2/GRIP1
also serves as a GR agonist-dependent corepressor at teth-
ering GRE (Fig. 1, right panel) (10, 11).

Multiple Pathways to
Autoimmune Activation

GC have been regarded as potent wide-spectrum immu-
nosuppressants for decades. However, the immune sys-
tem is an intricate network of regulatory pathways and, as
such, can be influenced by GC at multiple levels, some-
times with conflicting outputs. Interestingly, GC can
modulate both arms of the immune system: innate, which
functions as a first line of defense against invading patho-
gens; and adaptive, which is instructed by immune events
that have already transpired and which responds by re-
leasing high-affinity antibodies directed against foreign
material. For example, by triggering apoptosis in both
“innate” dendritic cells (DC) and “adaptive” T lympho-
cytes, GR simultaneously affects the activation and effec-
tor functions of immune cells through manipulation of
their transcriptional pathways.

Innate immune cells, including granulocytes, macro-
phages (M�), and DC, recognize and are activated by
molecules that are either nonhost-derived or associated
with host cell injury or death. Upon activation, innate
immune cells produce a battery of toxic chemicals, such as
reactive oxygen and nitrogen species and complement
proteins, which act as direct weapons against exogenous
threats; chemokines, which attract leukocytes from the
bloodstream to infiltrate infected tissues; and cytokines,
which can activate or curb innate and/or adaptive re-
sponses. In addition, M� and DC act as antigen-present-

ing cells (APC), engulfing and degrading pathogens and
then “presenting” molecular fragments (antigens) derived
from the degradation process to T cells.

Under normal circumstances, in addition to clearing
pathogens, APC and other phagocytes eliminate necrotic,
apoptotic, and senescent host cells. However, a sustained
failure of APC to properly clear these cells and their com-
ponents can trigger or contribute to autoimmunity (for
review, see Ref. 12). The exact causes of autoimmunity
are unknown, although certain genetic risk factors, gen-
der, environmental factors, and infections appear to play
some role. Autoimmune responses can be driven by a
specific antigen: for example, myelin (a protein that cov-
ers and protects neuronal axons) is an antigenic target in
multiple sclerosis (MS). Other autoimmune diseases man-
ifest systemically: in the case of systemic lupus erythema-
tosus (SLE), B cells produce antinuclear antibodies di-
rected against numerous nuclear components, including
double-stranded DNA, histones, and ribonuclear pro-
teins. Despite the great diversity in pathogenesis, both
innate and adaptive responses are affected in most auto-
immune diseases.

Under the guidance of innate immune cells, naïve T
cells can differentiate into at least three T “helper” sub-
sets: Th1, Th2, and Th17 (Fig. 2). The identity of each
subtype is orchestrated by unique transcription factors
[T-box expressed in T cells (T-bet), GATA3, and retinoic
acid receptor-related orphan receptor (ROR�t), respec-
tively], which are instructed by the specific cytokine en-
vironment. Furthermore, each of the three Th subtypes
produces a distinct milieu of cytokines that is inhibitory to
the development of the other two. Although not fully
understood (reviewed in Ref. 13), the cytokine combina-
tions leading to Th cell specification are beginning to
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FIG. 2. Cytokine control of effector T-cell differentiation. The three
effector T-cell subsets along with the cytokines driving their
differentiation, key transcription factors identifying the lineage, and
cytokines produced by each subset are shown.
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emerge. For example, Th1 cell lineage commitment is
driven by IL-12 (14) and, in human cells, type II interferon
(IFN) (IFN�) (15); these cells also produce large quanti-
ties of IFN�, which inhibits Th2 differentiation. Con-
versely, Th2 cells are specified in part by IL-4, which
along with IL-5, is also secreted by these cells and is in-
hibitory to Th1 differentiation. Recently described Th17
cells (Fig. 2), which characteristically produce IL-17, IL-
21, and IL-22, arise from naïve CD4� T cells in response
to a unique cytokine combination that has not been com-
pletely elucidated but includes IL-6, IL-23, IL-21, IL-1�,
and TGF� (16, 17).

The specific roles of Th cell subsets in autoimmunity
and inflammation have been reviewed elsewhere and re-
main the focus of intense investigation (18). In brief, Th2
cells are associated with allergic reactions, such as
asthma. Th1 cells secrete IFN�, which is a potent activa-
tor of inflammatory M� and granulocytes; IFN� also
stimulates B cells to produce IgG2, an antibody subclass
associated with pathogenic autoantibodies (19). Th1 cells
were originally described as the predominant subtype
dysregulated in autoimmunity and are still regarded as a
driving factor in autoimmune pathogenesis. However, ex-
cessive Th17 cell numbers have suggested a role for these
cells in inflammation and tissue injury in MS, inflamma-
tory bowel disease, psoriasis, and RA (20–22). Indeed,
peripheral blood and tissue levels of IL-17, prominently
produced by Th17 cells, were found to be elevated in
patients with these disorders (23–28). In addition, studies
in murine models of MS (experimental autoimmune en-
cephalomyelitis) and RA (collagen-induced arthritis)
have implicated IL-17 in the pathogenesis of inflamma-
tion (29–32). Interestingly, T cells producing high levels
of both IFN� and IL-17 were found in the kidneys of
lupus patients with nephritis (33), and plasma levels of
both IL-12 and IL-17 correlated positively with disease
severity in SLE (34). Thus, it appears that either Th1 or
Th17 can drive autoimmunity and that disease severity
can correlate with either or both (35).

T Helper Cell Polarization Is Regulated
by GC

The Th2-polarizing properties of GC have been exten-
sively documented and are known to target T cells both
indirectly, by affecting the immunomodulatory proper-
ties of APC (36–39), and by direct action on T cells them-
selves. Indeed, in naïve CD4� T cells, treatment with the
synthetic GC dexamethasone (Dex) induces IL-4 mRNA
expression (37). Conversely, pretreatment with Dex for
as little as 30 min renders naïve T cells incapable of re-

sponding to the Th1-polarizing cytokine IL-12, possibly
by down-regulating the IL-12R �1- and �2-chain gene
expression (40, 41). Studies from the Umetsu group in the
late 1990s revealed that GC inhibit Th1 polarization in-
directly in both mice and humans by specifying the cyto-
kine repertoir produced by innate immune cells (38, 39).
Human monocytes or murine splenic cells that were pre-
exposed to GC and challenged with lipopolysaccharide
(LPS) or heat-killed Listeria monocytogenes displayed a
marked decrease in IL-12 production. Furthermore, naïve
CD4� T lymphocytes cocultured with the Dex-primed
APC produced significantly more IL-4/IL-5 and less IFN�

relative to T cells cultured with unprimed APC, suggest-
ing that the naïve T cells had been polarized by the APC to
the Th2 phenotype.

The effects of GC on Th17 development are unknown,
in part because the events leading to Th17 differentiation
are not entirely understood. Overall, however, the indi-
rect evidence available suggests that GC are likely to pro-
hibit Th17 polarization: to wit, the expression of IL-23,
which promotes the differentiation of Th17 cells, is inhib-
ited by the GC prednisolone in DC (42, 43). Similarly,
several groups, including ours, demonstrated that the in-
duction of IL-6 by cytokines and pathogenes in several
cell types was GC-sensitive (44–47). Interestingly, GC
administration has been shown to reduce IL-6 and TGF�

expression in the joints of arthritic mice as well as IL-17
levels in their joints and lymph nodes (48), suggesting that
both Th17 differentiation and function may be affected
by GC. Furthermore, independent studies reported GC
suppression of IL-17 production by purified T cells in
vitro (49) and by peripheral blood mononuclear cells of
patients suffering from Vogt-Koyanagi-Harada syndrome,
an inflammatory autoimmune disorder (50). However,
whether and to what extent Th17 differentiation and func-
tion are affected by GC, as well as the underlying molecular
mechanisms and, ultimately, the possible impact on autoim-
mune disease, remain to be determined.

DC play a critical role in the activation of Th cells, and
DC populations of distinct origins have been proposed to
differentially regulate the Th subsets. For example, DC
raised in an environment with IL-10, IL-6, and TNF�

hinder Th1 cell activation (51). Interestingly, the authors
later reported that exposure of DC to Dex induced the
expression of the Toll-like receptor (TLR)2, a sensor of
bacterial lipoprotein, on their surface and that a subse-
quent stimulation of these cells with a TLR2 ligand initi-
ated the secretion of IL-10, IL-6, and TNF� (52). The
provocative conclusion of this study is that GC may in-
hibit Th1 cell activation indirectly, through manipulation
of DC subset identity. Mutual signaling between the
TLR2 and GR pathways was further supported by the
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unexpected observation that TLR2 knockout mice dis-
play deficiencies in adrenal architecture and corticoste-
roid production (53).

GR Interferes with Inflammatory
Cytokine Production

In addition to affecting differentiation of specific T-cell
subsets, GC are widely known for their ability to sup-
press, directly or indirectly, the activation of proinflam-
matory cytokine genes. GC-mediated suppression of
TNF� and IL-1� production has long been considered the
basis for their efficacy in relieving symptoms of RA, in-
flammatory bowel disease, and psoriasis. Furthermore,
because chronic inflammation itself in certain autoim-
mune diseases (e.g. RA) is pathogenic, the ability of GC to
attenuate inflammation speaks to the disease-modifying
properties of these drugs (54, 55). The molecular basis for
GC action has been reviewed in detail (56) and can be
broadly classified into the following major mechanisms.
First, liganded GR can interfere with the DNA binding of
transcription factors, notably NF-�B and AP1, at proin-
flammatory gene promoters (57, 58). Second, GR engages
in protein-protein interactions with transcriptional regu-
lators on DNA (tethering GRE) and actively represses
their activity by preventing the recruitment of key coacti-
vators, chromatin modifiers, or components of basal
transcriptional machinery (59–63). Third, activated GR
was shown to antagonize cytokine gene transcription by
sequestering common coregulators, such as CBP (64), al-
though this observation was later debated, when GR was
shown to repress the activity of NF-�B and AP1, irrespec-
tive of the amount of CBP in the cell (65, 66).

In addition to attenuating the activities of transcription
factors driving proinflammatory cytokine gene expres-
sion, GR can activate certain genes encoding inhibitors of
inflammation. For example, in thymocytes or HeLa cells,
GC treatment increased the expression of I-�B�, an in-
hibitor of NF-�B signaling that sequesters NF-�B dimers
in the cytoplasm and prevents their nuclear translocation
(67, 68). This mechanism, however, was not operational
in other cell types (69–71); thus, its physiological signif-
icance was later debated (reviewed in Ref. 72). GR was
also shown to augment the levels of dual-specificity phos-
phatase-1 (also known as MAPK phosphatase-1), which
inactivates several MAPK, including p38, a critical kinase
for AP1 and NF-�B activation (73, 74). The importance
of this mechanism is exemplified in dual-specificity
phosphatase-1-deficient M�, which are partially resis-
tant to Dex-mediated down-regulation of a subset of
proinflammatory cytokines, including TNF� and IL-1�

(75). Another GR target, GC-inducible leucine zipper,
inhibits AP1 and NF-�B activity by direct protein-pro-
tein interactions, precluding their binding to DNA (76,
77). Collectively, these reports highlight the multifari-
ous ability of GR to affect proinflammatory cytokine
gene expression.

Type I IFN-Driven Autoimmunity

Although most autoimmune diseases involve an inflam-
matory component, not all are initiated by the classic
proinflammatory cytokines such as TNF�, IL-6, or IL-1�.
Indeed, initiation and progression of a subset of immune
disorders, including autoimmune thyroiditis and SLE,
have been linked to dysregulated type I IFN. Unlike IFN�,
type I IFN (IFN�/�) function primarily as antiviral cyto-
kines in the innate arm of immunity. The recently identi-
fied type III IFN (IFN� also known as IL-28A/B and IL-
29) is similar to IFN�/� in its antiviral function but
signals through a different receptor complex whose ex-
pression is largely limited to cells of epithelial origin (78–
80). A link between type I IFN and autoimmunity was
suggested as early as 1971, when a high prevalence of the
IFN-inducing Epstein-Barr virus was observed in SLE pa-
tient sera (81). Years later, Epstein-Barr virus was pro-
posed to be an etiological cause for SLE in susceptible
patients and, although a definitive link has not been es-
tablished, a correlation between viral infections and inci-
dence of SLE was noted (82). IFN therapy, common for
the treatment of chronic myeloid leukemia, cutaneous
T-cell lymphoma, and viral hepatitis, has also been caus-
ally linked to autoimmune side effects. Indeed, de novo
appearance of autoantibodies against thyroid antigens,
pancreatic islet cells, or the adrenal cortex have been re-
ported in the serum of patients after IFN therapy (83–85).
Similarly, autoimmune thrombocytopenia and anemia
were observed in C57BL/6 mice injected repeatedly for
10 d with IFN� (86).

A potentially fatal chronic disorder, SLE most com-
monly affects the skin (rash) and kidneys (nephritis) but
can manifest anywhere in the body, including the heart
(myocardial infarction), joints (arthritis), blood vessels
(anemia, thrombocytopenia, and coronary artery dis-
ease), lungs (pulmonary hypertension), liver (serositis),
and central nervous system (stroke, seizure, and psycho-
sis). The course of the disease is variable, with periods of
active disease (flares) alternating with remissions. SLE
incidence is nine times higher in women (ages 15–50) than
men, affecting approximately 1.5 million people in the
United States alone (87). The underlying causes for this
gender- and age-specific prevalence are unknown. Fur-
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thermore, SLE still lacks a well-defined diagnostic signa-
ture. The early studies of disease pathogenesis date back
to 1948, when a Mayo Clinic hematologist cultured bone
marrow preparations from healthy subjects with serum
from lupus patients and observed the formation of poly-
morphonuclear leukocyte clusters around amorphous
masses of disrupted nuclei (88). This phenomenon was
later attributed to �-globulins in the lupus serum reacting
with DNA-histone complexes in the nuclear material.
These antinuclear antibodies (89), however, are not
clearly pathological and fail to correlate with disease con-
vincingly enough to establish them as a diagnostic tool.

Beginning in the late 1970s, multiple groups reported
high serum IFN levels and IFN-stimulated gene (ISG) ex-
pression (“IFN signature”) in peripheral blood mononu-
clear cells of lupus patients (90–94), which was found to
correlate with SLE severity (95–97). Remarkably, pa-
tients with active lupus displayed enhanced ISG expres-
sion even when serum IFN levels were normal, perhaps
suggesting that aberrant IFN-dependent transcription
could contribute to disease (94). This promising correla-
tion, however, also fails to meet the criteria necessary to
successfully diagnose SLE. Indeed, the IFN signature ap-
pears to be an early event in disease pathogenesis, and
many patients display neither the IFN signature nor ab-
normal cytokine levels.

GC Regulation of Type I IFN Production

IFN gene expression is induced by viral components, such
as double-stranded RNA (dsRNA), which bind pattern
recognition receptors, specifically TLR (e.g. TLR3) on the
cell surface or endosomal membranes (Fig. 1, middle
panel). Receptor ligation initiates a signaling cascade that
through a series of adapters ultimately leads to the acti-
vation of IFN regulatory factor (IRF)3, NF-�B, and AP1,
which cooperate to induce the transcription of IFN (98).
IRF3 binding sites, IFN-stimulated response elements
(ISRE), are tandem repeats of GAAA sequences
(GAAANNGAAA), which also serve as binding sites for
other IRF family members. Type I IFN � and �1 (murine
�4) are considered to be “immediate-early” cytokines,
their transcription being induced directly via the IRF3/
NF-�B pathways and not requiring prior synthesis of pro-
tein intermediates, such as IRF7 (98, 99). Transcriptional
control of the IFN� gene involves a coordinate action of
three families of factors, IRF3, NF-�B, and AP1, which
form an enhanceosome at the IFN� gene promoter (Fig. 1,
middle panel); all three are required for the preinitiation
complex assembly and efficient IFN� gene induction
(100–102). Newly synthesized early IFN molecules signal

in an auto- or paracrine manner (reviewed in Refs. 98,
103) by binding their cognate receptor, IFN-� receptor,
triggering the recruitment, phosphorylation, het-
erodimerization, and nuclear translocation of the signal
transducer and activator of transcription (STAT) proteins
1 and 2 (Fig. 1, left panel). The association of a third
transcription factor, IRF9 (p48/ISGF3�), with STAT2
completes the formation of a heterotrimeric complex,
known as ISGF3, with the ISRE-binding specificity,
which initiates a secondary wave of ISG transcription
(104). Similar to IFN�, many ISGF3-driven genes contain
binding elements for other transcription factors, includ-
ing NF-�B and AP1, whereas others are regulated exclu-
sively via the ISRE. The majority of these ISGF3 target
genes encode antiviral proteins, among them ISG56,
ISG54, 2’,5’-oligoadenylate synthetase-1 (OASL-1), and
myxovirus resistance-1 (Mx1), which are also part of the
SLE IFN signature (95, 97).

Along with alleviating the symptoms of SLE, GC treat-
ment suppresses ISG expression, thereby eradicating the
IFN signature (96). Although the mechanistic basis of this
suppression is not well understood, it could conceivably
be attributed to the ability of GC to attenuate, directly or
indirectly, the transcriptional activity of factors that reg-
ulate IFN gene expression. Notably, in addition to AP1
and NF-�B, recent evidence points to the IRF family of
transcriptional regulators as previously unrecognized tar-
gets for GR-mediated inhibition. Indeed, GC were shown
to inhibit the activity of TANK-binding kinase (TBK)1
that activates IRF3 and IRF7, key components of the
IFN� enhanceosome (101, 105). Specifically, Dex treat-
ment of U373 astrocytoma cells abolished LPS- or
dsRNA-induced phosphorylation of TBK1 at S172, re-
quired for TBK1 kinase activity (106). The exact contri-
bution of this mechanism to GC inhibition of IFN gene
transcription, however, remains to be determined, be-
cause residual IRF3 activity, ISG induction by dsRNA,
and to a lesser extent, viral infection persisted in TBK1-
deficient M� (107).

In 2005, studies from our laboratory and the Glass
group described two distinct mechanisms targeting IRF3
transcriptional activity by the activated GR. Specifically,
in an unbiased yeast two-hybrid screen, we isolated IRF3
as an interacting partner for GRIP1, a member of the
p160 family of coregulators and a known cofactor for GR
and other NR (Fig. 1, center panel) (108). The GRIP1-
IRF3 interaction was also observed in vitro and in murine
M� and was disrupted by Dex-activated GR. Further-
more, depletion of GRIP1 from IRF3 by small interfering
RNA knockdown or liganded GR severely compromised
the dsRNA-dependent induction of IFN� and other ISG,
whereas GRIP1 overexpression relieved inhibition. These
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studies implicated GRIP1 as a bona fide IRF3 coactivator,
whose sequestration by hormone-activated GR attenu-
ated the transcription of IRF3 target genes.

In parallel, Ogawa et al. (109) have shown that the
induction of IRF3 target genes by bacterial LPS in M�

can be inhibited by GC through a distinct mechanism.
Specifically, they observed that LPS treatment induced
corecruitment of IRF3 and the p65 subunit of NF-�B to
both ISRE- or NF-�B-containing promoters and that p65
served as an IRF3 coactivator in this context. In response
to GC, GR sequestered p65 from IRF3, thereby antago-
nizing the expression of ISRE-regulated ISG (109). Al-
though IFN� gene expression was not specifically exam-
ined, this report further corroborates the emergence of
IRF as a previously unrecognized family of transcription
factors under indirect GC control.

Recently, a link has been established between sus-
tained TLR7/9 signaling and resistance to GC treatment
in SLE (110). Specifically, it was shown that GC-induced
apoptosis of plasmacytoid DC (pDC), critical IFN-pro-
ducing cells contributing to the IFN signature, was atten-
uated by persistent TLR7/9 activation, whereas pharma-
cological blockade of TLR7/9 restored pDC sensitivity to
GC and normalized ISG expression (110, 111). GC resis-
tance of pDC was cell type specific and appeared to result
from TLR7/9-induced escape of the NF-�B pathway from
GC-mediated inhibition. Although the mechanistic basis
of these latter observations remains unclear, they further
suggest extensive cross talk between GR, NF-�B, and
IRF-associated signaling pathways ultimately regulating
IFN gene expression.

GC Regulation of the IFN Signaling
Pathway Through a Shared Cofactor

Despite the wealth of evidence that points to GC-medi-
ated inhibition of cytokine production, little is known
about the effects of GC on Janus kinase (Jak)/STAT sig-
naling pathways initiated by cytokines at the cell surface.
GR has been shown to interfere with IL-2 signaling, al-
though via an indirect mechanism whereby GR blocks the
expression of the common receptor IL-2R� and the sig-
naling intermediate Jak3 (112). In stark contrast, GR syn-
ergizes with prolactin-activated STAT5 and with IL-6-
activated STAT3 (113–116), although the mechanisms of
synergy remain unclear. In fact, most reports reveal little
effect of GR on cytokine signaling via Jak/STAT. Unex-
pectedly, however, we found that the type I IFN-initiated
Jak/STAT pathway is under GR control and that the tar-
get of GC inhibition is the effector complex, ISGF3 (45).
Unlike other STAT complexes, the ISGF3 heterotrimer

contains a non-STAT subunit, IRF9, which is thought to
dictate the ability of ISGF3 to recognize ISRE, rather than
the TTCCNGGAA palindromic sequences targeted by
STAT homo- or heterodimers. We found that GRIP1
physically interacted with IRF9, resembling its interac-
tions with IRF3, and served as a coactivator for the IFN-
inducible ISGF3 transcription complex. Furthermore, GR
activation by coadministration of Dex in M� antago-
nized IFN-induced ISGF3 promoter occupancy, histone
acetylation, and RNA polymerase II recruitment to IFN
target genes and, similar to IRF3, effected an ISG expres-
sion profile identical to that observed upon GRIP1 knock-
down or genetic disruption (45). Notably, this regulation
was specific to M�, in which GRIP1 protein level is ex-
ceptionally low; IFN signaling was refractory to Dex in
“GRIP1-high” fibroblasts. Supporting these observa-
tions, GRIP1 overexpression in M�-like RAW264.7 cells
relieved GC control of ISG induction.

The fact that two fundamentally different transcrip-
tional regulators (IRF3, responsible for IFN production;
and ISGF3, controlling IFN signaling) both required
GRIP1 for optimal target gene induction not only sug-
gests a pivotal role of this coregulator in the innate im-
mune response but also reveals a previously unrecognized
ability of GC to target the IFN network at two distinct
steps. Remarkably, GRIP1 knockout mice display a he-
patic expression profile with a disproportionately high
number of down-regulated immune-related genes, a pat-
tern not shared by mice deficient in other p160 family
members (117, 118). Interestingly, the domain of GRIP1
responsible for binding IRF family members is not con-
served among other p160, highlighting its unique role in
mediating GC effects on the immune system. Conversely,
the GRIP1-binding IRF association domain of IRF3 and
IRF9 shares significant sequence homology with that of
the other IRF proteins, and at least in vitro, GRIP1 inter-
acts with IRF1, IRF5, and IRF7 (45, 108, 119), suggesting
that a similar paradigm may hold true for other IRF fam-
ily members. Unfortunately, due to their reproductive,
metabolic, and endocrine phenotypes (120–123),
GRIP1-null mice do not represent an appropriate model
for studying autoimmunity. Conditional depletion of
GRIP1 in specific immune cell compartments in the adult
animal will further our understanding of the role of this
protein, and its potential interactions with IRF, in auto-
immune pathogenesis.

Conclusions

GC are a standard therapeutic approach in many diseases
ranging from mild skin rashes to life-threatening syn-
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dromes; autoimmune processes, in particular, have been
managed with GC for decades. The common thread con-
necting all these disorders is an exaggerated proinflam-
matory cytokine response. Not surprisingly, the clinical
efficacy of GC is often attributed to GR-mediated sup-
pression of cytokine gene expression. However, our re-
cent studies revealed that the Jak/STAT signaling path-
way triggered by at least one cytokine, type I IFN, is
directly controlled by GC. Although the presence of the
IRF subunit in the IFN-inducible transcription complex,
ISGF3, makes this signaling pathway, perhaps uniquely,
susceptible to GC regulation, accumulating evidence sug-
gests that the molecular mechanism of regulation is not
specific to ISGF3. Indeed, with several IRF family mem-
bers relying on GRIP1 coactivator properties, one envi-
sions the implications of such interactions for other IRF-
regulated pathways. For example, multiple association
studies describing genetic polymorphisms in the IRF5
gene and its regulatory region as risk alleles for SLE (124,
125) warrant an examination of the potential role of
GRIP1 in this process. IRF4, a critical regulator of Th17
differentiation and pathogenesis of autoimmunity (126–
129), is also of particular interest. It is tempting to spec-
ulate that by antagonizing IRF4-dependent transcription
through a GRIP1-dependent mechanism, GC inhibit
Th17 lineage commitment and autoimmune effects asso-
ciated with Th cell dysregulation. As appealing as this
model might be mechanistically, however, critical consid-
eration needs to be given to the unique cell type-specific
environment (developmental and epigenetic restrictions,
relative expression levels of individual regulatory compo-
nents and their posttranslational modifications, or the
particular signaling inputs to which a given tissue is ex-
posed in vivo) that would determine the balance between
the individual signaling networks. Because cofactors such
as GRIP1 are beginning to emerge as rheostats that deter-
mine the “current” through a given signaling pathway,
understanding their physical and functional interfaces
with specific regulators in the context of a disease-rele-
vant cell type could reap therapeutic benefits.
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