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ABSTRACT
We evaluate the impact of imaging systematics on the clustering of luminous red galaxies
(LRG), emission-line galaxies (ELG), and quasars (QSO) targeted for the upcoming Dark
Energy Spectroscopic Instrument (DESI) survey. Using Data Release 7 of the DECam Legacy
Survey, we study the effects of astrophysical foregrounds, stellar contamination, differences be-
tween north galactic cap and south galactic cap measurements, and variations in imaging depth,
stellar density, galactic extinction, seeing, airmass, sky brightness, and exposure time before
presenting survey masks and weights to mitigate these effects. With our sanitized samples in
hand, we conduct a preliminary analysis of the clustering amplitude and evolution of the DESI
main targets. From measurements of the angular correlation functions, we determine power
law fits r0 = 7.78 ± 0.26 h−1Mpc, γ = 1.98 ± 0.02 for LRGs and r0 = 5.45 ± 0.1 h−1Mpc,
γ = 1.54 ± 0.01 for ELGs. Additionally, from the angular power spectra, we measure the
linear biases and model the scale-dependent biases in the weakly non-linear regime. Both
sets of clustering measurements show good agreement with survey requirements for LRGs
and ELGs, attesting that these samples will enable DESI to achieve precise cosmological
constraints. We also present clustering as a function of magnitude, use cross-correlations with
external spectroscopy to infer dN/dz and measure clustering as a function of luminosity, and
probe higher order clustering statistics through counts-in-cells moments.

Key words: large-scale structure of Universe.

1 IN T RO D U C T I O N

The Dark Energy Spectroscopic Instrument (DESI; DESI Collab-
oration 2016) is a ground-based dark energy experiment whose
mission is to produce the largest three-dimensional (3D) map of the
universe to date. This map will enable unprecedented constraints on
dark energy (for a comprehensive review, refer to Weinberg et al.
2013 or Amendola et al. 2013) by charting the expansion history
of the universe through studies of baryon acoustic oscillations
(BAO; see Eisenstein 2005 or Bassett & Hlozek 2010 reviews)
and constraining the growth of structure through redshift-space
distortion measurements (RSD; see e.g. Ruggeri et al. 2019 for

� E-mail: elliek@berkeley.edu

a recent study). In addition, it will provide a means to precisely
measure the sum of neutrino masses (Font-Ribera et al. 2014) and
to investigate theories of inflation (Gariazzo, Lopez-Honorez &
Mena 2015; Tellarini et al. 2016) and modified gravity (Jain &
Khoury 2010; Joyce et al. 2015; Casas et al. 2017; Amendola
et al. 2019). Installed on the Mayall 4-m telescope at Kitt Peak,
DESI is a stage IV dark energy project1 consisting of a highly
multiplexed fibre-fed spectrograph that can measure as many as
5000 spectra in parallel using robot fibre positioners. DESI will
obtain spectra for four main target classes selected from imaging,
including approximately 6 million luminous red galaxies (LRG) up
to z = 1.0, 17 million [OII] emission-line galaxies (ELG) up to

1As defined in the Dark Energy Task Force report (Albrecht et al. 2006).
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z = 1.6, and 2.5 million quasars (QSO). QSOs with z < 2.1 will
serve as tracers of the underlying dark matter distribution, while a
high redshift sample of QSOs (2.1 < z < 3.5) will be used for their
Lyman-α absorption features to probe the distribution of neutral
hydrogen in the intergalactic medium. During ‘bright time’, when
the position of the moon above the horizon impacts the observation
of faint, high redshift targets, DESI will conduct the Bright Galaxy
Survey, observing over 10 million galaxies up to z ∼ 0.4, and also
the Milky Way Survey of local stars.

DESI is currently in its commissioning phase, with survey
validation scheduled for the spring of 2020. At this stage of the
project, it is vital to ensure that the targets selected from imaging
will satisfy the science requirements of the collaboration, which
demand meticulous control over all possible systematics. Since it is
not obvious how systematics in the distribution of targets selected
from imaging will translate to systematics in the 3D clustering of the
spectroscopic samples, it is prudent to identify and mitigate them to
the greatest extent possible. Furthermore, while acquiring spectra
will allow us to remove any low redshift contaminants and deproject
any purely angular systematics, the targeting efficiency of the survey
will be adversely affected. In this paper, we analyse the impact
of potential systematics from imaging and target selection on the
observed clustering of the main DESI samples and develop methods
to ameliorate those effects. Using the resulting value-added large-
scale structure catalogues, we begin to characterize the properties of
these tracer samples, both as a first step for analysis in cosmological
studies and to aid in generating accurate mock catalogues.

The paper is organized as follows: Section 2 outlines our tech-
niques for measuring and modeling clustering. Section 3 describes
the imaging data and explains how we build our large-scale structure
catalogues. In Section 4, we implement and test some preliminary
survey masks; Section 4.1 deals with imaging completeness and
its sensitivity to depth variations and colour cuts, while Section 4.2
covers masking around bright foregrounds. In Section 5, we explore
spatial variations in the clustering of the targets and identify
additional problematic or anomalous regions. In Section 6, we
investigate the effects of varying survey properties and instrument
characteristics on the densities of targets, obtaining photometric
weights for the most dominant systematics, with Section 6.3
focusing on the impact of stellar contamination in the QSO sample.
Section 7 presents our preliminary characterization of the angular
distribution of the tracer samples, including mean surface densities,
angular correlation functions, angular power spectra, linear biases,
counts-in-cells moments, and clustering as a function of magnitude.
In Section 8, we use external spectroscopic catalogues to measure
real-space projected cross-correlations, clustering dN/dz, and clus-
tering as a function of luminosity. Section 9 summarizes our results
and conclusions.

Throughout, we will work in co-moving coordinates and assume
a flat �CDM cosmology with h = 0.676, �mh2 = 0.142, �bh2 =
0.022, ns = 0.962, and σ 8 = 0.848 (the default parameters in
CLASS, see e.g. Blas, Lesgourgues & Tram 2011). Additionally,
all magnitudes are quoted as AB magnitudes, unless otherwise
specified.

2 C LUSTERING MEASUREMENT AND
T H E O RY

To characterize the properties of DESI main samples and understand
how systematics impact their observed distributions, we must be
able to accurately quantify clustering as well as compare our
results to theoretical predictions and survey expectations. To convert

between angular clustering measurements and 3D clustering theory
in Section 7, we assume the fiducial redshift distributions in the
DESI Science Final Design Report (DESI Collaboration 2016,
henceforth FDR), calculated from cross-matching and photometric
methods (private communications: Rongpu Zhou, Anand Raichoor,
and Nathalie Palanque-Delabrouille for the DR7, LRG, ELG, and
QSO dN/dz, respectively). In Section 8, we use cross-correlations
with external spectroscopy to obtain clustering dN/dz.

2.1 Angular correlation functions

One of the simplest and most powerful measurements of clustering
is the two-point correlation function ξ (r), which measures the excess
probability, compared to a random Poisson distribution, that a pair
of objects lie at a given separation (see e.g. Peebles 1980; Peacock
1999). The two-point correlation function and its Fourier transform,
the power spectrum, fully characterize a Gaussian random field.
For samples that lack redshifts, the two-dimensional (2D) angular
correlation function, w(θ ), representing the probability in excess of
random of finding two objects separated by a given angle, may be
used instead.

2.1.1 Pair-count estimators

We measure w(θ ) of the targets with direct pair-count estimators,
namely the Landy–Szalay estimator (Landy & Szalay 1993),2

ŵLS(θ ) = D1D2 − D1R2 − D2R1 + R1R2

R1R2
, (1)

where DD, DR, and RR, respectively, refer to counts of data–data,
data–random, and random–random pairs at average separation θ

(within annular bins θ ± δθ ). For auto-correlations, this simplifies to
ŵLS(θ ) = (DD − 2DR + RR)/RR. When cross-correlating with
external data sets that do not have a corresponding random catalogue
readily available, we instead use the Davis–Peebles estimator
(Davis & Peebles 1983),

ŵDP (θ ) = D1D2 − D2R1

D2R1
, (2)

which has a slightly larger variance (see Landy & Szalay 1993 for
a comparison of pair-count estimators) but requires only one set of
randoms. We count pairs within 16 logarithmically spaced angular
bins between θ = 0.001◦ and θ = 1◦.

2.1.2 Limber approximation

We wish to generate a prediction for the observed angular clustering
of objects in the sky, w(θ ), given an assumed model for the full 3D
clustering, ξ (r), and redshift distribution, dN/dz. An approximation
first introduced by Limber (1953) and Rubin (1954) is frequently
employed for this purpose. Briefly, the Limber approximation
assumes redshift distributions that do not vary appreciably over
the coherence length of the structures defined by ξ (r). Though not a
requirement, it is often further assumed that the sky may be treated
as flat. In this section, we state the general result, as well as the
simplified expression for the case of a power law ξ (r). A more
detailed derivation can be found in e.g. Simon (2007) or Loverde &
Afshordi (2008).

2Normalization factors are not included here.
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Written in centre-of-mass and relative coordinates, r̄ = (r1 +
r2)/2 and �r = r2 − r1, the Limber approximation straightforwardly
relates the angular and spatial correlations between two samples,

w1,2(θ ) =
∫ ∞

0
dr̄ f1(r̄) f2(r̄)

∫ ∞

−∞
d�r ξ1,2(R, r̄), (3)

where f1 and f2 are the normalized radial distributions, and R =√
r̄2θ2 + �r2. If we further presume a power law for the correlation

function, with correlation length r0,

ξ (r) =
(

r

r0

)−γ

, (4)

then we can evaluate the �r integral directly, and Limber’s approx-
imation gives a particularly simple result,

w1,2(θ ) = θ1−γ r
γ

0

√
π

(γ /2 − 1/2)

(γ /2)

∫ ∞

0
dr̄ f1(r̄) f2(r̄) r̄1−γ

≡ Awθ1−γ . (5)

Using this equation with tabulated dN/dz’s, we can compare obser-
vation to theory by determining the clustering length r0 and slope
γ that best fit the observed w(θ ).

2.2 Projected real-space cross-correlations

We can extract additional clustering information by cross-
correlating the samples with other samples of known redshift. We
begin by deriving a relation between the angular correlation function
w(θ ) and the projected real-space correlation function wp(rp), the
latter being defined as the integral of the 2D spatial correlation
function ξ (rπ , rp) over the line of sight rπ (Davis & Peebles 1983).

Starting with the simple case in which the spectroscopic sample
lies at χ = χ0, the flat-sky approximation yields

w(θ ) =
∫

dχf (χ )ξ
(√

χ2
0 θ2 + (χ − χ0)2

)
, (6)

where f(χ ) is the normalized radial distribution of the photometric
sample, and the second integral over the radial distribution of
the spectroscopic sample, a delta function, has been performed.
Applying the Limber approximation (Section 2.1.2), this simplifies
to

w(θ ) � f (χ0)
∫

drπξ (rp, rπ )

= f (χ0)wp(rp), (7)

where wp(rp) is a real-space measurement, since redshift space
distortions affect only rπ .

Generalizing to a narrow spectroscopic redshift slice, such that
the clustering can still be treated as constant over the slice, we adopt
the approach of Padmanabhan et al. (2009): for each pair in a given
bin, we assume that the photometric object lies at the same redshift
as the spectroscopic object it is being correlated with, allowing us
to re-bin the pair counts in transverse separation, wθ (rp), such that
equation (7) becomes

wθ (rp) = 〈
f (χ )

〉
wp(rp), (8)

where 〈f(χ )〉 is averaged over the spectroscopic redshift bin in
question and wθ (rp) is the angular correlation function but binned
in physical distance instead of angle using the redshifts of the
spectroscopic objects for conversion.

To compare with theory, we also note the form wp(rp) takes for a
power-law correlation function model ξ (r) = ( r

r0
)−γ :

wp(rp) = r1−γ
p r

γ

0

√
π

(γ /2 − 1/2)

(γ /2)
. (9)

2.3 Bootstrap errors

As an internal error estimate, we use the bootstrap technique of
Efron (1979), splitting the sample into multiple subsamples and
then randomly selecting with replacement to obtain many different
realizations of the underlying distribution. Since resampling on
individual objects has been shown to lead to unreliable errors (Mo,
Jing & Boerner 1992; Fisher et al. 1994), with variance under-
estimated in underdense regions and overestimated in overdense
regions, we instead partition the sky into equal area pixels and
resample these.

The choice of the bootstrap over similar methods such as the
jackknife is motivated by comparative studies (e.g. Norberg et al.
2009) suggesting that, though the bootstrap tends to overestimate
variance on all scales, it recovers the principal eigenvectors of the
true covariance matrix in an unbiased fashion. As such, we caution
that our bootstrap error bars are likely overestimated in some cases.

In detail, we use the HEALPix package3 (Górski et al. 2005) with
NSIDE = 4 to divide the surface of a sphere into 192 equal area
pixels of approximate size ∼215 square degrees, then throw away
any pixels that do not overlap with the footprint, leaving 83 pixels.
We then randomly select pixels with replacement until the number
of randoms in each bootstrap realization is similar to the number of
randoms in the footprint. We use 500 bootstrap realizations to obtain
an estimate of the variance. Our results are robust to variations in
the NSIDE resolution and the number of bootstrap realizations.

2.4 Angular power spectra

The angular power spectrum, C�, is another powerful tool for
quantifying clustering, allowing us to study the Fourier modes of
the angular distribution of galaxies. It complements the statistical
information derived from the angular correlation function to which
it is related via a Legendre transform:

w(θ ) =
∑

�

2� + 1

4π
P�(cos θ )C�. (10)

Large-scale systematics are more clearly visible in the power
spectrum than in the correlation function, which potentially has long
wavelength modes affecting all angular scales. On the other hand,
the correlation function is more sensitive to small scales, where
non-linear evolution dominates and introduces correlations between
different C�’s at large �. Additionally, it is faster to compute small-
scale clustering in configuration space and large-scale clustering in
Fourier space. Thus, we focus our analysis of the angular power
spectrum on large scales, � ≤ 500, corresponding to angular scales
greater than θ ∼ 180◦/� ≈ 0.4◦, or spatial scales greater than a few
h−1 Mpc at the characteristic survey depth of 1 h−1 Gpc.

2.4.1 Measurement

We use HEALPix with NSIDE = 512 and estimate the angular power
spectrum from harmonic analysis of the pixelized map of density

3http://healpix.sf.net
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contrast δg = n/n̄ − 1, where n is the number of galaxies in a given
pixel and n̄ is the average density over the entire masked sample
multiplied by the given pixel’s effective area. We mask out pixels
whose effective area is less than 25 per cent of its full area, such
that only pixels that are fully (or mostly) inside the survey geometry
are considered.4 Using anafast, we obtain the estimated angular
power spectrum C�, which is the sum of the signal and the shot
noise. To first-order correct the effects of partial sky, we divide by
a factor of fsky, the fraction of sky covered by the masked footprint;
full deconvolution of the mask is deferred to a future work. We
find that the angular power spectrum of the mask has its power
concentrated in the large-scale modes, with the mask dropping to
half power at � ∼ 10 and falling below 10 per cent power beyond �

∼ 20. We also divide out the pixel window function. The variance
of the estimator can be modelled analytically as

σ 2
� = 1

fsky

2C2
�

2� + 1
. (11)

On a small section of sky φ, multipole resolution is limited by ��

≈ 180◦/φ, with the �min mode constrained to be the wavelength
that fits into the angular patch (Peebles 1980). We bin C� using 10
linearly spaced bins from �min = 30 to �max = 500 and take the
weighted arithmetic mean and variance for each bin.

C̄bin =
∑

� in bin

C�

σ 2
�∑

� in bin

1
σ 2
�

1

σ 2
bin

=
∑

� in bin

1

σ 2
�

. (12)

2.4.2 Theory

In the first-order correction to the Limber approximation (Loverde &
Afshordi 2008), the multipole expansion of the galaxy angular
power spectrum is given by

C� =
∫

dχ f (χ )2 1

χ2
Pg(k = (� + 1/2)/χ, z)

=
∫

dχ f (χ )2 b(z)2

χ2
Pm(k = (� + 1/2)/χ, z), (13)

where f (χ ) ≡ dN/dχ = dN/dz H (z)
c

is the normalized radial dis-
tribution, Pm is the linear dark matter power spectrum, and b(z)
is the large-scale bias, which we assume takes the form5 b(z) =
b0/D(z) as per the DESI FDR. In Section 7.3, we fit the linear bias
b0 and also explore the scale dependence of the bias in the weakly
non-linear regime.

2.5 Clustering dN/dz

2.5.1 Overview

The idea of using cross-correlations to infer redshift information
about objects in the night sky has been circulating for decades

4Since effective area is calculated using a set of uniformly distributed random
points, there is some natural Poisson variance, hence why we do not use a
more restrictive threshold.
5D(z) is the linear growth function with normalization D(z = 0) = 1. Thus,
the approximation b ∝ D−1(z) assumes that the clustering is constant, since
the evolution of P(k, z) is cancelled by the evolution of b2(z).

(e.g. Seldner & Peebles 1979; Phillipps & Shanks 1987; Landy,
Szalay & Koo 1996; Ho et al. 2008) but has received renewed
attention in the context of modern astronomical surveys, which are
probing deeper than ever and imaging far more objects than can
feasibly be targeted for spectroscopic observation. In recent years,
a number of dN/dz cross-correlation estimators have been proposed
and studied (Newman 2008; Matthews & Newman 2010; Schulz
2010; Matthews & Newman 2012; McQuinn & White 2013; Ménard
et al. 2013) and applied to real or simulated data (Schmidt et al.
2013; Scottez et al. 2016; Hildebrandt et al. 2017; Chiang, Ménard &
Schiminovich 2018; Davis et al. 2018; Gatti et al. 2018; Scottez et al.
2018; Krolewski et al. 2020). Following Ménard et al. (2013), who
present a simple and practical method for estimating the clustering
dN/dz of a sample, we probe the redshift distributions of objects
targeted for DESI in Section 8.1. Unlike other methods, the Ménard
method takes advantage of small-scale clustering information and
reduces the impact of systematics by sidestepping autocorrelation
functions. We briefly describe the formalism of Ménard method and
the details of our implementation below.

2.5.2 Method

Consider two populations. Let the reference (spectroscopic) sample
have a redshift distribution dNr/dz, a mean surface density n̄r , and
a total number of objects Nr. The corresponding properties for the
unknown (photometric) sample will be labeled dNu/dz, n̄u, and Nu,
respectively. The angular cross-correlation between the reference
sample and the unknown sample is estimated by

wur(θ, z) = 〈nu(θ, z)〉
n̄u

− 1, (14)

where 〈nu(θ , z)〉 is the mean surface density of objects from the
unknown sample lying within an angular distance θ of objects in
the reference sample at redshift z. To calculate this, we bin the
reference sample into narrow redshift bins δzi. Then, for each δzi,
we estimate wur(θ , zi) by pair counting with the Davis–Peebles
estimator equation (2).

In practice, we actually integrate over an annulus around each
reference object, from θmin to θmax, because the sensitivity of
the estimator is improved by encoding information from many
clustering scales (Ménard et al. 2013). In order to maximize the
SNR, we weight each point by θ−1, which gives equal amounts of
clustering information per logarithmic scale (dθ /θ = dlog θ ).

w̄ur(z) =
∫ θmax

θmin

dθ
wur(θ, z)

θ
. (15)

To avoid excess signal from cross-correlations between duplicate
objects that appear in both catalogues, it is necessary to impose a
minimum radius, θmin, which is at least as large as the astrometric
uncertainties in the survey. Furthermore, as we go to smaller
scales <1 Mpc, clustering becomes increasingly non-linear and
bias becomes increasingly scale-dependent, so the assumptions
underpinning the estimator break down, potentially affecting the
accuracy of the result. Finally, we note that as the scale falls below
the mean separation of spectroscopic objects, cross-correlations
between redshift bins become more significant. Meanwhile, at
larger scales, the advantage of a linear bias6 must be balanced

6The bias measured by these angular cross-correlations is dominated by
scales of hundreds of kpc to a few Mpc and thus should be distinguished
from the large-scale (>10 Mpc) bias, which may evolve differently.
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against the cost of degraded signal-to-noise since the clustering
signal decreases with radius and the noise due to systematics
increases as more background sources are included in the counts.
Thus, for samples that have little to no bias evolution, small
scales are ideal for recovering dN/dz; for samples with some bias
evolution, intermediate scales are recommended; and for samples
with extensive bias evolution, restricting to large scales may be the
best strategy.

2.6 Counts-in-cells

To aid in simulations, we wish to also provide some measurement
of the higher order clustering statistics of the DESI samples. In
particular, for regions of high density, spectroscopic incompleteness
due to the physical limitation of fibre allocation is expected to
introduce systematic effects on the observed clustering (Burden
et al. 2017; Cahn et al. 2017; Pinol et al. 2017), which must be
included in any realistic mock catalogue. Thus, rich clustering
information down to the scale of the DESI fibre patrol radius
of 1.4

′
is invaluable for the purpose of mock calibration and

validation.
Since a discrete map of galaxies or quasars samples the con-

tinuous density field of matter, the number of galaxies within a
randomly placed cell (counts-in-cells: Hubble 1934; White 1979;
Peebles 1980) provides a window into the higher order correlations.
Let P(N) be the probability that a cell with area � contains exactly
N galaxies. The factorial moments of this distribution, Fp = 〈N(N
− 1)...(N − p + 1)〉, are related to the corresponding moments of
the spatially smoothed underlying density field, μp = 〈(1 + δ)p〉,
via the simple relation μp = Fp

〈N〉p , which tidily includes shot-
noise corrections arising from the fact that we are dealing with
a discrete, locally Poissonian representation of the continuous
field (Szapudi & Szalay 1993; Szapudi, Meiksin & Nichol 1996).
From these moments, we can extract the correlation functions of
corresponding order (also smoothed over the characteristic cell
size), wp(�) = 1

�p

∫
�

d�1...d�pwp(θ1, ..., θp). The first few are
listed below (e.g. Fry 1985; Fry et al. 2011):

μ2 = 1 + w2

μ3 = 1 + 3w2 + w3

μ4 = 1 + 6w2 + 3w2
2 + 4w3 + w4. (16)

Szapudi & Colombi (1996) classify theoretical errors on counts-
in-cells statistics as either cosmic errors (due primarily to shot
noise, edge effects, and finite volume) or measurement errors (due
to the finite number of sampling cells), the latter scaling as the
inverse of the number of sampling cells used. The counts-in-cells
distribution and its moments are usually determined by throwing
random cells over the region of interest, with massive oversampling
required to control the measurement errors. However, Szapudi
(1998) describes a method of implementing counts-in-cells that is
essentially equivalent to using an infinite number of random cells,
thereby eliminating the measurement error entirely. We implement
this method using our publicly available code infcic.7 Therefore,
we present only the uncertainty associated with cosmic errors,
which we approximate by calculating counts-in-cells over two large
fields, one in each galactic hemisphere, and measuring the mean and
dispersion, weighted by effective area.

7 https://github.com/ekitanidis/infcic

Table 1. Area and sky fraction covered by exactly 0,1,2,3,4,5 + exposures
in each optical band in DECaLS DR7. The ‘all’ columns are cumulative,
such that the NEXP = 1 row refers to area and sky fraction covered by
at least one exposure in all bands. Areas are estimated by sampling the
footprint with randoms. In this context, the sky fraction is defined relative
to the total DECaLS footprint, whereas elsewhere in the paper, it is defined
relative to the area where imaging exists (NEXP > 0) in all three optical
bands.

NEXP fsky Area (deg2)
g r z All g r z All

0 0.14 0.11 0.05 1.0 1572.5 1263.8 541.6 11243.6
1 0.17 0.14 0.11 0.82 1865.1 1529.1 1292.5 9273.5
2 0.23 0.21 0.18 0.63 2620.5 2329.9 2035.4 7114.6
3 0.2 0.22 0.24 0.39 2279.5 2430.0 2665.8 4380.5
4 0.09 0.11 0.16 0.19 1032.8 1274.3 1846.3 2185.9
5 + 0.17 0.21 0.25 0.11 1873.2 2416.5 2861.9 1220.6

3 IM AG I N G C ATA L O G U E S

3.1 Imaging data

The DECam Legacy Survey (DECaLS) is a wide-field photometric
survey amassing deep multicolour imaging within the footprints
of ongoing and future spectroscopic surveys. Using the DECam
instrument (Flaugher et al. 2015) at the Blanco 4-m telescope,
DECaLS observed in three optical/near-infrared bands (g, r, z),
complemented by four mid-infrared bands from the Wide-field
Infrared Survey Explorer (WISE; Wright et al. 2010). DECaLS aims
to obtain images up to 5σ point-source depths g = 24.7, r = 23.9, and
z= 23.0 AB mag, and is designed to boost the science power of spec-
troscopic observations by providing publicly available imaging with
superior depth (1–2 magnitudes fainter) and enhanced image quality
compared to existing photometry from SDSS, ATLAS, and Pan-
STARRS. DECaLS covers a large equatorial region (bounded by δ

< 32◦ in galactic coordinates), corresponding to roughly two-thirds
of the optical imaging used for DESI targeting, and is a key piece of
the Legacy Survey project, which has imaged the full 14 000 square
degrees of extragalactic sky making up the DESI survey (Dey et al.
2018).

Raw DECam images are processed through the NOAO Commu-
nity Pipelines, with astrometric calibration and photometric charac-
terization based on Pan-STARRS-1 measurements. The calibrated
images are then run through The Tractor8 (Lang, Hogg & Mykytyn
2016), which produces an inference-based catalogue by optimizing
the likelihood for source properties, given the data and a noise
model. We use Data Release 7 (DR7), the seventh public data
release of the Legacy Survey, which is the last DECaLS-only data
release, including observations from August 2013 through March
2018 (NOAO survey program 0404). It also uses non-DECaLS
observations from DECam conducted between August 2013 and
March 2018, including some data from the Dark Energy Survey
(DES; DES Collaboration 2005). Together, these cover approxi-
mately 9766 square degrees in the g band, 9853 square degrees in
the r band, and 10 610 square degrees in the z band, with 9298
square degrees observed in all three optical bands (see also Table 1,
Fig. 1).

8https://github.com/dstndstn/tractor
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Figure 1. Number of exposures in each DECaLS band in DR7, estimated
by sampling the footprint with randoms. No map projection is applied here.

Table 2. Summary of selection properties for each of the dark-time DESI
target classes. W1 and W2 denote WISE bands. ‘Primary’ refers to the band
used to define the limiting magnitude, which is relevant for the completeness
mask (see Section 4.1).

Target Redshift range Selection bands
Primary Other

LRG 0.4–1.0 z g, r, W1
ELG 0.6–1.6 g r, z

QSO (tracers) <2.1 r g, z, W1, W2
QSO (Ly-α) 2.1–3.5 r g, z, W1, W2

3.2 Target selection

Table 2 summarizes the primary target types evaluated in this paper.
These targets are defined in great detail in the FDR and their
selection algorithms are briefly outlined below.

3.2.1 LRG

LRG targets are selected from the g, r, z, and W1 bands by applying
a series of colour cuts using extinction-corrected magnitudes. No

morphology cut is applied.

18.01 < z < 20.41

0.75 < r − z < 2.45

−0.6 < (z − W1) − 0.8 (r − z)

(z − 17.18) / 2 < r − z < (z − 15.11) / 2

(r − z > 1.15) || (g − r > 1.65). (17)

3.2.2 ELG

ELG targets are selected from the g, r, and z bands by applying
a series of colour cuts using extinction-corrected magnitudes. No
morphology cut is applied.

21.00 < g < 23.45

0.3 < (r − z) < 1.6

(g − r) < 1.15 (r − z) − 0.15

(g − r) < 1.6 − 1.2 (r − z). (18)

3.2.3 QSO

QSO targets are selected by applying a machine-learning method
based on Random Forests (RF), which relies only on extinction-
corrected object colours in the g, r, z, W1, and W2 bands (Christophe
Yèche, private communication). The algorithm is trained using all
known QSOs in the footprint with an initial cut of r < 23 against a
sample of unresolved objects from Stripe 82 without known QSOs
and objects exhibiting QSO-like variations in their light curves. In
the target selection itself, a tighter initial cut of r < 22.7 is applied.

3.3 Catalogues and randoms

DESI target catalogues and uniform random catalogues are created
with our public code ImagingLSS.9 ImagingLSS processes the
outputs of the DECaLS pipeline and selects DESI targets from
it, as well as providing the option for auxiliary, user-defined
targets. Uniform unclustered randoms are sampled from the imaging
survey footprint. Geometric survey masks (for example, vetoing
by proximity to bright objects) can be applied to both catalogues
and randoms in a consistent manner. In addition to DECaLS data,
ImagingLSS uses the SFD98 dust map (Schlegel, Finkbeiner &
Davis 1998) to correct for extinction, as well as the Tycho-2 star
catalogue (Høg et al. 2000) and the AllWISE catalogue (Cutri et al.
2015) to mask out bright stars.

4 IM AG I N G M A S K S

We develop two types of initial masks, completeness and bright
star, to reject possibly problematic regions of the imaging data. The
effects of these masks on the survey efficiency and effective area
are summarized in Table 3. Our baseline sample is selected from
regions where imaging exists in all three optical bands used for
targeting (‘no mask’), and all sky fractions are quoted relative to
this sample. In subsequent sections, we will review the purpose and
implementation of each mask, with Section 4.1 focused on imaging
completeness, and Section 4.2 describing our bright star mask. We
also investigate whether there is need for a mask around extended
sources such as large galaxies.

9https://github.com/desihub/imaginglss

MNRAS 496, 2262–2291 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/496/2/2262/5855504 by guest on 10 April 2024

https://github.com/desihub/imaginglss


2268 E. Kitanidis et al.

Table 3. Summary of masks and how each affects the number of targets and
the effective area and sky fraction. Here, sky fractions are quoted relative to
the ‘no mask’ case, which is simply the joint regions of the footprint where
imaging is available in all three optical bands.

Target Mask Number Area (deg2) fsky

LRG No mask 4882206 9298.91 1.0
Complete only 4872537 9281.0 1.0
Bright star only 4304375 8584.68 0.92
All masks 4296486 8568.65 0.92

ELG No mask 23224353 9298.91 1.0
Complete only 23032874 9227.78 0.99
Bright star only 20329143 8638.84 0.93
All masks 20166887 8575.15 0.92

QSO No mask 3125148 9298.91 1.0
Complete only 3116976 9288.35 1.0
Bright star only 1814359 6655.11 0.72
All masks 1810801 6648.68 0.71

4.1 Survey depth and completeness

Tractor catalogues contain an estimation of the imaging depth at
each observed pixel in the footprint. This depth is affected by the
number of exposures, exposure times, observational conditions, and
instrument effects.10 Due to the multipass nature of the imaging
survey and the fact that it is ongoing, variations in depth across the
footprint are substantial. In DR7, some of the sky has been covered
just once, while the deepest regions have received five or more
passes (see Table 1 and Fig. 1).

To select a uniform and complete sample, we implement a
‘completeness’ mask. Since two exposures, at minimum, are needed
to meet the nominal depth requirements of DESI over most of the
footprint (Dey et al. 2018), a reasonable approach might be to mask
out areas with fewer than two exposures in each band. However,
not every pixel will exceed target depth for a given number of
overlapping exposures (see Fig. 2), and thus the result will still
be biased towards regions with more passes. Even with perfectly
uniform coverage, variations in observing conditions affect depths
and therefore the homogeneity of the resulting catalogue.

Instead, using the 5σ point-source depths as limiting magnitudes,
combined with DESI target definitions, we construct a ‘binary
completeness mask,’ in which a particular observed pixel is in the
‘complete’ area for a target type if and only if it meets the following
conditions:

(i) the limiting magnitudes in the bands used for magnitude
cuts are sufficient to observe even the faintest targets with 5σ

confidence;
(ii) imaging exists for all bands used in the target definitions.

This ensures that only the ‘deep enough’ regions of the sky are
used to generate DESI catalogues and randoms for analysis. Fig. 3
shows the sky fraction as a function of depth for each band, with
the magnitude cuts for the three targets plotted as vertical lines, to
visualize how shifting a magnitude cut up or down would affect
usable sky area. As Fig. 3 shows, all depths are sufficient to detect
the full target samples.

10Note that we do not explicitly apply the ALLMASK flag, which uses the
NOAO Community Pipeline’s data quality map to mask out bad pixels on the
CCD and pixels affected by bleed trail, transients such as cosmic rays, and
saturation. These effects are accounted for in the estimation of the depths
(Dey et al. 2018) and thus are perforce included in our completeness mask.

Figure 2. Histograms of 5σ point-source depths of randoms in each band,
normalized as probability densities, with the coloured curves corresponding
to different numbers of exposures. The solid vertical lines are the DESI
nominal 5σ depth requirements g = 24.0, r = 23.4, and z = 22.5 for an
ELG galaxy with half-light radius of 0.45 arcsec.

By only requiring the existence of imaging in the bands used
for colour cuts, we are implicitly assuming that uncertainties in
the colours do not affect the reliability of the target selection.
Alternatively, we could require a 5σ detection in all bands, not
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Figure 3. Cumulative sky fraction versus 5σ limiting magnitudes, with
target selection cuts shown as vertical lines to demonstrate the effect that
shifting a magnitude limit up or down would have on the completeness of
the corresponding target.

just the primary bands used to apply magnitude cuts. However, it is
not clear how to define a detection limit in a band that is used only
for colour cuts, as the targets are not necessarily bounded in these
bands. The other advantage of defining the completeness mask on
only the bands used for magnitude cuts is that it makes it easier to
apply the definition to target selections of finer granularity in the
colour space, for example, represented by a forest of decision trees.

4.2 Bright foregrounds

As discussed in Section 3, we correct for galactic extinction by
adjusting the colour of objects using the SFD98 dust map. In
addition to extinction, bright objects in the foreground (point
sources such as stars, and extended sources such as nearby galaxies)
can also affect the detection of targets in their angular vicinity, due to
charge-coupled device (CCD) saturation and diffraction spikes that
contaminate the surrounding pixels. The systematics due to these
bright objects in the target catalogues are spatially localized and
uncorrelated with the underlying true density of the targets. Thus,
we can quantify these systematic effects by measuring the densities
of targets as a function of their proximity to the bright foreground
objects and mitigate them via masks.

4.2.1 Bright stars

We use two bright star catalogues, Tycho-2 and WISE. Tycho-2
is a reference catalogue of the 2.5 million brightest stars in the
sky, with photometry in two optical bands, λBT = 435 nm and
λVT = 505 nm. It has highly accurate astrometric positions and is
99 per cent complete out to VT ∼ 11 magnitude, making it well
suited to our analysis. However, some stars not included in the
Tycho-2 catalogue may still be bright enough in the near-infrared
bands to affect the detection of LRGs and QSOs, both of which use
the WISE band W1 in their target selection (QSOs also use W2). To
be safe, we create separate veto masks for each star catalogue and
apply both to our data. Table 4 compares the effective areas and sky
fractions of the two star masks.

For both catalogues, we follow a similar procedure to construct
and test a radial mask for each target class. We begin by splitting
the sample of stars into magnitude bins, since the masking radius

Table 4. Summary of star masks and how each affects the number of targets
and the effective area and sky fraction. Here, sky fractions are quoted relative
to the ‘no mask’ case, which is simply the joint regions of the footprint where
imaging is available in all three optical bands.

Target Mask Number Area (deg2) fsky

LRG No mask 4882206 9298.91 1.0
Tycho mask only 4385463 8752.25 0.94
WISE mask only 4529935 8970.73 0.96
Both star masks 4304375 8584.68 0.92

ELG No mask 23224353 9298.91 1.0
Tycho mask only 21378695 8811.44 0.95
WISE mask only 21065984 8970.73 0.96
Both star masks 20329143 8638.84 0.93

QSO No mask 3125148 9298.91 1.0
Tycho mask only 2192932 7541.98 0.81
WISE mask only 2030414 7269.13 0.78
Both star masks 1814359 6655.11 0.72

will be magnitude-dependent. The bin widths are chosen such that
each bin contains a similar number of stars and therefore has
comparable Poisson errors. For a given magnitude bin, we use the
pair-enumeration algorithm in KDcount11 to efficiently locate all
star-galaxy pairs within a distance of θ = 0.05 rad ≈104 arcsec of
one another. We calculate the density of targets around each star in
logarithmically spaced annular bins up to this maximum separation
and then average across all stars to determine the mean density of
targets in each annular bin. By assigning a conservative cutoff radius
to each magnitude bin by eye and fitting the results, we obtain the
following magnitude–radius relations:

For Tycho-2:

R =
⎧⎨
⎩

−2.5 × V T 3 + 77.4 × V T 2

−813.6 × V T + 2969 arcsec, LRG, ELG
2.8V T 2 − 143.4V T + 1387.1 arcsec, QSO

(19)

For WISE:

R =
{

10 3.29 − 0.18 × W1 arcsec, LRG, ELG
10 3.29 − 0.12 × W1 arcsec, QSO

. (20)

For both types of star mask, the LRGs and the ELGs can be fit to the
same magnitude–radius relation, while the QSOs require their own,
more conservative mask. We found that relaxing the QSO stellar
masks (by, for instance, applying the LRG/ELG masks instead)
led to a measurable increase in stellar contamination, evidenced
by inflated QSO autocorrelation and QSO–star cross-correlation
measurements.

In our analysis, we implement equations (19) and (20) instead of
using the MASKBITS column provided by DECaLS to mask out stars.
We have found that our geometric masks are more aggressive than
the combination of available stellar bitmasks; in particular, they are
necessary for removing contaminated areas at larger radii.

Fig. 4 shows the resulting target densities versus distance to
bright stars, sectioned by target type and star catalogue, with each
magnitude bin plotted separately. Three bins are highlighted for il-
lustration, with the corresponding dashed vertical lines representing
the relevant masking radii calculated with the average magnitude
of that bin. These plots show how the masks eliminate spurious
clustering due to bright stars. In Figs 5 and 6, we also present 2D
histograms of target densities around stacks of bright stars, plotted

11https://github.com/rainwoodman/kdcount
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Figure 4. Average density of DESI targets as a function of distance to bright stars from Tycho-2 (left) and WISE (right). Both star catalogues are divided into
magnitude bins, which are spaced such that each contains a roughly comparable number of stars. In each plot, three bins are highlighted for illustration, with
the dashed vertical lines representing the corresponding masking radius (equations 19 and 20) calculated using the average magnitude of that bin.

in equatorial coordinates12 with star masks drawn on as circles,
again showing well-fiting mask radii.

4.2.2 Bright extended sources

Similarly to bright stars, we examine the density of targets near
bright extended sources such as nearby galaxies. We use the 2MASS

12We also performed this analysis in ecliptic coordinates to see if additional
structure could be identified. In some of the fainter magnitude bins,
resolution and contrast could be manipulated to resolve an x-shaped feature
in the 2D stacked plots, but this feature was very fine, and we found that
removing it beforehand had no perceptible impact on the 1D density plots.

Extended Source Catalog (Jarrett et al. 2000), a catalogue of near-
IR extended sources complete for angular sizes greater than ∼10
arcsec. Restricting to 10 < J < 15 total J-band magnitude, we find
no appreciable impact on the density of our DESI dark time targets
(Fig. 7), and thus we do not apply a mask.

5 SPAT I A L VA R I AT I O N S

5.1 NGC versus SGC

We calculate the angular correlation functions in the north galactic
cap (NGC) and the south galactic cap (SGC) individually, as
the two hemispheres may suffer from different systematics, and
earlier analyses have found NGC/SGC variations in BOSS data
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Figure 5. 2D histograms of the density of DESI targets around stacks of bright stars from Tycho-2. The solid black circles represent our star masks (equation 19).
The horizontal features appearing in some maps, which are due to insufficient masking of charge bleed trails in the CCDs, are only a few arcsec in width, and
we find that removing them with a separate rectangular mask has no perceptible impact on the densities around stars.

(see Ross et al. 2012, Section 4.1, for an explanation of the origin
of this difference in number density between the NGC and the
SGC in BOSS). The results are shown in Fig. 8. For LRGs,
the autocorrelations are virtually identical. For ELGs, there is a

slight divergence, most noticeably in the 0.02◦ < θ < 0.09◦ range.
For QSOs, the difference between NGC and SGC is significantly
more pronounced. The NGC results appear more impacted by
systematics, as indicated by a bulge in the correlation function
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Figure 6. 2D histograms of the density of DESI targets around stacks of bright stars from WISE. The solid black circles represent our star masks (equation 20).
The horizontal features appearing in some maps, which are due to insufficient masking of charge bleed trails in the CCDs, are only a few arcsec in width, and
we find that removing them with a separate rectangular mask has no perceptible impact on the densities around stars.

with extremely large bootstrap errors. This is likely due to the
fact that parts of the SGC, where there is DES imaging, are
very deep (see also Fig. 9 in the following section to visually
observe how the NGC appears more impacted by systematics for
QSO).

5.2 Visual inspection

As an initial sanity check, we create maps of the density con-
trast δ = n/n̄ − 1 averaged over HEALPix pixels of NSIDE = 256.
The results are shown in Fig. 9, with the unmasked catalogues
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Figure 7. Average density of DESI dark time targets as a function of
distance to extended sources from 2MASS-XSC.

mapped on the left and their masked counterparts on the right. The
masked catalogues are visually cleaner, with the star masks reduc-
ing stellar contamination and the completeness masks cancelling
the imprint of imaging depth on target density. Several features
remaining in the masked maps are highlighted and discussed
below.

While LRG clustering appears relatively uniform, ELG clustering
shows some troubling large-scale trends. For example, the shape of
the DES region in the south is detectable, appearing underdense
despite its superior depth. This suggests contamination in non-
DES regions, likely due to the effect of low redshift (z < 0.8)
objects preferentially scattering into the ELG target selection across
the low-z colour cut (g − r) < 1.15 (r − z) − 0.15 in regions of
worse depth. This was tested (Ashley Ross, private communication)
by injecting artificial noise into regions of very deep imaging
and examining the photometric redshifts of the resulting scattered
objects. Additionally, a few suspicious ‘hotspots’ appear in the ELG
density. When examined closely, most of these occur around a small
set of very bright stars (such as Arcturus) that have been successfully
masked but which cause dramatic and complex artefacts in the
image beyond the expected masking radius due to reflections of
pupil ghosts. Finally, looking at the density of QSOs, there remains
noticeable stellar contamination along the galactic plane even after
applying conservative masks, as well as the Sagittarius Stream
in the north, and there are also some effects at the edges of the
footprint.

5.3 Outlier analysis

As another test of spatial variation, we perform a jackknife-inspired
outlier analysis on the data. Again using the HEALPix scheme, we
divide the footprint into large pixels and re-calculate w(θ ) with each
non-empty pixel excluded in turn, still performing the full bootstrap
error analysis on the remaining pixels for each iteration. We begin
with the coarsest pixels, corresponding to NSIDE = 1, and increase
the resolution as needed to resolve any anomalies that are detected.
For LRGs and ELGs, the results are indistinguishable even at this
minimum resolution. However, for QSOs, we find that two pixels
at resolution NSIDE = 4 which, when either is excluded, lead to a
significant change in the correlation function (see Fig. 10). Likely,
culprits are the Coma Cluster (Abell 1656), which contains over
1000 galaxies, and M3/NGC 5272, one of the largest and brightest
globular clusters in the sky.

Figure 8. w(θ ) for LRGs, ELGs, and QSOs calculated in NGC and SGC
separately. Error bars are from bootstrapping.

6 POTENTI AL SYSTEMATI CS

Potential systematics include astrophysical foregrounds, variations
in observing conditions, and uncertainties in data calibration, pro-
cessing, and reduction (for similar studies in the context of SDSS,
see e.g. Myers et al. 2006; Crocce et al. 2011; and Ross et al. 2011;
for similar analyses using DES Verification Data, see e.g. Crocce
et al. 2016; Leistedt et al. 2016; Suchyta et al. 2016; and Elvin-
Poole et al. 2018). We introduce maps of spatially varying potential
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Figure 9. Maps of the density contrast δ = n/n̄ − 1 calculated with HEALPix resolution NSIDE = 256. Mollweide projection in equatorial coordinates with
right ascension centred at RA =100◦. Masked data (right) are less impacted by stellar contamination and variations in imaging depth than raw data (left).

systematics in Section 6.1 and examine their impact on the densities
of DESI targets, before and after applying photometric weights, in
Section 6.2. The purpose of these weights is to mitigate the density
trends by upweighting (or downweighting) regions where target
density is diminished (or enhanced) due to systematics. Finally, in
Section 6.3, we cross-correlate the targets with stars and attempt to
quantify stellar contamination in the QSO sample.

6.1 Maps of potential systematics

We begin by using the HEALPix scheme with NSIDE = 256 to divide
the data into equal-area pixels of approximately 0.05 square degrees
each. This resolution was chosen to avoid the shot-noise limit in
which most pixels contain zero or one targets. For our LRG, ELG,
and QSO samples with approximate mean densities (per square
degree) 500, 2400, and 260, respectively, it produces an average of

10–20 LRGs/QSOs and ∼100 ELGs per pixel.13 In every pixel,
an average value for the potential systematic is calculated. For
survey properties measured per CCD, unless otherwise noted, we
first average over overlapping exposures to obtain a mean value for
each random and then pixelize using the randoms. The resultant
maps are shown below, along with brief descriptions of how they
are determined and why they are included in the analysis.

(i) Stellar density: In addition to the detection issues near bright
foreground stars discussed in Section 4.2.1, the presence of stars
impacts the measured density and clustering of galaxies in other
ways (e.g. Crocce et al. 2011; Ross et al. 2011). Stars with

13Note that most of the systematics studied here (with the exception of
EB − V and stellar density) are not available at higher resolution than this
pixelization scheme in any case, as they are measured per CCD.
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Figure 10. Upper: The angular correlation function is re-calculated with
each pixel excluded in turn, still performing a complete bootstrap analysis
on the remaining pixels. Two neighbouring pixels in the NGC affect the
result when either is excluded (violet lines). Middle: Map highlighting the
location of the two pixels, which were found to affect clustering. Lower:
When both these pixels are excluded, the disparity between the NGC and
the SGC is dramatically reduced on small scales.

similar colours (see Fig. 11) can contaminate the samples, and
the inclusion of a separate population manifests as an enhanced
clustering signal. The observed clustering may also be imprinted
with the density gradient of stars, which increases towards the
galactic plane. Furthermore, residual point spread function (PSF)
tails of some fainter stars may pollute the pixels used to calculate
sky background and therefore affect target photometry.
We create a catalogue of stars from DECaLS by selecting objects
lying in the stellar locus (using the colour cut 17 < r < 18) with
PSF morphology. The density of this class of objects, shown in the
top left-hand panel of Fig. 12, indicates that it is a reliable stellar
template.

Figure 11. Colour–colour plot of LRG, ELG, QSO target selection, with
the shape of the stellar locus selected from DECaLS as PSF-type objects
with 17 < r < 18.

(ii) Galactic extinction: Galactic extinction is the wavelength-
dependent absorption and scattering of light by interstellar dust in
the Milky Way, causing sources to appear redder. DESI and its
imaging surveys deliberately avoid regions of high extinction along
the galactic plane. In addition, we use extinction-corrected fluxes
in our analysis. The total extinction in each band is provided by the
DECaLS pipeline, calculated from the SFD98 dust map combined
with a set of extinction coefficients Aλ/EB − V for each DECam
and WISE filter. The extinction coefficients were determined at
airmass = 1.3 from the values recommended by Schlafly &
Finkbeiner (2011) using the Fitzpatrick (1999) extinction curve
at RV = 3.1. These values are 3.214, 2.165, and 1.211 for g, r,
and z. However, it has been shown in other surveys that residual
errors in this correction may cause spurious clustering (see e.g.
Scranton et al. 2002; Myers et al. 2006; Ross, Brunner & Myers
2006). In addition, erroneously correcting the photometry of stars
in the foreground of the dust could potentially bias their colour and
cause some of them to scatter into target selection. Hence, we treat
EB − V as a potential systematic and test its effect on the density
field.

(iii) Seeing: Astronomical seeing is the blurring of an image due
to turbulence in the Earth’s atmosphere. The distortions fill out a
PSF whose full width at half maximum quantifies the quality of the
seeing conditions. In DECaLS, seeing is determined by fitting the
median PSF of stars on the CCD to a 2D Gaussian. Since seeing
varies between nights and even exposures, a mean value is reported,
calculated by averaging the inverse of the effective number of pixels
in the PSF (such that images with better seeing dominate the mean,
as they contain more information). We use this mean PSF size to
determine the impact of seeing conditions on the density field, since
bad seeing causes larger magnitude errors as well as more cross-
contamination with stars due to poor morphological fits.

(iv) Airmass: Airmass is the optical path-length of light through
the Earth’s atmosphere. When photons from a celestial source travel
to a terrestrial observer, they are absorbed and scattered by the
atmosphere. Light that must traverse more atmosphere will be
attenuated more, so sources appear dimmer at the horizon than
at the zenith. For zenith angles �60◦, we can approximate the
atmosphere as plane-parallel and also assume that its density is
more or less constant. In this limit, the airmass is simply the secant
of the angle from the zenith to the source location on the sky. We
treat the mean airmass as a potential systematic, as it contributes
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Figure 12. Maps of spatially varying potential systematics in equatorial coordinates with Mollweide projection and astronomy convention (east towards left).

to magnitude errors (for instance, airmass induces atmospheric
differential refraction as a function of colour, which can affect
the photometry) and is entangled with the extinction and seeing
corrections.

(v) Sky brightness: Variations in the background brightness of
the sky (due to various sources such as airglow, scattered starlight,
Moon phase, and light pollution) can affect the measured flux errors
and therefore the density of targets by scattering objects in or out of
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Figure 13. Systematic dependences before applying photometric weights: Mean density fluctuations for LRGs (red circles), ELGs (green squares), and QSOs
(blue diamonds), as a function of (from top left to bottom right) mean stellar density, colour excess EB − V, airmass, seeing, sky background, and exposure
time in each band, with Poisson errors. The top panel in each figure is the cumulative sky fraction for each systematic. We generally find that splitting between
NGC and SGC has negligible effects on the 1D density trends, with the exception of EB − V for ELGs and stellar density for QSOs; for these two cases, we
have added the NGC-only (dashed) and SGC-only (dotted) trend lines.

colour cuts. Sky brightness also has a strong dependence on airmass,
which increases the brightness of airglow. We include the mean sky
background in each band measured on the individual CCDs as a
potential systematic.

(vi) Exposure time DECam can attain the depths required for
DESI targeting in total exposure times of 166, 134, and 200 s

for g, r, and z bands, given median observing conditions. As part
of the imaging strategy, dynamic exposure times are increased to
compensate for poor observing conditions in order to obtain a more
uniform sample. We look at variations with mean exposure time in
each band, which affects depth and is correlated with other potential
systematics, to see how it modulates the observed density.
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Figure 14. Systematic dependences after applying photometric weights: Mean density fluctuations for LRGs (red circles), ELGs (green squares), and QSOs
(blue diamonds), as a function of (from top left to bottom right) mean stellar density, colour excess EB − V, airmass, seeing, sky background, and exposure
time in each band, with Poisson errors. The top panel in each figure is the cumulative sky fraction for each systematic.

6.2 Target densities versus potential systematics

We can determine the post-masking target density per pixel using
the random catalogues. Since the randoms are uniformly distributed,
counting the number of post-masking randoms in a pixel is equiva-
lent to measuring its effective area, up to a proportionality factor:

δi = n
gal
i

/
n̄gal − 1 = N

gal
i

/
N ran

i × N ran
masked

/
N

gal
masked − 1. (21)

For each potential systematic, we bin the pixels by systematic
value and then plot the average density versus the average systematic

value of the bins. The results are shown in Fig. 13, with LRGs,
ELGs, and QSOs plotted together in each subplot and cumulative
sky fraction displayed in the upper panels. The errors bars represent
the Poisson noise in each bin; using standard error of the mean
gives minuscule error bars, as the variance within each bin is very
small, regardless of the exact bin size or pixel resolution used. In
general, LRGs show very little dependence on survey properties,
while ELGs and QSOs appear more impacted, with QSOs often
displaying a non-linear dependence likely due to the more complex
selection function. We find that the NGC and SGC density trends
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are similar and thus do not need to be plotted separately, with the
exception of EB − V for ELGs and stellar density for QSOs. For
these two special cases, we include the NGC-only (dashed) and
SGC-only (dotted) trend lines in Fig. 13.

The most significant systematic effects indicated are from stellar
density and extinction. ELG density decreases significantly with
increasing stellar density and extinction, with 10 per cent level
effects in some areas, while QSO density presents the opposite trend.
The observed correlation between stellar density and QSO density,
and anticorrelation between stellar density and ELG density, is
also present in the angular cross-correlation results (Section 6.3).
One possible explanation for the extinction dependence is the issue
of infrared emission from background galaxies contaminating the
SFD dust maps used to correct DECaLS magnitudes. This has
been shown to lead to underestimation of the reddening in low
extinction (EB − V < 0.15) regions (Yahata et al. 2007; Kashiwagi,
Yahata & Suto 2013; Kashiwagi et al. 2015), attributed to the fact
that the extragalactic contamination dominates the dust signal in
such regions. Looking at the shape of the targets selection functions
in colour space (Fig. 11), underestimation of reddening could
preferentially scatter objects out of the ELG selection or into the
QSO selection. While the resultant underestimation of extinction in
these regions is small, it may be highly correlated with the targets.

Some minor dependence on seeing and sky background are also
observable, particularly for QSOs, as it is more difficult to distin-
guish between QSOs and stars in regions with bad seeing and bright
sky backgrounds. The relationship between target densities and
mean exposure times is more complex. Due to the use of dynamic
exposure times, there is entanglement with other systematics; for
example, exposures are scaled longer for higher airmass or regions
of higher galactic extinction. CCDs with exposure times less than
30 s are automatically removed in the image reduction pipeline,
and the ‘jumps’ or discontinuities in sky fraction at various other
times are artefacts of the observing strategy. The fact that we
are averaging the exposure times over multiple overlapping CCDs
slightly muddies the interpretation as well. Nevertheless, it is clear
that the attempt to obtain more uniform depths through dynamic
exposure times is not perfectly successful for QSOs.

Based on these findings, we create photometric weights to reduce
the variance in target densities due to systematics. Working directly
with the HEALPix pixels defined in the previous section, we use
principal component analysis (PCA) to transform the list of potential
systematics into a minimum set of linearly uncorrelated variables.
PCA using a full SVD solver reduces the dimensionality from 12
scaled features to 11 components. The first component explains
∼22 per cent of the variance and the last component explains
∼3 per cent of the variance, with ∼50 per cent of the variance
explained by the first three components and ∼75 per cent of the
variance explained by the first six components.

Unsurprisingly, we find that exposure times contain a great deal of
information, as they are correlated with all of the other systematics
by design. However, since exposure times are difficult to interpret,
we also perform a version of the component analysis with the
exposure times removed from consideration, in order to show more
clearly how the other features contribute and in what combinations.
We find that nearly equal contributions from stellar density and
galactic extinction tend to strongly dominate a few components,
while more complex mixtures of sky background, seeing, and
airmass features dominate the others, as physical intuition might
lead us to expect.

We discretize the feature–space to reduce the impact of noisy
pixels and outliers and then apply multilinear regression. The

resulting model of density as a function of potential systematics
is used to generate weights.14 We apply our photometric weights
to the randoms, modulating the effective area (and therefore target
density) of the survey based on the local values of systematics.
Weights are normalized in the sense that the proportionality factor
in equation (21) changes from the number of randoms in the masked
footprint to the sum of their weights. Plots of the density versus
systematics after applying weights are shown in Fig. 14, with the
linear parts of the trends improved. Fig. 15 demonstrates the effect
of applying these weights on the angular correlation functions. All
clustering results presented in Section 7 and Section 8 are computed
using the weighted values.

6.3 Correlation with stars and stellar contamination fraction

We also measure the angular cross-correlation between the targets
(after masking but before weighting) and our stellar catalogue, with
the results shown in Fig. 16. Consistent with the density trends
observed in Fig. 13, LRGs appear uncorrelated with stars, while
ELGs demonstrate a small constant anticorrelation, and QSOs show
a more significant constant correlation.

Using the angular cross-correlation, we can estimate the fraction
of stellar contamination in the QSO sample. Let us assume that
the observed number of QSOs at any given location includes some
non-trivial number of contaminants, as seems strongly indicated.
Let Nstar be the total number of stars that modulate the QSO density
in some way:

Nobs = Ntrue + ε̄Nstar, (22)

where ε̄ is the average number of impacted sources associated
with each star. For stars that are simply misclassified as QSOs,
ε = 1. For spurious QSO detections in the immediate vicinity of
stars, ε > 0. For occulted QSOs in the immediate vicinity of stars,
ε < 0. Note that for the latter two effects (spurious or occulted
sources near stars), we are considering fainter stars that were not
masked out in Section 4.2.1. Thus, any cross-correlations between
these sources and their own associated star are negligible beyond
very small scales, so the cross-correlation between contaminants
and stars is dominated by the autocorrelation of stars times the
multiplicative factor ε.

The fraction of the total sample that is made up of these
problematic stars is approximately given by

fstar = 〈Nstar〉
〈Nobs〉 , (23)

where the brackets signify a spatial average. Similarly, the fraction
of true objects is

ftrue = 〈Ntrue〉
〈Nobs〉 . (24)

We can rewrite this in terms of the density contrasts δ = N/〈N〉 −
1 by exploiting the fact that 〈Nobs〉 = 〈Nstar〉/fstar = 〈Ntrue〉/ftrue, such

14For randoms where any of the potential systematics were undefined due
to lack of exposures in one or more bands, the weights were manually set to
one. The randoms used in our clustering analysis have had the completeness
mask of Section 4.1 applied and thus are not affected by this.
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Figure 15. Two-point angular correlation functions for LRGs, ELGs, and
QSOs at several levels of systematics analysis: without any corrections
(green triangles), after applying masks (blue squares), and after applying
both masks and photometric weights (red error bars). For QSOs, we
perform the additional intermediate step of removing the anomalous regions
discussed in Section 5 (orange circles). The red lines are fit to a power-law
model for the three-dimensional clustering ξ (r) = (r/r0)−γ . The values of
these fits are listed in more detail in Table 6.

that the observed density of objects is

δobs = Nobs

〈Nobs〉 − 1 = Ntrue

〈Nobs〉 + ε̄
Nstar

〈Nobs〉 − 1

= ftrue
Ntrue

〈Ntrue〉 + ε̄fstar
Nstar

〈Nstar〉 − 1

= ftrue(δtrue + 1) + ε̄fstar(δstar + 1) − 1

= ftrueδtrue + ε̄fstarδstar. (25)

Figure 16. Angular cross-correlation between DESI targets and stars, with
errors from bootstrapping on the area.

Table 5. Average densities for each target type, calculated over the available
footprint. The first column is the uncorrected densities, the second column
has had only the masks of Section 4 applied, and the third column has
additionally had the photometric weights of Section 6.2 applied. The
projected target densities from the FDR are also included for reference.

Average density (deg−2)
Target Raw Masked Masked and weighted FDR

LRG 525.0 501.4 498.9 480
ELG 2497.5 2351.8 2352.7 2400
QSO 336.1 261.2 256.2 260

Thus, we can extract the contamination fraction by dividing the
QSO-star cross-correlation by the stellar autocorrelation func-
tion, wcross(θ )/wstar(θ ) = 〈δobs, δstar〉/〈δstar, δstar〉 = ε̄fstar ≡ fcontam,
since the cross-correlation between true QSOs and stars vanishes.15

As the stellar density varies significantly across the sky (see
Fig. 12), with a strong gradient towards the galactic plane, we first
divide the sky into three bins: |b| < 40, 40 < |b| < 60, and |b| > 60.
For each galactic latitude bin, we calculate wcross(θ ) and wstar(θ ),
averaged across all angular scales (as both correlation functions
are flat, within error bars, for all bins), and then bootstrap upon
these averaged values to obtain error bars. The resulting stellar
contamination fractions are fcontam = 7 per cent ± 4.9 per cent for
|b| < 40, fcontam = 4.9 per cent ± 2.7 per cent for 40 < |b| < 60, and
fcontam = 4.1 per cent ± 2.3 per cent for |b| > 60.

7 ANGULAR CLUSTERI NG MEASUREMENTS

7.1 Mean densities

The average target densities for DR7 are given in Table 5. We present
the raw densities as well as the densities after observational effects
have been accounted for using the masks and weights described
in this paper. Here, densities are calculated by taking the ratio
of the total number of objects and the total area, with the latter
being estimated using counts of uniform randoms with the masks
and weights applied to them. For an independent calculation of raw

15We have assumed an ideal stellar template; in reality, there may be a small
fraction of true QSOs in the star sample, or a fraction of galaxies in both
the QSO and the star samples, which correlate with each other, but these
fractions should be much smaller than the fraction of stellar contaminants
in the QSO sample, and hence we can ignore them to first order.
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Table 6. Results from fitting the correlation functions to a power-law ξ (r) =
(r/r0)−γ , where we have used the expected redshift distributions of DESI
targets in the Limber approximation to convert between angular clustering
and real-space clustering. We list the angular scales fitted over, the expected
z̄ of each sample, and the best-fitting parameter values and errors.

Target θmin, θmax r0 (h−1Mpc) γ log10Aw

LRG 0.001◦, 1◦ 7.78 ± 0.26 1.98 ± 0.02 −4.01 ± 0.05
ELG 0.001◦, 1◦ 5.98 ± 0.30 1.90 ± 0.03 −4.25 ± 0.06

0.001◦, 0.01◦ 6.70 ± 0.10 1.85 ± 0.01 −4.01 ± 0.02
0.05◦, 1◦ 5.45 ± 0.10 1.54 ± 0.01 −3.22 ± 0.02

QSO 0.001◦, 1◦ 21.9 ± 1.01 1.81 ± 0.03 −3.31 ± 0.07

target densities, column 2 of the counts-in-cells tables in Section 7.4
gives the average number of objects N̄ within a square cell of some
width and thus can be divided by the corresponding cell area to give
the mean (raw) density smoothed over that scale.

7.2 Angular correlation functions with r0, γ fits

The measured angular correlation functions for the three target
classes are shown in Fig. 15. We present the correlation functions
at various stages of analysis to demonstrate the effects of applying
masks, weights, and so on. The final, ‘cleanest’ version is fit to
theory, as described below.

According to the current paradigm of galaxy formation, galaxies
form within collapsed overdensities of dark matter called ‘haloes’
(for a recent review on the galaxy-halo connection, see Wechsler &
Tinker 2018). Under this model, the correlation function of galaxies
is the sum of two contributions: a 2-halo term corresponding to pairs
of galaxies within different haloes, and a 1-halo term corresponding
to pairs of galaxies within the same halo. On small scales, where
the 1-halo term dominates, the correlation function depends on the
complex baryonic physics of galaxy formation and evolution, while
on larger scales, where the 2-halo term dominates, the correlation
function is characterized by the halo bias describing how dark
matter haloes trace the dark matter distribution. When combined,
these two terms result in an approximate power law, with a feature
corresponding to the 1-halo to 2-halo transition occurring around
1–2 h−1 Mpc, the typical virial radius of a halo. Motivated by this,
we assume the real-space correlation function is a simple power law
of the form ξ (r) = (r/r0)−γ . Using tabulated dN/dz for each target
and applying the Limber approximation (equation 5), we obtain
constraints on r0 and γ , listed in Table 6.

For LRGs, we determine r0 = 7.78 ± 0.26 h−1Mpc and γ =
1.98 ± 0.02, which agrees well with previous results for sim-
ilar samples from the literature; for example, Sawangwit et al.
(2011) (Table 2, row 4) finds r0 = 7.56 ± 0.03 h−1Mpc and γ =
1.96 ± 0.01 for a photometric subsample of LRGs from SDSS
imaging with z̄ = 0.68 and a similar redshift distribution, over
approximately the same range of angular scales. While the LRG
correlation function shows some additional structure that is not fit
perfectly by a power-law model, no strong features are observed
on these scales, which is generally consistent with earlier findings
from eBOSS and SDSS LRG studies (see e.g. Zehavi et al. 2005).

We find that the ELG correlation function has a broken form.
When fitting from θ = 0.001◦ to θ = 0.01◦, the correlation function
is well fit by r0 = 6.70 ± 0.10 h−1Mpc and γ = 1.85 ± 0.01.
However, for scales θ > 0.05◦, the slope becomes shallower, and
the correlation function is better fit by r0 = 5.45 ± 0.10 h−1Mpc
and γ = 1.54 ± 0.01. At the mean effective redshift of the
DESI ELG sample, z ∼ 0.85, the co-moving scale of this break

is approximately 1 h−1Mpc, consistent with a 1-halo to 2-halo
transition. The second slope matches with the findings of Favole
et al. (2016), who modelled a sample of ELGs selected from the
Canada-France Hawaii Telescope Legacy Survey (CFHTLS), cross-
matched with BOSS ELG and VIPERS redshifts, at mean redshift
z̄ ≈ 0.8, to obtain s0 = 5.3 ± 0.2 h−1Mpc and γ = 1.6 ± 0.1.
Furthermore, when calculating the angular correlation function over
the full CFHTLS footprint, they also observed a change of slope
occurring at θ ≈ 0.01◦−0.05◦ and found that this clustering was
consistent with an HOD model having halo masses on the order of
1012M� and satellite fraction fsat ∼ 22 per cent. Similarly, Jouvel
et al. (2015) found s0 = 4.2 ± 0.26 h−1Mpc and γ = 1.48 ± 0.04 for
a bright sample of eBOSS ELGs selected from DES photometry at
z̄ = 0.86. The real-space clustering amplitudes and slopes for both
LRGs and ELGs are also consistent with the results from Mostek
et al. (2013) for red and blue galaxy populations in DEEP2.

The QSO correlation function still contains a significantly
enhanced clustering signal due to systematics and contamination,
with r0 = 21.9 ± 0.10 h−1Mpc and γ = 1.81 ± 0.02. By
comparison, some fiducial values of QSO clustering amplitude at z

∼ 2 from the literature are: r0 = 5.84 ± 0.33 and γ = 1.65 ± 0.05
(Croom et al. 2005), or r0 = 4.56 ± 0.48 at fixed γ = 1.5 (Myers,
White & Ball 2009).

7.3 Angular power spectra with b0, b(k) fits

We measure the angular power spectra of the three main DESI target
samples using the methods described in Section 2.4. We reiterate
that the results presented here have already had the masks and
weights of the previous sections applied. Similar to their effect on
the angular correlation functions, the impact of the photometric
weights derived in Section 6.2 on the angular power spectra is to
reduce power on large scales. For LRGs, not using the weights
would increase the amplitude by ∼15 per cent at � ∼ 20 down to
∼1 per cent at � ∼ 75. For ELGs, it would increase by ∼43 per cent
at � ∼ 20 down to ∼1 per cent at � ∼ 150. For QSOs, it would
increase by ∼12 per cent at � ∼ 20 down to <1 per cent at � ∼ 75.

From the angular power spectra, we fit the linear bias. First, we
restrict to very large scales where the bias is approximately constant
and then relax this restriction as we probe the scale dependence of
the bias using the ‘P model’ (Smith, Scoccimarro & Sheth 2007;
Hamann et al. 2008; Cresswell & Percival 2009), which treats
the non-linear correction to the bias as an extra non-Poissonian
shot noise term arising from the assumption that galaxies populate
haloes (Seljak 2001; Schulz & White 2006; Guzik, Bernstein &
Smith 2007):

Pg −→ Pg + P ⇒

b(z)2 = b2
0

D(z)2
−→ b(k, z)2 = b2

0

D(z)2

(
1 + P

b2
0Pm(k, z)

)
. (26)

In terms of the angular power spectra, which involve convolution
with the radial distributions (see equation 13), we have

C� −→ C� + C

C = P

∫
dχ f (χ )2 1

χ2

1

D(z)2
. (27)

Using CLASS, we compare C� derived from linear and HALOFIT
(Smith et al. 2003) predictions of the matter power spectrum to
estimate �max where they begin to diverge, taking the common
assumption that the non-linear correction to the matter power
spectrum becomes significant at approximately the same scale as
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Table 7. Fitting the LRG large-scale bias from the angular power spectra. We initially limit to � ≤ 200 and fit the linear bias
to a constant: first, by fixing the Poisson shot noise term as 1/n̄, and second, by fitting the bias and noise simultaneously. Then
we extend to � = 500 and fit an additional parameter P for the scale-dependent bias model: first, by holding the previously
found values fixed and fitting only the non-Poisson shot noise term P at larger �, and second, by fitting the linear bias and P
simultaneously, with P now absorbing both shot noise terms.

�max = 200 �max = 500
Scale-independent bias P model

Target bFDR
0 b0 n̄W̃

χ2

d.o.f b0 n̄W̃ P χ2

d.o.f

LRG 1.7 1.570 ± 0.014 1 (fixed) 5.0 / 9 – – 3539 ± 99 12.6 / 25
1.607 ± 0.040 1.61 ± 0.43 3.7 / 8 – – 965 ± 99 18 / 25

1.569 ± 0.017 0 (fixed) 7120 ± 198 12.6 / 24

Figure 17. Angular power spectrum C� for LRGs. The red error bars are
the binned errors from equation (12). The solid black line is the theoretical
curve using the FDR value for the linear bias. The orange envelope is our
best-fitting P-model result, with the model errors dominated by uncertainty
in the shot noise terms.

non-linear effects in the galaxy bias (see e.g. Fry & Gaztanaga
1993; Modi, White & Vlah 2017; Desjacques, Jeong & Schmidt
2018; Wilson & White 2019). We find that �max ≈ 200 is appropriate
for LRGs and ELGs, and slightly conservative for QSOs, which
are at higher mean redshift.

7.3.1 LRGs

With �max = 200, we use the linear theory matter power spectrum
and fit the scale-independent bias in two ways: first, by fixing the
Poisson shot noise term W̃ = 1/n̄ and only fitting b0, and second,
by simultaneously fitting b0 and W̃ . Then, we extend out to �max =
500 and add the additional P parameter to our model. We fit P in
several ways: both using the previously found values of b0 and W̃

from the �max = 200 case and also doing a simultaneous fit to b0

and P, with W̃ absorbed into P. The results of all fits are shown
in Table 7 for LRGs, with all models giving similar results and
showing agreement with expectation. In Fig. 17, we plot the binned
data, the best-fitting model, and the FDR expectation curve.

7.3.2 ELGs

For ELGs, we find that attempting to co-fit the bias and shot noise
terms simultaneously returns unphysical negative values for the
latter, due to enhanced power at scales � < 150 even after applying
masks and weights (fortunately, these scales should not directly
impact BAO and RSD measurements). However, when fixing the

Figure 18. Angular power spectrum C� for ELGs. The red error bars are
the binned errors from equation (12). The solid black line is the theoretical
curve using the FDR value for the linear bias. The orange envelope17 is our
best fit for the linear bias, using fixed shot noise W̃ = 1/n̄. The dashed and
dotted lines are the angular power spectra corresponding to the power-law
fits to the angular clustering determined in Section 7.2, with the shot noise
terms fit as extra free parameters.

shot noise as W̃ = 1/n̄, we obtain b0 = 1.273 ± 0.005, which agrees
well with, e.g. Comparat et al. (2013) and Delubac et al. (2017).

We also calculate the corresponding C� for each of the two power-
law model w(θ ) fits in Fig. 15 and plot these as well in Fig. 18, with
shot-noise contributions fitted as additional free parameters. The
results show consistency between our w(θ ) and C� results, both of
which give clustering parameters falling within the range of fiducial
values found in previous studies.

The DESI FDR assumes a conservative lower limit of b0 = 0.84,
also plotted in Fig. 18, and we confirm that the ELG clustering
bias is higher than this value. This is significant as it has the effect
of improving the statistical errors on BAO, while also somewhat
degrading the RSD forecasts, since more strongly biased tracers
exhibit weaker anisotropy. We note that allowing the shot noise
term to float in the FDR curve in order to raise its amplitude still
results in a very poor fit, as it flattens the curve such that it can
achieve only artificial agreement with observation at very large �.

7.3.3 QSOs

For QSOs, the angular power spectrum, like the angular correlation
function, is significantly inflated with non-cosmological signals.
As such, we do not report fitted values but merely plot the
results in Fig. 19 alongside FDR expectation to demonstrate the
discrepancy. Furthermore, whereas the LRGs and ELGs show no
difference when comparing NGC and SGC measurements, QSOs
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Figure 19. Angular power spectrum C� for QSOs. The red error bars are
the binned errors from equation (12). The magenta circles and blue squares
are for measurements restricted to the NGC and the SGC, respectively. The
solid black line is the theoretical curve using the FDR value for the linear
bias and fixed shot noise W̃ = 1/n̄.

Figure 20. Two patches over which we calculate the counts-in-cells
distributions and moments. These were chosen by eye as survey regions
with no tattered edges and relatively few holes.

once again show a mismatch between galactic hemispheres; after
removing the problematic pixels found in Section 5, which caused
disproportionately strong small-scale clustering in the NGC, the
shapes of the angular power spectra in the NGC and the SGC
become identical, but the SGC is enhanced on all scales compared
to the NGC. This is consistent with our other findings, namely that
the SGC has more stellar contamination than the NGC and that
the clustering of these stellar contaminants is relatively flat across
scales (Section 6.3).

7.4 Counts-in-cells moments

As discussed in Section 2.6, detailed small-scale clustering infor-
mation is invaluable for accurate modelling and mock calibration.

We calculate the counts-in-cells statistics over two large fields,
one in each galactic hemisphere, with effective areas Seff, N =
3300 deg2 and Seff, S = 562.5 deg2 (Fig. 20). We select these fields
to be regular in shape and relatively smooth, avoiding areas that are
tattered or full of holes. We calculate the probability distribution
P(N) for each field and then measure the weighted average and

Figure 21. P(N) versus N for 15 logarithmically spaced cell widths from
θ = 0.01◦ to θ = 1◦. The highlighted cell has width 0.268◦ ≈ 1.61 arcmin,
close to the fibre patrol radius of 1.4 arcmin, and the dashed vertical lines
correspond to the average target density times the cell area. The dotted
vertical line at N = 1 marks the limit where shot noise dominates (N̄ < 1).

standard error of the factorial moments Fp (Wolk et al. 2013):

F̄p =

∑
i=N,S

Seff,iFp,i

∑
i=N,S

Seff,i

(�Fp)2 =

∑
i=N,S

Seff,i(Fp,i − F̄p)2

∑
i=N,S

Seff,i

.
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Table 8. Mean, variance, skewness, kurtosis, and cell-averaged n-point angular correlation functions for each of the three main DESI target classes measured
in square cells.

Width N̄ σ 2 〈(N−N̄ )3〉
σ3

〈(N−N̄ )4〉
σ4 w2 w3 w4

LRG 0.010◦ 0.0490 ± 0.0019 0.0550 ± 0.0023 7.50 ± 0.23 260 ± 35 2.410 ± 0.014 250 ± 18 88000 ± 8100
0.014◦ 0.0950 ± 0.0036 0.1120 ± 0.0047 7.30 ± 0.35 340 ± 49 1.870 ± 0.022 146.0 ± 9.4 40000 ± 3400
0.019◦ 0.1840 ± 0.0069 0.2320 ± 0.0097 7.50 ± 0.45 410 ± 58 1.420 ± 0.025 81.0 ± 4.3 16000 ± 1200
0.027◦ 0.350 ± 0.013 0.490 ± 0.020 8.10 ± 0.48 470 ± 55 1.060 ± 0.025 45.0 ± 1.5 6200 ± 300
0.037◦ 0.680 ± 0.026 1.050 ± 0.042 9.10 ± 0.45 550 ± 44 0.780 ± 0.024 24.90 ± 0.21 2520 ± 21
0.052◦ 1.320 ± 0.050 2.290 ± 0.086 10.00 ± 0.38 620 ± 29 0.560 ± 0.020 13.10 ± 0.15 990 ± 26
0.072◦ 2.550 ± 0.096 5.10 ± 0.18 10.10 ± 0.22 617.0 ± 4.3 0.390 ± 0.015 6.30 ± 0.21 360 ± 28
0.100◦ 4.90 ± 0.19 11.40 ± 0.36 9.200 ± 0.090 500 ± 22 0.270 ± 0.012 2.80 ± 0.13 110 ± 12
0.139◦ 9.50 ± 0.36 26.00 ± 0.75 7.550 ± 0.016 330 ± 20 0.1820 ± 0.0086 1.090 ± 0.066 27.0 ± 3.5
0.193◦ 18.40 ± 0.70 61.0 ± 1.6 5.710 ± 0.016 190 ± 12 0.1260 ± 0.0063 0.410 ± 0.028 5.80 ± 0.83
0.268◦ 35.0 ± 1.3 145.0 ± 3.2 4.070 ± 0.049 95.0 ± 6.9 0.0880 ± 0.0047 0.150 ± 0.012 1.20 ± 0.19
0.373◦ 69.0 ± 2.6 359.0 ± 6.0 2.790 ± 0.093 45.0 ± 4.2 0.0620 ± 0.0036 0.0560 ± 0.0060 0.250 ± 0.044
0.518◦ 132.0 ± 5.1 906.0 ± 8.7 1.90 ± 0.13 21.0 ± 2.6 0.0440 ± 0.0029 0.0210 ± 0.0031 0.050 ± 0.011
0.720◦ 256.0 ± 9.8 2338.0 ± 5.3 1.30 ± 0.14 11.0 ± 1.6 0.0320 ± 0.0024 0.0080 ± 0.0016 0.0100 ± 0.0028
1.000◦ 490 ± 19 6110 ± 99 0.90 ± 0.13 6.0 ± 1.1 0.0230 ± 0.0020 0.00360 ± 0.00083 0.00230 ± 0.00080

ELG 0.010◦ 0.2350 ± 0.0030 0.290 ± 0.010 5.0 ± 1.2 90 ± 47 1.10 ± 0.27 30 ± 15 2000 ± 1100
0.014◦ 0.4530 ± 0.0058 0.630 ± 0.034 5.0 ± 1.5 110 ± 56 0.90 ± 0.21 19.0 ± 9.4 800 ± 520
0.019◦ 0.870 ± 0.011 1.40 ± 0.10 6.0 ± 1.8 120 ± 61 0.70 ± 0.16 12.0 ± 5.7 400 ± 230
0.027◦ 1.690 ± 0.022 3.20 ± 0.30 7.0 ± 2.0 140 ± 67 0.50 ± 0.12 7.0 ± 3.4 200 ± 100
0.037◦ 3.260 ± 0.042 7.30 ± 0.79 7.0 ± 2.2 160 ± 75 0.380 ± 0.088 4.0 ± 1.9 80 ± 49
0.052◦ 6.290 ± 0.080 17.0 ± 1.9 7.0 ± 2.2 150 ± 72 0.260 ± 0.055 1.90 ± 0.92 30 ± 18
0.072◦ 12.10 ± 0.15 37.0 ± 3.7 6.0 ± 1.8 110 ± 54 0.170 ± 0.030 0.80 ± 0.35 7.0 ± 4.6
0.100◦ 23.40 ± 0.30 83.0 ± 5.6 5.0 ± 1.2 70 ± 30 0.110 ± 0.013 0.30 ± 0.11 1.60 ± 0.92
0.139◦ 45.30 ± 0.57 192.0 ± 3.3 4.00 ± 0.50 50 ± 11 0.0720 ± 0.0036 0.110 ± 0.021 0.40 ± 0.12
0.193◦ 87.0 ± 1.1 460 ± 24 3.40 ± 0.25 34.0 ± 3.4 0.0490 ± 0.0018 0.0480 ± 0.0058 0.110 ± 0.019
0.268◦ 169.0 ± 2.1 1200 ± 170 3.0 ± 1.0 30 ± 15 0.0350 ± 0.0049 0.030 ± 0.013 0.050 ± 0.038
0.373◦ 326.0 ± 3.9 3100 ± 760 3.0 ± 1.7 30 ± 24 0.0260 ± 0.0065 0.020 ± 0.014 0.030 ± 0.034
0.518◦ 628.0 ± 7.3 9000 ± 3000 3.0 ± 2.1 30 ± 28 0.0200 ± 0.0071 0.010 ± 0.013 0.020 ± 0.027
0.720◦ 1210 ± 14 30000 ± 11000 3.0 ± 2.3 30 ± 29 0.0170 ± 0.0071 0.010 ± 0.010 0.020 ± 0.020
1.000◦ 2340 ± 25 80000 ± 39000 2.0 ± 2.2 20 ± 25 0.0140 ± 0.0068 0.0070 ± 0.0079 0.010 ± 0.012

QSO 0.010◦ 0.02990 ± 0.00011 0.03700 ± 0.00054 18.0 ± 1.6 1500 ± 290 7.90 ± 0.42 2900 ± 440 1900000 ± 420000
0.014◦ 0.05780 ± 0.00022 0.0800 ± 0.0018 25.0 ± 3.2 3000 ± 650 6.70 ± 0.43 2300 ± 410 1500000 ± 360000
0.019◦ 0.11160 ± 0.00042 0.1820 ± 0.0064 36.0 ± 5.7 5000 ± 1300 5.70 ± 0.44 1800 ± 370 1100000 ± 300000
0.027◦ 0.21550 ± 0.00081 0.440 ± 0.022 49.0 ± 8.9 9000 ± 2300 4.70 ± 0.44 1300 ± 310 800000 ± 230000
0.037◦ 0.4160 ± 0.0016 1.080 ± 0.077 60 ± 12 12000 ± 3400 3.80 ± 0.41 900 ± 240 500000 ± 150000
0.052◦ 0.8030 ± 0.0030 2.70 ± 0.25 70 ± 15 13000 ± 4200 2.90 ± 0.37 600 ± 170 240000 ± 85000
0.072◦ 1.5510 ± 0.0058 6.70 ± 0.76 70 ± 17 12000 ± 4200 2.10 ± 0.30 300 ± 100 100000 ± 38000
0.100◦ 2.990 ± 0.011 16.0 ± 2.1 70 ± 16 10000 ± 3300 1.50 ± 0.22 170 ± 54 40000 ± 13000
0.139◦ 5.780 ± 0.021 39.0 ± 5.2 60 ± 13 7000 ± 2300 1.00 ± 0.15 80 ± 24 11000 ± 4000
0.193◦ 11.160 ± 0.040 90 ± 12 50 ± 10 5000 ± 1500 0.640 ± 0.094 34.0 ± 9.9 3000 ± 1100
0.268◦ 21.550 ± 0.077 210 ± 27 42.0 ± 7.5 3400 ± 930 0.400 ± 0.055 13.0 ± 3.6 700 ± 250
0.373◦ 41.60 ± 0.15 450 ± 59 32.0 ± 5.4 2000 ± 510 0.240 ± 0.033 4.0 ± 1.2 140 ± 49
0.518◦ 80.30 ± 0.29 1000 ± 130 23.0 ± 3.7 1000 ± 260 0.140 ± 0.019 1.40 ± 0.38 25.0 ± 8.5
0.720◦ 155.20 ± 0.56 2100 ± 270 16.0 ± 2.5 500 ± 130 0.080 ± 0.011 0.40 ± 0.11 4.0 ± 1.4
1.000◦ 300.0 ± 1.1 4500 ± 570 10.0 ± 1.5 230 ± 54 0.0460 ± 0.0061 0.120 ± 0.031 0.60 ± 0.20

Following the reasoning of Wolk et al. (2013), we do not perform the
complex error propagation from factorial moments to correlation
functions, as the error estimate is already a crude approximation
limited by the small number of fields.

Fig. 21 shows the probability distributions P(N) evaluated in
square cells with different widths from θ = 0.01◦ to θ = 1◦ for
each target class, with a cell width close to the fibre patrol radius
(1.4

′ ≈ 0.023◦) highlighted. The dashed vertical line drawn for this
highlighted cell represents the expected number of targets calculated
from multiplying the mean target density with the cell area. Note that
even for ELGs, the first few angular bins are shot-noise dominated
(N̄ < 1, so most cells contain one or zero targets).

Table 8 presents the following quantities for each of the three
main target classes:

(i) Mean N̄ ≡ 〈N〉
(ii) Variance σ 2 ≡ 〈(N − N̄ )2〉
(iii) Skewness 〈(N − N̄ )3〉/σ 3

(iv) Kurtosis 〈(N − N̄)4〉/σ 4

(v) Cell-averaged angular correlation functions w2, w3, and w4

From the above quantities, other quantities of interest can be
determined, such as the hierarchical moments Sp = wp/w

p−1
2

(Szapudi & Szalay 1993; Colombi & Szapudi 2001), fitted power-
law parameters for w2 (see e.g. Blake & Wall 2002), etc. More
directly, these quantities can be used for the training and testing of
mock catalogues.

7.5 Clustering as a function of magnitude

Angular clustering is expected to scale with sample depth (Peebles
1980), so analysing w(θ ) as a function of magnitude provides
another test for the presence of systematics.

We divide the LRG and ELG samples into eight disjoint, equally
wide magnitude slices from the bright limit (mz = 18.01 for LRGs,
mg = 21 for ELGs) to the faint limit (mz = 20.41 for LRGs, mg =
23.4 for ELGs) of the target selection. For each bin, we evaluate
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Figure 22. Angular correlation functions for LRGs in eight magnitude bins
(upper plot), with the angular dependence scaled out for a fixed slope of γ =
1.98 (lower plot), which is the slope determined from fitting over the full
LRG sample in Table 6.

Figure 23. Angular correlation functions for ELGs in eight magnitude bins
(upper plot), with the angular dependence scaled out for a fixed slope of
γ = 1.54 (lower plot), which is the slope determined from fitting over the
full ELG sample in Table 6.

w(θ ).16 The results are shown in Figs 22 and 23, with the upper
plots showing w(θ ) for each slice and the lower plots showing the
same functions but with the angular dependence divided out using
a representative value of γ determined from fitting the full sample
(Table 6).

16Note, we do not re-evaluate the photometric weights for each magnitude
bin but instead apply the same weights to all bins.

Figure 24. Visualizing the overlap between the DECaLS DR7 footprint
(grey) and the footprints of the external catalogues used for cross-
correlations. Positions are mapped using Mollweide projection.

Qualitatively, the results match expectation: the brighter subsam-
ples have larger clustering amplitudes and break from the power law
form at larger scales. We also note that for both LRGs and ELGs, the
minimum inflection slides to smaller scales at fainter magnitudes,
again consistent with a 1-halo to 2-halo transition; fainter bins are
at higher redshift (so the characteristic scale of the transition will
shift to smaller angles due to the larger angular diameter distance)
and/or lower luminosity (thus, the 1-halo term will be weaker, as
less luminous galaxies reside in less massive haloes).

The best-fitting values for the clustering amplitudes Aw and
slopes γ are reported in Tables 9 and 10. We fit Aw with the fixed
representative value of γ , and also fit Aw and γ simultaneously,
finding similar results in either case. We also perform the fits over
different sets of angular scales, starting with a minimum cutoff of
θ = 0.005 for LRGs to avoid scales where the power-law model
appears to break down and obtaining fits for θ < 0.05◦ and 0.05◦ <

θ < 1◦ separately as well as for the full range.

8 SPECTRO SCOPI C CROSS-CORRELATIO NS

8.1 Clustering as a function of redshift

8.1.1 External catalogues

To probe the clustering as a function of redshift through cross-
correlations, as described in Sections 2.2 and 2.5, we make use
of several external spectroscopic catalogues. We use the CMASS
galaxy sample from DR12 of the Baryon Oscillation Spectroscopic
Survey (BOSS; Eisenstein et al. 2011; Dawson et al. 2013), which
selects higher redshift galaxies at 0.4 < z < 0.8 and has significant
angular overlap with the DECaLS footprint. We also use galaxies
from the the final data release of the VIMOS Public Extragalactic
Redshift Survey17 (VIPERS; Scodeggio et al. 2018). VIPERS
extends over two narrow CFHTLS fields, W1 and W4, with a
combined area of approximately 23.5 deg2, and has nearly 90 000
redshifts out to z ∼ 1. Finally, we use the main sample of QSOs
from eBOSS DR14 (Dawson et al. 2016), which overlaps with the
DECaLS footprint in the SGC. Fig. 24 shows where the footprints of
these surveys intersect with DECaLS DR7, and Fig. 25 demonstrates
how their redshift distributions span the expected redshift ranges of
the DESI targets.

17http://vipers.inaf.it/
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Table 9. Best-fitting parameters from modelling the angular clustering of LRGs in z-band magnitude bins
using equation (5). The clustering amplitude Aw is reported for a fixed slope of γ = 1.98 (taken from the fit
over the full LRG sample; see Table 6), as well as the results of fitting amplitude and slope simultaneously.
θmin and θmax are the angular scales fit over, and mz is in AB magnitudes.

LRG
θmin, θmax mz bin Med mz # Objects log10Aw (γ = 1.98) log10Aw γ

0.005◦, 0.05◦ 20.11, 20.41 20.26 868849 −3.94 −3.92
−3.96 −4.01 −3.88

−4.15 2.00 2.07
1.93

19.81, 20.11 19.96 790503 −3.90 −3.88
−3.92 −3.97 −3.82

−4.12 2.00 2.08
1.92

19.51, 19.81 19.66 692920 −3.83 −3.81
−3.86 −3.91 −3.72

−4.10 2.00 2.09
1.91

19.21, 19.51 19.37 596349 −3.80 −3.78
−3.82 −3.87 −3.71

−4.04 2.00 2.08
1.92

18.91, 19.21 19.06 518696 −3.77 −3.75
−3.79 −3.84 −3.68

−4.01 2.00 2.08
1.92

18.61, 18.91 18.78 434355 −3.69 −3.68
−3.70 −3.76 −3.66

−3.86 2.00 2.04
1.96

18.31, 18.61 18.48 257434 −3.56 −3.55
−3.58 −3.63 −3.50

−3.76 2.00 2.06
1.94

18.01, 18.31 18.19 137380 −3.41 −3.39
−3.43 −3.48 −3.25

−3.72 2.00 2.10
1.90

0.05◦, 1◦ 20.11, 20.41 20.26 868849 −3.85 −3.83
−3.87 −3.56 −3.50

−3.61 1.87 1.91
1.83

19.81, 20.11 19.96 790503 −3.82 −3.80
−3.85 −3.56 −3.50

−3.61 1.88 1.92
1.84

19.51, 19.81 19.66 692920 −3.78 −3.76
−3.81 −3.43 −3.39

−3.48 1.85 1.88
1.82

19.21, 19.51 19.37 596349 −3.75 −3.72
−3.78 −3.31 −3.26

−3.35 1.81 1.85
1.78

18.91, 19.21 19.06 518696 −3.74 −3.71
−3.77 −3.27 −3.22

−3.31 1.80 1.83
1.77

18.61, 18.91 18.78 434355 −3.67 −3.65
−3.69 −3.25 −3.23

−3.27 1.82 1.83
1.81

18.31, 18.61 18.48 257434 −3.55 −3.53
−3.57 −3.20 −3.17

−3.23 1.85 1.86
1.83

18.01, 18.31 18.19 137380 −3.43 −3.41
−3.46 −3.01 −2.96

−3.06 1.82 1.85
1.78

0.005◦, 1◦ 20.11, 20.41 20.26 868849 −3.90 −3.88
−3.92 −3.65 −3.60

−3.70 1.90 1.93
1.87

19.81, 20.11 19.96 790503 −3.87 −3.85
−3.88 −3.68 −3.63

−3.74 1.92 1.95
1.89

19.51, 19.81 19.66 692920 −3.81 −3.80
−3.83 −3.67 −3.62

−3.73 1.94 1.97
1.91

19.21, 19.51 19.37 596349 −3.78 −3.76
−3.80 −3.61 −3.56

−3.67 1.93 1.96
1.90

18.91, 19.21 19.06 518696 −3.76 −3.74
−3.77 −3.62 −3.56

−3.67 1.94 1.96
1.91

18.61, 18.91 18.78 434355 −3.68 −3.67
−3.69 −3.55 −3.51

−3.59 1.94 1.96
1.92

18.31, 18.61 18.48 257434 −3.55 −3.54
−3.57 −3.45 −3.40

−3.49 1.94 1.97
1.92

18.01, 18.31 18.19 137380 −3.43 −3.41
−3.44 −3.40 −3.33

−3.47 1.97 2.00
1.94

8.1.2 Projected real-space cross-correlation functions

We present the real-space projected cross-correlation functions
(derived in Section 2.2) for LRGs in Fig. 26, using CMASS
galaxies, VIPERS galaxies, and eBOSS QSOs in bins of width
δz = 0.1. Some noisy redshift bins are omitted from the plots.
The error bars are from bootstrapping on the area and there-
fore are likely overestimated for VIPERS, which has very small
fields.

For ELGs, we initially find that the cross-correlations with
CMASS galaxies flatten above θ ∼ 0.01◦ for all redshift bins.
However, using the CMASS systematics weights in concert with
our own photometric weights eliminates this effect, indicating a
correlation between systematics in the two catalogues, likely the
anticorrelation with stars found in both DESI ELGs and CMASS
samples. The projected real-space cross-correlations are plotted in
Fig. 27, along with the power-law predictions from the ELG w(θ )
fits in Table 6, which we translate into wp(rp) using equation (7).
We thus have consistency between ELG w(θ ) in Fig. 15, C� in
Fig. 18, and wp(rp) in Fig. 27. We also note that the break at small
scales becomes less pronounced at higher redshift, as the 2-halo
term becomes more dominant.

More puzzlingly, ELGs appear to show no correlation with
eBOSS QSOs over the overlapping redshift range. This null signal
is consistent within error bars across all redshift bins and remains
null even when switching to brighter ELG subsamples. At present,

we wish to avoid speculating on why there is no cross-correlation
between ELGs and eBOSS QSOs, as a full investigation with survey
validation data and spectra is expected to paint a much clearer
picture. Given the reasonable ELG autocorrelation and ELG ×
CMASS cross-correlation, we do not believe that this is indicative
of catastrophic failure in the ELG sample. Finally, we note that
the QSO cross-correlations are too noise-dominated to obtain a
meaningful signal.

8.1.3 Clustering dN/dz

For ELGs and QSOs, issues with cross-correlation measurements
discussed in the previous section prevent us from obtaining mean-
ingful dN/dz over the full redshift ranges of the targets. We therefore
focus on LRGs and defer further investigation of ELGs and QSOs
to a future work.

Using the method outlined in Section 2.5, we integrate over each
set of cross-correlations in the overlapping redshift ranges to piece
together the shape of the LRG dN/dz. We choose the minimum and
maximum physical scales of integration in such a way as to reduce
the propagated errors on dN/dz; for LRG × CMASS and LRG ×
VIPERS, we use smin = 0.05 h−1 Mpc, smax = 5 h−1 Mpc, whereas
for LRG × eBOSS, we use smin = 0.2 h−1 Mpc, smax = 10 h−1 Mpc.

To minimize the potential impact of bias evolution in the photo-
metric sample, we first divide it by colour before cross-correlating
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Table 10. Best-fitting parameters from modelling the angular clustering of ELGs in g-band magnitude bins
using equation (5). The clustering amplitude Aw is reported for a fixed slope of γ = 1.54 (taken from the fit
over the full ELG sample; see Table 6), as well as the results of fitting amplitude and slope simultaneously.
θmin and θmax are the angular scales fit over, and mg is in AB magnitudes.

ELG
θmin, θmax mz bin Med mz # Objects log10Aw (γ = 1.54) log10Aw γ

0◦, 0.05◦ 23.1, 23.4 23.27 8530522 −3.15 −3.08
−3.22 −4.10 −3.98

−4.22 1.80 1.87
1.73

22.8, 23.1 22.97 4768510 −2.98 −2.91
−3.07 −4.66 −4.59

−4.72 1.99 2.02
1.95

22.5, 22.8 22.68 2462312 −2.67 −2.59
−2.76 −4.43 −4.32

−4.54 2.00 2.05
1.95

22.2, 22.5 22.38 1224671 −2.36 −2.27
−2.47 −4.09 −3.94

−4.24 2.00 2.06
1.94

21.9, 22.2 22.07 614394 −1.97 −1.88
−2.09 −3.68 −3.53

−3.84 2.00 2.05
1.95

21.6, 21.9 21.77 334669 −1.74 −1.61
−1.90 −3.31 −3.16

−3.47 2.00 2.05
1.95

21.3, 21.6 21.47 205434 −1.74 −1.45
−2.28 −3.00 −2.90

−3.11 2.00 2.03
1.97

21.0, 21.3 21.16 138431 −1.74 −1.17
−2.31 −2.68 −2.62

−2.75 2.00 2.01
1.98

0.05◦, 1◦ 23.1, 23.4 23.27 8530522 −3.23 −3.21
−3.26 −2.93 −2.87

−2.99 1.43 1.48
1.39

22.8, 23.1 22.97 4768510 −3.15 −3.13
−3.17 −2.80 −2.79

−2.82 1.41 1.42
1.40

22.5, 22.8 22.68 2462312 −2.99 −2.98
−3.01 −2.76 −2.74

−2.78 1.45 1.46
1.44

22.2, 22.5 22.38 1224671 −2.77 −2.76
−2.78 −2.64 −2.62

−2.65 1.49 1.50
1.48

21.9, 22.2 22.07 614394 −2.47 −2.46
−2.48 −2.53 −2.49

−2.58 1.56 1.59
1.54

21.6, 21.9 21.77 334669 −2.22 −2.19
−2.25 −2.51 −2.42

−2.60 1.66 1.71
1.61

21.3, 21.6 21.47 205434 −2.04 −2.01
−2.08 −2.47 −2.33

−2.61 1.72 1.80
1.65

21.0, 21.3 21.16 138431 −1.93 −1.89
−1.97 −2.37 −2.17

−2.57 1.72 1.83
1.62

0◦, 1◦ 23.1, 23.4 23.27 8530522 −3.17 −3.12
−3.21 −4.08 −3.99

−4.17 1.79 1.85
1.74

22.8, 23.1 22.97 4768510 −3.05 −2.99
−3.11 −4.16 −4.06

−4.25 1.87 1.92
1.81

22.5, 22.8 22.68 2462312 −2.80 −2.73
−2.87 −4.09 −3.99

−4.19 1.92 1.96
1.87

22.2, 22.5 22.38 1224671 −2.53 −2.45
−2.63 −4.00 −3.89

−4.11 1.98 2.02
1.94

21.9, 22.2 22.07 614394 −2.32 −2.22
−2.43 −3.69 −3.59

−3.79 2.00 2.04
1.96

21.6, 21.9 21.77 334669 −2.13 −2.04
−2.24 −3.35 −3.25

−3.44 2.00 2.03
1.97

21.3, 21.6 21.47 205434 −1.98 −1.88
−2.09 −3.11 −2.99

−3.23 2.00 2.04
1.96

21.0, 21.3 21.16 138431 −1.89 −1.80
−2.01 −2.99 −2.76

−3.22 2.00 2.09
1.91

Figure 25. Visualizing the redshift ranges for DESI targets compared to
catalogues from spectroscopic surveys that overlap the DECaLS footprint.
The solid lines correspond to the expected dN/dz per square degree of the
DESI target classes, while the histograms are from the external catalogues.

each subsample separately, as discussed by Ménard et al. (2013),
Schmidt et al. (2013), Rahman et al. (2015), and Gatti et al. (2018).
In fig. 1 of Prakash et al. (2016), the photometric redshifts of eBOSS
LRGs are plotted in colour space, with a transition from mostly z <

0.6 objects to mostly 0.6 < z < 1.0 objects occurring when r − W1 is
in the range between 2 and 3. Motivated by this, we select a roughly
median value of r − W1 = 2.6 to create two similarly sized LRG

subsamples. We cross-correlated these two subsamples separately
with the three external catalogues, with the combined results shown
in Fig. 28 and compared to the results derived without binning the
sample.

We find that the clustering dN/dz from all three cross-correlations
match very well with the fiducial FDR dN/dz.18 Along with the
excellent agreement between measured and fiducial bias found in
Section 7.3, this suggests that the LRG sample will be able to
fully meet the cosmology goals of the collaboration. Additionally,
the upper panel of Fig. 28 confirms that the colour cut at r −
W1 = 2.6 effectively splits the LRG sample into high and low
redshift subsamples with an approximate boundary at z ∼ 0.65.

8.2 Clustering as a function of luminosity

By cross-correlating magnitude binned LRGs with redshift binned
spectroscopic catalogues, we can also probe the luminosity de-
pendence of the sample. We begin by dividing the LRGs into
three broader magnitude bins from mz = 18.01 to mz = 20.41,
the bright and faint limits, respectively, of the target selection. To
improve signal-to-noise, we also double the widths of the redshift
bins to δz = 0.2 and focus on the cross-correlations with CMASS

18We note that the fiducial redshift distributions in Fig. 25 are of the targets
selected from imaging, including contaminants.
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Figure 26. Projected real-space cross-correlations between LRGs and three
external samples with spectroscopic redshifts: CMASS galaxies, VIPERS
galaxies, and eBOSS QSOs. Error bars are from bootstrapping.

galaxies, which involve the smallest error bars. Through these
cross-correlations, we can crudely reconstruct dN/dz for each of
the magnitude bins, shown in Fig. 29. The behaviour is as expected;
brighter objects are at lower mean redshift, with the redshift
distributions generally appearing as deeper and deeper copies of
each other.

This result allows us to convert angular cross-correlations into
projected real-space cross-correlations, as detailed in Section 2.2,
giving us wp(rp) in three broad luminosity bins for a given redshift
bin. We select a bin near the middle of the CMASS redshift

Figure 27. Projected real-space cross-correlations between ELGs and
CMASS galaxies. Error bars are from bootstrapping. Dashed and dotted
lines are the power-law fits of the ELG autocorrelation from Table 6.

Figure 28. The clustering-based dN/dz for LRGs derived from cross-
correlations with CMASS galaxies (magenta), VIPERS galaxies (orange),
and eBOSS QSOs (lime), with the expected dN/dz plotted as a dashed line.
The upper plot shows dN/dz calculated using two r − W1 colour bins, a
proxy for a z ∼ 0.6 cut in order to reduce the impact of bias evolution,
while the lower plot is determined using the full sample. Error bars are from
propagating bootstrap errors from the cross-correlations through the dN/dz
calculation.
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Figure 29. Normalized dN/dz for each of three broad magnitude bins,
derived from cross-correlations with CMASS galaxies in broad redshift
bins of δz = 0.2. Error bars are from propagating bootstrap errors from the
cross-correlations through the dN/dz calculation.

Table 11. Fits to the luminosity binned LRG-CMASS cross-
correlations assuming wp(rp) = Ar

1−γ
p . The first column specifies

the LRG apparent magnitude bins, while the second column cal-
culates the corresponding absolute magnitude bin at the midpoint
of the CMASS redshift bin 0.4 < z < 0.6.

LRG × CMASS, 0.4 < z < 0.6
mz bin Mz(z̄ = 0.5) log10A (γ = 1.98)

19.61, 20.41 −21.87, −21.07 −3.40 −3.36
−3.44

18.81, 19.61 −22.67, −21.87 −2.51 −2.49
−2.53

18.01, 18.81 −23.47, −22.67 −2.56−2.54
−2.59

range19, 0.4 < z < 0.6, and fit the clustering for each corresponding
luminosity bin to a power law, wp(rp) = Ar1−γ

p . The results are
given in Table 11.

9 SU M M A RY A N D C O N C L U S I O N S

In order to fully realize the statistical power of the DESI experiment,
it is vital to assess the quality of the imaging data and target
definitions and to account for any non-cosmological sources of
spatial fluctuations in the galaxy catalogues that could bias the
cosmological analyses. In the first part of this paper, we diagnose
causes of systematic errors in the clustering of DESI main targets
selected from imaging and present masks and photometric weights
aimed at reducing these effects. The masks and weights will be used
in construction of cosmological clustering samples. Our key results
are summarized below:

(i) We find that obscuration due to bright stars in the foreground
creates significant variations in density, particularly for QSOs.
Implementing aggressive masks around Tycho-2 and WISE stars,
which remove 7–8 per cent of the usable sky area for galaxies
and 28 per cent of the usable sky area for QSOs, dramatically
improves the agreement of the angular correlation functions with
cosmological predictions.

(ii) We determine that a general mask around large galaxies
and other extended sources is not indicated; however, by visual
inspection, we discover that failing to mask around the Coma cluster
and M3 will create a significantly overestimated clustering signal
for QSOs in the NGC. Additionally, the images of a small number

of very bright stars are plagued by complex patterns of reflected
pupil ghosts, which create structures in the ELG density beyond the
scope of even our highly conservative bright star masks.

(iii) We find that masked LRGs exhibit only minor density
variations as a function of potential systematics such as stellar
density, extinction, airmass, seeing, sky brightness, and exposure
time. By contrast, masked ELG and QSO densities still fluctuate
significantly, with the most dominant systematics, stellar density,
and extinction, affecting densities by as much as 10 per cent. We
find that ELGs are anticorrelated with stars and extinction, while
QSOs are positively correlated. Photometric weights calculated
by performing multilinear regression on these trends significantly
ameliorate them.

(iv) We perform angular cross-correlations between the targets
and stars and again find that LRGs are uncorrelated, ELGs are
anticorrelated, and QSOs are positively correlated. Dividing the
stars into three galactic latitude bins, we use QSO–star cross-
correlations and star autocorrelations to estimate the stellar con-
tamination fraction in the QSO sample as a function of galactic
latitude.

We stress that this process has been highly iterative, with our
efforts continuously informing the evolution of DESI’s imaging
data reduction pipelines and target selection algorithms. The Legacy
Survey Data Release 9, which is currently being processed and will
be used for DESI target selection, has made several algorithmic
upgrades motivated in part by the feedback in this study. These
include changes to the pixel-level flat-field response functions and
an improved modeling of sky subtraction. The latter improvements
are most pronounced for ELG targets that are faint relative to the
sky and therefore have their target densities modulated by errors
in the sky modeling. The new sky model also helps with issues of
scattered light around bright stars that affect the selection of QSO
targets. In addition, the imaging team has added more aggressive
foreground masking and has flagged other bad data from the list of
problematic regions identified in this study (such as the ghost pupils
around certain visibly bright stars and the M3/NGC contaminants
in the north). Similarly, the target selection algorithms have been
iteratively updated many times in response to our findings.

In addition to being a crucial first step towards constraining
cosmology with DESI clustering measurements, our findings have
important implications for other ongoing and future imaging sur-
veys. As multi-epoch surveys become deeper and more sensitive,
they will be increasingly limited by systematic uncertainties from
instrument calibration, survey characteristics, and observing con-
ditions. Our framework for identifying and mitigating the effects
of such systematics, such as our new approach to quantifying
contamination due to stars, is therefore highly relevant and widely
applicable to future imaging surveys.

After applying masks and weights, we devote the second part
of this paper to modeling the properties of the samples, providing
the first large-scale clustering analysis of DESI targets. Modeling
the samples is an important first step for doing cosmology with
DESI, and our clustering results will also aid in the creation
and validation of accurate mock catalogues. Additionally, we
present several new methodologies, including the technique of
probing the luminosity-dependent clustering by cross-correlating
magnitude-binned photometric samples with redshift-binned spec-
troscopic samples. These methods can be applied to other clus-
tering studies with deep photometric data, for instance in future
studies with data from the Large Synoptic Survey Telescope
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(LSST Science Collaboration 2009). Our main results are outlined
below:

(i) We present the average densities before and after the correc-
tions have been applied, finding that all three target densities are
in reasonably good agreement with expectation after masking and
weighting.

(ii) We model the angular correlation functions of the samples,
assuming power-law spatial correlation functions. For LRGs, we
recover values that agree very well with earlier studies. For ELGs,
we see a broken power law, with different slopes for θ < 0.01◦ and
θ > 0.05◦, which agree reasonably well with similar studies. For
QSOs, we obtain a highly inflated value for the clustering amplitude,
indicating that substantial contamination remains.

(iii) We compare the observed angular power spectra to theory
to determine the linear large-scale bias and also probe the scale
dependence of the bias in the weakly non-linear regime. For LRGs,
we find a value of b0 that agrees very well with the DESI FDR
prediction. For ELGs, we find a value of b0 that is higher than the
conservative lower limit given by the FDR but is similar to values
from the literature and is self-consistent with our angular and real-
space clustering measurements. By contrast, the observed angular
power spectrum for QSOs is a poor fit to theory, with all scales
seemingly affected by non-cosmological signals.

(iv) We use cross-correlations with external spectroscopy to de-
termine real-space projected cross-correlation functions in redshift
bins, through which we also derive clustering dN/dz. For LRGs,
the clustering as a function of redshift behaves as expected, and
we see an excellent match with the expected dN/dz from target
selection. For ELGs, the redshift-binned cross-correlations with
CMASS are consistent with expectation, but cross-correlations with
eBOSS QSOs show no significant correlation. For QSOs, the cross-
correlations are not currently clean enough to meaningfully model
dN/dz.

(v) The clustering of LRGs and ELGs as a function of magnitude
also behaves as predicted, with clustering amplitude scaling with
depth. We provide fits to the angular correlation functions in mag-
nitude bins. We also cross-correlate magnitude binned LRGs with
redshift binned CMASS galaxies to probe luminosity-dependent
clustering.

(vi) We present counts-in-cells moments and cell-averaged
higher order correlation functions to further facilitate mock cali-
bration and validation.

Overall, our results suggest that the quality of the imaging and the
selection of targets are suitable for achieving the ambitious scientific
objectives of the DESI collaboration. With imaging surveys com-
pleted and spectroscopic first light announced in October 2019, the
commissioning phase is on track for completion in January 2020.
After a survey validation period in the spring, the 5-year survey is
expected to begin in the summer of 2020. We look forward to the
exciting and impactful new science that DESI will enable in the
coming decade.
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Górski K. M., Hivon E., Banday A. J., Wandelt B. D., Hansen F. K., Reinecke

M., Bartelmann M., 2005, ApJ, 622, 759
Guzik J., Bernstein G., Smith R. E., 2007, MNRAS, 375, 1329
Hamann J., Hannestad S., Melchiorri A., Wong Y. Y. Y., 2008, J. Astropart.

Phys., 2008, 017
Hildebrandt H. et al., 2017, MNRAS, 465, 1454
Ho S., Hirata C., Padmanabhan N., Seljak U., Bahcall N., 2008, Phys. Rev. D,

78, 043519
Hubble E., 1934, ApJ, 79, 8
Høg E. et al., 2000, A&A, 355, L27
Jain B., Khoury J., 2010, Ann. Phys., 325, 1479
Jarrett T. H., Chester T., Cutri R., Schneider S., Skrutskie M., Huchra J. P.,

2000, AJ, 119, 2498
Jouvel S. et al., 2017, MNRAS, 469, 2771
Joyce A., Jain B., Khoury J., Trodden M., 2015, Phys. Rep., 568, 1
Kashiwagi T., Yahata K., Suto Y., 2013, PASJ, 65, 43
Kashiwagi T., Suto Y., Taruya A., Kayo I., Nishimichi T., Yahata K., 2015,

ApJ, 799, 132
Krolewski A., Ferraro S., Schlafly E. F., White M., 2020, J. Cosmol.

Astropart. Phys., 2020, 047
Landy S. D., Szalay A. S., 1993, ApJ, 412, 64
Landy S. D., Szalay A. S., Koo D. C., 1996, ApJ, 460, 94
Lang D., Hogg D. W., Mykytyn D., 2016, Astrophysics Source Code

Library, record ascl:1604.008
Leistedt B. et al., 2016, ApJS, 226, 24
Limber D. N., 1953, ApJ, 117, 134
Loverde M., Afshordi N., 2008, Phys. Rev. D, 78, 123506
LSST Science Collaboration, 2009, preprint (arXiv:0912.0201)
Matthews D. J., Newman J. A., 2010, ApJ, 721, 456
Matthews D. J., Newman J. A., 2012, ApJ, 745, 180
McQuinn M., White M., 2013, MNRAS, 433, 2857
Ménard B., Scranton R., Schmidt S., Morrison C., Jeong D., Budavari T.,

Rahman M., 2013, preprint (arXiv:1303.4722)
Mo H. J., Jing Y. P., Boerner G., 1992, ApJ, 392, 452
Modi C., White M., Vlah Z., 2017, J. Cosmology Astropart. Phys., 2017,

009
Mostek N., Coil A. L., Cooper M., Davis M., Newman J. A., Weiner B. J.,

2013, ApJ, 767, 89
Myers A. D. et al., 2006, ApJ, 638, 622
Myers A. D., White M., Ball N. M., 2009, MNRAS, 399,

2279
Newman J. A., 2008, ApJ, 684, 88
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