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ABSTRACT
The distribution of cosmological neutral hydrogen will provide a new window into the large-
scale structure of the Universe with the next generation of radio telescopes and surveys. The
observation of this material, through 21 cm line emission, will be confused by foreground
emission in the same frequencies. Even after these foregrounds are removed, the reconstructed
map may not exactly match the original cosmological signal, which will introduce systematic
errors and offset into the measured correlations. In this paper, we simulate future surveys
of neutral hydrogen using the Horizon Run 4 (HR4) cosmological N-body simulation. We
generate H I intensity maps from the HR4 halo catalogue, and combine with foreground radio
emission maps from the Global Sky Model, to create accurate simulations over the entire sky.
We simulate the H I sky for the frequency range 700–800 MHz, matching the sensitivity of
the Tianlai pathfinder. We test the accuracy of the fastICA, PCA, and log-polynomial fitting
foreground removal methods to recover the input cosmological angular power spectrum and
measure the parameters. We show the effect of survey noise levels and beam sizes on the
recovered the cosmological constraints. We find that while the reconstruction removes power
from the cosmological 21 cm distribution on large scales, we can correct for this and recover
the input parameters in the noise-free case. However, the effect of noise and beam size of the
Tianlai pathfinder prevents accurate recovery of the cosmological parameters when using only
intensity mapping information.

Key words: cosmology: theory – dark energy – large-scale structure of Universe.

1 IN T RO D U C T I O N

The distribution of matter on large scales has provided an im-
portant cosmological probe, allowing for measurement of the
cosmological parameters by probing both the initial conditions
that generated the seeds of structure, and also the physics that
causes the structures to grow and develop. This data has come from
large area extragalactic surveys, mainly targeting galaxies in the
optical, which act as tracers of the underlying dark matter density
fluctuations. While the first surveys were initially at very low-
redshifts (e.g. CfA survey, Geller & Huchra 1989; 2df, Colless et al.
2001), their reach has increased as the technology has improved.

� E-mail: Jacobo.Asorey@ciemat.es (JA); DavidParkinson@kasi.re.kr (DP)

Results from these surveys are independent from, but complimen-
tary to, that of the more distant cosmic microwave background
(CMB).

These surveys have an advantage over the CMB, as the density
distribution of the Universe can be measured from galaxies in
three dimensions, rather than the 2D surface from which the CMB
photons are emitted. This property allows for an increase in the
sampling, as a particular scale can be measured in more directions,
leading to a decrease in sample variance (e.g. Sefusatti & Komatsu
2007). It also allows for types of measurements impossible in
2D, for example the radial components of the BAO giving a
direct probe of the Hubble rate H(z) (Blake & Glazebrook 2003;
Hu & Haiman 2003; Seo & Eisenstein 2003). However, there are
disadvantages as well, since the structures at late time will have
undergone some non-linear evolution under gravity which requires
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more complex modelling. There is also the greater observational
time and effort required by galaxy redshift survey, as opposed to a
simpler photometric survey (Blake & Bridle 2005).

Most of these surveys of the matter distribution have so far been in
the optical and near-infrared, as the combination of technological
lead and targets available in the this wavelength range has made
these sources most accessible. However, these surveys will soon
reach a natural limit, as the expansion of the Universe will redshift
the spectra of these objects out of the observable range, leading to
a ‘redshift desert’ in the range 1.4 < z < 3. The next generation
of radio observatories offers an alternative in this region, through
the measurement of 21 cm emission of neutral atomic hydrogen
(H I). This line emission should be observable at greater redshifts,
as radio telescopes can span a much larger range of frequencies than
the optical wavelength band. This signal can be used either in the
same manner as traditional optical galaxy spectroscopy, to identify
the redshift of individual galaxies (H I galaxy surveys) (Haynes et al.
2018), or by measuring the total H I intensity in a larger sky area
(pixel), known as H I intensity mapping (Bharadwaj & Sethi 2001).
Intensity mapping in particular can be carried out much faster than
optical spectroscopic surveys, giving the opportunity to conduct
full-sky sky surveys and so measure the matter distribution on the
largest scales (Camera et al. 2013).

However, since the spontaneous hydrogen spin-flip transition is
highly forbidden, with a long mean lifetime, and the intergalactic
density of cold neutral hydrogen is low, the 21 cm signal is relatively
weak (T ∼ 1 mK). This weak signal can be overwhelmed by
foreground radio emission at the same observed frequency (T
∼ 1 K or greater at around 800 MHz). These foreground radio
emissions include the thermal radiation from the ionosphere of the
Earth, the Galactic Synchrotron, free–free emission from ionized
regions both Galactic and extragalactic, and radio point sources
contaminants. Separating the cosmological H I signal from the
non-H I foreground will be difficult, and a number of different
methods have been proposed. All of these methods assume a
smooth, large-scale frequency dependence of the foregrounds, that
can be modelled and removed for each pixel, leaving the small-
scale fluctuations that correspond to the 21 cm density fluctuation.
These include: fastICA which removes the foregrounds using
independent component analysis in frequency space (Chapman
et al. 2012; Wolz et al. 2014), PCA (principal component analysis),
and ICA (independent component analysis) (Alonso et al. 2015),
the Correlated Component Analysis (CCA) method (Brown &
Bonaldi 2015), Karhunen-Loeve Decomposition (Shaw et al. 2014,
2015), Generalized Morphological Component Analysis (GMCA)
(Chapman et al. 2013).

The most important questions are then how well the cosmological
parameters can be measured by future data sets (precision), and
how much bias can be introduced into the measurements by the
foreground removal process (accuracy). In order to settle both of
these questions, forecasts need to move beyond the assumption
of Gaussianity, and simple power spectrum distributions of the
fluctuations, and consider accurate sky simulations, based on large-
scale N-body simulations. In this paper we address both questions,
with particular emphasis on accuracy, showing how biases or
offsets in the posterior probability distribution of the cosmological
parameters (offsets relative to the input parameter values of the
simulations) are introduced by the effect of removing the foreground
contamination, and can be corrected for using simulations.

Another method to increase the accuracy of the recovered
cosmological parameters from the 21 cm radio sky would be to
cross-correlate the intensity map with a galaxy catalogue that covers

the same area of the sky and redshift range. Since the optical
galaxy sample would not have the same systematic errors and
uncertainties introduced by the radio foreground removal process,
the cross-power spectrum should be a more accurate representation
of the underlying density field. This would also be straightforward
to demonstrate with simulations, if the haloes can be populated
by a galaxy distribution that matches the planned survey. In a
forthcoming paper we will simulate this cross-correlation using
the same prescription and analysis approach as we have here (Shi
et al., in preparation).

For the HIR4 (H I with Horizon Run 4) project, we have created a
full simulation and analysis pipeline. Some alternative approaches
in the literature consider hydrodynamical simulations (Villaescusa-
Navarro et al. 2018) or fast simulations based on lognormal density
field realizations (Alonso, Ferreira & Santos 2014). However, in our
case, we have started with the dark matter-only particle Horizon
Run 4 N-body simulation, and populated the haloes with clouds
of neutral hydrogen. When using N-Body simulations, there has
to be a necessary compromise between detailed hydrodynamical
simulations and fast simulations in terms of volume and resolution.
But the mass limit in large volume N-body simulations does not
allow us to access all the hydrogen, as some will be located
in haloes with masses below the limit. This can be solved by
scaling the simulated maps with observational measurements of the
neutral hydrogen density, �HI. Having simulated the cosmological
signal, we applied foreground radio emission at the appropriate
wavelengths based on the best available current data. In addition,
we included the estimated instrumental noise and array beaming
effect for the Tianlai pathfinder (Chen 2011; Das et al. 2018) in our
simulations. We then masked the sky and applied reconstruction
techniques to remove the foregrounds and reconstruct the cosmo-
logical signal. Finally, we measured the angular power spectra
of the 21 cm temperature maps, and measured the cosmological
parameters from these. Since we have complete control over
every step of the process, any mis-match or offset between the
final cosmological results and the initial cosmological parameters
set in the simulation will then provide a test of the steps we
have taken and the assumptions we have made in the analysis
process.

In Section 2 we describe the methodology we use to generate our
simulations and analyse our data, including details about the Hori-
zon Run 4 simulations, generating the simulated the cosmological
and foreground sky, and reconstructing the cosmological signal,
and measuring the angular power spectra. In Section 3 we show the
sky maps that we generate, the measured angular power spectra for
different cases, and the cosmological constraints. We summarize
the forecast precision that these measurements will have in terms
of the linear bias and growth rate of structure, and also address
the accuracy at which the different reconstruction methods recover
the input cosmology. In Section 4 we summarize our findings, and
make recommendations for future analysis of real data.

2 M E T H O D O L O G Y

2.1 Cosmology theory

The intensity of the 21 cm brightness temperature field Tb, as a
function of spatial position (x) and cosmological time t, can be
considered as a perturbation relative to the homogeneous mean
temperature T̄b evaluated at time t, such that

�Tb(x, t) = Tb(x, t) − T̄b(t). (1)
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If we assume that the statistics of the density of neutral hydrogen
track the statistics of the overall matter density, then we can make
the usual assumption that the two are related through some bias
parameter b, and rearrange equation (1) to give the 21 cm field
temperature in terms of the matter density perturbation δ,

Tb(x, t) = T̄b(t)[1 + b(x, t)δ(x, t)]. (2)

If we now transform from a real space position and homogeneous
time coordinate to a measured sky direction n and redshift z, we
need to include the effects due to redshift-space distortions, giving

Tb(n, z) = T̄b(z)

[
1 + b(x, t)δ(x, t) + 1 + z

H (z)
ni∂i(n · v)

]
. (3)

The clustering of fluctuations is described by the anisotropic
power spectrum in Fourier space that can therefore be written
(assuming the Kaiser formula for redshift-space distortions (Kaiser
1987) and linear perturbation theory) as

P21cm(k, μ, z) = T̄b(z)2Pδδ(k, z)
[
bHI(z) + f (z)μ2

]2
, (4)

where μ = cos θ los is the ratio between a given mode and the radial
modes given by the line of sight. We describe the linear growth
rate f(z) theoretically by parametrizing it with a growth index γ

(Linder & Cahn 2007),

f (z) = �m(z)γ , (5)

and as we are assuming a 	CDM model with Einstein gravity, the
growth index is given by γ = 0.545 (Peebles 1984; Lahav et al.
1991).

2.2 Generating sky maps

We have created maps of 21 cm emission for different configura-
tions. We start from an N-body simulation and then we proceed to
create neutral hydrogen mass catalogues, that are finally converted
in brightness temperature maps. We also add foregrounds and
receiver noise to the combination.

2.2.1 Horizon Run 4 simulations

Since we are interested in simulating wide-field 21 cm intensity
mapping surveys, we start by using a halo catalogue from a very
large volume N-body simulation as the initial framework for the
neutral hydrogen. We have used the Horizon Run 4 (Kim et al.
2015) simulations to create our intensity mapping maps. It is an
N-body simulation run on a box of Lbox = 3150 h−1 Mpc. From the
dark matter particles in the light cone a halo catalogue was built
using a Friend-of-friends algorithm. The minimum halo mass is 2
× 1011h−1M� which correspond to 25 dark matter particles in the
original light cone. It is based on a flat 	CDM cosmology with a
matter density of �m = 0.26, a Hubble parameter at redshift zero of
H0 = 72 kms−1Mpc−1, and an amplitude of fluctuations on scales
of 8 h−1Mpc of σ 8 = 1/1.26.

The total number of haloes in the catalogue is 1654 566 127. In
Fig. 1, we show the mass halo function for haloes in the redshift
range sampled by Tianlai and the range we consider in this paper.
The simulation also include the velocities of the haloes. Using
this velocities, we can create a catalogue that includes the linear
redshift distortions. This redshift zv is given by the combination of
the cosmological redshift and the peculiar velocity one (Li et al.
2016; Davis et al. 2019)

(1 + zv) = (1 + ztrue)(1 + vz/c), (6)

Figure 1. Distribution of halo masses for haloes selected in the expected
redshift range for the Tianlai pathfinder. The sharp cut-off for the small
masses is due to the resolution limit of the HR4 simulation.

where ztrue is the true redshift given by the Hubble–Lemaı̂tre flow
and zv is the redshift that includes the effect of the peculiar velocity
in the radial direction vz.

2.2.2 Neutral Hydrogen mass modelling

As we are focusing in the post-reionization Universe, we can
assume almost all the neutral hydrogen content around redshift
z = 1 is inside dark matter haloes (Villaescusa-Navarro et al. 2018;
Spinelli et al. 2020). We assign masses of neutral hydrogen to dark
matter haloes based on the halo mass Mh and virial velocity vc,
following the halo model for neutral hydrogen developed in suc-
cessive improvements in Barnes & Haehnelt (2015), Padmanabhan,
Choudhury & Refregier (2016), Padmanabhan & Refregier (2017).
There are other approaches (e.g. Modi et al. (2019)), but since we
expect our signal to be dominated by the most massive neutral
hydrogen haloes, we find this prescription to be sufficient for our
use.

In Padmanabhan & Refregier (2017) the mass of neutral hydrogen
hosted in a dark matter halo of mass Mh is given by:

MHI(Mh) = fHIfH,cMh

(
Mh

1011h−1M�

)β

× exp

[
−
(

vmin
c

vc(Mh)

)3
]

exp

[
−
(

vc(Mh)

vmax
c

)3
]

, (7)

where fH I is a multiplicative constant that corresponds to the
amount of neutral Hydrogen with respect to the fraction of cosmic
Hydrogen, fH, c = (1 − Yp)�b0/�m0 where Yp = 0.24 is the
primordial Helium abundance. The model includes a logarithmic
slope β and two velocity cut-offs vmin

c and vmax
c . The reason for the

velocity cut-offs is that low-mass haloes are not capable of keeping
the neutral hydrogen while massive haloes heat the gas and it stops
being neutral. The values used for our simulation, which are partially
based on Padmanabhan & Refregier (2017) best fit to data, are
fHI = 0.17, β = −0.55, vmin

c = 30 km s−1 and vmax
c = 200 km s−1.

We have used different values for the cut-off velocity parameters
in order to find similar values of the hydrogen bias, as given in
observations. In order to define the virial velocity, we have used the
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Figure 2. Distribution of hydrogen masses following equation (7) at three
redshifts within the Tianlai redshift range and the HR4 simulation.

spherical collapse model as in

vc(Mh) =
√

GNMh

Rc

, (8)

where Rc(Mh) is the virial radius. Following Padmanabhan et al.
(2016), we determine the virial radius by

Rc(Mh) = 46.1kpc

(
�v�mh2

24.4

)−1/3 (
1 + z

3.3

)−1 (
Mh

1011M�

)1/3

.

(9)

We use �v given by the solution to a spherical top hat perturbation
collapse for a virialized halo for the flat 	CDM Universe, �k = 0
(Peebles 1980; Eke, Cole & Frenk 1996; Bryan & Norman 1998)
where

�v = 18π2 + 82x − 39x2, (10)

and x = �m(z) − 1. We show in Fig. 2, the average neutral hydrogen
mass for a given halo mass at three different redshifts. We can
observe that the mass distribution decreases with the massive haloes
cut-off while we do not reach the cutt-off in the least massive haloes
as the resolution of the Horizon Run 4 is not enough to reach the
quenching scale.

We can define the bias of neutral hydrogen, bHI(z) as

bHI(z) =
∫

dMn(M, z)MHI(M, z)b(M, z)∫
dMn(M, z)MHI(M, z)

, (11)

while the neutral hydrogen density parameter is:

�HI(z) = ρHI

ρc,0
= 1

ρc,0

∫ ∞

0
dMn(M, z)MHI(M, z). (12)

A more in-depth discussion of the neutral hydrogen bias, using
hydrodynamical simulations, can be found in Ando et al. (2019),
Wang et al. (2019). In Fig. 3 we show the bias estimated using
equation (11). The values are consistent with previous studies in the
literature (Marı́n et al. 2010). We use this parameter as a benchmark
parameter to test our simulated catalogues.

2.2.3 Brightness temperature maps

Once we have assigned hydrogen masses to the haloes in our
simulation, we can continue to the next step, the creation of intensity

Figure 3. Bias of neutral hydrogen for the haloes in our sample for the
the full redshift range of the Horizon Run simulation. The bias have been
measured using equation (11) and we measured the halo mass function and
the neutral hydrogen mass distribution from the simulation.

maps. In order to do so, we define a redshift bins configuration and
a given pixelization resolution. Then, we stack all the hydrogen
masses for all the haloes in each cube defined by an angular pixel
and a redshift bin. The corresponding mass MHI is what we use to
create the temperature maps. Following Battye et al. (2013), Bull
et al. (2015) we define the 21 cm brightness temperature as:

Tb(n̂, z) = 3hPlc
3A12

32πkbmhν
2
21

(1 + z)2

H (z)
ρHI(n̂, z), (13)

where kb is the Boltzmann constant, hPl is the Planck constant, mh is
the mass of the neutral hydrogen atom, A12 is the quantum efficiency,
c is the speed of light, and ρHI is the density of neutral hydrogen
in the volume given by the frequency and area, dν and d�, which
correspond the frequency (redshift) and pixel bins, respectively.

One caveat of our method is that we cannot access all the halo
masses that host neutral hydrogen as the HR4 simulation has a
lower limit for the mass of the haloes. As we do not have access
to all the halo masses, we do not completely sample the full ρHI

in a given volume cell. This lack of mass will produce a smaller
brightness amplitude Tb than the expected one in nature. As the
21 cm cosmological signal has a low amplitude, reconstruction
from a foreground dominated map becomes more difficult as
the amplitude of the cosmological signal from neutral hydrogen
becomes smaller. Therefore, we need to take into account the
shortfall of neutral hydrogen in the simulation by scaling the average
brightness temperature according to observations.

From equation (12), we see that ρHI is proportional to the density
parameter of neutral hydrogen, �HI. We can use measurements
of this parameter in order to calibrate the mean temperature of
our 21 cm maps. We have decided to follow the definition given
in Square Kilometre Array Cosmology Science Working Group
(2018), Cunnington et al. (2019). The approach is based on a
polynomial fit to the �HI data compiled in Crighton et al. (2015).

Both analysis (Square Kilometre Array Cosmology Science
Working Group 2018; Cunnington et al. 2019) define this fit as:

�HI(z) = 0.00048 + 0.00039z − 0.000065z2. (14)

We can compare this approach with other models in the literature.
Using the same data compilation Crighton et al. (2015) but a
different model for the redshift dependence given by �HI ∝ (1
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Figure 4. Comparison between theoretical descriptions of �HI given by
lines and measurements compiled in Crighton et al. (2015) (black circles).

Figure 5. Neutral hydrogen brightness temperature evolution with fre-
quency. We show three different theoretical models in the literature for
the mean temperature and the evolution in redshift of three different lines
of sight, from the mock temperature maps for both the temperature given
by the hydrogen mass from the HR4 haloes and the one rescaled following
equation (15).

+ z)0.6. In Battye et al. (2013), the density parameter is assumed
constant and fitted to low redshift data where �HI = 2.45e − 4. We
can see the comparison in Fig. 4.

Then, we re-scale the brightness temperature T̄ old
b given by

equation (13) in each map and pixel

T new
b (n̂, z) = T old

b (n̂, z)

T̄ old
b

T̄ new
b , (15)

so that the new mean temperature, T̄ new
b is given by:

T̄ new
b (z) = 180h0

(1 + z)2

E(z)
�HI(z)mK, (16)

where �HI(z) is given by equation (14).
We can see in Fig. 5 the effect of this rescaling in the mean

temperature and in the temperature fluctuations �Tb = Tb(x) − T̄b.
The change in the fluctuations is needed in order to recover the
right amplitude of the power spectra and the input bias from the
simulation from the pure 21 cm signal. We also compare our chosen
approach with other definitions of brightness temperature such as

Battye et al. (2013) where �HI was estimated assuming a constant
mean value and only low redshift data, which tends to indicate
a lower �HI or Chen et al. (2019) which also consider the data
compilation from Crighton et al. (2015) but assumes a different
model based on a power law of (1 + z) to define the redshift
evolution of �HI therefore deviating from the polynomial model
that we consider in equation (14) and that is defined in Square
Kilometre Array Cosmology Science Working Group (2018).

2.2.4 Foreground maps

Radio measurements are dominated by foreground radio emissions.
In order to study the influence of foregrounds on the measured
signal with our radio telescopes, we need to add or model them in
our simulated catalogues. In order to do so, we have created a suite
of foreground maps for each frequency bin considered in our mock
catalogues. In particular, we use the updated Global Sky Model
(GSM) (de Oliveira-Costa et al. 2008; Zheng et al. 2017) to generate
foreground maps as this method produces a good approximation to
the Galactic Diffuse emission.

GSM minimizes the cost function given by a matrix decomposi-
tion and the data of 29 frequency smoothed maps with frequencies
between 10 MHz and 5 THz using an iterative algorithm in which
the initial guess is made using a PCA decomposition of six
components of the data matrix. The GSM model maps include
mostly information from five different physical mechanisms: syn-
chrotron, free–free, CMB, warm dust, and cold dust. Using the
first six components of the PCA decomposition, we can produce a
foreground temperature map, T foreground

b (n̂), at a any given frequency
within the range of the algorithm.

2.2.5 Masking

We can create full-sky simulations for the cosmological 21 cm
signal. But much of the emission from Galactic Foregrounds is
coming from close to the Galactic Centre and the Galactic Plane.
Therefore, the first step to remove the signal from foregrounds is
to mask the highest intensity emission from the Milky Way. To do
so, we have considered a simple procedure in which we apply a
brightness temperature cut of Tb, mask = 8 K, and so every pixel with
Tb > Tb, mask is removed from the analysis.

We show in Fig. 6 the masks that we use regarding the Galactic
Emission. On the left we show in magenta the area removed from
the hydrogen maps in order to estimate the observed angular power
spectra, assuming that all areas of the sky are accessible, and in
yellow the area that is used. On the right-hand panel, we show the
mask used for the Tianlai survey, with the same colour scheme.
The yellow area is now also restricted to the footprint of the
Tianlai survey, since in considering this survey, we need to apply
a declination mask as Tianlai cannot access the southern ecliptic
hemisphere. Therefore, we only include the region for declinations
above δ > −40. We consider this mask only when using the noise
maps regarding Tianlai survey that we describe in Section 2.3.

2.3 Instrumental effects and Tianlai cylinder array

The last ingredient that we consider in our maps is the instrumental
noise. While the 21 cm cosmological signal and the foreground
signal are produced by astrophysical processes, the telescopes that
measure this signal have also an intrinsic thermal noise plus the
extraterrestrial signal is convolved with the instrument beaming.
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Figure 6. On the left, we show the masked region in blue when removing the galactic centre to reduce the foreground signal in the maps. On the right, we
show the mask used when considering the Tianlai pathfinder survey noise maps as this mask includes the information of the Tianlai footprint.

2.3.1 Map making for transit radio telescopes

Unlike a traditional radio interferometer that usually observes a
small patch of sky and exploit the Fourier transform mapping be-
tween the sky and the uv-plane by assuming the flat-sky approxima-
tion, the Tianlai cylinder array is wide-field transit interferometers.
The observable, visibility, measures different parts of the curved
sky as a function of time (i.e. the azimuthal angle φ). At any instant,
a visibility for any particular frequency is given by

Vij (φ) =
∫

d2n̂Bij (n̂; φ)T (n̂) + nij (φ), (17)

where nij(φ) represents the noise term and the beam transfer function
Bij (n̂; φ) is given by

Bij (n̂; φ) = Ai(n̂)A∗
j (n̂)e2πin̂·uij . (18)

Here, the visibility is measured by correlating the signals from
a pair of feeds i and j, located at positions ri and rj with uij ≡ (ri

− rj)/λ, where λ is the observed wavelength, n̂ is the sky direction,
and Ai(n̂) denotes the primary beam of feed i.

Recently, a novel ‘m-mode’ formalism for the analysis of transit
radio telescopes was proposed by Shaw et al. (2014). It provides
an easy way to linearly map wide-field interferometric data on the
full sky. The measured visibilities can be written as a summation
of spherical harmonic modes. By taking into account the fact that
the measured visibilities change periodically with the sidereal day
(i.e. the periodicity in φ), one can find a simple relation between
the so-called m-mode visibilities V ij

m and the sky by

V ij
m =

∑
�

B
ij

�ma�m + nij
m. (19)

Here, a�m and B
ij

�m denote the coefficients in the spherical harmonic
expansions of the sky T (n̂) and the beam transfer function B

ij

�m(φ),
respectively, which read

T (n̂) =
∑
�m

a�mY�m(n̂), (20)

Bij (n̂; φ) =
∑
�m

B
ij

�m(φ)Y ∗
�m(n̂). (21)

Following Shaw et al. (2014) and Zhang et al. (2016), one can then
group m-mode visibilities from all baselines of the array together
into a vector v, and similarly group m-mode harmonic coefficients
of the sky and m-mode noises for all baselines into vectors of a
and n, respectively. The measurement equation in equation (19) for
each m-mode thus can be further simply rewritten in matrix form
as

v = Ba + n, (22)

where we have expressed the beam transfer matrices in an explicit
matrix notation B. This equation is valid for any particular m and
frequency ν.

Using the maximum likelihood method, the best estimate of the
sky spherical harmonics coefficients from a given set of sampled
visibilities for each individual m and frequency ν is solved by

â = (B†N−1B)+B†N−1v, (23)

where the superscript + represents the pseudo-inverse. Here, we
assume that the instrumental noises at two different frequencies are
uncorrelated and the noise follows a complex Gaussian distribution
with zero mean and covariance <nn† > =N.

2.3.2 Configuration of the Tianlai cylinder array

The Tianlai Pathfinder presently consists of an array of three
adjacent cylinder telescopes, located in Hongliuxia, a radio-quiet
site in north-west China (44◦9′9.66

′′
N 91◦48′24.72

′′
E). Each of

the cylinders is 15 m wide and 40 m long. With wide field of view
radio interferometers, the Tianlai Pathfinder is dedicated to measure
the 3D maps of neutral hydrogen (the so-called 21 cm intensity
mapping) of the northern sky in the Universe by surveying neutral
hydrogen over large areas of the sky at low redshifts in the range
of 1.03 > z > 0.78 (700–800 MHz). Currently, the three cylindrical
reflectors oriented in the North–South direction, each having 33,
32, and 31 feed antennas, respectively (see Fig. 7).

For the Tianlai cylinder array, by assuming uncorrelated thermal
noises across all baselines and frequencies, the noise level (RMS)
in units of brightness temperature is given by (Thompson, Moran &
Swenson 2001):

σN
ij = (

Nij
m

)1/2 = Tsys√
�ν�tij

(
λ2

Ae

)
, (24)

where �tij is the total integration time of baseline ij, Tsys is the
system temperature, Ae is the effective area of antenna, λ is the
observing frequency, and �ν is the width of the frequency channel.
The system temperature is the sum of the sky brightness and the
analogue receiver noise temperature, Tsys = Tsky + Trec. At the
frequency of interest (700–800 MHz), the Tianlai array would be
expected to achieve a total system temperature of 50–100 K, and
thus we assume Tsys = 50 K in this study. We also assume two full
years of observation for the Tianlai pathfinder survey. The effective
antenna area Ae is calculated by Ae� = λ2, where the beam solid
angle � is well approximated by � � 0.1 for the current Tianlai
cylinder array.

By realistically simulating the noise visibilities for the Tianlai
instrumental configuration, the noise sky maps, T noise

b (n̂), for all
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1794 J. Asorey et al.

Figure 7. Configuration of the Tianlai pathfinder cylinder array. At present,
the array has three adjacent cylindrical reflectors oriented in the North–
South direction, each with 15 m wide and 40 m long. The three cylinders are
equipped with a total of 96 dual polarization receivers, which are irregularly
spaced on the cylinders. The number of feeds on each cylinder is 31, 32,
and 33, respectively, spanning the same distance of 12.4 m along the North–
South direction on each cylinder. The feed spacing is thus 0.388, 0.4, and
0.413 m, respectively.

frequencies from these visibilities are reconstructed by the above
map-making process with using the maximum-likelihood solution
in equation (23).

In the main analysis of this paper, we only consider Tianlai-like
noise when building the HIR4 maps, but for reference we show
here a comparison with a case based on SKA-MID phase 1 noise.
We can estimate the beam of the SKA survey by only considering
the baseline of the telescope. The intensity mapping beam size is
�beam = 1.133θ2. As defined in Cunnington et al. (2019), the beam
resolution is giving by

θbeam = 1.22c

νDbase
, (25)

where Dbase = 15 m for the SKA configuration.
We can also simulate the effect of a Gaussian beam with the pure

21 cm maps. In order to do so, we have smoothed the 21 cm intensity
mapping field in each frequency beam with a Gaussian filter with a
smoothing scale given by equation (25) (Cunnington et al. 2019).

2.4 Observed temperature map

We define the observed temperature map as the one that combines
the cosmological signal from the simulation, the foregrounds and
the observational noise. We define the observed temperature as:

T obs
b (n̂) = T HI

b (n̂) + T
foreground
b (n̂) + T noise

b (n̂), (26)

where T HI
b (n̂) is the brightness temperature of cosmological neutral

hydrogen at pixel given by position (n̂) given by equation (13)
and with the mean temperature rescaled as given by equation (15).
Then we add the brightness temperature, T

foreground
b (n̂), from the

same pixel in the foreground map, created using the GSM, at
the mean frequency of the corresponding frequency bin, following
prescription in Section 2.2.4. Finally, we can add the value of the
noise temperature at that angular position given by the Tianlai noise
maps explained in Section 2.3.

In Fig. 8, we show how the beaming affects the expected signal
when we use all the information in the frequency bin 790–800 MHz.
The SKA noise assume 10 000 h of integration, leading to a noise
variance of σ = 4.4 × 10−5 mK, whereas the expected average noise

Figure 8. Example of angular power spectrum for the cosmological 21 cm
temperature maps (black solid), maps with foreground signal (black dot-
dashed), maps with foregrounds and the expected dish beam and noise
maps for SKA-MID phase 1 receivers (red solid). We also show the power
spectra of the noise alone for Tianlai (cyan dot-dashed) and SKA-MID
phase 1 (black dotted). The frequency band in this case is 790–800 MHz.
The SKA-MID phase 1 noise assume 10 000 h of integration, leading to a
noise variance of σ = 4.4 × 10−5 mK, whereas the expected average noise
for Tianlai is σ = 2.6 × 10−4 mK.

for Tianlai given one year of integration is σ = 2.6 × 10−4 mK.
Note that in this paper we generate full-sky simulated noise maps
for Tianlai, assuming two full years of observations, to use in the
analysis pipeline, but show that this assumption of one year on
the sky gives a similar noise value to the simulated maps at large
angular scales. We can see that the effect of the noise on the power
spectrum for SKA-MID phase 1 is much smaller than the effect of
a Gaussian beam, given by 25, over the range of multipole values
that would be considered for cosmological analysis.

2.5 Analysis methods

2.5.1 Reconstruction methods

The goal of any reconstruction method is to decompose the map
into a set of signals with some different qualities or attributes.
In the case of 21cm, we use reconstruction methods to split the
map into the foreground part (generated locally to our Galaxy) and
the cosmological part, based on the assumption that the frequency
dependence of the two will be very different. In this section we
describe three such methods, fast independent component analysis
(fastICA), PCA, and log-polynomial fitting.

fastICA: The fastICA method assumes that the maps can decom-
posed into a set of signals with some non-Gaussian distribution (the
foregrounds) and some Gaussian noise (the cosmological signal).
This is given by

x = As + n. (27)

Here x is the final map, which will be split up by pixel and
frequency bin, s is vector of components, with an amplitude for each
component that depends on the position in the map, A is the mixing
matrix that defines how the components evolve with frequency, and
n is the distribution of Gaussian noise. Note that the data is ‘pre-
whitened’, such that the mean in each frequency bin is removed,
and only replaced during the reconstruction phase. This means that
the mean temperature of each bin, which is a sum of the mean of the
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HIR4: neutral hydrogen sky simulation 1795

21 cm cosmological signal and the mean of the foreground emission
at that frequency, cannot be reconstructed by this process, and only
the distribution of fluctuations can be separated.

In our implementation, the non-Gaussian components should
correspond to the foregrounds, which should be well behaved
and continuous in frequency space. In contrast, the intensity of
the cosmological 21 cm emission depends on the mass of neutral
hydrogen present in the ‘voxel’, which is a stochastic quantity with
a Gaussian distribution, and so resembles the noise in a fastICA
reconstruction process. As such, the reconstructed map will be given
by

xrecon = xdata − As, (28)

where xrecon is the reconstructed map, ordered by pixel and fre-
quency bin, which includes both the cosmological 21 cm distribu-
tion and the Gaussian noise from the instrument.

The method used to estimate s the vector of components, and
A the mixing matrix, is very similar to that described in Chapman
et al. (2012), Wolz et al. (2014) and other, previous works. Using the
implementation of fastICA as part of theSCIKIT-LEARN python
machine learning package (Pedregosa et al. 2011) we maximize
the negentropy, defined by J(y) = H(ygauss) − H(y), assuming
the negentropy is approximated by a log cosh (y) function. The
negenetropy functions as a measure of distance from Gaussianity,
and so maximizing it with respect to the components should remove
the foreground signal, leaving behind the Gaussian cosmological
signal.

PCA: For the PCA method, we again work with ‘pre-whitened’
data, where the mean of the simulated data has been subtracted.
From this we compute the data covariance matrix, looking at
the covariance between different bins in frequency space. We
then compute the eigenvectors and eigenvalues of this frequency–
frequency covariance matrix. Since the foregrounds dominate the
power in maps at all frequencies, they will dominate the eigenmodes
with the highest eigenvalues. Also, the foregrounds are expected to
have smooth frequency structure, so that they could be described
by just a few smooth frequency eigenvectors. With these reasons,
finally we project out the principal components with the largest
eigenvalues in frequency space from every spatial pixels to obtain
foreground cleaned maps. However, correlations in frequency space
can also be slightly generated cosmologically, and so again this
foreground removal approach may also have the effect of removing
the 21 cm signal from the power spectrum over all scales.

Specifically, following de Oliveira-Costa et al. (2008), we reshape
the 3D observed data into an Nν × Nθ matrix x, where Nθ contains
all 2D spatial pixels (the same as in the fastICA approach). The
empirical ν − ν covariance of the data is

C = xxT

Nθ

. (29)

By using the PCA analysis, the matrix C can be decomposed into
C = U� UT, where � is diagonal and contains the eigenvalues in
descending order and U is an orthogonal matrix whose columns are
the eigenvectors (i.e. the principal components). Now we define the
deprojection matrix, � = I − USUT. Here I is the identity matrix
and S is a selection matrix with 1 along the diagonal for modes to
be removed and 0 elsewhere. We can then apply � to our map along
each line of sight

xrecon = xdata

[
I − USUT

]
, (30)

in order to project out the selected principal components which are
significantly dominated by foregrounds.

log-polynomial fitting: For the log-polynomial fitting, we do not
use the pre-whitened field but take the raw combined map x and try
the linear least-square fitting with an n-th order polynomial,

log T (n̂, ν) =
n∑

j=0

sj (n̂) (log ν)j , (31)

at every direction n̂. We do not consider the noise covariance matrix
at this point, such that the fitting becomes equivalent to

y = As, (32)

at every direction n̂, with y ≡ {log T (n̂, νi)}, Aij ≡ (log ν i)j and s ≡
{sj (n̂)}. The best-fitting parameter set is then given by the estimator

ŝ = (AT A)−1AT y, (33)

where the superscript T denotes the transpose. The reconstructed
map is then given by xrecon = xdata − Aŝ just as in equation (28).
This is obviously not the best practice that considers the property
of the noise, but is one that just relies on the smoothness of the
foreground. One can of course follow the procedure by de Oliveira-
Costa et al. (2008) with the noise covariance matrix N ≡ 〈nnT〉 for
a better estimator,

ŝ = (AT N−1A)−1AT N−1y, (34)

once N properly reflects the instrumental noise and the cosmic
signal. Because the log-polynomial fitting is already found to be
out-performed by PCA in a wide range of frequency (de Oliveira-
Costa et al. 2008), we simply use equation (31–33) in this work to
illustrate its relative power.

2.5.2 Angular power spectrum

In order to study the cosmological information encoded in our maps,
we decompose the distribution of intensity in a certain basis set (in
this case spherical Bessel functions). If the continuous intensity field
in a particular direction T (θ ) is Gaussian and randomly distributed,
then it can be decomposed into its multiple moment using spherical
harmonics Y�m

a�m =
∫

dθY ∗
�mT (θ ). (35)

Assuming an isotropic universe, we get the power spectrum from
the autocorrelation function,〈
a∗

�ma�′m′
〉 = δ��′δmm′C�. (36)

Since the spherical Bessel functions are dimensionless, the spherical
harmonic coefficients a�m must have units of intensity or tempera-
ture per unit area, and the power spectrum C� ∝ T2.

To measure the angular power spectrum we used theNaMaster1

code (Alonso, Sanchez & Slosar 2019), which uses the pseudo-Cl
(aka MASTER) approach, including the effect of the sky mask.

2.5.3 Covariance matrix

Finally, we need to include the measurement errors on the angular
power spectra in order to constrain the cosmological parameters. As
we are focusing on the linear scales in this paper, we assume that
the density field is linear and described by a Gaussian distribution,
in order to define the covariance matrix. When considering a full

1Downloaded from https://github.com/LSSTDESC/NaMaster.
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1796 J. Asorey et al.

Figure 9. Correlation matrix r = Cij /(
√

CiiCjj for the different �-values
considered in our cosmological analysis for the f = 790–800 MHz frequency
bin.

sky map, it might be possible to assume that the different modes are
not correlated, giving the standard relation that

Cov(C�,C�′) = Var(C�)δ�,�′, (37)

where the cosmic variance component of the angular power spectra
variance is given by

Var(C�) = 2C2
�

N (�)
, (38)

where N(�) = (2� + 1)��fsky is the number of modes for each
multipole � (Cabré et al. 2007; Crocce, Cabré & Gaztañaga 2011;
Asorey et al. 2012). The variance depends therefore on the fraction
of sky used for the cosmological analysis, fsky = Asurvey/Asphere, and
on the amplitude of the multipole bins �� used to measure the
angular power spectra. As we include the effect of the angular mask
by drawing theoretical realizations of the density field, we assume
fsky = 1 when using equation (38) to get the first estimates of the
cosmological parameters before re-doing the analysis with a more
realistic covariance matrix.

However, we will be removing part of the sky to reduce the effect
of foregrounds, and so mode–mode coupling in the cut sky can
lead to non-zero off-diagonal elements in the covariance matrix
(e.g. Brown, Castro & Taylor 2005). To estimate the full covariance
matrix for the intensity map, including cut-sky effects, we would
need a large number of simulated skies, each a different realization
of an n-body simulation. Horizon Run 4 is only a single realization,
and we do not have multiple simulations of equal volume and
resolution available. To get around this problem, we create a large
number of Gaussian simulated skies, nrealizations = 100, with the same
measured power spectrum as the HR4 intensity map. We then used
NaMaster to measure the power spectrum and cross-correlations
between �-values across the ensemble of Gaussian realizations to
estimate the co-variance. We show an example of the correlation
matrix in Fig. 9 of the f = 790–800 MHz frequency bin angular
power spectrum.

2.5.4 Cosmological parameter estimation

Once we have the measured angular power spectrum and estimated
the covariance matrix, we can use this to estimate values of the
cosmological parameters. The results from this parameter fitting can
be used to indicate if there is any bias/offset that has been introduced
by the reconstruction methods. In this case we choose the amplitude

scaling parameters, the linear bias b, the growth rate f and the
background 21 cm temperature T̄21. We fix the other cosmological
parameters to the values specified in Section 2.2.1.

To speed up the analysis, we decompose the angular power
spectrum into the term that depends only on the bias, the term
that depends only on the RSD effect, and the cross-term between
the two. Following the approach of Asorey et al. (2012), Asorey,
Crocce & Gaztañaga (2014), we can reconstruct any angular power
spectrum in the parameter space of {b, f , T̄b} through the following
equation

C� = T̄ 2
21

[
b2Cno rsd

� + f 2Cno bias
� + 2bf Ccross

�

]
. (39)

This approach assumes no growth or bias evolution through the
redshift bin, which is justified given the very thin redshift slicing
that can be performed. It also fixes the overall amplitude of the
cosmological density field σ 8.

We see from equation (39) that the background 21 cm temperature
parameter is completely degenerate with a combination of the
growth and bias parameters. Of these three parameters then, only
two can be independently measured by the 21 cm autocorrelation
angular power spectrum. (This degeneracy can be broken with cross-
correlations with other tracers, but we leave that discussion for the
future.) We fix T̄b, and measure the combinations T̄bb and T̄bf .

We use Bayes’ theorem to estimate the posterior distribution of
the free parameters θ of our model, given the mock data generated
from HR4 D. Bayes’ theorem is given by

P (θ |D) = P (D|θ )P (θ )

P (D)
. (40)

Here P(θ |D) is the posterior, P(θ ) is the prior, and P(D|θ ) is the
likelihood. P(D) is the evidence, which here is an unimportant
overall normalization factor.

For the likelihood we use the χ2 with Gaussian errors, such that

χ2 = RT C−1R, (41)

where R is the array of the residual, the difference between the
theoretical value from equation (39) and the data. We weight this
difference with the inverse of the covariance matrix C = Cov(C�,
C�′ ), defined in Section 2.5.3 and it is constant when sampling the
space of parameters. Finally, the prior is set such that both b and f
> 0, with some large upper limit.

We use the affine-invariant ensemble sampler, known as MCMC
hammer and described in Foreman-Mackey et al. (2013),2 to sample
the parameter space.

3 R ESULTS

3.1 Maps

We have created full sky maps in the 700–800 MHz frequency range.
We have created pure 21 cm maps for three different bandwidths,
df = 2.5, 5, and 10 MHz. This matches the expected frequency
range of the Tianlai survey. Although we can go up to frequency
bands of df = 1 MHz, we have decided to test this three different
configurations to test our simulated maps, our pipeline, and the
growth rate of structure test with different layers of systematic
errors.

In Fig. 10 we show a 21 cm map for the frequency bin of f =
790–800 MHz as an example of our mock pure 21 cm maps. This

2The code emcee can be found at https://github.com/dfm/emcee.

MNRAS 495, 1788–1806 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/495/2/1788/5829880 by guest on 10 April 2024

https://github.com/dfm/emcee


HIR4: neutral hydrogen sky simulation 1797

Figure 10. Neutral hydrogen map for frequency f = 790–800 MHz and nside = 512 generated from the full sky HR4 halo catalogue.

Figure 11. On the left, neutral hydrogen map for frequency f = 790–800 MHz and nside = 512 generated from the full sky HR4 halo catalogue and combined
with a foreground map generated using the GSM model at f = 795 MHz. On the right, same map is masked with the MW mask shown in the left-hand panel
of Fig. 6.

map contains the cosmological information encoded in the neutral
hydrogen as tracer of matter in the redshift range 0.775 < z < 0.797
given by the frequency band in which we have chosen to select
galaxies when splitting the total frequency range in 10 bins with
bandwidths of df = 10 MHz. We must notice that we are capable of
producing full sky maps because the HR4 halo catalogue is a full
sky simulation up to redshift z = 1.5.

However, we show the contrast with a map that includes the
foreground emission in Fig. 11. We see that the amplitude of
the foreground signal is significantly higher than the cosmolog-
ical signal. The first attempt of foreground removal we applied
consisted on applying the Milky Way cut to remove most of the
Galactic Diffuse emission. This is shown in the right-hand panel of
Fig. 11.

In Fig. 12, we show a comparison between the different compo-
nents that we consider on our maps. On the right-hand panel, we
show a patch of the map shown in Fig. 10 which corresponds to
the brightness temperature of neutral hydrogen in the frequency bin
790–800 MHz. On the left-hand panel, we show what corresponds to
an observed map, without considering receiver noise. This map only

includes the information from the cosmological neutral hydrogen
brightness temperature and the foreground signal in the same
redshift range given by the GSM. As can be seen, no structure
can be distinguished when the foregrounds are added. In the central
panel, we show the reconstructed brightness temperature map when
fastICA has been applied to the map on the left-hand panel and
considering two components. We can recognize the structure on the
right-hand panel in the middle panel.

3.2 Reconstructed angular power spectra

We define the reconstructed angular power spectra as the ones given
by the maps obtained after removing foregrounds, first with a Milky
Way mask, and secondly applying a foreground removal algorithm.

3.2.1 Transfer functions

The main goal of foreground removal is to reconstruct the original
cosmological information. When we compare the reconstructed
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1798 J. Asorey et al.

Figure 12. On the left, we show the observed map that includes the cosmological signal and the radio foreground signal. On the centre, the fastICA recovered
map is shown after removing first two non-Gaussian components. On the right-hand panel, we show the original cosmological map. We can see how the central
and the right-hand panels are similar.

angular power spectra C� after foreground removal with the an-
gular power spectra from the cosmological maps, we find that
the foreground removal process removes partially cosmological
information as seen in Fig. 12.

The approach we have used in order to try to reconstruct the
removed cosmological information is to define a transfer function,
T�:

C21
� = T�C

21,f r

� (42)

that is calibrated using the pure cosmological 21 cm map, C21
� and

the same map once we run our foreground removal (fr) method on
it, C

21,f r

� . The procedure is simple, we run the foreground removal
technique on the simulated cosmological 21 cm maps in order to
measure C

21,f r

� . Then, we fit the ratio C21
� /C

21,f r

� to the following
functional form of a transfer function:

T� = exp−�� log � +C (43)

given by a power law in the large scales and a constant in the
small scales. The reason for this is caused by the fact that the
foreground removal techniques tend to remove information from
the long-wavelength modes. To calibrate this effect in the large
scales, we consider a normalization scale in the power-law term, ��.
while we just calibrate the transfer function in the small scales by
the best-fitted constant C. If the foreground removal technique is
working nicely, this constant should be close to 1.

We repeat this approach for each map used in this paper. When we
run the foreground removal algorithm on a map with foregrounds,
we apply this fitted transfer functions T� to each measure angular
power spectra to correct from the effect of foreground removal on
cosmological information.

In Fig. 13 we show the ratio between the cosmological power
spectra and the power spectra of the foreground removed maps.
We also show the transfer function best fit for the df = 10 bin
configuration.

We show a table with all the best-fitting values for each frequency
bin in Appendix A.

3.2.2 Frequency bin width of 10 MHz

We need to understand the physics of the different maps included in
this analysis by first measuring the auto-angular power spectra. In
Fig. 14, we show some examples in order to understand and test our
simulated maps. We show the angular power spectra for the f = 700–

Figure 13. We show the transfer function for the 10 bins in the df = 10 MHz
configuration, from the lower redshift bin on the top left to the higher redshift
bin in the bottom right. The black circles correspond to the ratio between
C21

� /C
21,f r
� while the dashed line corresponds to the function given by

equation (43) and the best-fitting values of �� and C for each frequency bin.
The solid line corresponds to the best-fitting value of C in each redshift bin.

710 MHz bin, which corresponds to a redshift range z = 1–1.03 and
it is the highest redshift bin we consider in this bin configuration. In
the top left-hand panel of Fig. 14, we show the angular power spectra
C� for the pure cosmological signal (black circles). In red circles,
we can see the signal given by the map produced after removing
two components of the fastICA decomposition, while we see the
signal given by the map after removing three components is given
by the blue squares. We can see how we are removing cosmological
information, as the amplitude of the power spectrum is smaller. We
have considered the highest redshift bin because it is on the edges of
our frequency range where the fastICA reconstruction performance
is worse.

We can see the effect of the transfer functions in the top right-
hand panel. In this case, we have applied the transfer function
correction to the angular power spectra of the top left panel and
as can be seen, we recover the original information. But this only
happens when we run the foreground removal algorithm on the pure
cosmology maps. When we include the foreground maps from the
GSM model, we do not completely remove the information from
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HIR4: neutral hydrogen sky simulation 1799

Figure 14. We show the angular power spectra for the f = 700–710 MHz frequency bin. On the top left, we show a comparison between the pure 21 cm
signal and the angular power spectra corresponding to fastICA foreground removal maps for two and three components. On the top right, we apply the transfer
functions to recover the original cosmological information. On the bottom left, we apply the transfer function to the maps with foregrounds, after foreground
removal. Finally in the bottom right we include the Tianlai pathfinder noise map. The black dashed line corresponds to the simulation input.

the foregrounds, and therefore the amplitude of the angular power
spectra of the corrected maps is higher than the one coming only
from the large-scale structure temperature fluctuations. This can be
seen in the right-hand bottom panel. Finally, if we include the noise
maps predicted for Tianlai, we can see how the noise signal is the
predominant one, even after foreground removal, in the left-hand
bottom panel. The wiggles that can be seen in the bottom left-
hand panel in Fig. 14 are due to the effect of the Tianlai baseline
on the measurement beam. This beam presence is seen in any
single measurement in maps that include our simulated Tianlai noise
maps.

3.2.3 Frequency bin width of 5 MHz

We studied the effect of including more frequency bins in the fore-
ground removal recovery of cosmological information. In Fig. 15,
we show the angular power spectra for the lowest frequency bin 700–
705 MHz. We can see that even the maps produced directly by the
fastICA foreground removal, with no transfer function correction,
are closer to the cosmological power spectrum than the maps for
the df = 10 MHz case, as shown in top left-hand panel of Fig. 15.
This is due to the fact that the bigger the number of frequency
bins, the better we trace the smooth evolution with frequency of
the foregrounds. We can see in this same panel that when the

foreground removal is more efficient, we also remove cosmological
information as the amplitude of the angular power spectra of the
maps produced by fastICA foreground removal is smaller than
the original signal. This is due to the fact that the algorithm is
unable to distinguish between the cosmological signal and the radio
foregrounds.

By definition, we show in the top right-hand panel that the transfer
function allow us to recover the original input. On the bottom left-
hand panel, we show the effect of applying foreground removal
and transfer functions to the map with foregrounds and we see
that we almost recover the original information. Therefore, the
increase on the number of frequency bins is significantly improving
our reconstruction of the cosmological information encoded in the
observed maps.

Finally, we still see that the noise is the main signal on the
recovered maps in the bottom right-hand panel, as the amplitude of
the noise map is significantly higher than the cosmological signal.
This implies that receiver noise and the smoothing caused by the
survey strategy is the main systematic regarding the recovery of the
original simulation information.

We also notice that there is almost no difference between both
foreground removal maps, either if we remove only two components
or three components. If this is the case, then using only the two
component maps is a more reasonable option.
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Figure 15. In this figure, we show the angular power spectra for the f = 700–705 MHz frequency bin. The top left-hand panel shows a comparison between
the pure 21 cm signal and the angular power spectra corresponding to fastICA foreground removal maps for two and three components. On the top right, we
show the reconstruction with the transfer functions to recover the original cosmological information. On the bottom left, we show the reconstruction with the
transfer function for the maps with foregrounds. Bottom right-hand panel includes the Tianlai pathfinder noise map and the simulation input (dashed line).

3.2.4 Frequency bin width of 2.5 MHz

We finally test the smallest frequency configuration we are consid-
ering, the one in which the frequency bins have a bandwidth of df =
2.5 MHz, which corresponds to 40 bins in redshift. This is the best
sampling of the frequency evolution that we use in this paper. By
evaluating Fig. 16, we see almost no difference with respect to the
df = 5 MHz case shown in Fig. 15. The most noticeable difference is
the fact that the reconstructed map given by two or three foreground
removal components are even more indistinguishable than before.
This happens because the more frequency bins we consider, the
better the foreground removal technique works and the foregrounds
are better removed with less components. Therefore, the conclusions
extracted from the previous case are the same here.

3.3 Cosmological constraints

In order to understand the cosmological information encoded in
the simulation, to benchmark our H1R4 catalogues and to estimate
how the foregrounds and the receiver noise affect the constraints on
the growth rate of structure. Our procedure consisted on fitting the
individual angular power spectrum of each redshift bin, for each bin
configuration in the different catalogues introduced in Section 2.4.
When fitting the cosmological maps given by T obs

b = T HI
b or the

maps that include foreground signal, T obs
b = T HI

b + T
foreground
b we

restrict the fitting of the angular power spectrum to the scales � =
20–200. When we include the noise, the information on the small
scales is meaningless for cosmology purposes and we limit our
analysis to the scales between � = 20–60.

In order to include the information from the covariance matrix,
we have done a preliminary fit assuming a linear Gaussian errors.
Then, once we have a best-fitting values on the bias b(z) and the
growth f(z), we created Gaussian realizations using a theoretical
power spectrum for each bin given by the best-fitting parameters.
When obtaining a most realistic covariance matrix, we have also
considered the effect of the mask in which can imply the apparition
of off-diagonal elements in the covariance matrix, although they
may be small as shown in Fig. 9. The cosmological constraints
shown here are the ones that were obtained using the full covariance
matrix information.

3.3.1 Frequency bin width of 10 MHz

We have constrained the values of the neutral hydrogen bias
and the growth rate of structure for different bin configurations
and foreground and noise levels. For each bin configuration,
we have increased the layers of complexity by adding fore-
ground signal and receiver noise. In addition, we tested the
effect of foreground removal techniques in the cosmological
constraints.
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HIR4: neutral hydrogen sky simulation 1801

Figure 16. Same as Figs 14 and 15 for the f = 700–702.5 MHz frequency bin. On the top left-hand panel, we show a comparison between the pure 21 cm
signal and the angular power spectra corresponding to fastICA foreground removal maps for two and three components with the correction function applied
in the top right-hand panel. We show the same on the bottom left but when the maps include the radio foregrounds. Finally in the bottom right we include the
Tianlai pathfinder noise and all the plots include the input value from the simulation (dashed line).

We see on the top panel of Fig. 17 the constraints on both
the hydrogen bias and the growth rate of structure when we only
consider the cosmological information in our simulated maps. In this
case, we recover the cosmological signal that was used to generate
the mock hydrogen catalogues. But we also show what happens if
we run the foreground removal algorithm on the 21 cm cosmological
maps. On the same panel we can see how the best-fitting values on
the bias are smaller than the theoretical expected values. This is
due to the fact that with only 10 bins the reconstruction, which is
based on segregating the smooth signal from the foreground from
the density fluctuations in the temperature field. Let us remind that
there is much more fitting bias when measuring the hydrogen bias
b(z) than when measuring the growth rate f(z). This happens because
the hydrogen bias is mostly constrained by the small scales as it
affects all the scales, while the growth rate only affects the larger
scales as the linear redshift-space distortions only add a boost in
the amplitude at large scales. This is the reason why the bias on the
growth rate is much smaller.

When we include the foregrounds and repeat the same fit to
the same cosmological parameters, we obtain the plot shown in
the middle of Fig. 17. In this case, the best-fitting values for the
hydrogen bias continue to be biased with respect to the input
theoretical values used to generate the catalogues. Again, the growth
rate values are recovered for the same reasons stated above. The
only main difference with respect to the previous plot is that we
need higher values on the bias in order to fit the observed angular

power spectra show in the bottom left-hand panel of Fig. 14 as the
addition of foregrounds in the map makes the foreground removal
less efficient.

Finally, in the bottom panel we see that when considering the
noise maps, it is impossible to recover the bias information because
all the small scale information is destroyed by the beaming. As
the bias is not constrained, we obtain best fits on the growth rate
consistent with no redshift-space distortions as the noise avoids this
possibility.

3.3.2 Frequency bin width of 5 MHz

We checked how the narrowing of the binning affects the reconstruc-
tion of the cosmological information after foreground removal. We
show in the top panel of Fig. 18 how the addition of more frequency
bins affects the performance of fastICA. Comparing with the top
panel of Fig. 17, where there were only ten frequency bins, we find
that the best-fitting values for the hydrogen bias and growth rate are
closer to the input values. This is explained by the better sampling of
the evolution of the foreground temperature maps with frequency,
allowing for a better reconstruction of the cosmological signal and
a more accurate fit.

We also notice a similar pattern in both cases (df = 5 and df =
10) in which the constraints for both the bias and the growth rate
of structure at higher redshifts are more biased (less accurate)
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1802 J. Asorey et al.

Figure 17. The 68 per cent confidence limit on the linear bias b(z) and
the growth rate of structure f(z) as a function of redshift bin for the df =
10 MHz case. Top panel shows the case in which only 21 cm pure maps are
considered (and no transfer function applied), middle panel considers the
case in with foreground signal while the bottom panel shows the constraints
when including the noise map. In both middle and lower panel the fit is
done by applying a transfer function. We include the HR4 theoretical values
(dashed lines).

than at lower redshifts. (Compare the top and middle panels of
Figs 17 and 18). This happens because the reconstruction method
removes more power on all scales at higher redshift than at lower
redshift, as can be seen on Fig. 13 for the df = 10 MHz case. This
removed power cannot be easily corrected for, even when using
the transfer function, as the reduction in cosmological power is
not matched when reconstructing a foreground contaminated sky.

Figure 18. The 68 per cent confidence limit on the linear bias b(z) and
the growth rate of structure f(z) as a function of redshift bin for the df =
5 MHz case. Top panel shows the case with 21 cm cosmological maps and
two different fastICA reconstructions (without correction). Middle panel
considers the case with foreground signal and the bottom panel shows the
constraints when including the noise map. We include the simulation input
with the dashed lines).

In particular, for fastICA, there is the possibility is that the small
number of angular modes present in the sky map on very large scales
means that the power on these scales is not Gaussian distributed
(owing to cosmic variance). The fastICA reconstruction method
is then flexible enough to ‘fit’ and remove this non-Gaussianity,
though it is not clear why this only happens at high redshift. This
problem regarding non-Gaussianities is not as large in PCA and log-
polynomial fit algorithms, but both of these reconstruction methods
also suppress cosmological information on all scales, as they are not
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HIR4: neutral hydrogen sky simulation 1803

able to segregate all foreground components from the cosmological
signal and to model completely the foreground signal, respectively.

In the middle panel, we show the best-fitting parameters for the
case in which we added the foreground signal to the cosmological
maps. Again, the recovery of the growth rate is much better than the
recovery of the bias values. But we also notice that we can measure
the growth rate of structure with a 10 per cent precision.

When we introduce the noise we do not recover the theoretical
value of the bias. As we restrict our fitting at �max = 60, we obtain
less offset (or more accurate) fits on the growth rate of structures by
degrading the precision of the fit.

3.3.3 Frequency bin width of 2.5 MHz

The configuration with the narrowest bin configuration, df =
2.5 MHz, should allow for a better reconstruction of the cosmo-
logical information as it allows us to sample better the smooth
components from the foregrounds. We can see this in the different
panels of Fig. 19. On the top panel we see that for a conservative
foreground removal approach we almost do not remove part of the
cosmological signal as in the previous cases. This is an improvement
with respect to the previous cases due to the better sampling of the
frequency range. The reason that removing only two components of
the fastICA decomposition works better than for three is due to the
fact that when we remove more components the risk of removing
cosmological information increases, as it happens in this case.

When we also include the foreground signal in the maps, we also
do better foreground removal if only considering two components of
the fastICA decomposition. The recovering of the input parameters
is also good at higher redshifts as the narrower redshift bin improves
the foreground removal. We can measure the growth rate with a
precision of 10 per cent again in this case.

Finally, we see the same pattern than in the df = 5 case when
introducing the noise on the mock maps. By reducing the scales
included in the fitting, � = 20–60, we cannot measure the hydrogen
bias as we do not include the small scales but we can measure the
growth rate of structures with a 100 per cent precision.

3.4 Foreground removal comparison

In the previous results we only considered the maps after foreground
removal reconstruction given by fastICA. In this section we explore
the alternative reconstruction methods.

In terms of the PCA reconstruction, we found that the results to
be very similar to those from fastICA, with the same number of
modes. Once again, increasing the number of PCA modes from n =
1 to n = 2 had a noticeable impact on the cosmology recovered,
significantly reducing the offset between the measured posterior
and the posterior for the 21 cm only case. Changing from n = 2 to
n = 3 introduced no significant change in the size of the measured
offset, considering all of the bins as a whole.

In terms of the in log-polynomial fitting, we first experi-
mented with various n (maximum order of polynomial), with
equations (31)–(33). We found that n = 3 gives the best result in
the frequency range [700–800] MHz in removing the foreground.
This result seems to be due to the smallness of n that is just optimal
to mimic the smoothness of the foreground. We also found that
the goodness of reconstruction, in terms of the recovered angular
power spectrum, depends on the frequency ν i. This reflects the
relative weakness in the polynomial fitting, as is also demonstrated
by de Oliveira-Costa et al. (2008, fig. 3). As shown in that paper,

Figure 19. Same as Figs 17 and 18 for the df = 2.5 MHz case. In the top
panel we show the best fit for the case with pure simulated cosmological
maps (without corrections). The dashed line represents the simulation input
information. Middle panel includes the GSM foreground signal. We include
the results for two (red circles) and three (blue squares) fastICA components
in the reconstructed maps. The bottom panel shows the best fit when
including Tianlai noise.

the log-polynomial model is not as good as describing the physics
of the foregrounds as the log-polynomial model is simpler than the
real physical model.

In Fig. 20 we show a comparison between the fits for the hydrogen
bias, b and the growth rate f(z) when considering the fastICA and
the PCA reconstructed maps with ncomp = 2 and when removing
components using a polynomial of third order. From the previous
results we learned that this number of components is enough in terms
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1804 J. Asorey et al.

Figure 20. Comparison between foreground removal techniques. We show
the constraints on the hydrogen bias and the growth rate for the fastICA,
PCA, and log-polynomial fitting reconstructed maps, including the transfer
functions, for two components and order three for the polynomial.

of foreground removal and we also consider the case with frequency
bins of df = 2.5 MHz as this configuration produces the best
reconstruction. By inspecting the figure, we see that both fastICA
and PCA methods provide equally good results while polynomial
method does not recover that well the growth rate information,
especially on the first and last redshift bins. Therefore, we decided
to use fastICA in this study arbitrarily as there is no method that
performs better than the other. However, we may consider to use
PCA for future analysis as its reliability is also quite good.

4 SU M M A RY

With the rise of radio cosmology, hydrogen intensity mapping has
been raised as a promising cosmological probe. Currently there
are a number of different SKA pathfinders that are producing the
first wide-field intensity mapping surveys. In order to understand
the systematic errors, which we expect from radio foregrounds and
receiver noise and beaming, and the possibilities of improving the
cosmological constraints in the near future with this type of survey,
we need to develop sophisticated cosmological and observational
simulations.

We have created the first simulations of 21 cm intensity map
signal across the entire sky produced using the HR4 simulations.
The simulated catalogues can cover the full sky up to redshift
z = 1.5. To match the frequency range of the Tianlai pathfinder
experiment, in this paper we have focused on the range 700–
800 MHz. Starting from the Friend-of-friends halo catalogue, we
have applied a halo model in which the neutral hydrogen mass
contained in each halo is given by the dark matter halo mass and the
virial velocity of the halo, obtained assuming a spherical collapse
model, following the prescription of Padmanabhan & Refregier
(2017). In particular, neutral hydrogen populations are suppressed
in low-mass haloes, as the gas is not bound to the halo, and in more
massive haloes as the neutral hydrogen gas is heated and becomes
excited. Once we have a sample of haloes with neutral hydrogen,
we convert the mass in a given redshift bin and an angular pixel
to a brightness temperature, and generate our set of maps for each
frequency band.

To test the consistency of our analysis process, and also to
forecast the effectiveness of the maps as a cosmological probe,
we measure the angular power spectra and covariance matrix of the
21 cm intensity at different redshifts. We use these data products to

constrain the hydrogen bias bHI and the growth rate of structure f.
We show that from the pure 21 cm cosmological maps we obtain
the same values for these parameters as those predicted assuming
the cosmology that generated the original HR4 simulation.

We have also created maps that include the foreground signal
as well as the cosmological contribution. The foreground maps
are created using the Global Sky Model. This method uses the
information from 29 maps at different frequencies and performs
a PCA decomposition of six components in order to produce
foreground maps at any frequency. In particular, for the frequency
range we are considering (700–800 MHz), the main foregrounds
are synchrotron emission, Galactic neutral hydrogen and thermal
free–free emission. We have not considered adding any ad hoc
information from extragalactic point source emission, part of which
should be in the GSM maps.

Once we included the foreground signal, we first masked the
Galactic Centre, as the foreground emission is unavoidable here.
With the remaining unmasked part, we applied the reconstruction
techniques in order to remove the foregrounds and recover the
cosmological signal, which were independent component analysis
fastICA and PCA. We created recovered maps by removing two or
three components.

We show that when we apply the foreground removal algorithm
to the data, we are removing part of the cosmological information,
even if we apply it in the case where no foreground is present.
Since a strategy is needed to account for the missing power, our
chosen option is to define a transfer function that corrects for this.
The parameters of the transfer function are fixed by the best fit
to the ratio between the original cosmological signal (pure 21 cm
simulations) and the maps that are produced by foreground removal
when we apply it directly to the original maps (reconstructed maps).
This correction technique becomes more successful as we increase
the number of bins, i.e. it works better when the foreground removal
is optimal.

We found that in all cases without instrument noise, but where
the transfer function correction to the angular power spectrum has
been applied, we still recover the input values for the hydrogen bias
growth rate. There is a small degree of offset between the input and
recovered values of b and f, but this decreases as the number of
frequency bins increases, as the foreground reconstruction process
becomes more effective for a larger number of bins.

Finally, we considered the effect of noise maps produced for
the Tianlai survey. In this case it was impossible to use the small
scale part of the angular power spectra for cosmological parameter
estimation. When constraining the angular power spectrum, the bias
information is set from the amplitude while the information on the
growth rate comes from the boost in the low multipole-part of the
spectra. If we are unable to recover any cosmological signal on
small scales, this then removes our ability to constrain the hydrogen
bias b(z). This in turn diminishes our ability to see any relative
change between the large scale and the small scale power due to
redshift-space distortions and weakens our constraints on the linear
growth rate of structure f(z).

We have shown in this paper when considering the predicted
noise present in the Tianlai instrument, we are not able to recover
any information on the hydrogen bias, and can only partially recover
the information on the growth of structure through truncating to the
large scale information. Enhanced noise removal techniques should
be considered in the future in order to fully recover the cosmological
information in an unbiased manner.

The presence of noise and foreground residuals can also be
mitigated by cross-correlation of the radio intensity map with some
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HIR4: neutral hydrogen sky simulation 1805

optical galaxy catalogue. We will extend this work to use the HR4
simulation to generate a galaxy redshift survey over the same region
of sky and redshift, and demonstrate the utility of cross-correlation
in accurately recovering the input cosmological parameters (Shi
et al., in preparation).
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APPENDI X A : TRANSFER FUNCTI ON FI T TING

As described in Section 3.2.1, we show in Table A1 the best-fitting
values for the transfer function parameters �� and C for the different
bin configurations and fastICA ncomp = 2 and ncomp = 3.

Table A1. Best-fitting parameters of the transfer function for the different bin configuration and the different number of components
of the fastICA decomposition used to reconstruct the hydrogen information. Full table can be found as supplementary material
online.

nc = 2 nc = 3 nc = 2 nc = 3 nc = 2 nc = 3
Freq. (MHz) �� C �� C �� C �� C �� C �� C

797.5–800 1.196 1.327 1.193 1.327 1.104 1.338 1.101 1.338 0.821 1.34 0.82 1.34
795–797.5 – – – – – – – – 1.237 1.33 1.228 1.33
792.5–795 – – – – 0.937 1.317 0.942 1.318 1.136 1.327 1.137 1.327
790–792.5 – – – – – – – – 1.048 1.326 1.045 1.326
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