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ABSTRACT
The 21-cm signal of neutral hydrogen is a sensitive probe of the Epoch of Reionization (EoR),
Cosmic Dawn, and the Dark Ages. Currently, operating radio telescopes have ushered in a data-
driven era of 21-cm cosmology, providing the first constraints on the astrophysical properties
of sources that drive this signal. However, extracting astrophysical information from the data
is highly non-trivial and requires the rapid generation of theoretical templates over a wide
range of astrophysical parameters. To this end emulators are often employed, with previous
efforts focused on predicting the power spectrum. In this work, we introduce 21CMGEM– the
first emulator of the global 21-cm signal from Cosmic Dawn and the EoR. The smoothness of
the output signal is guaranteed by design. We train neural networks to predict the cosmological
signal using a database of ∼30 000 simulated signals which were created by varying seven
astrophysical parameters: the star formation efficiency and the minimal mass of star-forming
haloes; the efficiency of the first X-ray sources and their spectrum parametrized by spectral
index and the low-energy cut-off; the mean-free path of ionizing photons, and the cosmic
microwave background optical depth. We test the performance with a set of ∼2000 simulated
signals, showing that the relative error in the prediction has an rms of 0.0159. The algorithm
is efficient, with a running time per parameter set of 0.16 s. Finally, we use the database of
models to check the robustness of relations between the features of the global signal and the
astrophysical parameters that we previously reported.

Key words: software: development – galaxies: high-redshift – dark ages, reionization, first
stars – cosmology: theory.

1 IN T RO D U C T I O N

The exploration of the Universe out to times earlier than the point
of complete reionization is rapidly advancing. One of the most
informative probes of these epochs is the 21-cm line produced
by hydrogen atoms in the neutral intergalactic medium (IGM) at
redshifts z > 6. This line redshifts to frequencies below 200 MHz
and can be detected by low-frequency radio telescopes. Global
21-cm experiments measure the spectrum of this line averaged
over the sky. The first tentative detection of the Cosmic Dawn
signal was recently made by the Low-Band implementation of the
Experiment to Detect the Global EoR Signature (EDGES, Bowman
et al. 2018). Other global 21-cm experiments, including the Large-
Aperture Experiment to Detect the Dark Ages (Bernardi et al. 2016;
Price et al. 2018), the EDGES High-Band (Bowman & Rogers
2010; Monsalve et al. 2017, 2018, 2019), and the Shaped Antenna
measurement of the background RAdio Spectrum (Singh et al. 2017,
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2018), provide upper limits on the signal from Cosmic Dawn and the
Epoch of Reionization (EoR), ruling out some extreme astrophysical
scenarios. A parallel effort is being made by interferometric radio
arrays that are placing upper limits on the fluctuations of the 21-
cm signal, including the Donald C. Backer Precision Array for
Probing the Epoch of Reionization (Kolopanis et al. 2019), the Low
Frequency Array (LOFAR, Patil et al. 2017; Gehlot et al. 2019;
Mertens et al. 2020), the Giant Metrewave Radio Telescope (Paciga
et al. 2013), the Murchison Widefield Array (Beardsley et al. 2016;
Barry et al. 2019; Li et al. 2019; Trott et al. 2020), and the Owens
Valley Radio Observatory Long Wavelength Array (Eastwood et al.
2019). The most recent upper limit reported by LOFAR (Mertens
et al. 2020) made it possible to place (weak) upper limits on the
temperature of the neutral gas and ionization state of the Universe at
z = 9.1 (Ghara et al. 2020; Mondal et al. 2020). Upcoming arrays,
including the Hydrogen Epoch of Reionization Array (DeBoer et al.
2017), the Square Kilometer Array (Koopmans et al. 2015), and the
New Extension in Nancay Upgrading LOFAR (Zarka et al. 2012),
will provide measurements of the power spectrum over a wide range
of scales and redshifts.
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The 21-cm signal is driven by both astrophysical and cosmolog-
ical processes and is thus a unique probe of the early Universe. The
amplitude of the 21-cm line observed against the radio background
radiation, normally assumed to be the cosmic microwave back-
ground (CMB; however, see Feng & Holder 2018; Ewall-Wice et al.
2018; Ewall-Wice, Chang & Lazio 2020), depends on the abundance
of neutral hydrogen atoms as well as on the contrast between
the spin temperature, TS (the excitation temperature of the 21-cm
transition), and the temperature of the background, Trad. The former
is driven to the kinetic temperature of the gas, TK, by collisions as
well as via absorption and re-emission of stellar Lyα photons (the
Wouthuysen–Field, WF, coupling, Wouthuysen 1952; Field 1958).
In the absence of collisions and/or Lyα radiation the spin tempera-
ture is driven to the temperature of the background. The gas is seen
in absorption against the background if TS < Trad (usually during the
Dark Ages and Cosmic Dawn). Once the population of the first X-
ray sources builds up and heats the IGM above the temperature of the
background, the gas is seen in emission. In the course of reionization
the abundance of neutral hydrogen atoms decreases and the IGM
signal gradually vanishes. Overall, the signal measures properties of
star formation, the abundance and luminosity of ultraviolet and X-
ray sources, and possibly, properties of dark matter if the latter has an
effect on the thermal and ionization histories of the gas (e.g. Evoli,
Mesinger & Ferrara 2014; Tashiro, Kadota & Silk 2014; Muñoz,
Kovetz & Ali-Haimoud 2015; Barkana 2018; Fialkov, Barkana &
Cohen 2018; D’Amico, Panci & Strumia 2018).

Our currently limited knowledge about primordial star and black
hole formation translates into large uncertainties in the predicted
21-cm signal. As a result, a wide space of astrophysical parameters
should be explored when predicting the 21-cm signature. Because
full-scale numerical simulations are prohibitively expensive, alter-
native techniques, such as fast algorithms, emulators, or machine
learning methods, are often employed to walk through the allowed
space of astrophysical signals (e.g. Greig & Mesinger 2015, 2017;
Shimabukuro & Semelin 2017; Schmit & Pritchard 2018). The
effort has so far focused on the power spectrum of the 21-
cm signal: Greig & Mesinger (2015) presented 21CMMC – a
Monte Carlo Markov Chain (MCMC) tool which returns three
reionization parameters (the mean-free path of ionizing photons,
the minimum temperature of star forming haloes and the ionizing
efficiency of sources) given power spectrum measurements (similar
efforts include works by Liu et al. 2016; Hassan et al. 2017).
Because X-ray heating might play an important role during the EoR
(Mesinger, Ferrara & Spiegel 2013; Fialkov, Barkana & Visbal
2014), 21CMMC was recently extended to include three heating
parameters: the bolometric luminosity of X-ray sources per unit
star formation rate, as well as the low-energy cut-off and the slope
of the X-ray spectral energy distribution (SED, Greig & Mesinger
2017). Shimabukuro & Semelin (2017) took a different approach
to find the best fit reionization parameters given power spectrum
measurements: artificial neural networks (NNs) were trained on
the data from 70 EoR simulations performed using the 21cmFAST

code (Mesinger, Furlanetto & Cen 2011). The performance of
the algorithm was tested on an additional set of 54 simulations.
Schmit & Pritchard (2018) used NNs to emulate the power spec-
tra generated by 21cmFAST and found a good agreement with
21CMMC. Jennings et al. (2019) compared five different machine
learning techniques for emulating the power spectrum of models
generated with the code SIMFAST21 (Santos et al. 2010). Finally,
Kern et al. (2017) presented a more sophisticated emulator based
on Gaussian processes, which could be applied to a broad range of
problems. They demonstrate the performance on a six-parameter

model for the 21-cm signal including reionization and heating
parameters as well as five additional cosmological parameters. With
the exception of Kern et al. (2017), all the above-mentioned tools
are designed to reconstruct the parameters from a 21-cm power
spectrum measurement. Similar tools specifically designed for the
global 21-cm signal are lacking.

The recently reported results from EDGES Low-Band (Bowman
et al. 2018) revealed an anomalously strong and narrow absorption
feature at ∼78 MHz which, if truly of cosmological origin, cannot
be explained by the standard astrophysical model outlined above.
Even though concerns about the signal being of cosmological
origin have been expressed in the literature (it could be a result
of an uncompensated systematic error or be imprinted by the
Galactic foregrounds, Hills et al. 2018; Singh & Subrahmanyan
2019; Spinelli, Bernardi & Santos 2019; Sims & Pober 2020),
several exotic theories have been suggested to explain this signal.
One possible explanation is that dark matter scattered off baryons,
draining energy from the gas and leading to its overcooling (e.g.
Muñoz et al. 2015; Barkana 2018; Fialkov et al. 2018; Muñoz &
Loeb 2018). Another explanation invoked in the literature requires
the existence of a strong radio background in addition to the CMB.
Such an excess could be created by an anomalously bright popu-
lation of high-redshift black holes at z ∼ 20 (Bowman et al. 2018;
Feng & Holder 2018; Ewall-Wice et al. 2018, 2020). As we await
independent observational confirmation of the intriguing EDGES
result, it is important to keep studying both the standard picture
and exotic scenarios. In this paper, we explore a wide range of
standard astrophysical scenarios. We use a large data set of models,
which cover the widest astrophysical parameter space (see the next
section), to develop a 21-cm global emulator (21CMGEM) for the first
time. Given a set of seven astrophysical parameters, the emulator
makes a prediction for the global 21-cm signal over a wide-redshift
range (z = 5–50) that includes both the EoR and Cosmic Dawn.
Although our models do not capture the EDGES absorption feature,
the algorithm developed here could be applied to a revised set of
models with additional physics. 21CMGEM, along with the global
signals that were used to create the emulator, is publicly available
at https://www.ast.cam.ac.uk/∼afialkov/Publications.html. The tool
has recently been employed to derive constraints on astrophysical
parameters using the EDGES High-Band spectrum1 (90–190 MHz,
Monsalve et al. 2019).

This paper is organized as follows. In Section 2, we detail our
seven-parameter astrophysical model. In Section 3, we describe the
simulation, the limits on the astrophysical parameter space, and
the database of ∼30 000 models. We also re-examine consistency
relations between the astrophysical parameters and the features of
the global signal first derived by Cohen et al. (2017). The design of
the emulator is outlined in Section 4, and its performance assessed.
Finally, we summarize our results in Section 5.

2 TH E H I G H - R E D S H I F T U N I V E R S E

The 21-cm signal from Cosmic Dawn and the EoR is driven by
several astrophysical processes including star formation, heating,
and ionization. To produce the 21-cm signal, we use our seminu-
merical method (e.g. Visbal et al. 2012; Fialkov et al. 2013;
Fialkov et al. 2014) which generates realizations of the universe
in large cosmological volumes (3843 comoving Mpc3) and over

1Note that we previously referred to the emulator as GLOBAL21CM (Mon-
salve et al. 2019).
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a large redshift range (z = 5–60). The simulation follows the
hierarchical growth of structure (including effects of the relative
streaming velocity between dark matter and gas, Tseliakhovich &
Hirata 2010), tracks star formation (averaged over a 3 Mpc scale)
and follows the evolution of X-ray, Lyα, Lyman–Werner (LW,
11.2–13.6 eV), and ionizing radiative backgrounds. The simulation
takes into account the effect of the relative streaming velocity on
star formation, as well as the effect of the LW radiation and of
the photoheating feedback on star formation (see details below).
We parametrize the high-redshift astrophysics using seven key
parameters: the star formation efficiency (f∗), the minimum circular
velocity of star-forming haloes (Vc), the X-ray radiation efficiency
(fX), power-law slope (α) and low energy cut-off (νmin) of the X-ray
SED, the mean-free path of ionizing photons (Rmfp), and the CMB
optical depth (τ ).

2.1 Star formation

The simulation takes into account the effect of radiative and
mechanical feedback processes on star formation. Star formation
is possible in dark matter haloes that are massive enough to enable
efficient cooling of the in-falling gas (e.g. Tegmark et al. 1997).
We use the threshold mass, or, equivalently (at a given redshift),
the minimum circular velocity of star-forming haloes, as one of
the free parameters. The lowest temperature coolant in the early
universe is molecular hydrogen, which allows stars to form in haloes
more massive than Mmolecular

min ∼ 105 M�, or with circular velocity
larger than Vc = 4.2 km s−1 (e.g. Tegmark et al. 1997; Barkana &
Loeb 2001; Abel, Bryan & Norman 2002; Bromm, Coppi & Larson
2002; Yoshida et al. 2003). LW radiation produced by the first
stars eventually halts star formation in molecular cooling haloes
(Haiman, Rees & Loeb 1997), shifting it to more massive atomic
cooling haloes of Matomic

min ∼ 107 M� (Vc = 16.5 km s−1, Haiman,
Abel & Rees 2000; Machacek, Bryan & Abel 2001; Wise & Abel
2007; O’Shea & Norman 2008). The timing and duration of this
transition is affected by uncertainties in the efficiency of the LW
feedback (Visbal et al. 2014; Schauer et al. 2015). In addition, star
formation in low-mass haloes is modulated by the relative streaming
velocity between dark matter and baryons (e.g. Tseliakhovich &
Hirata 2010; Dalal, Pen & Seljak 2010; Fialkov et al. 2012; Schauer
et al. 2019). On the other hand, the minimum cooling mass can
rise above the atomic cooling threshold via feedback mechanisms
such as supernova explosions (e.g. Wyithe & Loeb 2013). At lower
redshifts, when reionization becomes significant and the gas in
the IGM is heated above 104 K, photoheating feedback becomes
important. This feedback mechanism prevents further accretion
of gas on to haloes below 108–109 M� (Vc up to ∼75 km s−1,
e.g. Rees 1986; Weinberg, Hernquist & Katz 1997; Navarro &
Steinmetz 2000; Sobacchi & Mesinger 2013; Cohen, Fialkov &
Barkana 2016). In our parameter study, we explored the values
of Vc between 4.2 and 100 km s−1. However, the emulator was
optimized for the starting value of Vc (before additional feedbacks
are imposed) in the 4.2–76.5 km s−1 range.

Another free parameter in the simulation is the fraction of gas
in dark matter haloes that is converted into stars, referred to as the
star formation efficiency. In general, this quantity depends on the
halo mass. At low redshifts, observations find a mass-dependent
star formation efficiency, e.g. Behroozi et al. (2019) show the
evolution of stellar mass in haloes above M � 1010 M� and at
0 � z � 10. The observed star formation efficiency peaks at a
value of a few per cent in haloes of ∼2.8 × 1011 M� (e.g. Mirocha,
Furlanetto & Sun 2017; Behroozi et al. 2019), as it is regulated

by feedback mechanisms, and the process is less efficient in
both higher and lower mass haloes. Such trends were recently
incorporated in simulations of reionization with applications to
synergies between the 21-cm signal and galaxy surveys with James
Webb Space Telescope at z � 10 (Mirocha et al. 2017; Park et al.
2020). However, due to the lack of observations at higher redshifts
and lower halo masses, applying such models to our work would
require considerable extrapolations. This is because the Cosmic
Dawn signal is driven by dark matter haloes of 105–108 M� which
can start forming stars as early as z ∼ 40.

Star formation in the low-mass haloes characteristic of the high-
redshift Universe is virtually unconstrained by observations, while
numerical simulations yield a large scatter, finding an efficiency of
a few per cent or much lower (Jeon et al. 2014; Wise et al. 2014;
O’Shea et al. 2015). Therefore, to parametrize the process of star
formation in our simulations we assume constant star formation
efficiency in haloes heavier than the atomic cooling mass (and this
value we designate f∗), while in lower mass haloes a logarithmic
cutoff in the efficiency is employed

f∗(M) =

⎧⎪⎪⎨
⎪⎪⎩

f∗ Matomic
min < M,

f∗
log(M/Mmin)

log(Matomic
min /Mmin) Mmin < M < Matomic

min ,

0 otherwise,

where Mmin corresponds to the cut-off circular velocity Vc (see Co-
hen et al. 2017, for more details). We vary f∗ between 0.0001 and 0.5.

2.2 Heating

The least constrained component of the modelling is the set of
properties of the first X-ray sources that heat up the cosmic gas.
The most plausible sources that dominate the X-ray radiative
background at high redshifts are X-ray binaries (XRBs, Mirabel
et al. 2011; Fragos et al. 2013); however, other candidates have
also been discussed in the literature, including hot gas in galaxies,
mini-quasars (Madau et al. 2004), X-rays produced via inverse
Compton scattering of the CMB photons off electrons accelerated by
supernovae (Oh 2001), or more exotic scenarios such as dark matter
annihilation (e.g. Cirelli, Iocco & Panci 2009; Liu, Ridgway &
Slatyer 2020).

The SED of the early X-ray sources is a key astrophysical
parameter (Fialkov et al. 2014) and might strongly affects the 21-cm
signal from both the EoR and Cosmic Dawn. The effect of hard X-
ray sources with energy around 2 keV on the thermal and ionization
histories (and, thus, on the resulting 21-cm signal) is significantly
different from that of soft sources with energies of ∼0.5 keV:
soft sources generate strong fluctuations on relatively small scales
(up to a few tens of comoving Mpc) in the gas temperature and,
subsequently, in the 21-cm intensity; on the other hand, hard sources
produce a more homogeneous and less efficient heating, generating
mild fluctuations on larger scales (>100 comoving Mpc). XRBs,
as well as mini-quasars, have a hard SED (see the discussion in
Fialkov et al. 2016) that peaks at a few keV, while other sources
can have softer SEDs. Absorption of soft X-rays with energy lower
than νmin (typically of ∼0.1–0.5 keV) by dust in the host galaxy
could contribute to effective hardening of X-ray SEDs (Fragos et al.
2013). We parametrize the X-ray SED by a power law of the slope
α (i.e. dlog (EX)/dlog (ν) = −α) and a low-frequency cut-off νmin.
Since there is significant degeneracy between these two parameters,
we vary α only slightly (in the range: α = 1–1.5), and νmin in the
wide range of 0.1–3 keV.
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Figure 1. Left: histogram of the relative error in the prediction of ζ based on seven model parameters [f∗, Vc, fX, α, νmin, Rmfp, τ ]. The total number of
test cases was 2186. We find that 76 per cent of the cases have a relative error smaller than 1 per cent. Right: histogram of the relative error in the prediction
of ν16 per cent, the frequency (which is a measure of redshift) at which the neutral fraction reaches 16 per cent. 92 per cent of cases have a relative error smaller
than 1 per cent.

In addition to the shape of the SED, the total X-ray luminosity
of sources is the other important parameter. Here, we adopt the
standard expression for the luminosity per star formation rate (LX

–SFR relation, see Fialkov et al. 2014; Cohen et al. 2017, for more
details) inferred from low-redshift observations of nearby starburst
galaxies and XRBs (Grimm, Gilfanov & Sunyaev 2003; Gilfanov,
Grimm & Sunyaev 2004; Mineo, Gilfanov & Sunyaev 2012):

LX

SFR
= 3 × 1040fX erg s−1 M−1

� yr. (1)

In the above expression, LX is the bolometric luminosity, and fX

is the (constant) X-ray efficiency of sources, which we use as the
third X-ray parameter. The standard normalization for XRBs (with
fX = 1) takes into account an order of magnitude increase in the
LX–SFR relation in the low-metallicity environments expected at
high redshifts (Fragos et al. 2013). The high-redshift fX is poorly
constrained: A model-dependent upper limit of fX ∼ 10–1000 can
be derived using the measurement of the unresolved cosmic X-ray
background (Fialkov et al. 2016); a lower (also model-dependent)
limit of fX ∼ 0.001 is hinted at by 21-cm experiments (Singh et al.
2017, 2018; Monsalve et al. 2018, 2019; Mondal et al. 2020). To ex-
plore the parameter space, we vary fX between 0 and 1000. However,
the emulator was optimized in the range of fX between 0 and 10.

2.3 Reionization

We parametrize the process of reionization with two parameters:
the first parameter is the mean-free path of ionizing photons, Rmfp,
which we vary between 10 and 50 comoving Mpc (Alvarez &
Abel 2012; Greig & Mesinger 2015). This parameter approximately
quantifies the effect of dense small-scale absorption systems in that
it is the mean-free path of ionizing photons in a large-scale ionized
bubble. In practice, it is set as an upper limit on the distance to
sources that can participate in the reionization of a given cell.

The second EoR parameter is the ionizing efficiency of sources,
defined as

ζ = f∗fescNion
1

1 + n̄rec
, (2)

where fesc is the fraction of ionizing photons that escape into
the IGM, n̄rec is the mean number of recombinations per ionized
hydrogen atom, and Nion is the number of ionizing photons produced
per stellar baryon. Given a star formation history (i.e. fixing all
the rest of the parameters [f∗, Vc, fX, α, νmin, Rmfp]), and
assuming a mass-independent ionizing efficiency, there is a one-to-
one correspondence between ζ and the CMB optical depth. Because
τ (rather than ζ ) is directly probed by the CMB experiments
(specifically by the Planck satellite, Planck Collaboration XIII
2016), we choose to work with τ as the free parameter. In our
parameter exploration, we varied τ between ∼0.04 and ∼0.2.
However, high values of τ are ruled out (e.g. Planck Collaboration
XIII 2016), and we find it difficult to produce τ below 0.055 and still
be consistent with observational constraints (see below). Therefore,
the emulator has been optimized for τ in the range between 0.055
and 0.1.

The non-linear mapping between τ and ζ , which is a function of
the other input astrophysical parameters, is carried out using an NN
which was trained on a set of 27 455 cases and tested with 2186
cases. This NN has seven input model parameters [f∗, Vc, fX, α,
νmin, Rmfp, τ ] (and, thus, seven input neurons), one hidden layer of
40 neurons and 1 output, ζ . The Levenberg–Marquardt algorithm
(Levenberg 1944; Marquardt 1963) was used to minimize the mean-
square error between the true value provided by the training data set
and the value predicted by the network. We evaluate the performance
of the NN by quantifying its accuracy in predicting ζ . We find that
76 per cent of the cases have a relative error smaller than 1 per cent
and the mean relative error is 0.77 per cent. The histogram of the
relative errors is shown in Fig. 1 (left-hand panel).

2.4 Observational constraints

The parameter space outlined above is constrained by the available
observations of the EoR. In addition to the limits on τ from the
CMB experiments, we consider two other types of constraints when
developing the global signal emulator:

(i) Stellar models indicate that for the extreme case of massive
population III stars, Nion = 40 000 (Bromm, Kudritzki & Loeb
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Figure 2. Left-hand panel: the confusion matrix of the exclusion process ζ > ζ max. Right-hand panel: the confusion matrix of the exclusion criterion
ν16 per cent > 205.85 MHz. The structure of each confusion matrix is as follows: each matrix has nine fields with the green squares showing the number of
excluded and allowed cases which were correctly classified, red squares showing the number of miss-classified cases, grey showing the percentage of the correct
predictions for each row/column, and blue showing the total accuracy defined as the ratio of the total number of correctly identified cases (both excluded and
allowed) to the total number of considered cases. The classification is done correctly in 100 per cent of cases for ζ , and in 99.9 per cent of cases for ν16 per cent.

2001); therefore, we set an upper limit of ζmax = 40 000f∗ based on
equation (2). Hence, our first requirement for a parameter set to be
valid is that ζ < ζ max.

(ii) Absorption seen in the spectra of high-redshift quasars
measures the neutral fraction of the Universe (e.g. Bañados et al.
2018). A 2σ upper limit of xHI, max = 16 per cent on the neutral
fraction at z = 5.9 (ν = 205.85 MHz) was derived from quasar
absorption troughs (McGreer, Mesinger & D’Odorico 2015). Our
second requirement is, thus, xHI(z = 5.9) < 16 per cent. In this
paper, we do not take into account the latest constraints from the Ly-
α emitting galaxies (Mason et al. 2019) and high-redshift quasars
(e.g. Bañados et al. 2018) as they became available when our paper
was close to being completed (however, see Monsalve et al. 2019).
To incorporate the neutral fraction constraint in our modelling, we
train an NN to predict at which frequency, denoted by ν16 per cent, the
neutral fraction reaches 16 per cent for the given set of astrophysical
parameters, ν16 per cent = ν (xHI = 0.16). The reionization history is
considered valid if this frequency is lower than 205.85 MHz (i.e.
the redshift is higher than 5.9). Because for many cases xHI(z = 5.9)
is zero, ν16 per cent can be more easily inferred with high accuracy
than the neutral fraction at z = 5.9. Technical details of this NN are
discussed in Section 4.1.3. The performance of the NN in predicting
ν16 per cent is evaluated in Fig. 1 (right-hand panel) where we show
the histogram of relative errors. We find that the mean relative error
is 0.47 per cent and 92 per cent of cases have a relative error smaller
than 1 per cent.

As a part of the global signal emulator, described in detail in
Section 4, the code checks whether or not an input parameter set
renders a valid EoR history, that is given the generated values of
ζ and ν16 per cent, whether ζ < ζ max and ν16 per cent < 205.85 MHz.
The success/failure rates of the validation process is summarized
in the form of confusion matrices shown in Fig. 2. Out of 2186
tested cases, 348 are excluded based on their values of ζ and 117
are excluded based on the values of ν16 per cent (22 overlap, i.e.
are inconsistent with either constraint). The classification is done
correctly in 100 per cent of cases for ζ , and in 99.9 per cent of cases
for ν16 per cent.

The above-mentioned constraints on ζ and ν16 per cent condition
the entire parameter space, because the reionization history depends
on several astrophysical parameters simultaneously. Top panel of
Fig. 3 illustrates the mapping between the EoR constraints and
the allowed regions in the f∗ − Vc plane for the specific choice
of the EoR parameters, τ = 0.055 and Rmfp = 50 Mpc. For each
combination of f∗ and Vc, we use the trained NNs to check whether
the reionization history is valid or not. In the figure, the area where
the two exclusion criteria overlap is painted in black, the excluded
region with ζ > ζ max is shown in blue, while the region with
xHI(z = 5.9) > 16 per cent is red. The white regions have valid
reionization histories.

The shape of the excluded and allowed regions is easy to under-
stand. Consider first the requirement ζ < ζ max. For given values of τ

and Rmfp (as well as the fixed heating parameters of fX = 1, α = 1.5
and νmin = 0.2 keV), models with a low star formation efficiency
require high values of ζ that exceed the upper limit. Therefore,
cases with low f∗ are excluded. Now, the lower the value of Vc is,
the more star forming haloes there are, making it easier to reionize
(and match the required value of τ ) without needing to exceed ζ max.
Therefore, the maximum excluded f∗ is a monotonically growing
function of Vc. This function grows rapidly at the highest Vc due to
the exponential dependence of the halo abundance on Vc, while it
changes slowly at Vc < 16.5 km s−1 because in this mass range the
number of stars at a given f∗ is regulated by the LW feedback by the
time of the bulk of cosmic reionization.

Consider the second requirement, xHI(z = 5.9) < 16 per cent.
Since τ has fixed the average timing of reionization, the neutral
fraction constraint rules out cases with low Vc, since those are
characterized by a more gradual evolution of reionization and, thus,
a higher remaining neutral fraction at z = 5.9, regardless of the
values of the other parameters. Therefore, this requirement rules
out the left-hand portion of the f∗ − Vc plane (for a fixed Rmfp).

The exclusion contours for several choices of τ and Rmfp at the
fixed values of the heating parameters are shown in the middle panel
of Fig. 3, with the previously examined (reference) case of τ = 0.055
and Rmfp = 50 Mpc shown in solid blue. A lower Rmfp implies a more
gradual end to reionization (thus raising the residual xHI at z = 5.9)
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Figure 3. Constraints on Vc and f∗ imposed by the constrained reionization
history. Top: we show allowed (white) and excluded (blue for ζ > ζmax, red
for xHI(z = 5.9) > 16 per cent, black for both) regions in the f∗ − Vc plane
for τ = 0.055 and Rmfp = 50 Mpc. Also assumed are fX = 1, α = 1.5, and
νmin = 0.2 keV. Middle panel: the total exclusion contours (the excluded
regions are under and to the left of the curves) for τ = 0.055 (solid lines), τ =
0.064 (dashed), Rmfp = 10 Mpc (red), and Rmfp = 50 Mpc (blue). The same
X-ray parameters were assumed. Bottom panel: the total exclusion contours
are shown for τ = 0.049 (red), 0.052 (orange), 0.055 (green), 0.060 (cyan),
and 0.064 (blue); these are the regions that are excluded for all values of
Rmfp and X-ray parameters that we consider (i.e. these are not averaged
over those parameter regions). The highest τ which is completely excluded
within our parameter space is τ = 0.046.

since sources then cannot contribute ionizing photons beyond this
shorter distance. A higher τ moves the bulk of reionization towards
higher redshifts, making it more compatible with the observational
constraint at the fixed redshift of 5.9. With a lower Rmfp of 10
Mpc (solid red), the excluded area is larger with a lowest allowed
value of Vc = 52 km s−1 (∼28 × Matomic

min ), compared to 29 km
s−1 (∼5 × Matomic

min ) for the reference case. Increasing τ (the dashed
lines correspond to τ = 0.064) allows a wider range of Vc. In
that case, if Rmfp = 10 Mpc (dashed red) then only Vc < 6.3 km
s−1 is excluded, and even that is only if f∗ � 0.25. At the highest
star formation efficiencies, partial ionization by X-rays becomes
significant, speeding up the process of reionization.

After searching over the full range of Rmfp and the heating
parameters, we show the absolutely excluded regions for various
values of τ in the bottom panel of Fig. 3; that is these are regions that
are always excluded, there is no averaging here. We found a lower
limit for the optical depth of τ = 0.046. For the best-fitting Planck
value of τ = 0.055, we found lower limits on the circular velocity of
Vc ∼ 26 km s−1 (∼4 × Matomic

min ) and on the star formation efficiency
of f∗ ∼ 0.0004. However, for τ = 0.064 (1σ away from the best-
fitting Planck measurement) no values of Vc are excluded and the
absolute minimum on the star formation efficiency is f∗ ∼ 0.0002.

2.5 Data set

Using the modelling outlined above, we created a data set of 29 641
global 21-cm signals that cover a very wide range of possible values
of the seven astrophysical parameters, Vc = 4.2–100 km s−1, f∗ =
0.0001–0.50, α = 1–1.5, νmin = 0.1–3 keV, fX = 0–1000, τ = 0.04–
0.2, Rmfp = 10–50 Mpc, and verifying whether or not the ionization
history complies with the EoR constraints (Section 2.4). The
sampling of the parameter space was done randomly with uniform
priors on log10(Vc), log10(fs), log10(fX), Rmfp, and τ . The SED was
randomly chosen with α = 1, 1.3, or 1.5, and νmin = 0.1, 0.2, 1, or
3 keV. The 21-cm spectra are created over the redshift range z = 5–
50 and are sampled at �z = 0.1. The set of models was (randomly)
split into the training and testing sets. The parameters of the testing
set are restricted to Vc = 4.2–76.5 km s−1, f∗ = 0.0001 − 0.50, α =
1–1.5, νmin = 0.1 − 3 keV, fX = 0–10, τ = 0.055–0.1, and Rmfp =
10–50 Mpc over which ranges the performance of 21CMGEM was
optimized. The training and testing data sets are available online at
https://www.ast.cam.ac.uk/∼afialkov/Publications.html.

3 C ONSI STENCY RELATI ONS

Cohen et al. (2017) derived universal relations between astrophys-
ical quantities (such as the heating rate, εX, and the intensity of
the Lyα background, Jα), and the three key points of the global
signal, including the high-z maximum at the redshift labelled zhi

max

(at matching frequency νhi
max) and the brightness temperature T hi

max;
the absorption trough located at zmin (or νmin) and reaching Tmin;
and the low-z maximum at zlo

max (or ν lo
max) with T lo

max. That work was
based on a data set of 193 signals generated using a five-parameter
model (Vc, f∗, τ , fX, and either a hard or soft X-ray SED) with
the parameters sampled on a grid (see Cohen et al. 2017, for a
detailed description of the sampling). Here, we verify the validity
of the above-mentioned relations in the context of our extended
seven-parameter model and using a subset of 1948 randomly drawn
combinations of the parameters. We find a good general agreement
between this work and the previous study. However, compared to
the previous study, we find significantly larger scatter owing to the
larger explored astrophysical parameter space.
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Figure 4. Brightness temperature at the high-redshift maximum point as
a function of the observed frequency νhi

max = 1420 MHz/(1 + zhi
max). The

colours indicate the value of Vc as indicated on the colour bar: dark
blue corresponds to the lowest value of Vc (4.2 km s−1), and dark red
corresponds to its highest value (76.5 km s−1). Also shown is a fitting
function (equation 3, solid) along with our older fit from equation (8)
of Cohen et al. (2017, dashed) for comparison. Black ×’s show models
that were excluded by our observational constraints. We observe a tight
correlation between T hi

max and νhi
max.

At the onset of Cosmic Dawn, the 21-cm signal is driven by
atomic physics and the early process of Lyα coupling due to star
formation, which results in a close relation between zhi

max and T hi
max

as shown in Fig. 4. There is low scatter relative to a relation that can
be fitted with a quadratic function of the form

T hi
max = a

(
1 + zhi

max

)2 + b
(
1 + zhi

max

) + c. (3)

Using the extended data set, we find a similar relation to the one
reported by Cohen et al. (2017, equation 8 and fig. 2 in that paper),
with the best-fitting parameters changed by 10–20 per cent. The
new best-fitting values are [a, b, c] = [ − 0.02925, 1.053, −9.667].

The value of zhi
max (and, hence, the value of the brightness

temperature at this redshift) directly depends on the intensity of
the Lyα background that drives the WF coupling. Therefore, it is

natural to expect that the intensity of the Lyα background can be
inferred from the high-redshift maximum of the signal. Following
Cohen et al. (2017, see their equations 9 and 10 and Fig. 3), we
examine the relationship between zhi

max and the mean Lyα intensity
measured at this redshift, as well as its derivative with respect to the
scale factor a = 1/(1 + z), and show the new results in Fig. 5. The
best fits to the new data are:

log(Jα) = a1 log2
(
1 + zhi

max

) + b1 log
(
1 + zhi

max

) + c1, (4)

and

log

(
Jα

da

)
= a2 log2

(
1 + zhi

max

) + b2 log
(
1 + zhi

max

) + c2, (5)

where [a1, b1, c1] = [ − 10.64, 37.15, −54.31] and [a2, b2, c2] = [
− 7.851, 30.34, −47.73]. On average we find a good agreement
between the new study and the results of Cohen et al. (2017).
However, the scatter in Jα is now substantially larger due to the
contribution of X-rays to the Lyα background via X-ray excitation
of neutral hydrogen.

The complexity of the universe increases as the population of the
first heating sources forms. The location and the amplitude of the ab-
sorption trough show a very large scatter (left-hand panel of Fig. 6,
see also fig. 4 of Cohen et al. 2017) due to the dependence of the
signal on both the parameters of heating and of star formation. The
latter regulates the strength of the WF coupling: for an efficient WF
coupling, TS is close to the kinetic temperature of the gas (and the
absorption trough is deeper); while for a very inefficient coupling TS

moves towards the temperature of the background radiation (and the
absorption trough is shallower). On the other hand, the role of the X-
ray sources is to heat up the gas: the weaker the heating is, the more
time the universe has to cool down as a result of the adiabatic expan-
sion. Therefore, we get a lower limit given by the strongest possible
absorption in the case of a fully coupled, adiabatically cooled gas:

Tmin ≥ 26.8

(
1 + zmin

10

)1/2 (
1 − 1 + zdec

1 + zmin

)
mK, (6)

where zdec = 137 (Cohen et al. 2017). The depth of the absorption
trough as a function of νmin is shown in the left-hand panel of Fig. 6
colour coded as a function of f∗.

Figure 5. The Lyα intensity in units of erg s−1 cm−2 Hz−1 sr−1 (left) and its derivative with respect to the scale factor (right) as a function of zhi
max. The

colours indicate the value of Vc in accordance with the colour bar. Also shown are the fitting function for the present data set (solid, equations 4 and 5 on the
left- and right-hand panels, respectively); and the fits from Cohen et al. (2017, dashed, equations 9 and 10 on the left- and right-hand panels, respectively)
are shown for comparison. Black ×’s show models that were excluded by our observational constraints. The large scatter in Jα is a result of neutral hydrogen
excitation by X-rays.
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Figure 6. Left-hand panel: brightness temperature at the minimum point as a function of observed frequency of this point (bottom axis) or the equivalent
one plus redshift (top axis). The colours indicate the value of the star formation efficiency (see the colour bar on the right). High values of f∗ are needed for
efficient WF coupling and deep absorption troughs. Right-hand panel: the ratio between the Ly-α intensity (in units of erg s−1 cm−2 Hz−1 sr−1) and the X-ray
heating rate (in units of eV s−1 baryon−1) measured at zmin as a function of the brightness temperature at the minimum point. The colours indicate the redshift
of the minimum point (see the colour bar). Also shown is the fitting function from Cohen et al. (2017, dashed, equation 13). Black ×’s show models that were
excluded by our observational constraints. Large variation in the properties of X-ray sources explored in this work contributes to the larger scatter in the Jα /εX

relation.

Cohen et al. (2017) suggested that the ratio between the Lyα

intensity and the X-ray heating rate can be inferred from the value
of the brightness temperature at the minimum point. The right-hand
panel of Fig. 6 shows that this does not entirely persist. The larger
variation in the properties of X-ray sources employed here compared
to what was implemented by Cohen et al. (2017), results in a large
scatter in the Jα /εX relation. In particular, models with very low fX

(values that are unusually low compared with low-redshift galaxies,
but are still possible) break this relation. As shown in the figure, this
is the case only for models for which the measured value of zmin

would be low.
Finally, we examine the emission peak of the 21-cm signal during

the EoR. As was pointed out by Fialkov et al. (2014), for a large part
of the astrophysical parameter space X-ray heating plays a major
role in the 21-cm signal during the EoR. Specifically, in cases of
extremely inefficient heating there is no transition of the 21-cm
signal into emission and the signal is seen in absorption throughout
cosmic history. Therefore, the location and the amplitude of the
emission feature depend not only on the EoR parameters but also
on the heating rate (as well as on the parameters of star formation).
Because of the complex dependence, one would expect to find a
large scatter in the values of (zlo

max, T lo
max). However, as can be seen

from the left-hand panel of Fig. 7 (see also equation 15 and fig.
7 of Cohen et al. 2017), the scatter is relatively low because the
EoR history is significantly constrained by current observations
(Section 2.4). The location and amplitude of the emission peak for
the present data set are in good agreement with our previous results.
The relation can be fitted with:

T lo
max =

{
a 1

1+zlo
max

+ b if 1 + zlo
max > −a

b

0 otherwise
(7)

where [a, b] = [ − 500.1, 59.05].
The right-hand panel of Fig. 7 shows the relation between the

amplitude of the emission feature and the heating rate at zlo
max, which

can be fitted with

log (εX) = aT lo
max + b, (8)

with [a, b] = [0.07026, −17.95]. While there is significant scatter,
this dependence can be used to constrain the properties of X-ray
sources directly from the measurement of the global 21-cm signal.

4 21CMGEM: TH E G L O BA L S I G NA L
E M U L ATO R

The main product of this work is the global signal emulator which,
given a set of seven input astrophysical parameters, outputs a
realization of the global 21-cm signal sampled at �z = 0.1 over
the redshift range z = 5–50. In addition to the 21-cm spectrum,
21CMGEM outputs frequencies at which the neutral fraction is
0.16 per cent and 11 per cent along with values of the neutral fraction
at z = 5.9, 7.08, and 7.54. The values of the neutral fraction can
be compared to the observational constraints on the reionization
history at these redshifts: McGreer et al. (2015) published the upper
limit x̄HI < 0.06 + 0.05 (at 68 per cent confidence) at z = 5.9, Greig
et al. (2017) find x̄HI = 0.40+0.21

−0.19 (68 per cent) from the damping
wing analysis of a quasar at z = 7.08; while Bañados et al. (2018)
find x̄HI = 0.65+0.15

−0.32 (68 per cent) at z = 7.54 using the spectrum
of ULASJ1342+0928, the highest redshift quasar detected so far.
This auxiliary information can be used to apply external constraints
to the models (see Monsalve et al. 2019).

Designed to detect features in the global 21-cm signal, the total-
power experiments are very sensitive to steps and wiggles in the
data. To avoid spurious apparent detections, the smoothness of the
mock 21-cm signal over the entire observed frequency band is one
of the major requirements. Predicting the signal in each frequency
bin separately (as is done with the power spectrum emulators) is
not sufficient as it leads to discontinuities in the spectrum. Instead,
our approach here is to decompose the signals on to a new basis of
smooth functions that span the entire simulated data set. Principal
component analysis (PCA, Pearson 1901) is employed to find the
basis of such functions. Dividing the entire database into training
and testing sets, we train NNs to predict the PCA coefficients,
along with the key points of the global signal, for any input set of
astrophysical parameters. This information is then used to generate
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Figure 7. Left-hand panel: brightness temperature as a function of observed frequency of the low-redshift maximum point. The colours indicate the CMB
optical depth as is indicated on the colour bar. We also show the fitting function for the present data set (solid, equation 7) and the fit from Cohen et al. (2017,
dashed, equation 15). Owing to the constrained EoR history, the scatter in the T lo

max − zlo
max relation is low. Right-hand panel: X-ray heating rate (in units of eV

s−1 baryon−1) as a function of the brightness temperature at the low-z maximum. The colours indicate the CMB optical depth as is indicated on the colour bar.
We also show the fitting function for the present data set (solid, equation 8) and the fit from Cohen et al. (2017, dashed, equation 16). Black ×’s show models
that were excluded by our observational constraints. The nature of X-ray sources can be directly constrained from the measurement of εX.

the output 21-cm signal. The main steps of the emulation process,
as well as details of the training and optimization of the algorithm,
are described in the rest of this section.

4.1 Design

4.1.1 Classification

As our parameter study shows, all the analysed global signals
have a universal shape featuring a high-redshift maximum and an
absorption trough (note: for a reminder of the overall shape of
the global 21-cm signal, see the examples shown in Fig. 13). The
only non-universal feature is the emission signal during the EoR
which is either present (we refer to this type of signal as positive)
or not (negative signals) depending on the astrophysics. Because
of this fundamental difference in the shape of the signals, our
algorithm is twofold and treats the two types of signals separately.
The classification into positive and negative cases is an essential part
of the training and the prediction processes. If the signal is positive, it
has four key points: the high-redshift maximum, absorption trough,
low-redshift maximum, and the redshift of complete reionization
(νhi

max, νmin, ν lo
max, and νreion, respectively). A negative signal has

only three key points (νhi
max, νmin, and νreion, respectively). The key

points divide each positive (negative) case into 3 (2) segments. As
we detail in the next subsection, each segment is analysed separately
using the PCA.

The bagged trees algorithm (Breiman 1996; Loh & Shih 1997)
was used to determine whether a case is negative or positive. This
algorithm fits many decision trees, each time using a different
subset of the training set, and the decision is made by voting. After
optimization, we chose to use bagged trees with 30 tree learners and
tree size chosen using fivefold cross-validation. The classification
was tested on 1014 negative and 580 positive cases. We first tested
the accuracy of the classification process against each of the test
cases and visually compared the results to assess the performance.
Knowing the location of the emission feature (low-z maximum
point) compared to the timing of the other key points helps to

improve the quality of the classification.2 The success rate of the
algorithm is 99.9 per cent as is demonstrated by the confusion matrix
(Fig. 8). Note that for this test we only used cases with T lo

max > 0.2
mK. This is because cases with a lower (but still positive) emission
peak are really neither positive nor negative, and misclassification
in this case does not lead to an inaccurate prediction of the 21-cm
signal itself.

4.1.2 PCA

The core of our emulator is PCA which, given a database, finds an
orthogonal basis that spans the data. Eigenfunctions (or eigenvec-
tors) of this basis are smooth functions found using the covariance
matrix of the data; while eigenvalues are a measure of the variance of
the data along each particular eigenvector. The basis is constructed
so that the first principal component (the eigenvector with the largest
eigenvalue) has the largest possible variance, the component with
the second greatest variance is the second principal component, and
so on. Using the basis of smooth functions to represent the 21-cm
signal guarantees the smoothness of the outcome.

The astrophysical key points divide each positive/negative signal
into 3/2 distinct frequency segments. For a positive signal, the seg-
ments are s1 ∈ [νhi

max, νmin], sp

2 ∈ [νmin, ν
lo
max], and s

p

3 ∈ [ν lo
max, νreion];

while for a negative signal, the segments are s1 ∈ [νhi
max, νmin] and

sn
2 ∈ [νmin, νreion]. We find it best to split the data into these segments

and analyse them separately. Note that, because the first segment, s1,
is defined identically for both positive and negative cases, over s1 all
signals are analysed together; while over other segments the positive

2We found that the original algorithm misclassified 5.5 per cent of negative
cases as positive. For almost all of these cases, at the output of the algorithm
the order of the predicted redshifts of the key points was wrong (e.g. the
redshift of the low-z maximum point was predicted to be higher than
the redshift of the absorption trough, which is unphysical). We used the
ill-ordered key points as a diagnostic and for such cases changed the
classification of the model from positive to negative. After this procedure,
the algorithm returned the correct answer in 99.9 per cent of cases.
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Figure 8. Confusion matrix of the classifier. The green squares show the
number of correctly classified positive and negative cases, the red squares
show the number of misclassified cases, grey shows the percentage of
the correct predictions for each row/column, and blue shows the total
accuracy defined as the ratio of the total number of correctly identified
cases (both positive and negative) to the total number of considered cases.
The classification is correct in 99.9 per cent of cases.

and negative cases are treated separately. In order to uniformly
normalize the signals within each segment of the data, we perform
a coordinate transformation into a new coordinate system xs, ys in
which each signal varies in the range xs ∈ [0, 1] and ys ∈ [ − 1, 1].
For instance, on s1 the following coordinate transformation from
the ν–T21 plane to the xs–ys plane is performed:

xs = ν − νhi
max

νmin − νhi
max

, ys = T − T hi
max

T hi
max − Tmin

. (9)

In other words, for both the negative and positive signals, s1 is
chosen so that (νhi

max, T
hi

max) is mapped to (xs, ys) = (0, 0), and the
minimum point (νmin, Tmin) is mapped to (xs, ys) = (1, −1). Each
re-normalized segment is separately analysed using PCA.

In principle, for a perfect reconstruction of the signal via PCA
decomposition the number of coefficients should be the same as the
size of the database (i.e. ∼30 000 in our case). However, for our
data set, the first four eigenvalues strongly dominate, allowing us
to truncate the basis and use only the first four eigenfunctions to
represent the signal in each segment. Fig. 9 is an illustration of the
PCA decomposition for a signal over s1. We show a re-normalized
signal (blue) and the first four eigenfunctions of the basis (shades
of brown). The red curve shows the sum of the first four PCA
components (each with its corresponding coefficient), reproducing
the true signal nearly perfectly. We quantify the accuracy of the
reconstruction process along each segment by calculating the rms
of the error defined as

rms =
√

mean
[(

ys,sim(xs) − ys,pred(xs)
)2
]
. (10)

The mean rms error across all the reconstruction cases is 0.0020 on
s1, 0.0058 and 0.0075 on s

p

2 and s
p

3 , respectively, and 0.0045 for sn
2 .

4.1.3 Training of the NNs

Having created the PCA decomposition for each set of astrophysical
parameters from the training data set of 27 455 cases, we tabulated

Figure 9. Example of the PCA decomposition for a signal in the xs–ys

space on s1. The four PCA components used to reconstruct this segment are
shown in shades of brown: the first component is the darkest and the fourth
component is the lightest. The sum of the first four PCA eigenfunctions
each with the corresponding coefficient, is shown in red, while the original
signal is in blue (the reconstruction is so good that the lines overlap). The
signal reconstructed by NNs using the predicted PCA coefficients is shown
as dashed black. The first four PCA components are enough to represent the
signal in each segment.

the values of the PCA coefficients along with the key points (both
the frequency and the corresponding brightness temperature of each
key point). Using this library, NNs were trained to retrieve the PCA
coefficients along with the values of the key points given an input
set of the astrophysical parameters. Architecturally, all the NNs
described in this section are identical having one hidden layer of
40 neurons and employing the Levenberg–Marquardt algorithm to
minimize the mean-squared error between the true value provided
by the training data set and the value predicted by the network.

We found that the accuracy of the prediction is improved if we
add to the modelling combinations of the astrophysical parameters
that we expect to map more directly to the 21-cm signal. We made
use of the fact that we know the simulated cosmology. Assuming
the standard collisionless cold dark matter scenario and hierarchical
structure formation, we can infer the mean collapse fraction at every
redshift (fcoll(z), the fraction of mass that is contained in haloes
of mass above the minimum cooling threshold, Barkana & Loeb
2004). We appended five more parameters to the original set of the
seven astrophysical parameters, bringing the total number of input
parameters of each NN to 12. The auxiliary parameters include:
f∗fcoll(20) which is proportional to the intensity of the Lyα radiation
before the Lyα coupling; f∗fXfcoll(15) which scales as the intensity

of X-ray radiation before the heating saturation; and ζ fcoll(10) which
is a measure of the ionizing radiation at the onset of reionization. In
addition, we added the fraction of X-ray energy above 1 keV and
the fraction of X-ray energy above 2 keV (fXR > 1 keV and fXR > 2 keV,
respectively) to characterize the X-ray SED. Lastly, we applied
physical cuts on the predicted signal to assist the NNs. In particular,
an upper limit of T hi

max = 0 was imposed because T hi
max is expected

to always be negative in the range of scenarios considered here. We
also set a lower limit on the signal at the minimum point, Tmin, in
accordance with equation (6).

In total, predicting a positive/negative signal requires generating
19/13 parameters: four PCA coefficients for each of the three/two
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Table 1. Accuracy in prediction of the key points νhi
max, T hi

max, νmin, Tmin, νlo
max, T lo

max, and νreion. The percentage of cases with a relative error below 2 per cent
(5 per cent) in the prediction is shown in the second (third) row.

Key point νhi
max T hi

max νmin Tmin νlo
max T lo

max νreion

Prediction error below 2 per cent [per cent] 97.44 99.59 77.02 78.88 66.88 38.54 96.68
Prediction error below 5 per cent [per cent] 100 100 99.42 98.28 98.57 59.87 99.88

Figure 10. Left-hand panel: predicted versus true value of the amplitude of the absorption feature, shown for 1743 cases. Also shown is the perfect prediction
(Y = X, solid red line). Right-hand panel: histogram of the relative error in the predicted amplitude of the absorption trough. 98.28 per cent of cases have a
relative error of less than 5 per cent.

segments plus four/three key points each having two coordinates
(frequency and brightness temperature), minus one degree of
freedom because the value of the brightness temperature at νreion

is by definition zero. As part of the optimization process, we
had to choose between using one network which would predict
all the 19/13 output parameters, 19/13 networks each of which
would return a single parameter, or a few NNs predicting groups of
the parameters. We found that predicting several parameters with
a single network sometimes decreases the error in the predicted
signal. However, it also can result in outliers, that is a few cases
with very large error. To minimize the frequency of outliers while
preserving the overall accuracy, we decided to group correlated
parameters within the same network. For instance, the four PCA
components of a given segment are correlated and were computed
with a single NN that has 12 input parameters (and, thus, 12 input
neurons), one hidden layer of 40 neurons and four outputs (the
PCA coefficients). The outcome of this prediction is demonstrated
in Fig. 9 (dashed black line). Using equation (10), we assessed
the performance of the prediction process and found an r.m.s.
error of 0.023 on s1, 0.055 and 0.136 on s

p

2 and s
p

3 respectively,
and 0.031 on sn

2 .
Two NNs were trained to predict the coordinates of the critical

points in the ν–T21 space for positive/negative cases. These NNs
have 12 input parameters and 7/5 outputs (4/3 temperature values
and 3/2 frequency coordinates). The accuracy of the reconstruction
of these coordinates is summarized in Table 1. We found that the
algorithm is well tuned to predict the signal from Cosmic Dawn,
with 100 per cent of cases having better than 5 per cent accuracy
in the amplitude and the location of the high-redshift maximum,
and more than 98 per cent of cases having better than 5 per cent
accuracy in the prediction of the depth and location of the absorption

trough. The low-redshift maximum point is the hardest to predict
since it is affected by all the astrophysical parameters and also the
amplitude of the signal at this point is quite small. In addition,
because this feature does not exist for negative cases, the training
data set which could be used for (ν lo

max, T lo
max) was smaller. The

maximal absolute error obtained when predicting T lo
max was 2.3 mK,

with 59.87 per cent of cases returning relative errors smaller than
5 per cent. In 98.57 per cent of cases ν lo

max was found to better than
a 5 per cent error. Finally, the success rate for the prediction of the
timing of reionization was close to 100 per cent.

Separate, but architecturally identical (with 12 input parameters,
one hidden layer of 40 neurons, one output), NNs were trained to
predict frequencies at which the neutral fraction is 0.16 per cent
(ν16 per cent, which we used in Section 2.4) and 11 per cent along
with values of the neutral fraction at z = 5.9, 7.08, and 7.54.

As an illustration, in Fig. 10 we show the accuracy of the
algorithm in reconstructing the amplitude of the absorption feature
for 1743 cases (all our test cases that were not excluded by the
observational constraints in Section 2.4). The line Y = X corresponds
to a perfect prediction. The scatter shows the error in this prediction,
which is also quantified in the histogram (right-hand panel). We
find that 98.28 per cent of cases have a relative error of less than
5 per cent, while 78.88 per cent of cases have an error less than
2 per cent (as indicated in Table 1).

4.2 Prediction pipeline

Using the trained NNs, the global 21-cm signal is predicted given
a set of seven input parameters. The complete prediction algorithm
is summarized in Fig. 11 and contains the following steps:
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Figure 11. Flowchart of the prediction process as outlined in Section 4.2.
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Figure 12. Histogram of the errors in the predicted global 21-cm signals,
normalized by their maximum amplitude, as defined in equation (11). The
results are shown for the entire test set of 1743 cases. The error is lower than
0.05 for 98.9 per cent of cases.

(i) Given the seven input astrophysical parameters [f∗, Vc, fX, τ ,
α, νmin, Rmfp] trained NN (Section 2.3) is used to infer the value
of the ionizing efficiency ζ . The algorithm calculates five auxiliary
parameters f∗fcoll(20), f∗fXfcoll(15), ζ fcoll(10), fXR > 1 keV, fXR > 2 keV].

(ii) Using the full set of parameters and an NN that predicts
ν16 per cent the algorithm verifies whether this case has a valid EoR
history or not (as described in Section 2.4).

(iii) If the case is valid, the algorithm uses decision trees to
classify the case and determines if it is expected to have an
emission feature or not (i.e. whether the case is negative or positive,
Section 4.1.1).

(iv) Based on the input parameters, NNs (Section 4.1.3) predict
the PCA coefficients for each of the segments as well as the coordi-
nates of the key astrophysical points (as explained in Section 4.1.2).

(v) A coordinate transformation (inverse of Equation 9) is per-
formed to return the signal in physical units of mK as a function of
frequency in MHz.

4.3 Performance analysis

In this section, we test the overall performance of the emulator,
assessing its accuracy in predicting the global signal for each of the
test cases in the set of 1743 signals.

We define the error in the predicted signal, Tpred(ν), compared to
the signal generated by the full simulation for the same parameter
set, Tsim(ν), as the rms value of the difference between the two
signals, normalized by the maximal amplitude of the true signal:

Error =

√
mean

[(
Tsim(ν) − Tpred(ν)

)2
]

max |Tsim(ν)| . (11)

Over the entire test set the mean value for the error is 0.0159 and
the median is 0.0130. The histogram of the errors for all the tested
cases is shown in Fig. 12. We find that the error is lower than 0.05
for 98.9 per cent of cases.

To illustrate the performance of the emulator, we show several
specific cases in Fig. 13: (a) the case with a 10th percentile error (i.e.
10 per cent of the cases have smaller error), with an error of 0.0072,
(b) the median error of 0.013, (c) the mean error of 0.0159, (d) 90th

percentile error of 0.0271, (e) 95th percentile error of 0.0349, and
(f) the largest error of 0.1055. Visually, the cases with the mean
and median errors (top right and middle left panels) are in excellent
agreement with the simulated signal.

4.4 Limitations

21CMGEM is designed to cover a wide range of redshifts (5–
50) and was optimized to return a small mean error over the
entire range. This is both an advantage and a disadvantage. The
reionization parameters τ and Rmfp only affect the low-redshift
portion of the signal (at z � 10) where the amplitude of the signal
is very low (compared to the deep absorption trough at Cosmic
Dawn). Therefore, if 21CMGEM were used as a part of MCMC to
recover these parameters from data, large errors would be expected.
For instance, Rmfp = 70 Mpc results in a slightly faster end to
reionization, compared to 50 Mpc. However, the difference between
the global signals with Rmfp = 70 and 50 Mpc is very small. Fo
example, for a model with Vc = 16.5 km s−1, f∗ = 0.05, fX = 1,
hard SED, and τ = 0.073, the error is 9.7 × 10−4, which is much
smaller than the typical precision of 21CMGEM with the median
value of rms of 0.01, as discussed in Section 4.3 of this paper. A
related shortcoming is the precision of 21CMGEM in reconstructing
the emission feature and the large error on T lo

max (as we discussed in
Section 4.1.3).

5 SU M M A RY A N D C O N C L U S I O N S

In this paper, we have presented a database of 29 641 global 21-
cm signals generated over the widest possible space of seven
astrophysical parameters that include the star formation efficiency,
minimum cooling mass, X-ray radiation efficiency, the slope and
the low-energy cut-off of the X-ray spectrum, the mean-free path
of the ionizing photons, and the CMB optical depth. The parameter
space is constrained by the observations of the CMB and quasar
absorption lines as well as by the maximum possible ionizing
efficiency (corresponding to massive metal-free stars).

We used this data set to verify the consistency relations between
the astrophysical parameters and the properties of the global 21-
cm signal first reported in our previous paper (Cohen et al. 2017),
finding a good agreement in all relations except for the value of Jα/ε
at zmin which shows much larger scatter due to the wider selection
of X-ray spectra considered here. In particular, there remains a tight
predicted relationship between the brightness temperature and the
observed frequency of the high-redshift maximum point (Fig. 4);
a measurement of this point can be used to infer the Lyα intensity
at that time, though with significant scatter (Fig. 5). Also, the
brightness temperature and observed frequency of the low-redshift
maximum point follow a tight relation, which can be used to estimate
the X-ray intensity (Fig. 7).

We utilized the database to develop and test 21CMGEM which,
given a set of astrophysical parameters, predicts the global 21-cm
signal. Additional outputs include values of the neutral fraction at
z = 5.9, 7.08, and 7.54 along with frequencies at which the neutral
fraction is 0.16 per cent and 11 per cent. The crucial elements of the
emulator are:

(i) Smoothness of the output signal is guaranteed by construction.
(ii) The database can be divided into two categories: signals that

have an emission feature and signals that are only seen in absorption.
The classification is done using bagged decision trees.
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(a) (b)

(c) (d)

(e) (f)

Figure 13. Comparison between the simulated signal (blue) and the predicted signal (red). The error and parameters [f∗, Vc, fX, τ , α, νmin, Rmfp] of each
panel are: (a) 10th percentile error (error = 0.0072; [0.050,76.5,0.001,0.0781,1.3,1,20]); (b) median error (error = 0.0130; [0.5,4.2,0.1,0.0779,1,0.5,20]); (c)
mean error (error = 0.0159; [0.0285,5.41,3.01,0.0738,1,0.5,34]); (d) 90th percentile error (error = 0.0271; [0.2573,21.50,0.0001,0.0701,1.5,0.7,14]); (e) 95th
percentile error (error = 0.0349; [0.5,24.2,0.02,0.0666,1.5,0.1,35]); and (f) the largest error (error = 0.1055; [0.3835,7.79,0.0045,0.1,1.5,0.2,48.30]).

(iii) We train NNs to predict the cosmological signal based on
the seven astrophysical parameters. Each signal is broken into a
few segments separated by the key astrophysical points and is
decomposed into a basis of smooth orthogonal functions using PCA.
Because PCA ranks the eigenfunctions by variance in decreasing
order, most of the information is encoded in the first few terms. This
allows us to reduce the dimensionality and use only the first four
functions of the basis. NNs are used to predict the PCA coefficients
as well as the two ends of each segment given a set of astrophysical
parameters.

(iv) The algorithm also checks whether the case satisfies current
constraints on reionization. The constraints that are taken into
account include limits on the total CMB optical depth, the upper
limit on the ionization efficiency of stars, and the upper limit on
the neutral fraction at z ∼ 5.9 derived from the absorption profile
of high-redshift quasars. Using these conditions, the minimum
circular velocity of star-forming haloes as well as the star formation
efficiency can be constrained. We find a lower limit of Vc ∼ 26 km
s−1 (∼4 × Matomic

min ) for an optical depth of 0.055.

The algorithm was trained on 27 455 simulated signals, and an
additional 2186 cases were used as the test set. The predicted
signal has an rms error of 0.0159, corresponding to 1.59 per cent
of the signal amplitude, with 98.9 per cent of cases having errors
lower than 0.05. The algorithm is efficient, with running time per
parameter set of 0.16 s (while one full simulation run typically

takes a few hours on a single core). This tool can be used in the
fitting process (e.g. MCMC) to constrain the high-redshift parameter
space using the data of global signal experiments. We have used it
recently with the data from EDGES High-Band (Monsalve et al.
2019). 21CMGEM and the training and testing data sets are available
online at https://www.ast.cam.ac.uk/∼afialkov/Publications.html.
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