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ABSTRACT
Flat rotation curves (RCs) in disc galaxies provide the main observational support to the
hypothesis of surrounding dark matter (DM). Despite of the difficulty in identifying the DM
contribution to the total mass density in our Galaxy, stellar kinematics, as tracer of gravitational
potential, is the most reliable observable for gauging different matter components. From the
Gaia second data release catalogue, we extracted parallaxes, proper motions, and line-of-
sight velocities of unprecedented accuracy for a carefully selected sample of disc stars. This
is the angular momentum supported population of the Milky Way (MW) that better traces
its observed RC. We fitted such data to both a classical, i.e. including a DM halo, velocity
profile model, and a general relativistic one derived from a stationary axisymmetric galaxy-
scale metric. The general relativistic MW RC results statistically indistinguishable from its
state-of-the-art DM analogue. This supports the ansatz that a weak gravitational contribution
due to the off-diagonal term of the metric, by explaining the observed flatness of MW’s RC,
could fill the gap in a baryons-only MW, thus rendering the Newtonian-origin DM a general
relativity-like effect. In the context of Local Cosmology, our findings are suggestive of the
Galaxy’s phase space as the exterior gravitational field in equilibrium far from a Kerr-like
inner source, possibly with no need for extra matter to account for the disc kinematics.

Key words: gravitation – catalogues – astrometry – Galaxy: disc – Galaxy: kinematics and
dynamics – dark matter.

1 IN T RO D U C T I O N

The few microarcsecond level (μas) of the Gaia measurements
(Gaia Collaboration 2016, 2018) requires a fully general relativistic
analysis of the inverse ray-tracing problem, from the observational
data (e.g. stellar images on a digital detector) back to the positions
of light-emitting stars (Crosta et al. 2017, and references therein).
This is because the Gaia observer is embedded in the ever present
and ever changing overlapping weak local gravitational fields of
the Solar system. Once the observer is properly defined, null
geodesics represent the real physical link through space–time up
to the stars. This is the framework of modern relativistic astrometry.
In this respect, the weak gravitational regime is playing a pivotal
role in providing a complementary observational perspective for
understanding gravity. Moreover, once a relativistic model for the
data reduction is in place, any subsequent scientific exploitation
should be consistent with that model.

By routinely scanning individual sources throughout the whole
sky, Gaia directly measures the kinematics of the stellar component
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of the Milky Way (MW). Gaia’s second data release (DR2, Gaia
Collaboration 2018) is the first of its deliveries providing parallaxes
and annual proper motions, to ∼100 μas (for the brighter stars),
for about 1.3 billion of the objects surveyed. It also includes Gaia-
measured radial velocities (RVs), although for ‘only’ 7 million stars
with estimated effective temperatures between 3550 and 6900 K
(Katz et al. 2019).

Our work is the first attempt to apply the relativistic kinematics
delivered by Gaia to trace the flat Galactic rotation curve (RC) at
large radii from its centre.

This flatness has been explained as a deviation from the Newto-
nian velocity profile because of the presence of dark matter (DM;
Zwicky 1937; Rubin, Thonnard & Ford 1978) or of modified gravity
(Milgrom 1983). For a more recent reviews on DM issues, the
reader can refer to Bertone & Tait (2018) and Amendola et al.
(2018).

Basically, the absence of evidence of extra matter to justify the
observed RC was the driving idea to state the need of DM also in
the standard picture of structure formation in the early Universe
and in gravitational lensing due to the mass of galaxies (both model
dependent and based on the chosen space–time geometry). Given
the purely gravitational nature of DM, recent search strategies look
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also for clues in strong-gravity regions or in gravitational wave
signals generated by dynamically compact objects (Cardoso & Pani
2019).

Other alternatives focus on modifying the standard gravity theory,
in particular the ‘geometric’ part of the Einstein equation, like f(R)
gravity (Buchdahl 1970; Starobinsky 1980; DeFelice & Tsujikawa
2010), where ‘dark’ components can be avoided by varying the
Ricci scalar. A wider class of theories, with higher order curvature
invariants and non-minimal couplings, extends the Einstein–Hilbert
action of gravitational field to more actions (Fuji & Maeda 2004;
Capozziello & De Laurentis 2011).

Recently, the non-extensive q-statistics1 of the Boltzmann–Gibbs
approach (Tsallis 1988; Tsallis & Arena 2014) has been applied
in astronomy to describe the velocity distribution function of self-
gravitating collisionless particles on galactic scales. The RC flatness
is considered in the context of Newtonian regime assuming a DM
halo. Such a non-extensive distribution provides a way to describe
DM cored haloes from first principles. For example, a set of
polytropic, non-Gaussian, Lane–Emden spheres with the central
value q = 0.85 yielded a successful fitting for all the observed RCs
of some nearby spiral galaxies (Frigerio, Lima & Chimenti 2015
and references therein).

Most of these attempts are, however, based on unproved or ad hoc
physical assumptions. Moreover, a common procedure is to consider
the Newtonian limit of Einstein’s equation, thus solving Poisson’s
equation in order to derive the velocities tracing the observed RC.
Then the dynamics of galaxies is usually considered to be dominated
by the Newtonian regime, and general relativistic effects included
as corrections. In the linearized theory (i.e. an approximate version
of Einstein’s theory) and when the energy–momentum conservation
reduces to ∂βTαβ = 0, the matter fields that produce Tαβ are allowed
to exchange energy and momentum between themselves but not
with the gravitational field. As a consequence, the dynamics cannot
include gravity and cannot be applied to gravitationally bound
systems like stars, being dominated by non-gravitational forces
(Poisson & Will 2014).

A few authors (Cooperstock & Tieu 2007; Balasin & Grumiller
2008) explored the weak relativistic regime of Einstein’s equation
for the galactic dynamics beyond the g00 term (and its corrections)
or the spherical mass distribution. Almeida et al. (2016) compared
both models to fit the rotation curves of some external galaxies.

Since our quest is pursuing a coherent general relativistic phase-
space picture of the MW, it is worth reconsidering the level of
‘smallness’ and therefore ‘negligibility’ usually applied to Galactic
dynamics, where the concept of small velocity is usually used since
vGal/c ≈ 10−3 for typical Galactocentric rotational velocities of
disc stars. According to the virial theorem, all forms of energy
density within the gravitational bound system must not exceed
the maximum value of its Newtonian potential. Regarding the
measurements performed from within the weak relativistic regime
of the Solar system (SS), the lowest order of contribution to the
metric (e.g. the approximation of the term g00) is (vSS/c)2 ≈
2 mas, requiring the microarcsecond ray-tracing modelling for
Gaia to include the non-diagonal term g0i ≈ (vSS/c)3 ≈ 0.2 μas.
By applying the same reasoning to a conjectural metric for the
Galaxy weak gravitational fields, the non-diagonal contribution is
∼ (vGal/c)3 ≈ 100μas, already within the error level of Gaia’s
DR2.

1q stands for the entropic index quantifying the degree of non-extensivity in
the entropic functional.

The small curvature limit in general relativity (GR) may not
coincide with the Newtonian regime, as it is the case of the
Lense–Thirring effect (Lense & Thirring 1918). The situation
appears similar to what was needed to explain the advancement of
Mercury’s perihelion: instead of correcting the dynamics by adding
a ‘dark planet’ (Vulcano), GR cured the anomalous precession by
accounting for the weak non-linear gravitational fields overlapping
nearby the Sun. Despite it amounts to only 43 arcsec per century,
because of the small curvature, the effect was ‘strong’ enough
to justify a modification of the Newtonian theory. On the other
hand, in the past it was fruitful to formulate new epistemological
interpretations of accurate measurements, presenting new inexpli-
cable features, possibly within the theory underlying them. The
aether, for example, was removed by defining a new kinematics
(i.e. the ansatz of special relativity, Einstein 1905) that satisfied the
Michelson–Morley experiment and Maxwell’s equations, instead
of adding a new dynamics, i.e. the ‘extra molecular force’ from
the Lorentz–FitzGerald contraction effect (Fitz Gerald 1889), to
Newton’s theory.

Currently, GR is the confirmed standard theory that explains
gravity over a range of 60 orders of magnitude. We may certainly
assert that the evolution of the MW, and its constituents, is the
product of the action of gravity. This reason alone suggests to
evaluate to what extent the Newtonian approximation of Einstein’s
field equation, i.e. the term g00, should be the only one considered in
describing the Galaxy dynamics or if other metric terms can concur
to it. Nevertheless, only a few exact solutions of Einstein’s equation
exist, making it even the more difficult to detail a metric for the
whole Galaxy, especially if it is made of different structures.

2 TH E O R E T I C A L M O D E L S F O R TH E
ROTATI ONA L V ELOCI TY PROFI LE

Given the premises above, our first attempt is to consider a simple
relativistic model suitable to represent the Galactic disc as dust in
equilibrium at a sufficiently large distance from a (rotating) central
body2 via stationary and axially symmetric solutions for the disc
metric. Also, the GR model is put in comparison with a classical
MW rotation curve (MWC), comprising a bulge, a disc, and a halo
mostly made of DM.

2.1 Classical model for the MW rotation curve

For the bulge component of the MWC model, we consider Plum-
mer’s density profile (Pouliasis, Di Matte & Haywood 2017):

ρb(r) = 3b2
bMb

4π
(
r2 + b2

b

)5/2 , (1)

where, in cylindrical coordinates, the bulge spherical radius is r =√
R2 + z2, with bb = 0.3 kpc the Plummer radius (Pouliasis et al.

2017) and Mb the total bulge mass. As for the thin and thick MW
discs, we use a double-component stellar disc modelled as two
Miyamoto–Nagai potentials. This function is also approximated
with a double exponential disc as in McMillan (2017) and Korol,
Rossi & Barausse (2019). The most general description of a double-
component MW disc (Bovy 2015; Barros, Lepine & Dias 2016;

2This is the region above ∼5 kpc populated by the Gaia stellar tracers (see
Section 3 below).
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Pouliasis et al. 2017) is expressed in the form

ρd(R, z)= Mdb
2
d

4π

[
adR

2+
(
ad+3

√
z2+b2

d

)(
ad+

√
z2+b2

d

)2
]

[
R2

(
ad+

√
z2+b2

d

)2
]5/2 (

z2+b2
d

)3/2

,

(2)

where Md is the total (thin or thick) disc mass, and ad and bd are
scale length and scale height, respectively. We set btd = 0.25 kpc
and bTd = 0.8 kpc as the thin and thick disc scale heights, following
the work of Pouliasis et al. (2017) cited above.

Finally, for the MWC, we use a standard Navarro–Frank–White
(NFW) model to describe the DM halo (Navarro, Frenk & White
1996; Bovy 2015; McMillan 2017):

ρh(r) = ρhalo
0

1

(r/Ah)(1 + r/Ah)2
, (3)

where ρhalo
0 is the DM halo density scale and Ah its (spherical) scale

radius.
The MW total potential is computed by solving the Poisson

equation ∇2�tot = 4πG(ρ bulge + ρ td + ρTd + ρhalo); then,
the circular velocity follows by solving the differential equation
V 2

c (R) = R (d�tot/dR) (see subsection 3.3 for the actual derivation
of the unknown parameters).

2.2 The general relativistic model

The same assumptions of the classical approach, namely that
the masses inside a large portion of the Galaxy interact only
gravitationally and reside far from the central bulge regions, can
be made in GR assuming a pressure-less perfect fluid, i.e. GR dust,
shear-free, and expansion-free (Stephani et al. 2009), defined to
be a continuous distribution of matter with stress–energy tensor
Tαβ = ρuαuβ (in geometrized units). Here, the time-like vector
field uα represents the four-velocity of the fluid proportional to a
Killing vector kα ∝ ∂α

0 ,3 while ρ is the mass density. Although a
pressure-less fluid is not pure vacuum, it may be considered as a
very close approximation to a low-energy density regime (Wald
1984).4 Moreover the conservation equation implies geodesicity of
the four-velocity and conservation of the mass–energy distribution.

As reported in Neugebauer & Meinel (1995) and Neugebauer,
Kleinwächter & Meinel (1996), a rigidly rotating disc of dust is
the universal limit of rigidly rotating perfect fluid configurations,
where the ratio of pressure to energy density vanishes. Such a disc
represents the simplest model of a self-gravitating rotating system
with no interaction except gravitation, and it may serve as a crude
model for galaxies with the stars considered as dust grains. The
rigidly rotating disc of dust could generate an ergosphere similar to
that around a Kerr black hole. At 5 kpc or more from the Galactic
Centre, our stellar orbits are then far enough from such a central
region, whose dimension are much less than 1 kpc (see e.g. Gravity
collaboration 2018b), where very perturbed stellar motions (velocity
of about of 104 km s−1) should be considered instead.

As a matter of fact, in hydrodynamics, dust represents a many-
particle system interacting via gravitational forces alone. In cos-
mology this exact solution is commonly used, i.e. FRLW metric

3Greek indices run from 0 to 3.
4It is worth underlining here that standard 	CDM cosmology is based on
the Friedman–Lemaı̂tre–Robertson–Walker metric, namely a model valid
for perfect fluid particles in a homogeneous and isotropic Universe.

for a dust fluid (Wald 1984). On the other hand, no similar global
relativistic solution is known so far for the internal Galactic dynam-
ics, considering the Galaxy a rotating isolated matter distribution.
This is due to the mathematical complexity of coupling the Vlasov
equation, also called collisionless Boltzmann equations, with the
Einstein field equation. Recently, some numerical schema has been
proposed by Ames, Andréasson & Logg (2016, and references
therein for further details).

If stars populating the disc can be retained isolated (stellar
encounters become effective well below the parsec scale), the
Galaxy can be considered globally isolated up to around 25 kpc,
where flaring effects emerge, indicating the onset of external
gravitational perturbations. At that scale the dust solution still
represents a universal limit for the global dynamics, large enough
to consider the rotation curve only due to the angular momentum
sustained stellar population, neglecting at first any possible intrinsic
streaming motions or tidal forces.

The aforementioned considerations justify the following line
element chosen by Balasin & Grumiller (2008, BG) to trace the
velocity profiles of disc galaxies in a weakly relativistic scenario

ds2 = −dt2 + 2Ndφdt + (r2 − N2)dφ2 + eν(dr2 + dz2), (4)

i.e. away from the central regions. As argued by these authors, the
assumption of pressure-less perfect fluid simplifies the dynamics to
be solved as compared to that in vacuum (Wald 1984).

In virtue of line element (A1) and conditions (A3), the unit
tangent vector field of a general spatially circular orbit can be
expressed as

uα = � (kα + βmα) , (5)

where β is the constant angular velocity (with respect to infinity)
and � the normalization factor. Equation (5) represents a class of
observers that includes static ones (β = 0), and can be parametrized
either by β or equivalently by the linear velocity, say ζ , with respect
to the ZAMOs (Zα , zero angular momentum observers) as

uα = γ
(
eα

0̂ + ζ φ̂eα

φ̂

)
, (6)

where γ = −(u|Z)5 is the Lorentz factor, eα

0̂
is the unit normal to

the t = constant hypersurfaces, and eα

φ̂
the φ unit direction of the

orthonormal frame adapted to the ZAMO.
ZAMO frames are, indeed, locally non-rotating observers, which

have no angular momentum with respect to flat infinity and move
on worldlines orthogonal to the hypersurfaces t = constant. The
associated tetrad is eα

0̂
≡ Zα , eα

φ̂
≡ 1/

√
gφφ∂α

φ , and eα
â ≡ e−ν∂α

a .
Then, the line element (4) can be rewritten in terms of the lapse

M = r/
√

(r2 − N2) and the shift factor Mφ = N/(r2 − N2) as

ds2 = −M2dt2 + (r2 − N2)
(
dφ + Mφdt

)2 + eν(dr2 + dz2), (7)

where Zα = (1/M)(∂ t − Mφ∂φ) and the relationship between β and
ζ φ̂ is given by equating equations (5) and (6)

ζ φ̂ =
√

gφφ

M
(β + Mφ), (8)

which, in the case of a static observer, reduces to

ζ φ̂ = N (r, z)

r
. (9)

Equation (9), then, represents the velocity of the corotating ‘dust
particle’ as measured by an asymptotic observer at rest with respect

5Symbol (|) stands for the scalar product relative to the chosen metric.

MNRAS 496, 2107–2122 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/496/2/2107/5850386 by guest on 09 April 2024



2110 M. Crosta et al.

to the rotation axis and turns out to be proportional to the off-
diagonal term g0φ of the metric (4), i.e. the background geometry;
therefore, it can be related to the relativistic gravitational dragging
(de Felice & Clarke 1990). The same applies for a Kerr-like metric6

where, with respect to a suitable tetrad, a static observer has a
non-zero angular momentum with respect to infinity, i.e. (∂φ |u) =
g0φ/

√−g00 (de Felice & Clarke). On the other hand, ZAMOs have
zero azimuthal angular momentum, i.e. (∂φ |Z) = 0, but a non-zero
angular velocity due to the gravitational dragging. Bear in mind also
that the Gaia observables are developed with respect to the static
observer uα = (1/

√−g00)∂α
0 locally at rest relative to the BCRS (in

the gravitational fields of the Solar system), which reduces to be
∝ ∂α

0 far away from it (Crosta et al. 2017). In general, any particle
moving in a metric independent from t and φ coordinates has two
conserved quantities, say, p0 and pφ . Consider to drop a particle
‘radially’ from infinity with angular momentum pφ = 0; then, pφ =
gφ0p0 and p0 = g00p0. By taking p0 ∝ dt/dλ and pφ ∝ dφ/dλ (being
λ an affine parameter) it results:

pφ

p0
= gφ0

g00
= dφ

dt
, (10)

namely, the particle acquires an angular velocity in the same direc-
tion of the rotating gravity source while approaching it (Padmanahan
2010).

The function N(r, z) was constrained by Balasin & Grumiller
(BG) to the separation ansatz N(r, z) = R(r)F(z) and the reflection
symmetry assumption. Their final expression is (equation 25,
Balasin & Grumiller 2008)

N (r, z) = V0(Rout − rin) + V0

2

×
∑

±

(√
(z ± rin)2 + r2 −

√
(z ± Rout)2 + r2)

)
, (11)

where the three parameters V0, Rout, and rin were chosen, re-
spectively, as the flat regime velocity, the extension of the MW
disc, and the bulge radius. Note that Balasin & Grumiller solve
N(r, z) by avoiding values that could prevent a physical solution,
such as the localized exotic energy–momentum tensor attributed
to Cooperstock & Tieu (2007, CT), or violate the weak energy
condition and the assumption of vanishing pressure (see appendix
B of Balasin & Grumiller 2008 and references therein, for example
Zingg, Aste & Trautmann 2007). Such flaws still persist in the recent
publications of Carrick & Cooperstock (2012) and Magalhaes &
Cooperstock (2017), where the application of the CT model is
extended to other galaxies including the MW, and in addition the
mass density profiles are estimated (see Section 4 for further details).
Cooperstock & Tieu also define the velocity as an approximation
valid for r 	 N.

Both BG and CT models assume that N(r, z) is separable and
has reflection symmetry, which implies four solutions for F(z).
Cooperstock & Tieu use F(z) = e−k|z| (not smooth at z = 0) and
write the velocity as a linear superposition of Bessel functions of
the first kind to get a good fit to the data. BG’s model, instead,
adopts F(z) = cos kz, which leads to solutions involving modified
Bessel functions and integrates over all possible modes to obtain
expression (11).

Moreover, the metric of the BG model approaches the metric of
flat space far from the centre of the galaxy, whereas CT’s solution

6The vacuum solution of the Einstein field equation for stationary, axisym-
metric, asymptotically flat space–time.

for the metric approaches the flat space metric far from the galaxy
in the azimuthal direction but not in the radial direction (Neill,
private communication). The BG model still lacks of an appropriate
physical boundary for r 
 N (Grumiller, Balasin & Preis 2008), the
region where the metric is not defined in both models. In fact, as
underlined also by the authors, the BG model has some limitations
at r = 0 (where the motion becomes superluminal, the same in the
classical Newtonian model) and |z| > rin (arbitrarily set to 1 kpc by
BG). However, the RC describes the velocity profile as a function
of the radial coordinate only and the limitation on the z coordinate
derives from the separability ansatz applied by BG to solve the
metric function N = N(r, z). This means that from RC data only,
it is not possible to obtain a complete 3D description of the disc
structure. In this context, if |z| increases, the separability may be
reconsidered taking into account the tilt of local velocity ellipsoid
(Everall et al 2019). Moreover, as the model implements a dust
solution, the BG ansatz can affect the following aspects: (i) the
pressure-less condition can be broken in the central region, and
(ii) the older stellar populations, which mainly populate the MW
thick disc, acquire a higher intrinsic scatter in the three-velocity
components. A more complex scenario should be considered in
order to take into account perfect fluid solutions with non-vanishing
pressure (Andreasson 2011).

The considerations above might suggest a Galactic structure
dominated, in the innermost part, by a Kerr-like source that, far
away from it, turns into a perturbed Schwarzschild-like metric or
a corotating ‘dust’ (see e.g. Lynden-Bell, Katz & Bı̆cák 1995).7

All of the limitations might be overtaken by considering a global
solution with appropriate metric conformal factors as well as
suitable boundary conditions, which lead to a smooth transition
from a Kerr-like metric to a stationary axially symmetric solution
for the disc-dominated regions. The spatial velocity profile can be
defined via equation (8), and a valid mathematical solution should
be found accordingly.

Equation (11), even though based on tailored assumptions,
represents one of the first attempts at deriving a possible GR velocity
profile, that is worth testing as an approximate case, before pushing
for more reliable and complex solutions.

3 FI T O F G A I A D R 2 DATA TO C L A S S I C A L
AND R ELATI VI STI C MW ROTATI ON CURVES

In the following, we confront the models presented in the previous
section for the MW RCs to the best data – that are independent from
any model – we obtain only from the Gaia DR2. The model that
would not fit these data should then be rejected.

3.1 Sample selection

To study the RC profile of our Galaxy, we selected stars tracing the
MW disc from the recently released Gaia DR2 archive according
to the following strict criteria: (i) availability of the complete
astrometric set, and of its corresponding error (covariance) matrix
(right ascension α and declination δ, the proper motions μαcos δ and
μδ , and parallax � ); (ii) availability of the Gaia-measured velocity
along the line of sight, RV, and its error; (iii) parallaxes good to 20
per cent, i.e. � /σ� ≥ 5; (iv) availability of a cross-matched entry

7According to Stephani et al. (2009) there exists a one-to-one correspon-
dence between static vacuum solution and (rigidly rotating) dust stationary
solution (theorem 21.1).
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in the 2MASS catalogue (Skrutskie et al. 2006). Requirements (i)
and (ii) are necessary for a proper six-dimensional reconstruction
of the phase-space location occupied by each individual star as
derived by the same observer. As for the third criteria, parallaxes
to better than 20 per cent allow us to deal with similar (quasi-
Gaussian) statistics when transforming them into actual distances,
as discussed in Smith & Eichhorn (2012) and references therein.
Selection criteria (iv) is essential for the actual materialization of the
sample of early-type stars. In fact, it provides us with the 2MASS
near-infrared magnitudes J, H, and K (Skrutskie et al. 2006) that, in
combination with the G-band magnitude from the DR2, allow us to
build the following photometric filter:

(J − H ) < 0.14(G − K) + 0.02 and (J − K) < 0.23(G − K) .

Following Poggio et al. (2018), that needed a stellar sample
tracing the MW disc for studying presence and possibly nature of its
warp, this filter is then used in combination with their probabilistic
method that uses Gaia’s astrometry and photometry together to
select stars whose colours and absolute magnitudes are consistent
with them being upper main-sequence stars, including OB stars
(see also Re Fiorentin, Lattanzi & Spagna 2019). On the other
hand, as mentioned above, Gaia-measured RV’s made the DR2
catalogue only when the estimated stellar effective temperatures
are between 3550 and 6900 K (Katz et al. 2019) for a total of
∼7.2 million objects. This implies that a large fraction, if not
all, of the OB stars initially in the 2MASS cross-matched sample
drops out of it because of the RV requirement (ii), leaving us
with mainly A, and some F, early-type stars. This contingent RV-
induced bias will be greatly mitigated with the forthcoming Gaia
deliveries.

Then, DR2 directly provided all of the data, i.e. astrometry
(parallaxes and annual proper motions) and RVs, necessary for a
proper six-dimensional reconstruction of the phase-space location
occupied by each individual star as derived by the same observer.

At the end of our selection process we are left with a very
homogenous sample of 5277 early-type stars and 325 classical type
I Cepheides as classified by the Gaia pipelines (Clementini et al.
2019), the largest stellar sample of this kind ever.

3.2 Spatial and kinematical analysis

Both spatial and kinematical tests were conducted to ensure that
the selected data set fairly traces the MW disc and its kinematics.
A close look at the radial and vertical distributions of our sample
shows that 99.4 per cent, (i.e. 5566) of its stars, are within 4.9 kpc
≤ r ≤ 15.8 kpc (a range of ∼11 kpc) and below 1 kpc from the
Galactic plane, that represents the characteristic scale height for the
validity of the BG model.

The quantities extracted from the Gaia DR2 archive are trans-
formed from their natural ICRS reference frame (Mignard et al.
2018) to its Galactocentric cylindrical counterpart, i.e. into the
quantities R, φ, and z for the galactocentric spatial coordinates and
their corresponding velocities VR, Vφ (i.e. the azimuthal velocity at
any Galactic longitude), and Vz.

The procedure followed is that described in the Gaia Data
Release 1 (2017), and includes proper error propagation due to
the availability of the correlation matrix (requirement i).

For its actual application, we specified the values of the Sun’s
radial distance R in the Galactic frame and the Sun’s velocity
(U, V, W) directly in the Galactocentric reference frame, as
derived from the proper motion of Sgr A∗ (adopted as the Galactic

Centre). In this way, we are independent from the local standard of
rest. The following values were adopted after reviewing the recent
literature: R = 8.122 ± 0.031 kpc (Gravity collaboration 2018a)
and (U, V, W) = (12.9, 245.6, 7.78) km s−1 (Drimmel & Poggio
2018).

We then bin the data in cylindrical rings [R − �R, R + �R] as a
function of R as described in the caption of Table 1.

Finally, we adopt RSE (from robust scatter estimate) as a
robust measure of the dispersion of a distribution. It is defined as
(2

√
2erf −1(4/5))−1 ∼ 0.390152 times the difference between the

90th and 10th percentiles; RSE is the same as standard deviation
in the case of a normal distribution. The values for |zmedian| and
the median Vφ’s are quite compatible with those expected for a
population belonging to the MW young disc and confirm, in turn,
the effectiveness of the procedure we adopted for extracting stars
from the upper main sequence.

Moreover, the measured velocity dispersion in each radial bin,
i.e. the intrinsic scatter that measures the ‘warmth’ of a stellar
population, is always below 41.4 km s−1, with a typical (mean)
value of 22.1 km s−1, as expected for a young thin disc stellar
sample. As a final robust and consistency check of our analysis,
we calculate the circular(ized) velocity (Jeans 1915; Binney &
Tremaine 2008) solving the cylindrical form of the Jeans equation
for an axisymmetric disc, namely

∂
(
ρ
〈
V 2

R

〉)
∂R

+ ∂ (ρ 〈VRVz〉)
∂z

+ ρ

(〈
V 2

R

〉 − 〈
V 2

φ

〉 + V 2
c

R

)
= 0,

(12)

to circularize our Vφ . This equation links the moments of the velocity
distribution <ViVj > and the density ρ of a given stellar sample to
the circularized velocity Vc. The circular(ized) velocity is then

V 2
c (R) = 〈

V 2
φ

〉 − 〈
V 2

R

〉(
1 + ∂ ln ρ

∂ ln R
+ ∂ ln

〈
V 2

R

〉
∂ ln R

)
, (13)

where we neglected the contributions of the vertical gradients, and
< V 2

i > represents the averaged squared velocity of the velocity
matrix in each bin. Following Eilers et al. (2019), we utilized
the exponential radial density profile ρ(R) ∝ exp(− R/hr) with
hr = 3 kpc. Besides, we notice that in the radial range covered by
our data (∼5–16 kpc), the radial gradient of < V 2

R > (last term in
the parenthesis of equation 13) is close to zero. With equation (13)
providing the measured values of Vc’s in each radial bin, the
corresponding uncertainties are computed via bootstrapping with
100 re-samples on the individual values of the azimuthal velocities.
The total error takes also into account possible systematic errors
(estimated within 5 per cent) that the approximations mentioned
above could introduce. There is a slight positive gradient towards
larger radial distances, as naturally expected by Jeans’ analysis. We
verify that the corrections (due to the circularization procedure) to
the observed azimuthal velocities are always well below 10 per cent
throughout the radial range we have probed (up to ∼10 km s−1, i.e.
below the intrinsic scatter of the population) and fairly consistent
with the increasing uncertainties computed via the bootstrapping
method.

Therefore, we decided to use the observed and model-
independent azimuthal velocity profile to test the two models. This
preserves the internal consistency of our work, since the Jeans
analysis assumes Newtonian gravity and not a complete relativistic
description. To our knowledge, a possible relativistic Jeans’ analysis
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Table 1. Properties of the binned data for the stellar sample extracted from the Gaia DR2 archive. The data
are grouped in cylindrical rings [R − �R, R + �R] as a function of the cylindrical coordinate r ≡ R. Each
radial bin is centred at the value shown in the second column. The bin size, �R, is 0.2 kpc except for the last
bins that have been changed to cope with both increasing position errors with distance and the natural decrease
in numbers of the Galaxy disc tracers. As robust estimates of the values representing each bin, medians and
RSE’s are used. The average of the median distances from the plane is <zmedian > = −0.027 kpc in the
range between Max(zmedian) = 0.496 kpc and Min(zmedian) = −0.234 kpc; moreover, the average value for the
vertical dispersion is 0.206 kpc. As for the azimuthal velocity Vφ , the weighted average (across the bins) of the
median Vφ is ∼224 km s−1, while the measured intrinsic velocity dispersions are always below 41.4 km s−1,
with a typical (mean) value of 21.1 km s−1, and always larger than the uncertainties on the median value σVφ

.

Binsize Rmean Starcount zmedian Vφ, median σVφ
RSEVφ

(kpc) (kpc) (kpc) (km s−1) (km s−1) (km s−1)

0.2 5.0 3 − 0.234 230 12 10.9
5.2 7 − 0.077 233 8 14.9
5.4 13 − 0.162 223 12 34.2
5.6 14 − 0.069 203 8 21.4
5.8 30 − 0.122 220 8 41.4
6.0 40 − 0.112 229 3 37.4
6.2 71 − 0.125 229 3 23.3
6.4 102 − 0.124 234 3 19.8
6.6 156 − 0.078 229 2 19.3
6.8 244 − 0.036 231 2 19.8
7.0 273 − 0.014 228 1 19.2
7.2 364 0.007 229 1 20.2
7.4 392 0.016 232 1 20.1
7.6 428 0.023 233 1 18.7
7.8 366 0.007 231 2 20.4
8.0 368 0.010 234 1 19.7
8.2 342 − 0.010 231 2 20.9
8.4 380 0.009 232 1 22.4
8.6 368 − 0.011 229 1 23.0
8.8 343 − 0.055 226 1 17.2
9.0 296 − 0.054 224 2 17.8
9.2 219 − 0.044 224 1 18.1
9.4 202 − 0.019 224 1 19.6
9.6 155 − 0.039 222 2 21.0
9.8 105 − 0.049 225 2 20.3

10.0 77 − 0.012 228 4 23.1
10.2 51 0.007 219 6 32.9
10.4 27 − 0.067 230 2 21.1
10.6 25 − 0.032 234 5 22.5
10.8 20 − 0.031 230 6 32.3
11.0 13 − 0.103 232 8 15.0

0.4 11.3 19 − 0.030 227 9 27.8

0.5 11.75 18 0.031 226 6 23.5
12.25 20 0.061 229 14 21.3
12.75 11 − 0.039 227 5 18.8
13.25 7 0.001 234 10 8.2

1 13.8 4 0.496 208 24 32.9
1.5 15.8 2 0.043 220 12 9.2

could be done numerically (Ames et al. 2016) or with a post-
Newtonian approximation (Nazari et al. 2017). Nevertheless, the
implementation of the Jeans correction has no significant effect as
all of the results are compatible in the statistically credible interval
of the posteriors (as reported in Appendix C, Tables C1, C2, C3,
and C4).

As already mentioned, we selected the most suitable stellar
sample to ensure the effective applicability of a pressure-less perfect
fluid model to the Galaxy. As further proof of this hypothesis,
note that in Table 1 the intrinsic velocity dispersion, equivalent
to a pressure term in the Jeans equation, is on average less than
10 per cent compared to the azimuthal speed in each bin.

3.3 The fits to relativistic and classical MW rotation curves

In the equatorial plane, after setting r ≡ R and VBG(R) ≡ ζ φ(r) in
equations (9) and (11), the relativistic velocity profile writes:

V BG(R) = V0

R

(
Rout − rin +

√
r2

in + R2 −
√

R2
out + R2

)
, (14)

where the unknown parameters V0, Rout, and rin will result from
fitting to the data of Table 1 after transforming from geometrized
back to regular units. In other words, these quantities identify the
range for which the 4D space–time metric used can describe the
MW disc as an axisymmetric stationary rotating dust.
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Table 2. rin, Rout, and V0 are the parameters of BG’s
model that correspond, respectively, to the lower and
upper radial limits, i.e. the bulge radial size and the
Galaxy radius, and the normalization of the velocity in
the flat regime. eν0 is the estimated dimensionless value
characterizing the conformal factor function, assumed
constant, in line element (4). θ , σ−

θ , and σ+
θ are the mean

and the 1σ credible interval limits from the posteriors
of the parameters (see also the values in Table C1 in
Appendix C, to which this table is fully compliant).

BG model θ σ−
θ σ+

θ

rin (kpc) 0.39 − 0.25 +0.36
Rout (kpc) 47.87 − 14.80 +23.96
V0 (km s−1) 263.10 − 16.44 +25.93
eν0 0.083 - 0.014 +0.014

This relativistic velocity profile is then compared to the well-
studied classical models for the MW described in Section 2. Each
contribution to the azimuthal (circular) velocity in the classical
model is calculated by utilizing the GALPY PYTHON package (Bovy
2015).

We fit both the BG and MWC models to the DR2 azimuthal
velocity data Vφ(Ri), and the corresponding uncertainties, from
Table 1, utilizing the log likelihood function

logL = −1

2

∑
i

([
Vφ(Ri) − V

exp
φ (Ri |θ )

]2

σ 2
Vφ

+ log
(
σ 2

Vφ

))

− 1

2

(
[ρ(R) − ρexp(R|θ )]2

σ 2
ρ

+ log
(
σ 2

ρ

))
, (15)

where V
exp
φ (Ri |θ ) are the expected velocity values evaluated with

the two theoretical models at each Ri for any trial set of their
corresponding parameter vector θ .

For the ‘observed’ (local) baryonic matter density at the Sun and
its corresponding error, i.e. ρ(R) and σ, in the likelihood function
above, we adopted the most recent values, respectively, 0.084 and
0.012 M pc−3, given in McKee, Parravano & Hollenbach (2015).

For the BG model (Balasin & Grumiller 2008), ρexp(R|θ ) at z = 0
is calculated via the 00-term of Einstein’s equation (see Section 4),
while for the MWC model ρexp(R|θ ) = ρb(R = R, z = 0) +
ρ td(R = R, z = 0) + ρTd(R = R, z = 0) from equations (1) and
(2).

In summary, we decided for seven free parameters when fitting
with the MWC model, i.e. Mb, Mtd, MTd, atd, aTd, ρhalo

0 , and Ah.
Instead, when dealing with the BG model, we have a total of four
free parameters, V0, Rout, rin, and eν0 (see Section 4), and contrary
to the MWC case, the use of the BG density function ρBG in the
likelihood expression above is mandatory, as eν0 is not present in
VBG(R).

We finally used the Markov chain Monte Carlo (MCMC) method
to fit to the data (see Appendix B); Tables 2 and 3 report the best-
fitting estimates as the median of the posteriors and their 1σ level
credible interval. For both models, the errors due to the Bayesian
analyses are at least one order of magnitude lower than the resulting
uncertainties of the parameters. This shows that the analysis is
intrinsically consistent and the simulation errors are negligible.

In Fig. 1, the star-like symbols show median Vφ versus R as
derived with the Gaia DR2 data in Table 1. The two MCMC
estimated velocity profiles, drawn as the coloured solid lines in
Fig. 1, are both good representations of the data, i.e. they are
statistically equivalent (see Appendix C).

Table 3. Mb, Mtd, MTd, atd, aTd, ρhalo
0 , and Ah are the

free parameters of the MWC model: the bulge mass, the
masses and the scale lengths of the two discs, the halo
scale density, and the halo radial scale, respectively. θ ,
σ−

θ , and σ+
θ are the mean and the 1σ credible interval

limits from the posteriors of the parameters (see also the
values in Table C3 in Appendix C, to which this table is
fully compliant).

MWC model θ σ−
θ σ+

θ

Mb (1010 M) 1.0 − 0.4 +0.4
Mtd (1010 M) 3.9 − 0.4 +0.4
MTd (1010 M) 4.0 − 0.5 +0.5
atd (kpc) 5.2 − 0.5 +0.5
aTd (kpc) 2.7 − 0.4 +0.4
ρhalo

0 (M pc−3) 0.009 − 0.003 +0.004
Ah (kpc) 17 −3 +4

The least constrained parameter in the BG model is the ‘upper’
radial limit, i.e. Rout. As already discussed, this was actually
expected due to a relatively limited radial coverage of the Gaia-
only velocity data we have used. Besides, we obtain an interesting
result on the lower limit parameter rin. According to Balasin &
Grumiller (2008, after their equation 26), as rin ‘determines the
transition between the linear (r 
 rin) and the flat (rin 
 r 

Rout) regime of the velocity profile’, the size of the bulge ‘may be
predicted from the velocity profile’. Remarkably, the fitted value
rin = 0.39 kpc in Table 2 is quite close to the value of bb = 0.3 kpc
we adopted from Pouliasis et al. (2017; see also Eilers et al, 2019)
for the Plummer’s radius of the bulge contribution to the MW
density in our MWC model (see equation 1 in Section 2.1). It
is also important to highlight here the back-compatibility of this
experimental result with the z distribution of our selected disc
population (see Table 1 and its caption): to ensure a consistent
application of the BG velocity model, the selected stars resulted
in a population spatially constrained to small distances from the
plane (average median height <zmedian > ≈ −0.03 kpc and a
corresponding average dispersion of 0.2 kpc), and, in turn,<zmedian

> ≤rin virtually everywhere across the radial range spanned by
the Gaia rotational velocity data. Despite this ability of providing
an independent measurements of the radial size of the MW bulge
directly from the velocity data, the existence of the critical regions
at |z| > 0.39 kpc limits the physical validity of the BG model and
prevents it from describing large parts of the actual Galaxy.

It is worth mentioning that Almeida et al. (2016) converted the
observational RC’s for some external galaxies into a data set of
an effective analogue (called the ‘effective Newtonian’ velocity
profile VeN) in order to define a method to compare non-Newtonian
gravity models with or without some DM. From the fit of the
Newtonian velocity profile to the effective Newtonian curve the
authors derive some baryonic parameters (basically by solving
Poisson-like equations). With the application of such a method, it
appears that both CT and BG approaches have strong problems
fitting galaxy rotation curves without DM. On the other end,
the statistical technique used for the fit, i.e. a χ2 minimization
procedure, could be insufficient for exploring the parameter space
(see Appendix B) and some parameters appear not suitable for a
consistent representation of the BG model. For example, the galaxy
radius R ∼ 107 kpc is out of the range given by the BG solution and
galaxies cannot be considered isolated at such distances. Despite
that, the fact that BG or CT densities do not fit VeN in the absence
of DM indicates that off-diagonal terms, not analysed in Almeida
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Figure 1. The azimuthal velocity profile of the MW as derived from the sample of disc tracers selected from the Gaia DR2. The black starred symbols
represent the median values within each of the radial bins in Table 1. The corresponding error bars are computed via bootstrapping (see text). The red and
blue curves show the best fit to the BG and MWC models, respectively. The other grey curves represent the kinematical substructures that contribute to the
MWC model: the dotted line is for the bulge, dashed and dot–dashed lines are for thin and thick disc, respectively. Finally, the grey solid line illustrates the
contribution of the NFW halo. The coloured areas represent the reliability intervals of the fitted curves; note that for R < 5 kpc both the classical and the
relativistic curves are very uncertain because of the lack of data in that region. The grey vertical band represents twice the value of rin estimated with the BG
model.

et al. (2016), might account for the contribution that flattens the
observed rotation curves.

4 THE MASS DENSITY

In the case of the metric function adopted for the BG model, the
00-term of Einstein’s field equation results (for its derivation see
Appendix D):

ρBG(R, z) = (∂RN (R, z))2 + (∂zN (R, z))2

8GπR2eν(R,z)
, (16)

where ρBG(R, z) is the mass density at (R, z) and eν(R, z) is the
dimensionless conformal metric factor defined in equation (7).
It is suggestive to note that for R → ∞ and z → ∞ the
density approaches zero (Neill, private communication), however
we warned in the previous section on the inadequacy of the BG
model to represent our Galaxy for regions above |z|= rin = 0.39 kpc.
Finally, with R and z in kpc, the estimated model parameters as in
Table 2, and G = 4.3 × 10−6 kpc km−2 s−2 M−1

 , equation (16)
yields the density in M pc−3.

4.1 The relativistic mass density at R�

With the values in Table 2 inserted in equation (16), we obtain,
for the local baryonic matter density, ρ(R = R, z = 0) ≡ ρ =
0.083 ± 0.006 M pc−3 that is in agreement with independent

current estimates, like, e.g. the estimate of 0.098+0.006
−0.014 M pc−3

in Garbari et al. (2012), the 0.077 ± 0.007 M pc−3 value of
Bienayme et al. (2014), and the most recent determination of
0.084 ± 0.012 M pc−3 by McKee et al. (2015), the local mass
density used as the observed datum in the likelihood function of
equation (15).

Notice that the value of the local baryonic matter density just
derived with the BG model is truly the result of a fitting procedure
with the (crude) assumption that the conformal metric factor is
constant with R, i.e. eν(R,z=0) ≈ eν0 . This procedure is different
from that of Balasin & Grumiller (2008). Instead of a priori
approximating eν (see sections 3.2 and 3.3 of Balasin and Grumiller)
to compare the mass density (16) to the Newtonian regime, we
assume a functional behaviour for the conformal factor and use
this in the expression of ρexp utilized in the likelihood function
(15). Of course, with just one reliable observed density value at
our disposal, i.e. that at R = R, we are somewhat ‘forced’ to
consider a constant eν 8 leading to the dimensionless estimation
of eν0 = 0.083 in Table 2. Then, it is worth recalling here that,
as explained in Appendix B, the MCMC fitting procedure allowed
eν0 to vary freely (i.e. uniformly distributed, as for the rest of the

8A similar approach was used by Magalhaes & Cooperstock (2017) in
choosing the best fit for the Galaxy RC with the CT model, although eν =
1 in their model.

MNRAS 496, 2107–2122 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/496/2/2107/5850386 by guest on 09 April 2024



MW rotation curve with Gaia DR2 2115

Figure 2. The density profile of the MW at z = 0 derived from 100 random
draws from the posterior distribution of the fit. As in Fig. 1, the red solid
line is the BG model, while the blue dashed line represents the total matter
contribution for the MWC model (i.e. the sum of the bulge and the two discs
as the baryonic counterpart, plus the DM halo). The blue solid line shows
the contribution of the sole baryonic matter. The vertical black solid lines
limit the range of our data, while the vertical black dashed line indicates the
Sun position in the Galaxy. Finally, the grey vertical band represents twice
the value of rin estimated with the BG model.

BG model parameters) in the interval [0.001, 10], a four orders of
magnitude range.

This situation is much different from Newtonian dynamics (see
McMillan 2017; Pouliasis et al. 2017; Eilers et al. 2019), where
the rotational velocity data alone suffice to fit all of the parameters
needed to define the different contributions to the Galaxy density
functions via the relations (1), (2), and (3). Instead, the density in the
BG relativistic model can be estimated only through its direct use
in the likelihood function (15). Therefore, if more direct baryonic
mass density measurements were available throughout the plane,
our method could be used to determine a more general function
for the density, i.e. for the conformal metric factor near the plane,
eν(R, z ∼ 0), and verify, in turn, the overall consistency of the GR
model or test more general ones, as they become available. So far,
despite the tremendous improvement brought about by the Gaia
DR2, we still do not have a suitable survey with the appropriate
completeness due to systematic biases and observational limitations
(McKee et al. 2015; Gaia Collaboration 2018). The evaluation of
the observed density profile from independent data, for example
mass luminosity ratios, is beyond the scope of this work, but future
implementations with the forthcoming new deliveries of the Gaia
data might help in extending our results, especially from R ∼ 5 kpc
inward.

4.2 The mass density in the Galactic plane

When evaluated at z = 0, the term ∂zN(r, z) in equation (16) goes
to zero everywhere; then, Fig. 2 compares the density profiles in
the Galactic plane of both the BG and MWC models once the best-
fitting values in Table 2 and 3 are utilized, respectively.

Looking at the results on our MWC model, comprising baryonic
and DM density profiles, these are quite compatible with what
shown in McMillan (2017), Pouliasis et al. (2017), and Eilers et al.
(2019). This confirms the goodness of the ‘classical’ part of our
analysis and provides a baryonic mass density profile via the usual
kinematic approach. In more detail, as expected in the disc region (z
∼ 0), the dominant matter is baryonic, ρbar ∼ 0.08–0.10 M pc−3 at

R, while DM is a minor component there, i.e. ρDM ∼ 0.01 M pc−3,
because of their different spatial distribution. Indeed, while stars
and gas (as baryonic matter) are mainly concentrated close to the
Galactic disc, DM is distributed in a far larger spherical volume
surrounding the Galaxy, i.e. the DM halo. Consequently, DM is
much more ‘diluted’ near the plane. None the less, the total amount
of DM is higher than ordinary matter also in our MWC model,
as our analysis estimates that within a spherical volume of R =
30 kpc the baryonic mass (bulge, thin, and thick disc) totals Mbar =
6.8 × 1010 M, while the DM halo has a virial mass of MDM =
1.09 × 1012 M. Similarly, McMillan (2017) found a total stellar
mass of (5.43 ± 0.57) × 1010 M and a total virial mass (composed
mainly of DM) of (1.30 ± 0.30) × 1012 M. Note also that the value
obtained by Magalhaes & Cooperstock (2017) for the MW is 9.3 ×
1010 M.

Given the above, Fig. 2 shows that the baryonic MWC profile and
its BG analogue (the two solid lines) are almost coincident in the
radial range above ∼4 kpc. The two models predict a very similar
baryonic mass distribution in the Galactic disc (at z = 0 kpc) in
the radial range, 5 kpc ≤ R ≤ 16 kpc, explored by the Gaia data.
Furthermore, our fit procedure confirms that in that same distance
range the assumption of a constant value for eν holds.

Fig. 2 also shows that, differently from before, for R ≤ 4 kpc
(inside the MW bulge regions) the BG mass density profile in the
plane, assumed of baryonic nature, demands more mass than what
provided by the density components, dark halo included, of the
MWC model (e.g. 10 times more at R ∼ 0.8 kpc). Therefore, the
question arises if the amount of actual baryonic mass within 4 kpc
predicted by the two models is compatible or not. For our MWC
model, we integrated the three baryonic components of our best-
fitting densities in the region [R ≤ 4 kpc; |z| ≤ 10 kpc] for the
two discs (10 kpc is more than 10 times the scale height adopted
for the thick disc), and within the spherical region r ≤ 4 kpc of
our Plummer bulge (4 kpc is more than 10 times the bb value used
for the bulge radius). The integration yields a MWC baryonic mass
of 3.5 × 1010 M, value that compares quite favourably with the
4.8 × 1010 M derived from integrating the BG mass density in the
region ε 
 R ≤ 4 kpc, with ε 
 1 kpc,9 and |z| ≤ |z|eff = 0.215 kpc.
Here, |z|eff represents the effective half-thickness of the BG MW
disc, and its value is, as it should (see the previous section and the
beginning of this), below rin; as for its derivation, we defer it to the
following section.

5 G R AV I TAT I O NA L D R AG G I N G A N D DA R K
H A L O C O N T R I BU T I O N S TO T H E MI L K Y WAY
ROTAT I O N C U RV E

Following Almeida et al. (2016), we used the relativistic density
ρBG (equation 16), for calculating the effective Newtonian circular
velocity profile V BG

eN at any given point along R from the relation of
Binney & Tremaine (2008, see equation 16, section 3.2 of Almeida
et al.). Of course, the extension of the integration along the direction
perpendicular to the Galactic plane in the formula for (V BG

eN )2 must
be restricted to the region |z| ≤ rin = 0.39 kpc. With this definition

9The Mathematica (2012) script we have written to deal with these
calculations provides an extremely small estimate for ε when |z| ≤ rin,
confirming that the radial extent of the region where the BG model is not
defined is very close to the z-axis. It is only when |z| increases above 0.39 kpc
that the radial upper limit of the forbidden region, i.e. where R < N(R, z)
(see Section 2.2), starts deviating significantly from R = 0.
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Figure 3. Red and blue colours refer to the BG and MWC model, respectively. Solid lines represent the relativistic effective Newtonian RC, V BG
eN , and its

analogue for the MWC model, as contributed by the total of baryonic mass. The dashed lines show the MWC halo component alone, and the gravitational
dragging contribution to VBG, V BG

drag, obtained by subtracting V BG
eN from VBG itself (see Section 5 for details).

of V BG
eN , we are able to evaluate the amount of rotational velocity at

z = 0, V BG
drag, due to gravitational dragging, which has no Newtonian

counterpart, and then compare it with the DM contribution to VMWC.
The method adopted unfolds as follows. Let us define the

square differences (V BG
eN (Ri ; k) − V MWC

eN (Ri))2 between the rela-
tivistic effective Newtonian rotational velocity at Ri and its pure
Newtonian analogue, V MWC

eN (Ri); this is readily calculated as
V MWC

eN =
√

V 2
bulge+V 2

td+V 2
Td, where Vbulge, Vtd, and VTd are the circular

velocities due to the MW bulge, thin, and thick disc, respectively
(the broken line curves depicted in Fig. 1). Next, we build the
quadratic form (�i(V BG

eN (Ri ; k) − V MWC
eN (Ri))2)/N , where N is the

total number of Ri’s we decide to utilize in the radial domain of
our experimental velocity data (i.e. R ≥ 5 kpc), having placed them
�Rstep kpc apart from R1 = 5 kpc to RN = ((N − 1) × �Rstep + 5)
kpc (up to 20 kpc). The second index k identifies the half-thickness
|z|k ≤ rin, of the k-th BG disc we use in the vertical integral of the
formula for the effective Newtonian circular velocity to compute
numerically each V BG

eN (Ri ; k) value, as the index i runs from 1 to
N. The intention is now clear, we try to make the two effective
Newtonian velocity profiles as similar as possible, in the radial
range explored by Gaia, by minimizing the quadratic form above
as function of the relativistic disc half-thickness |z|k = k · zstep,
with k = 1, ..., M and |z|M ≤ rin. For the effective BG disc half-
thickness |z|eff, the minimization process yields |z|eff = 0.215 kpc,
for �Rstep = 0.1 kpc and zstep = 0.005 kpc. Smaller radial and/or
vertical steps changes only the non-significant digits of the |z|eff

value. Also, notice that, as |z|k increases to the physical limit of
0.39 kpc, the BG effective Newtonian circular velocities grow
to unrealistic rotational velocities, well above the VBG(R) profile

itself, for ever larger portions of the Galactic plane. Actually, for
|z| = 0.39 kpc V BG

drag(R) is already unrealistically higher than the
VBG(R) curve throughout the whole radial interval shown in Fig. 3.
The red solid curve in Fig. 3 illustrates the V BG

eN (R; |z|eff ) that the
minimization finds closest to V MWC

eN (R), the blue solid line in the
picture. Then, we are finally able to calculate the amount of rota-
tional velocity across the MW plane due to gravitational dragging:
this is done by simply taking the square root of the quadratic
difference between the BG velocity profile, equation (14), and
the effective Newtonian circular velocity, as computed above, for
the disc half-thickness |z|eff, i.e. V BG

drag(R;|z|eff )=
√

(V BG(R))2−(V BG
eN (R;|z|eff ))2.

The V BG
drag(R; |z|eff ) profile is shown in Fig. 3 by the red dashed line

and is compared to the blue dashed curve V MWC
DM , the contribution

of the DM halo to VMWC(R) (this is the same as the grey continuous
line in Fig. 1). The gravitational dragging curve nears zero at R ∼
4.5 kpc, where V BG

eN (R; |z|eff ) ∼ V BG(R), then grows sharply within
2.5 kpc outwards to resemble the DM curve for most of the range to
R = 20 kpc. This shows quantitatively that gravitational dragging
can plausibly compensate for the need of a dark halo to sustain the
flat velocity profile at large radii from the Galactic Centre as long
as |z|eff = 0.215 kpc is used in the context of the BG model.

For R ≤ 5 kpc (the region we cannot constrain with the Gaia
data at the moment), the two effective Newtonian velocities differ
sharply, to the point that, for R below ∼4.5 kpc, V BG

eN (R) grows
unrealistically above VBG(R) itself. Possibly, this is signalling the
limit of the applicability of the effective Newtonian velocity in
combination with a density model, ρBG, unsuited, with just a disc
component, to represent the complex structure of the MW especially
towards its central regions.
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This could be the breaking point for the direct applicability of
the BG model to the MW, as it calls for a more suitable relativistic
description of its central regions. This would require to abandon
the separability ansatz, as well as to find a more general solution
for eν(R, z). Despite these limitations, the consequence of the
application of an axisymmetric stationary metric, i.e. the ansatz
solution for N(R, z), to Einstein’s equations (red line in Figs 2 and
3) is already rather significant. This points to the possibility that a
gravitational dragging-like effect could sustain a flat RC. Obviously,
more data and much improved mathematical models are necessary
before such a scenario can be confirmed.

6 FI NA L R E M A R K S

What we wish to emphasize first in this final section is that, for
the classical DM model form adopted, we obtain results really in
line with the most recent derivations from fits to data and samples
different from the Gaia material used in this work.

Here, utilizing the same highly accurate Gaia data, we report
also on our analysis with a simple GR model – a first-order
approximations to the Galaxy dynamics – as it has received much
less attention over the recent years, thus providing a first test of its
applicability to the MW RC along the line pursued by Almeida et al.
(2016) with data on external galaxies.

The totality of observational clues of DM point to the existence
of a material that: first, does not absorb or emit light but it exerts and
responds only to the gravity force; second, enters the calculations
as extra mass required to justify the flat galactic rotation curves.
The proved relativistic ansatz, by accounting for a gravitational
dragging effect driving the Galactic RC, could imply that geometry
– unseen but perceived as manifestation of gravity according to
Einstein’s equation – might be responsible of the flatness at large
Galactic radii. Then, there would be nothing new in saying that GR
is the standard theory of gravity: our results seem to confirm this
manifestation by accounting, via the Einstein field equations, for a
‘DM-like’ effect. These equations link the source to the geometry of
space–time, and the proved ansatz suggests that their application to
more physically appropriate metrics, along with adequate solutions,
may yield an explanation to the RC flatness problem in our
Galaxy.

Pursuing a GR picture of the MW can ensure a coherent Local
Cosmology laboratory, i.e. at zero redshift, against which any model
of the Galaxy can be tested; then the Galaxy can play a reference
role, much like the Sun for stellar models. While Gaia offers a
unique opportunity to trace star by star the Galactic potential from
within the Solar system gravitational fields, by setting a coherent
GR framework, one can effectively establish to what extent can GR
account for DM. Our outcomes seem to suggest that global MW
dynamics could be dominated by space–time, whereas Newtonian
approximation is valid only locally. Future developments of this
work, theoretical and observational (with Gaia DR3 for example),
might confirm this scenario.

As far as our ansatz is concerned, it appears that GR dust, namely
pure matter made only of the non-collisional baryonic material in
the disc, recovers the local energy–mass density, without further
hypothesis (as per Occam’s razor rule), within the 11-kpc range
covered by our selection of disc stars from Gaia’s DR2.

Although these are initial results based on a tailored physical
solution of the Einstein field equation, they indicate a possible GR
approach to the RC flatness problem in the spirit of the Newtonian
Hypotheses non fingo, suggesting at the same time to push on the
use of GR, regardless of how difficult this might be, to detail

a more complex Galaxy structure, mostly shaped by the bulky
central rotating mass source, where dragging effects could be further
enhanced by similar sources distributed along the disc (see e.g. Liu
J. et al. 2019).
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A P P E N D I X A : TH E O R E T I C A L BAC K G RO U N D

It is known that, in a stationary and axisymmetric space–time there
exist two commuting Killing vector fields, kα (time-like) and mα

(always zero on the axis of symmetry), and a coordinate system
{t, φ, r, z} adapted to the symmetries (Stockum 1937; de Felice &
Clarke 1990; Stephani et al. 2009), whose line element for a rotating
perfect fluid takes the form:

ds2 = −e2U (dt + Adφ)2 + e2U
(
e2γ (dr2 + dz2) + Wdφ2

)
, (A1)

where e2U and e2γ are conformal factors and U, A, and W depend
only one the coordinates {r, z}. The time coordinate t (time-like
far enough from the metric source) spans the range [ − ∞, +∞]
and φ is the azimuthal angular coordinate in the interval [0, 2π ] (de
Felice & Clarke 1990). For the general dust solution (Stephani et al.

2009, equation 21.50) we have:

− e2U = (k|k), −Ae2U = (k|m), e−2UW 2 − A2e2U = (m|m).

(A2)

In addition

mα = ∂α
φ , kα = ∂α

t , ∂tgij = ∂φgij = 0, gφa = gta = 0, (A3)

where a = r, z. Because of the two-dimensional Laplace equation
one can choose W = r2.

For rigidly rotating dust (i.e. shear-free and expansion-free), one
can choose U = 0 and there exist a time-like Killing vector
(linear combination of kα and mα with a constant coefficient)
parallel to the four-velocity of the fluid uα , i.e. the corotating one
chosen by Balasin & Grumiller (2008), proportional to ∂α

t (Stephani
et al. 2009). Then, by setting e2γ ≡ eν , N = −A, and e2U = 1,
equation (A1) becomes the line element adopted by Balasin &
Grumiller (2008).

APPENDI X B: D ETAI LS ON THE
PA R A M E T E R S A N D P R I O R S O F T H E FI T

The parameter space is too large to explore with a simple non-linear
fit. We therefore decided to use the MCMC method to determine
the unknown parameters and their uncertainties (see Section 3.3).
Actual computations made use of the MCMC python package
PYMC3 (Salvatier, Wiecki & Fonnesbeck 2016) with the NUTS
algorithms chosen for the step selection. To explore the full pdf we
implement the following priors:

(i) BG model: (i) Uniform for V0 ∈ [150, 300] km s−1; (ii)
Uniform for Rout ∈ [10, 100] kpc; (iii) Uniform for rin ∈ [0, 2]
kpc; (iv) Uniform for eν0 ∈ [0.001, 10].10

(ii) MWC model: (i) Normal for Mb = N (μ = 1.067, σ =
0.5) 1010 M; (ii) Normal for Mtd = N (μ = 3.944, σ =
0.5)1010 M; (iii) Normal for MTd = N (μ = 3.944, σ =
0.5)1010 M; (iv) Normal for atd = N (μ = 5.3, σ = 0.5) kpc;
(v) Normal for aTd = N (μ = 2.6, σ = 0.5) kpc; (vi) Normal
for ρhalo

0 = N (μ = 0.01, σ = 0.005) M pc−3; (v) Normal for
Ah = N (μ = 19.6, σ = 4.9) kpc.

In addition, in the MWC model, we fix bb = 0.3 kpc (Pou-
liasis et al. 2017), as our data do not explore the Galactic cen-
tral region where the bulge dominates. In this way, we elim-
inate any possible correlations with the free parameters. We
stress that we use normal pdf priors for the MWC model, so
that we can compare our Bayesian analysis to the most re-
cent observational estimates (see second point above). On the
other hand, for the BG free parameters we adopted uniform
prior distributions as there is no previous knowledge for such
parameters, being this is the first time of a fit to a general
relativistic model with data for the MW. We also fix btd =
0.25 kpc and btd = 0.8 kpc (Pouliasis et al. 2017), as in our
work we neglect the vertical data distribution, and consider only
binned radial rings. For the MWC model, the estimated param-
eters are, within the errors, compatible with literature values
(Iocco et al. 2011, 2015; Bovy 2015; Moni Bidin et al. 2015;
McMillan 2017; Pouliasis et al. 2017; Korol et al. 2019). The
largest contributions to the 1σ confidence interval come from

10This is the value characterizing our approximation of a constant metric
conformal factor, i.e. eν(R,z) ≈ eν0 .
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Mb and Ah uncertainties, which are the most difficult to con-
strain because of the relatively narrow range covered by the DR2
data.

A P P E N D I X C : TH E G O O D N E S S O F T H E
A NA LY S I S A N D P O S T E R I O R C O R R E L AT I O N S

Fig. 1 shows the two estimated velocity profiles that are both
good representations of the observed (binned) data. To quanti-
tatively asses this, we compare the two models via the Widely
Applicable Information Criterion (WAIC, Watanabe 2010), which
is a fully Bayesian criterion for estimating the out-of-sample
expectation.

By definition, lower values of the WAIC indicate a better fit,
i.e. the WAIC measures the poorness of the fit. Our MCMC runs
result in the values 288.8 and 282.6 for the BG and MWC models,
respectively. Therefore, for our likelihood analysis the two models
appear almost identically consistent with the data.

Furthermore, Figs C1 and C2 show the posterior distributions of
the parameters for the MWC and BG model, respectively. For the
MWC model, the strongest correlation is between the DM halo scale
density ρhalo

0 and its radial scale Ah, similarly to McMillan (2017).
There are smoother correlations between all the other parameters.
Moreover, means and medians are always practically coincident
(compare with the mean values reported in Table 3 of Section 3.3);
therefore, they can both be used in the distribution of their respective
posterior.

On the other hand, for the BG model the results suggest
stronger correlations or anticorrelations between the radial (rin, Rout)
parameters and the velocity normalization V0. This is reasonable
based on their definitions (see Section 3.3). The conformal factor
constant eν0 appears to be less correlated with the other parameters.
This is somewhat expected, as this parameter does not enter in

the expression for the BG rotational velocity, and can only be
estimated due to the direct use of the BG density function (16) in
the likelihood expression (15) (again see Section 3.3). Analogously
to the MWC model case, for the BG model as well means and
medians are fairly comparable (see Table 2 in Section 3.3). Finally,
we report in Tables C1, C2, C3, and C4 numerical evidence that the
implementation of the Jeans correction, i.e. the use of Vcirc instead
of Vφ data, has not much influence on the posteriors estimates in
both models.

APPENDI X D : THE EI NSTEI N FI ELD
E QUAT I O N S

Solving Einstein’s equation translates into a system of coupled non-
linear partial differential equations, and for that there exists no
general method to obtain all of the solutions.

Namely, considering line element (4) and tensor Tαβ =
ρgαμgβτ uμuτ (in virtue of the definition of Tαβ , and in the limit
of small density, uα results geodetic), one obtains the following
expression for the Einstein field equations:

r∂zν + ∂rN∂zN = 0 (D1)

2r∂rν + (∂rN )2 − (∂zN )2 = 0 (D2)

2r2(∂r∂rν + ∂z∂zν) + (∂rN )2 + (∂zN )2 = 0 (D3)

r(∂r∂rN + ∂z∂zN ) − ∂rN = 0 (D4)

(∂rN )2 + (∂zN )2 = kr2ρeν (D5)

By solving this system of PDE’s one recovers the functions N(r,
z), ν(r, z) (see sections 2.3 and 2.4 in Balasin & Grumiller 2008),
and via equation (D5), we compute the local mass density.
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Figure C1. MWC parameters corner plot. The one-dimensional (histogram) posterior distributions of each parameter are shown on the diagonal of the
drawing, while the other panels represent the two-dimensional (contours) correlations. The black thick contours indicate the 1σ and 2σ credible levels, while
the blue squares represent the mean value of each posterior distribution. The black dashed vertical lines mark the 16th, 50th (i.e. median), and 84th percentiles
of the posterior. Finally, the average values and their corresponding 16th and 84th percentiles are shown on top of the histograms. Note that ρhalo

0 is in unit of
102 M pc−3.
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Figure C2. BG parameters corner plot. Same as in Fig. C1.
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Table C1. Posterior estimates for the BG model using
Vφ data. Hpd stands for ‘highest posterior density’ and is
the minimum width Bayesian credible interval.

BG Vφ V0 Rout rin eν0

Hpd 0.16 246.67 33.07 0.13 0.07
Median 262.35 45.27 0.39 f 0.08
Hpd 0.84 289.04 71.84 0.74 0.10

Table C2. Same as in Table C1 but for Vcirc computed
with the implementation of the Jeans correction.

BG Vcirc V0 Rout rin eν0

Hpd 0.16 250.48 38.33 0.27 0.07
Median 269.22 53.28 0.55 0.08
Hpd 0.84 289.21 92.83 0.81 0.10

Table C3. Same as in Table C1 but for the MWC model. Note that ρhalo
0 is

in unit of 102 M pc−3.

MCW Vφ Mb Mtd MTd atd aTd ρhalo
0 Ah

Hpd 0.16 0.65 3.49 3.56 4.70 2.30 0.61 13.61
Median 1.01 3.89 4.01 5.16 2.68 0.87 16.75
Hpd 0.84 1.37 4.28 4.47 5.63 3.08 1.23 20.74

Table C4. Same as in Table C2 but for the MWC model. Note that ρhalo
0 is

in unit of 102 M pc−3.

MCW Vcirc Mb Mtd MTd atd aTd ρhalo
0 Ah

Hpd 0.16 0.54 3.49 3.52 4.79 2.40 0.69 14.05
Median 0.90 3.88 3.98 5.25 2.79 0.95 17.02
Hpd 0.84 1.25 4.27 4.43 5.71 3.19 1.32 20.75

This paper has been typeset from a TEX/LATEX file prepared by the author.
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