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T4-binding globulin (TBG), a 54-kilodalton glycopro-
tein, is the major thyroid hormone transport protein
in man. The exact nature of the mutations causing
X chromosome-linked TBG deficiency, which affect
about 1 in 2,500 newborn males, is unknown. Here
we report the sequence of a unique variant TBG
(TBG-Gary) encoding a protein with severely im-
paired T4 binding as well as decreased stability at
37 C, resulting in its rapid in vivo denaturation. A
single nucleotide substitution in the codon for resi-
due 96 of the mature protein replaces isoleucine
with asparagine; this replacement creates an addi-
tional site for N-linked glycosylation. The anodal
shift of TBG-Gary on isoelectric focusing gel electro-
phoresis suggests that this new site is likely glyco-
sylated. Since glycosylation is required for TBG to
assume its correct tertiary structure, but is not sub-
sequently necessary for maintenance of the biolog-
ical properties or stability of the molecule, we be-
lieve that the likely presence of additional carbohy-
drate probably affects a higher order structure of
the molecule and is thus responsible for the reduced
stability and hormone binding activity of TBG-Gary
(TBGASN96) (Molecular Endocrinology 3: 575-579,
1989)

INTRODUCTION

T4-binding globulin (TBG), is a 54 kilodalton serum
glycoprotein composed of a single polypeptide chain
and four carbohydrate residues (1, 2). It is synthesized
by the liver (3, 4), and its principal function is to bind
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thyroid hormone and thus, increase its intravascular
pool (2). Changes in TBG concentration produce pro-
portional alterations in the level of T4 in serum (5-8).
However, because the hormone is transported into cells
in a free rather than TBG-bound form, TBG abnormali-
ties have no effect on the metabolic state, general
health, or survival of the individual (1, 2, 5-8). Never-
theless, inappropriate therapeutic interventions to cor-
rect the alterations of thyroid hormone concentration in
the serum of such individuals are not uncommon, and
in fact, can be detrimental (8, 9) This is particularly
relevant as inherited abnormalities of TBG are relatively
common, affecting about 1 of 2,500 newborn males
(10, 11). Inherited TBG defects are X chromosome
linked and expressed in hemizygotes as complete or
partial TBG deficiency or as TBG excess (2, 5-8).
Heterozygous females usually have TBG values inter-
mediate to those of affected and unaffected males.

We recently described an unusual family with low
serum thyroid hormone concentrations due to TBG
deficiency (12). The disorder was recognized fortui-
tously during the investigation of the proband for short
stature which proved to be due to Turner's syndrome
(female phenotype with a single X chromosome). Stud-
ies revealed a unique TBG which was expressed in the
proband and other members of the family (TBG-Gary),
which had greatly reduced affinity for T4 that was 100-
fold lower than normal (Refetoff, S., unpublished), as
well as decreased stability resulting in its rapid in vivo
denaturation (12). As a consequence, specific RIAs
detected a decrease in the concentration of the abnor-
mal native protein (nTBG) and an increase of denatured
TBG (dnTBG) in the sera of the affected subjects.

We now present the results of cloning and sequenc-
ing this variant gene which revealed a T—»A transversion
in the coding region resulting in the replacement of lle-
96 with an Asn. This replacement creates a new site
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for N-linked glycosylation. As TBG-Gary appears to
have additional carbohydrate, we believe that its pres-
ence is likely responsible for the altered properties of
this protein, probably through changes in the confor-
mation of the molecule.

RESULTS AND DISCUSSION

A complete pedigree of living members of this family
with their respective nTBG and dnTBG levels in serum
is shown on Fig. 1. The nTBG concentrations in the
two hemizygous affected subjects [the proband (111-1)
and her father (II-2)] are 1.5% the mean normal level,
while those of dnTBG are approximately 10-fold above
the normal mean. Two heterozygous subjects [paternal
grandmother (1-1) and sister (III-2)] have nTBG and
dnTBG values intermediate between those of hemizy-
gous-affected and unaffected subjects. Thus, the in-
heritance of TBG-Gary is clearly X-linked, as expected
from the recent demonstration of a single TBG gene
copy located on the X chromosome (13).

The 4.5-kilobase pair (kbp) TBG gene is contained
within a 14 kbp EcoRi fragment and is composed of 4
protein coding exons (Fig. 2). The gene of the affected
father (II-2, see Fig. 1) of the proband was isolated, and
the sequences of these 4 exons were compared to
those of a normal human liver TBG cDNA clone and a
genomic TBG clone from a human X chromosome
library (14) as well as 3 genomic clones from an individ-
uals with the common type TBG (Mori, Y., and S.
Refetoff, unpublished). The only difference between
these 6 sequences was a T-»A transversion in the first
protein coding exon of the TBG-Gary gene, 287 bp

ATG

TBG
Gary

CAT CTG AAC TGT TCA
Asn

(94) His Leu I ( Cys Ser (98)
CAT C?G ATC TGT TCA

TBG-C

Fig. 2. Structure of the TBG Gene and Sections of Sequencing
Gels Showing the Mutation Site in TBG-Gary Compared to the
Corresponding Sequence of the Common Type TBG (TBG-C)

In the diagram of the TBG gene, exons are represented by
open boxes and intervening and flanking sequences by lines.
Nucleotide 287, from the cordon for the NH2-terminus of the
mature protein, is a T in TBG-C and A in TBG-Gary. Note that
the resulting substitution of amino acid-(96) creates a potential
N-linked glycosylation site (Asn-Cys-Ser). The amino acids at
the intron splice sites are: intron-1, Ala-188 (G|CC); intron-2,
Gly-279 (GG|A); and intron-3, Asn-328 (AAT|).
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Fig. 1. Pedigree of the Family Expressing TBG-Gary with
Values of Native TBG (nTBG) and Denatured TBG (dnTBG)

Concentrations expressed in micrograms per dl are shown
on the left of each symbol for nTBG and, boxed in on the top
right of each symbol, for dnTBG. Mean normal values ± 1 SD
are 1530 ± 180 for nTBG and 6.1 ± 2.3 for dnTBG. Roman
numerals indicate generations and numbers on the bottom
right of each symbol identify individual subjects. Note that the
proband (111-1, indicated by the arrow), has a single X chro-
mosome (XO-Tumer's syndrome).

downstream of the starting point of the mature protein,
resulting in the replacement of the normal lle-96 codon
(AJC) by Asn (AAC) (Fig. 2). This amino acid substitu-
tion, which was verified by sequencing both sense and
antisense strands, creates a potential site of glycosy-
lation (Asn-Cys-Ser). Moreover, the nucleotide substi-
tution destroys the recognition site for the restriction
enzyme Sau3AI (GATC—>GAAC), which allowed us to
relate the TBG abnormality in individual family members
to the presence of the mutation.

This exon, from four key members of the family, was
amplified using the polymerase catalyzed chain reaction
and then was digested with Sau-3AI. As shown in Fig.
3, the two affected hemizygous subjects (II-2 and 111-1)
differ from their normal unaffected relative (II-3) and an
unrelated individual, expressing TBG-C, by having a
416 bp fragment, rather than one of 394 bp fragment,
due to the inability of Sau3AI to cleave off a 24 bp
fragment from the TBG-Gary gene. As expected, the
heterozygous subject (III-2) has both 418 bp and 394
bp fragments. Thus, it seemed very likely that the TBG
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Fig. 3. Detection of the TBG-Gary mutation by Sau3A\ diges-
tion of amplified DNA sequences

The strategy of analysis is shown diagrammatically on the
upper portion of the figure. The coding sequences of the first
exon (stippled area) is contained in the amplified 903 bp
fragment having at each end sequences corresponding to the
two primers (A and B, see Materials and methods). The
positions of the Sau3AI sites (S) and the expected sizes of
fragments generated after digestion of TBG-C and TBG-Gary
alleles are indicated (bars and numbers). The mutation of TBG-
Gary resulting in the loss of the recognition site for Sau3A\
(S*) generates a 418 bp (bold bar) rather than the normal 394
bp fragment generated by TBG-C. The 24 bp and 14 bp
fragments are too small for visualization on the gel.

Lanes 1 and 2, Cloned TBG-Gary gene, undigested and
after digestion, respectively; <f>X 174 and pBR 322, markers
digested with Haelll and Msp\, respectively; TBG-C, an unre-
lated subject expressing TBG-C, III—"I and II-2, hemizygous
subjects expressing TBG-Gary (see Fig. 1); III-2, heterozygous
subject expressing both TBG-C and TBG-Gary (see Fig. 1); II-
3, mother of 111-1 and III-2, expressing TBG-C (see Fig. 1).

abnormality observed in this family is due to the syn-
thesis of TBGAsn96.

To determine whether the new potential site of gly-
cosylation was indeed glycosylated, we exploited the
observation that isoelectric focusing (IEF) can be used
to reveal microheterogeneity in serum TBG resulting
from variation in sialic acid content; addition of sialic
acid reduces the isoelectric point (pi) of the TBG het-
eromolecule (15). The uniform anodal shift of all TBG-
Gary bands (Fig. 4) is consistent with the presence of
additional sialic acid in all heteromolecules, suggesting
that Asn-96 of TBG-Gary is likely glycosylated.

Since no amino acid replacements other than the
substitution of Asn for He at position 96 were found in
TBG-Gary, it is likely that the abnormal properties of
this protein are the consequence of this mutation. Al-
though the He for Asn change is relatively conservative,

TBPA
Albumin TBG

TBG-C

TBG-Gary

aTBGnemic

TBG-C

Fig. 4. IEF Analysis of TBG-Gary
Serum samples from two unrelated individuals with the

common type TBG (TBG-C), from a subject with TBG-Gary (II-
2, see Fig. 1) and a subject with complete TBG deficiency
(aTBGnemic) were incubated with [125I]T4 then submitted to
IEF and radioautography. The four distinct bands with pi values
ranging from 4.28 to 4.48 represent the normal microhetero-
geneous forms of TBG-C, each with decreasing sialic acid
content. All four bands of TBG-Gary are shifted anodally
(arrows) in accordance with an increased sialic acid content.
No [125I]T4 localized to the TBG zone in the serum from the
aTBGenemic subject. Note that the wide band of 12SI activity
cathodal to pH 4.5 represents [125I]T4 bound to secondary
binding sites in prealbumin and albumin due to either the
reduced T4-binding affinity of TBG-Gary or absence of TBG in
the aTBGenemic serum.

we cannot exclude a direct effect of this amino acid
substitution on T4 binding and TBG stability. We believe
that it is more likely that the properties of TBG-Gary
are due to the presence of the additional carbohydrate,
possibly by altering the secondary or tertiary structure
of the protein. This interpretation is supported by our
previous observation that while glycosylation is required
for TBG to assume its tertiary structure before secre-
tion, the complete removal of carbohydrates from the
mature secreted protein does not alter its biological or
immunological properties (16,17).

Since carbohydrate moieties are often required for
the proteolytic or conformational stability of the protein
component of glycoproteins (18), we searched for other
examples of naturally occurring mutations resulting in
a loss or gain of Asn. Of the seven such mutations
reported in man (19-24), none resulted in the elimina-
tion or creation of the canonical recognition signal, Asn-
Xaa-Ser/Thr, for N-linked glycosylation (25). One of
these mutations, a substitution of Ser-406 for Asn in
the immunoglobulin /* heavy chain, created the se-
quence Thr-Phe-Asn which surprisingly appears to be
more highly glycosylated (22). The molecule is defective
in initiating complement-dependent cytolysis. Santos-
Aguado et al. (26) studied the functional role of carbo-
hydrates in the a-chain of the major histocompatibility
complex class I antigen by site-directed mutagenesis.
The elimination of the unique glycosylation site on Asn-
86, by its substitution with either Gin or Asp, lowered
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or abolished expression of the molecule on the surface
of transfected cells but retained most antigenic deter-
minants. The functional defect of the molecule resulting
from these mutations was attributed to conformational
changes of the a-chain and its interaction with the /32-
microglobulin.

We believe that this may be the first description of a
natural mutation that results in the synthesis and secre-
tion of an apparently abnormally glycosylated protein
having altered biological properties. Finally, we would
also like to propose changing the eponym, TBG-Gary,
to TBGcAsn'96 which better describes this first variant
TBG to be characterized in molecular terms.

dieted size of the amplified segments of genomic DNA from
members of the family was verified by electrophoresis in 2.0%
NuSieve GTG agarose gel (FMC BioProducts, Rockland, ME)
and visualized with UV light after staining with ethidium bro-
mide. Amplified DNA segments were digested with Sau3AI
(Bethesda Research Laboratories, Gaithersburg, MD), and
fragments were resolved by electrophoresis in 2.0% NuSieve
agarose gel as previously described (33).
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MATERIALS AND METHODS

Subjects and TBG Analyses

Blood was obtained from members of the family (see Fig. 1)
for the identification of the variant TBG in their serum and for
the isolation of DNA from white blood cells. Native TBG and
dnTBG concentrations were measured by specific RIAs with
the lowest level of detectability being 2 ^g/dl (27). IEF analysis
of TBG was carried out as previously described (26) using a
horizontal slab gel containing 5% acrylamide and 6.7% am-
pholines, covering a pH range of 4.2 to 4.9. Five microliters of
sera from two subjects having normal concentrations of the
common type TBG (TBG-C) and 32 pi sera from two unrelated
individuals expressing the variant TBG in low concentrations
(TBG-Gary) or having complete TBG deficiency (aTBGnemic),
were equilibrated, at room temperature, with 10 nCi [125I]T4

(SA, 1250 ixC\/fig, New England Nuclear, Boston, MA) and
applied to the prefocused gel. After completion of the IEF run,
the gel was dried and radioautographed on X-AR5 film (East-
man Kodak, Rochester, NY). Note that application to the gel
of 32 pi of the normal serum diluted 60-fold with serum from
the aTBGnemic subject, to adjust the concentration of TBG-
C to that in serum of subjects with TBG-Gary, did not alter its
IEF mobility.

Cloning and Sequencing

DNA, purified from white blood cells by the method of Madisen
et al. (29), was digested with fcoRI, as directed by the
manufacturer (Bethesda Research Laboratories, Gaithers-
burg, MD). Fragments of 10-20 kbp, which are enriched for
the TBG gene, were isolated by electrophoresis in a low
melting ajarose gel (30) and ligated into EcoRI arms of XEMBL-
4. After packaging and infection of Escherichia coli strain LE
392, clones containing the TBG gene were identified by hy-
bridization with the insert from human liver cDNA clone
(XcTBG-8, 14) labeled with [32P]deoxycytidine trisphosphate
by nick translation kit (Amersham, Arlington Heights, IL) ac-
cording to the instructions of the manufacturer. Appropriate
restriction fragments were subcloned into M13 mp18 or mp19
and sequenced by the dideoxy chain termination method (31).

DNA Amplification, Restriction Endonuclease Digestion,
and Analysis by Electrophoresis

The DNA segment of the entire sequence of the first coding
exon containing the mutation site was amplified using the
polymerase catalyzed chain reaction (32, 33(B). Oligonucleo-
tides (20mers), 5'-CCCTGATGAGCACATCATCA-3' corre-
sponding to the 5'-intron sense sequence (B) and 5'-
CAGTGGAGCAGATCACTGTG-3' corresponding to 3'-intron
antisense sequence (A) served as primers (Fig. 3). The pre-
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