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ABSTRACT
We describe a general-purpose method to reconstruct the intrinsic properties of sources lensed
by the gravitational potential of foreground clusters of galaxies. The tool LENSTRUCTION is
implemented in the publicly available multipurpose gravitational lensing software LENSTRON-
OMY, in order to provide an easy and fast solution to this common astrophysical problem. The
tool is based on forward modelling the appearance of the source in the image plane, taking into
account the distortion by lensing and the instrumental point spread function. For singly imaged
sources, a global lens model in the format of the Hubble Frontier Fields (HFF) lensing maps is
required as a starting point. For multiply imaged sources, the tool can also fit and apply first-
(deflection), second- (shear, convergence), and third-order (flexion) corrections to the local
gravitational potential to improve the reconstruction, depending on the quality of the data.
We illustrate the performance and features of the code with two examples of multiply imaged
systems taken from the HFF, starting from five different publicly available cluster models.
We find that, after our correction, the relative magnification – and other lensing properties –
between the multiple images becomes robustly constrained. Furthermore, we find that scatter
between models of the reconstructed source size and magnitude is reduced. The code and
Jupyter notebooks are publicly available.

Key words: gravitational lensing: strong – galaxies: clusters: individual: MACS
J0717.5+3745.

1 IN T RO D U C T I O N

Cluster of galaxies acts as the most powerful gravitational lenses,
magnifying and distorting background distant sources. For a given
instrumental set-up, the magnification effect enables the study of
sources with higher sensitivity and resolution, acting effectively
as a cosmic telescope (e.g. Marshall et al. 2007). Studying the
background source helps to probe the galaxy formation and evo-
lution, including the morphology, size, kinematics, star formation
history, and chemical abundances (Richard et al. 2006; Stark et al.
2008; Sharon et al. 2012; Jones et al. 2015; Bouwens et al.
2017; Kawamata et al. 2018; de La Vieuville et al. 2019). In
addition, cluster lensing also contributes to understanding the mass
distribution of clusters of galaxies, probing the dark matter, the
geometry, and absolute scale of the universe with measurement of
the time delay between multiple images (Jullo et al. 2010; Hoekstra

� E-mail: yang lilan@whu.edu.cn

et al. 2013; Kelly et al. 2015; Caminha et al. 2017; Natarajan et al.
2017; Grillo et al. 2018; Birrer et al. 2019).

A necessary condition for exploiting scientifically the strong
lensing effect is modelling the potential of the deflector. From
a technical standpoint, lens modelling of both galaxy-scale and
cluster-scale lenses presents a lot of challenges. For example, the
mass sheet degeneracy is a concern in both cases (Gorenstein,
Falco & Shapiro 1988; Seitz & Schneider 1997), even though
the presence of multiple families of multiple images at multiple
redshifts can alleviate the concern in clusters (Bradač, Lombardi &
Schneider 2004). Much progress has been achieved in the past
20 yr, somehow leading to parallel and independent developments
in cluster- and galaxy-scale lensing.

In galaxy-scale lensing (see e.g. Treu 2010, for a review), the
number of image pixels that record information of the lensing
system is generally of the order of 104, the deflector is often a
dynamically relaxed massive galaxy that can be described by a
relatively simple mass model, and there are one or at most two
systems of multiple images. These features mean that one can
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use computationally fast mass models [e.g. the singular isothermal
ellipsoid (SIE), Kormann, Schneider & Bartelmann 1994] and full
image plane modelling is tractable with desktop computing power
(Warren & Dye 2003; Treu & Koopmans 2004; Vegetti & Koopmans
2009; Tagore & Keeton 2014; Birrer, Amara & Refregier 2015;
Nightingale & Dye 2015).

In contrast, in cluster-scale lensing (see e.g. Kneib & Natara-
jan 2011, for a review), the lensing potential is often complex
and multimodal, there are multiple systems of multiple images
often at different redshifts, and the image can span almost a full
Hubble Space Telescope image (106−107 pixels), albeit sparsely.
Therefore, whereas state-of-the-art galaxy-scale lens models can
handle a full source reconstruction, cluster lens models tend
to focus on reproducing multiple image positions and do not
work at the pixel level. A good example is provided by the
Hubble Frontier Fields (HFF) lens modelling effort. In a game-
changing effort, multiple map-making teams have made their lens
models public.1 The models are based on hitherto unprecedented
numbers of multiple images, including many with spectroscopic
confirmation, and have been shown to generally provide good
estimates of the mass distribution and magnification effect of the
clusters. However, the lens model is constrained primarily by the
positions of the lensed images (and sometimes weak lensing)
and is not designed to do full source reconstruction on a sub-
arcsecond scale (Sharon et al. 2012; Meneghetti et al. 2017).
Furthermore, the lens modelling teams contracted by HFF are
independently using a variety of algorithms resulting in differences
between lens models. The performance of those algorithms has
been investigated in the literature. For example, Acebron et al.
(2017) and Meneghetti et al. (2017) compare the methods using
simulated data, while Priewe et al. (2017) and Remolina González,
Sharon & Mahler (2018) carried out an evaluation of lens models
of the HFF cluster. Those works have confirmed the accuracy
and precision of the strong lensing methods applied, and showed
that the major uncertainties in the lens models are found near
cluster substructure and in the high-magnification regions around
the critical lines that are not immediately constrained by nearby
multiple images.

Even for the most ambitious cluster-scale lens modelling projects,
additional effort (e.g. Rau, Vegetti & White 2014; Sharon & Johnson
2015) beyond image position fitting is needed if one wants to
reconstruct a specific source in detail and take full advantage of
the quality of the data (e.g. Postman et al. 2012; Treu et al. 2015;
Lotz et al. 2017). The difficulty of reconstruction lies in achieving
lens models that are sufficiently precise for source reconstruction
up to sub-arcsecond scale, while allowing for enough freedom in
the source light profiles and simultaneously dealing with blurring
effect in the image plane. Also, the lens models often underconstrain
the source–lens degeneracy for systems only observed in a single
image.

In this paper, we introduce a general-purpose methodology
to solve the problem of cluster-scale source reconstruction in a
variety of contexts. Starting with an initial guess lens model, we
adopt the forward modelling approach. In practice, to correct the
initial lens model, we employ the perturbative method proposed
by Blandford, Surpi & Kundić (2001) and further studied by
Koopmans (2005), Blandford et al. (2006), and Suyu et al. (2009).
The central concept is starting from a good global lens model, and
then performing the localized, small-scale potential perturbation

1http://www.stsci.edu/hst/campaigns/frontier-fields/Lensing-Models

near the particular images. To represent the wide range of source
morphologies, we utilize a linear decomposition of the modelled
source into a series of basis functions of different profiles. In
addition, our approach uses the technology developed in the context
of galaxy-scale lensing to deal with the blurring effect from the point
spread function (PSF; Treu & Koopmans 2004; Blandford et al.
2006).

Our approach is implemented in the code LENSTRUCTION powered
by LENSTRONOMY,2 a multipurpose open-source gravitational lens
modelling PYTHON package, which is developed by Birrer & Amara
(2018), and based on the methodology outlined by Birrer et al.
(2015). The scientific goal of LENSTRUCTION is to allow scientists
to study in detail source plane quantities like morphologies, sizes,
luminosities, star formation rates, and metallicities for large sample
of objects in a self-consistent and practical way, also to explore
systematic uncertainties related to the lens models. This need is
driven by the increasing quality and quantity of cluster lens data
from current and future observatories, from the HFF to the already
planned guaranteed time and Early Release Science programs on
the James Webb Space Telescope. The software LENSTRONOMY

at the core of LENSTRUCTION has been applied successfully to
diverse scientific problems, such as cosmographic analysis (Birrer,
Amara & Refregier 2016; Birrer et al. 2019; Shajib et al. 2019),
modelling lensed quasars (Shajib et al. 2018), probing dark matter
structure (Birrer, Amara & Refregier 2017; Gilman et al. 2019),
quasar host galaxy decomposition (Ding et al. 2019), and to generate
simulations for a convolutional neural network analysis (e.g. Diaz
Rivero & Dvorkin 2020; Park et al., in preparation; Wagner-
Carena et al., in preparation). A comparison with a different source
reconstruction method by Joseph et al. (2019) is presented in their
paper. We refer the reader to the GitHub repository for more general
information about LENSTRONOMY.

Above applications are on the galaxy-scale regime, but the same
methods can be ported to the cluster regime. As a first illustration
of LENSTRUCTION, we apply it to two sets of multiple images in the
Hubble Frontier cluster MACS J0717.5+3745, starting from five
different publicly available models. We show that relative lensing
corrections are needed and substantially improve the agreement
between the models.

The paper is organized as follows. In Section 2, we review
the lens modelling technique. In Section 3, we introduce and
describe the algorithm LENSTRUCTION. In Section 4, we present two
examples of source reconstruction of lensed images in the lensing
cluster MACS J0717.5+3745. We make comparison of relative
morphology, magnification, and source properties between HFF
lens models in Section 5. Summary and conclusions are given in
Section 6.

The LENSTRUCTION, together with documentation and example
notebooks is publicly available.3 The users are kindly requested to
cite this paper, Birrer & Amara (2018), and Birrer et al. (2015), if
they make use of LENSTRUCTION.

2 M E T H O D O L O G Y

The LENSTRUCTION adopts a forward modelling approach to recon-
struct source brightness distribution, simultaneously considering
lensing and blurring effects, under Bayesian inference formalism
as described in Section 2.1. We discuss the degeneracy between

2https://github.com/sibirrer/lenstronomy
3https://github.com/ylilan/lenstruction
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lensing operator and source light model, and potential correction
on lensing operators in Section 2.2. The types of descriptions of the
surface brightness distribution of the source currently implemented
in LENSTRUCTION are given in Section 2.3. The technique adopted
to regularize model complexity is described in Section 2.4.

2.1 Forward modelling technique: source to image plane
mapping

In a forward modelling approach, to reconstruct the source surface
brightness, S, from the data, D, we first use a theoretical light profile
of S and predict the lensed image(s) D as

D = B · L · S, (1)

where L is the lensing operator and B is the PSF blurring operator
that is determined by the property of the telescope. Following Birrer
et al. (2015), for a given lensing operator, the scaling of surface
brightness in the source results in a linear response of the model.
We thus impose a set of basis functions describing the source surface
brightness, Si , with a vector of flux normalization coefficients, ξ ,
such that the total source is a linear superposition of that basis
set. The modelled image is then a linear superposition too with
the response matrix X = B · LSi such that the modelled image
Dm = Xξ .

We employ Bayesian inference methods to estimate the posterior
distribution function, p(Dm|Do), of the free parameters in the
model. The log-likelihood function of the observed data Do given
a model Dm is

log p(Do|Dm) = ∑Nd

i=1
(Do,i−Dm,i )2

2σ 2
i

+ const, (2)

where Do,i and Dm,i are the observed and modelled flux in each
pixel, respectively, σ i is the error in each pixel, and Nd is the total
number of pixels in the modelled image. We estimate the error in
each pixel as a combination of a Gaussian background rms, σ 2

bkg,
and a Poisson term scaled with the exposure time, fi, of each pixel
(see details in Birrer et al. 2015) as

σ 2
i =

(
σ 2

bkg + Dm,i/fi

)
. (3)

The best-fitting parameters of source light model are estimated
by maximizing the posterior distribution function. The source
configuration for a given lensing operator and basis set can be
solved by a linear minimization problem

ξ0 = min‖W 1/2(Do − Dm)‖2 = minξ‖W 1/2(Do − Xξ )‖2, (4)

where W is the weight matrix. In our case, treating noise as
uncorrelated, W is the diagonal matrix with Wi = σ−2

i . In practice,
we utilize weighted least squares (WLS) method to reconstruct the
source surface brightness.

To figure out the best-fitting configuration of the source light
model, we adopt two steps. First, we need to find a solution for
a given lens and source model assumptions. Then, we change the
choices of model complexity as long as changing and increasing
complexity improves the results.

To simplify the problem, the effects of dust and the contamination
by foreground lens light have been ignored in this paper. Taking
dust and foreground light into account in the forward modelling is
straightforward from a conceptual point of view and implemented
in LENSTRONOMY (see e.g. Shajib et al. 2019).

Figure 1. Source to image plane mapping, where the source S is lensed
by a foreground object, and L1 and L2 are lensing operators for lensed
images Do1 and Do2 respectively. The figure illustrates the degeneracies
and constraints in a strong lensing system. The degeneracies arise because
if L1 is corrected to ˜L1, the observables are unchanged if the source is
corrected to ˜S (likewise if L2 is corrected to ˜L2). The constraints arise in
the multiply imaged case. The operators L1 and L2 are related through the
transformation matrix T 21.

2.2 Degeneracies and observational constraints on the lensing
operator

2.2.1 Degeneracies

The unknown intrinsic source inherits a degeneracy with the lensing
operator L. As shown in Fig. 1, let us assume that we observe image
Do1, and the initial guess of the lensing operator is L1. Given the
data and the lensing operator, we can reconstruct the source S.
We can introduce any arbitrary correction operator J provided that
there exists a corresponding inverse J−1 with J · J−1 equals the
unit operator to transform simultaneously the lensing operator L̃ ≡
L · J and the source S̃ ≡ J−1 · S without any observable effect on
the data as

D̃m1 = B · L̃1 · S̃

= B · (L1 · J) · ( J−1 · S)

= B · L1 · S = Dm1. (5)

Unless intrinsic knowledge of the source is assumed or available
through other means, it is impossible to tell if the true source is S or
S̃. The equation above effectively describes the most general lensing
degeneracy of which the mass sheet transform (Falco, Gorenstein &
Shapiro 1985) is the special case where J is a scalar.

2.2.2 Constraints in multiply imaged case

When multiple images are available of the same source, one can
obtain information of the relative lensing operators, even though of
course the absolute intrinsic source properties are mathematically
unknown due to the degeneracy described in Section 2.2.1. In the
case of two images as described in Fig. 1, the two modelled lensed
images of Do1 and Do2 are

Dm1 = B · L1 · S

Dm2 = B · L2 · S. (6)

Two images from the same source S are related by the transforma-
tion operator T 21 mapping image 2 to image 1.

Dm2 → Dm1 : T 21 = L−1
2 · L1, (7)
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where T 21 is independent on a source distortion operator J and the
constraints on T 21 solely depend on the quality and information of
the observations (see e.g. Wagner 2019). T 21 is the primary operator
that needs to be sufficiently accurate to allow a simultaneous recon-
struction of both images. If the initial lensing operator L−1

2 · L1 is
insufficiently accurate, the WLS fails to reconstruct a source that
matches both images simultaneously:

ξ0 = min
∥∥W

1/2
i (Do,i − Dm,i)

∥∥2

1,2

= minξ

∥∥W
1/2
i (Do,i − Xiξ )

∥∥2

1,2
, (8)

where i = 1, 2 for two images, respectively, and the norm simulta-
neously applied for the same coefficients ξ on both images. Thus, in
the case of multiple images, we can constrain the lensing operators
based on information contained in the transformation matrix T 21.
For example, the magnification ratio predicted by lensing operators
is intuitively well constrained by the observed images. In practice,
the amount of corrections to be applied to the initial lensing
operators depend on the quality of the data. In this work, we restrict
ourselves to third-order polynomial perturbations of the lensing
potential, which are sufficient for the vast majority of sources
behind cosmic telescopes that do not suffer from extreme distortion.
Correction to higher order is needed for highly distorted sources.
If the highly distorted feature appears in comparison of multiple
lensed images, higher order lensing effect can be constrained using
a more general approach departing from a Taylor series expansion
in the lensing potential (see details in Birrer, in preparation).

2.3 Model surface brightness distribution of the source

In our approach, the source surface brightness distribution is a
linear combination of a set of simple models. To describe a wide
range of unknown background astronomical sources with a finite
sets, we make use of elliptical Sérsic (Sersic 1968) and the two-
dimensional Cartesian shapelets (Refregier 2003).4 Shapelets are
given by

Bn(x; βs) ≡ β−1
s φn1

(
β−1

s x1

)
φn2

(
β−1

s x2

)
, (9)

where βs is a characteristic scale, φn1 and φn2 are one-dimensional
Cartesian shapelet, as

φn(x) ≡
[
2nπ

1
2 n!

]− 1
2
Hn(x)e− x2

2 (10)

where n is the order of Hn, the Hermite polynomial. The order
nmax determines numbers of basis sets m by m = (nmax + 1)(nmax

+ 2)/2. As the order increases, one can capture more complexity
in the source surface brightness profile. The characteristic scale
βs is typically about the size of the source. The minimum and
maximum scales being resolved up to order n are given by slmin =
βs/

√
(nmax + 1 and slmax = βs

√
(nmax + 1).

2.4 Model complexity regularization

For a given model complexity, the source is reconstructed via linear
minimization. We then repeat the procedure while varying model
complexity, and we employ the Bayesian information criterion
(BIC) method to balance goodness of fit and model complexity

4lenstronomy supports a variety of non-linear profiles, and LENSTRUCTION

allows for the full support of the available functionality of lenstronomy

simultaneously following Birrer et al. (2019). BIC is computed
as

BIC = ln(Nd)Nk − 2ln(L̂) (11)

where Nd and Nk are the number of data points and free parameters
within the model, respectively, and L̂ is the maximum likelihood
value given the model. Usually, the likelihood increases with
the source light model complexity. However, the number of free
parameters also increases, and the minimum BIC criterion balances
the increase in source complexity with the additional parameters in
order to avoid overfitting the data.

3 OVERV I EW OF LENSTRU CTI ON

To facilitate the forward modelling approach described in Section 2
and its applicability in the cluster regime on real data to the broader
community, we develop the PYTHON package LENSTRUCTION build
on top of LENSTRONOMY. LENSTRONOMY provides the core func-
tionalities of the modelling and fitting described in Section 2 and is
the work horse underneath through which those tasks are executed.
LENSTRUCTION is the layer on top that provides the interface to
the specific cluster data products and executes the specific tasks
required to achieve reliable source reconstructions and lens model
corrections in the cluster lensing regime.

LENSTRUCTION contains several independent modules. The core
module of LENSTRUCTION is ClsrWorkflow (Cluster lensing
source reconstruction Workflow). ClsrWorkflow inherits the
Workflow module of LENSTRONOMY (Birrer & Amara 2018)
tailored for perturbative lens modelling and source reconstruction
in the cluster context and manages fitting and sampling routines
as described in Section 3.2. The linear minimization, exploration
of parameters space, and model complexity regularization are all
performed through this module. The other modules are described
in detail in Section 3.1. The DataProcess module configures
the imaging data to be modelled by the ClsrWorkflow. The
LensSpecifymodule handles the configuration of the lens model
and the SourceSpecifymodule handles the configuration of the
source model to be passed into the core LENSTRONOMY modules.
LENSTRUCTION inherits conventions and many functionalities from
LENSTRONOMY and allows to keep up with the development of the
broader LENSTRONOMY ecosystem.

3.1 Configuration of the data and model setup

The DataProcess module manages and facilitates the retrieval
of the relevant information of the lensed images from the data,
such as the blurring operator, known in astronomy as the PSF,
positional information, and the coordinate system, pixel size,
exposure time, and noise, and casts those quantities into the
conventions used by LENSTRONOMY. The identification of lensed
image makes use of detect sources and deblend sources in
package photutils (Bradley et al. 2019).5 For the PSF, both pixelized
convolution kernels, as well as analytic profiles, are supported
through LENSTRONOMY. This is a clear step forward with respect to
most previous work on extended images in cluster lensing, in which
the blurring effect is often ignored.

The LensSpecify module defines the parametrization of the
lensing operators and sets up the fitting configuration. In the current
implementation, we assume that the lens potential is approximately

5https://photutils.readthedocs.io/en/stable/index.html
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Figure 2. Flowchart of LENSTRUCTION. It consists of four modules Dat-
aProcess, LensSpecify, SourceSpecify, and ClsrWorkflow.
DataProcess manages the pre-processing of data and storage of relevant
information, e.g. data selection, exposure time, pixel size, etc. Then
LensSpecify parameterizes the lens model from the available lens model,
and SourceSpecify specifies light profile description of the background
source. Next, ClsrWorkflow takes care of fitting and sampling. Within
the range of model complexities specified by the user, PSO explores the
parameters space to figure out the solution while BIC regularizes the
complexity. In the end, LENSTRUCTION returns the reconstructed source and
corrected lens model for multiply imaged cases. MCMC is also available
to explore the confidence intervals of the source and lens model, once the
optimal degree of complexity is selected. User interaction is needed for the
steps in blue, while automated tasks are shown in black.

smooth over the area spanned by each observed image. Thus, the
initial shear and convergence (γ 1, γ 2, κ) are taken directly from the
convergence and shear maps provided in the input setting. Higher
order flexion terms (F1,F2,G1,G2) can also be initialized when
required. The default flexion terms are set to zero, assuming that
the initial model is insufficiently accurate to provide valid initial
guesses.

Users can specify the parameters to be held fixed, and assign
bounds and priors to the free parameters during the modelling
procedure.

The SourceSpecify module provides the functionality to
describe the surface brightness in the source plane with various
analytic profiles as well as representations in shapelet basis sets in
conjunction with the LENSTRONOMY LightModel module. The
superposition of profiles is allowed, and the user can choose whether
the constraints of the independent profile types are connected or not.

3.2 Modeling management

The ClsrWorkflow module is designed to model a wide range
of source and lens model complexities in the cluster environment.

The ClsrWorkflow module operates, as shown in Fig. 2. It
starts with the lowest model complexity, and default setting is
elliptical Sérsic for source light model and lensing parameters up
to convergence and shear. For a given lensing operator and source
brightness distribution, it then solves for the source parameters
via linear minimization, see details in equation (4). Changes in

Figure 3. HST (F435W) image of MACS J0717.5+3745. The circles show
the positions of the lensed images (details in Table 1.) Note how the lensed
images are contaminated by foreground emission and span a large area, so
that one needs to make efficient use of the pixels carrying information to
optimize computational resources.

lensing operator and/or source brightness distribution; however,
require solving a non-linear problem. This step is performed by
a particle swarm optimization (PSO; Kennedy & Eberhart 1995).
PSO optimizes a candidate solution by employing particles to the
explore parameter volume. The particles are expected to swarm
towards the best solution. The use of multiple particles is aimed at
avoiding local maxima as it is often the case of optimizers starting
from a single point.

If the adopted models cannot produce an acceptable fit of the
data, the module increases the model complexity. Higher order
lensing corrections or shapelets are included and the fitting is
repeated. The process is repeated until the minimum BIC is reached.
Once the minimum BIC solution is found, one can run a more
time-consuming Markov chain Monte Carlo (MCMC) process to
explore the full posterior and provide confidence intervals as well
as degeneracies among model parameters (using emcee Foreman-
Mackey et al. 2013).

4 EX A MPLES: A NA LY SIS O F TWO MU LT IPLY
I MAG ED SYSTEMS IN THE LENSI NG
C L U S T E R M AC S J 0 7 1 7 . 5+3 7 4 5

As an illustration of LENSTRUCTION and to demonstrate the power
of the modules and their underlying algorithm on a real and complex
example, we present source plane reconstruction of two multiply
imaged sources in one of the HFF cluster MACS J0717.5+3745
(Ebeling, Ma & Barrett 2014) at redshift zlens = 0.545. The pre-
processing of the images and set-up of model configurations are
illustrated in Section 4.1. LENSTRUCTION is applicable for both
singly and multiply imaged sources. We present the details of
reconstruction Section 4.2.
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Table 1. Multiply imaged galaxies in the lensing cluster MACS
J0717.5+3745. The first column lists the naming convention for multiply
imaged system. The other columns list right ascension, declination (J2000),
and redshift (more details are given by Schmidt et al. 2014).

ID RA Dec. Redshift

3.1 109.398545 37.741498 1.855
3.2 109.394459 37.739172 1.855
3.3 109.407156 37.753831 1.855
4.1 109.381093 37.750440 1.855
4.2 109.376338 37.744602 1.855
4.3 109.391097 37.763077 1.855

4.1 Data and model configuration

Hubble Space Telescope images (through filter F435W) of two
multiply imaged sets are shown in Fig. 3. Coordinates are listed in
Table 1. For consistency with previous work, we keep the same IDs
of the two systems (3 and 4) as in the paper by Schmidt et al. (2014).
The DataProcess module can deblend multiple images from
potential foreground contamination, as shown in Fig. 4. For this
example, a bright star with coordinate (RA, Dec.) = (109.3778185,
37.75322111) is selected as the fiducial PSF.

We adopt lens models from five independent teams contracted
by HFF, Bradač, Williams, CATS, Zitrin, and Sharon (Bradač
et al. 2005, 2009; Liesenborgs et al. 2007; Johnson et al. 2014;
Zitrin et al. 2015; Limousin et al. 2016; Sebesta et al. 2016), to
initialize LensSpecify modules. Table 2 provides a summary of
the models. Values of shear, convergence (γ 1, γ 2, κ) are reported
in Tables 3 and 5 for two lensed systems, respectively.

4.2 Description of modelling procedure

We now describe in detail the ClsrWorkflow module for the
two real multiply imaged case studies. We first show results starting
from the Bradač model, then the comparison to the outcome using
a different model as initialization is given in Section 5.1.

4.2.1 Modelling details of the multiply imaged system 3

To start with a simpler problem, we consider each lensed image
within multiply imaged system 3 as an individual singly imaged
source, i.e. doing the source reconstruction independently, not
demanding a joint source morphology. The morphologies of the

Table 2. Lensing models utilized of the cluster MACS J0717.5+3745.

Model Version Method

Bradač v1 Pixellated
Williams v4.1 Pixellated
CATS v4.1 Simply parametrized
Zitrin-ltm v1 Simply parametrized
Sharon v4 Simply parametrized

observed images are compact, thus we just apply the lowest model
complexity, an elliptical Sérsic profile for source, convergence and
shear for the lens model. The singly imaged system lacks the
information required to constrain the lensing operator see details
in Section 2.2.1, so we fix the lens parameters after initialization.
We present the sources reconstructed from each image in Fig. 5,
while fitting results of this exercise are in Table 3.

For a multiply imaged system, observed multiple images provide
information to constrain the relative lensing operator (see details
in Section 2.2.2). Before correcting the lens model, we present the
results obtained using the uncorrected lens model for the combined
reconstruction of the multiple images. As shown in Fig. 6, the
uncorrected lens model leads to poor results. The initial lens model
is not sufficiently accurate to match all images simultaneously at
the pixel level and need corrections as expected. As only relative
lens parameters can be constrained, letting all lensing operators
free will unavoidably lead to degeneracies. To avoid this pitfall, we
fix the lens parameters of the least magnified image (image 3.3 is
the least magnified evaluated from Bradač team, see Table 3) to
the value estimated by the global model. It is important to use the
least magnified image because the uncertainties of magnification are
proportional to magnification itself (Meneghetti et al. 2017). Also,
the current implementation of our code only applies corrections up
to flexion, and therefore it is best to take the least distorted image
as reference. The full underlying degeneracy inherent in lensing
can then be reconstructed analytically from the reconstruction and
posteriors.

BIC and reduced χ2 values are recorded in Table 4. The results
are shown in Fig. 7.

MCMC explores the full posterior and provides confidence inter-
vals as well as degeneracies between parameters. As an example,
we present the MCMC results of multiply imaged source 3 with
corrections applied to the initial lens model by the Bradač team in
Fig. 8. The first six histograms show constrained lensing operators

Figure 4. LENSTRUCTION steps for identifying the lensed images. The first column shows the cutout of lensed image 4.3. Pixels with S/N > 3 are identified
and de-blended into segmentations maps as shown in the second column. In the third column, we select ‘Seg2’ and ‘Seg3’ together with pixels surround that
covers pixels with relative lower S/N are identified as lensed image. The fourth column shows processed image. Note: LENSTRUCTION also enables the user to
take contamination emission, e.g. ‘Seg 0’ and ‘Seg1’, into consideration, e.g. fitting it as a Sérsic.
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2654 L. Yang, S. Birrer and T. Treu

Table 3. Source properties obtain for systems 3 by considering each image as singly imaged, i.e. not applying any lensing correction other than that provided
by the initial lens models. The first three columns list model names, initial value of lens parameters, and magnification factor of each lensed images. The
last two columns show magnitudes F435W AB magnitude (zero-point 25.673) and half-light radii of sources reconstructed from images 3.1, 3.2, and 3.3,
respectively.

Lens team (γ 1, γ 2, κ)3.1, (γ 1, γ 2, κ)3.2, (γ 1, γ 2, κ)3.3 μ3.1, μ3.2, μ3.3 (m3.1, m3.2, m3.3) (AB)
(Re3.1, Re3.2, Re3.3)

(arcsec)

Bradač (0.43, −0.19, 0.94), (0.15, −0.11, 0.69), (−0.10, 0.22, 0.38) − 4.60, 16.26, 3.07 (26.60, 28.03, 26.40) (0.015, 0.008, 0.008)
Williams (0.08, 0.19, 0.74), (0.07, 0.25, 0.75), (−0.27, −0.17, 0.58) 39.84, −204.08, 13.40 (..., .., 27.88) (..., ..., 0.006)
CATS (0.29, −0.21, 0.75), (0.07, −0.13, 0.65), (−0.15, 0.22, 0.47) − 12.53, 9.93, 4.76 (27.66, 27.55, 26.86) (0.011, 0.010, 0.007)
Zitrin-lmt (0.19, −0.27, 0.77), (0.08, −0.19, 0.68), (−0.11, 0.15, 0.58) − 17.83, 16.69, 7.05 (28.14, 28.07, 27.30) (0.008, 0.008, 0.005)
Sharon (0.06, −0.32, 0.94), (0.06, −0.14, 0.76), (−0.23, 0.14, 0.50) − 9.77, 29.07, 5.63 (27.41, 28.64, 27.07) (0.010, 0.006, 0.006)

Figure 5. Demonstration of the modelling results of three singly imaged cases with uncorrected lens model from the Bradač team. (a) From left to right,
we show the observed lensed images, the modelled lensed images, the normalized residuals (i.e. divided by uncertainty) and the reconstructed sources. The
reconstructed sources appear significantly different and even those are expected to be the same, illustrating the expected limitations of global models in
reproducing the local potential. Note: the reconstructed sources are re-centred on their flux centroids, to correct the errors in deflection angles of the global
models shown in (b). (b) Example of positional offsets of the multipled images traced back to the source plane based on the initial model. These offsets in
deflection angles are corrected in our approach by recentering.
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A versatile tool for source reconstruction 2655

Figure 6. Demonstration of the modelling results of the multiply imaged system 3 with uncorrected lens model from the Bradač team. (a) Same as the first
three columns in Fig. 5(a) (first order (deflection) has been corrected), but the residuals are much more significant. (b) Reconstructed source surface brightness
distribution via uncorrected lens models from Bradač.

of image 3.1 and 3.2 while image 3.3 is fixed. The uncertainty of
the source parameters is shown in the remaining histograms.

4.2.2 Modelling details of the multiply imaged system 4

Images of system 4 are extended and complex, providing more
information to constrain the model. Thus, we can explore the higher
model complexity. We propose lens model up to flexion and source
model with additional shapelet order nmax = [2, 4, 6]. Image 4.3
is the least magnified estimated by Bradač model, see Table 5, so

we fix its lens parameters. We run a PSO and record the BIC value
for regularization in Table 6. As we increase complexity, reduced
χ2 and BIC decrease, indicating that the additional complexity is
required. Next, we apply additional shapelet bases sequentially. The
BIC reaches the lowest value nmax = 6 (28 shapelet coefficients).
We identified the nmax range with preliminary tests; BIC does not
decrease significantly beyond 6, indicating that a higher level of
source complexity is not required for this system. The results are
shown in Fig. 9 Each image in system 4 can also be treated as a
singly imaged case, as summarized in Table 5.
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2656 L. Yang, S. Birrer and T. Treu

Table 4. Modelling procedures of multiply imaged systems 3. Initial lens models from five lens teams, Bradač, Williams, CATS, Zitrin-lmt, and Sharon,
respectively. The column models summarize the allowed lens and source model complexity. γ and κ represent shear and convergence. ES represents elliptical
Sérsic. χ2 and BIC values are recorded in the next columns. The next columns show corrected shear and convergence values of each lensed image. μ gives
magnification evaluated from γ , κ for each lensed image. The remaining columns list and half-light radius of reconstructed source.

Lens team Models χ2 BIC (γ 1, γ 2, κ)3.1, (γ 1, γ 2, κ)3.2, (γ 1, γ 2, κ)3.3 μ3.1, μ3.2, μ3.3 m (AB)
Re

(arcsec)

Bradač γ , κ , ES 1.94 5673.78 (0.17, −0.42, 0.87), (0.13, −0.08, 0.54), (−0.10, 0.22, 0.38) − 5.31, 5.31, 3.07 26.89 0.016
Williams γ , κ , ES 1.33 3935.58 ( − 0.17, −0.25, 0.63), (−0.14, −0.21, 0.67), (−0.27, −0.17, 0.58) 21.98, 22.12, 13.40 28.42 0.011
CATS γ , κ , ES 1.81 5288.12 (0.11, −0.33, 0.94), (0.07, −0.03, 0.65), (−0.15, 0.22, 0.47) − 8.52, 8.57, 4.76 27.39 0.013
Zitrin-lmt γ , κ , ES 1.80 5237.08 (0.09, −0.27, 0.93), (0.07, −0.04, 0.71), (−0.11, 0.15, 0.58) − 13.14, 12.89, 7.05 27.82 0.011
Sharon γ , κ , ES 1.54 4531.69 (0.09, −0.31, 0.93), (0.06, −0.04, 0.67), (−0.23, 0.14, 0.50) − 10.07, 9.64, 5.63 27.57 0.012

Figure 7. Demonstration of the modelling results for multiply imaged system 3, (a) image plane rendition starting from the lens model by the Bradač team.
Allowed model complexity includes: shear, convergence acquired from Bradač team, source model: elliptical Sérsic. (b) reconstructed source surface brightness
distribution for different initial models. Allowed model complexity is the same as for the Bradač model presented in the upper panel. (a) Same as the first three
columns in Fig. 5(a) for the Bradač team. The residuals illustrate the improvement in the fit compared with the uncorrected initial lens model, shown in Fig. 6
; however, there are still significant residuals, especially for Image 3.3, indicating that the lens model is not yet sufficiently complex. (b) Reconstructed source
surface brightness distribution of corrected lens models from Bradač, Williams, CATS, Zitrin-lmt, and Sharon teams, respectively. The lens parameters of the
least magnified image are fixed (i.e. image 3.3), while of the other images are corrected.
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A versatile tool for source reconstruction 2657

Figure 8. MCMC results of multiply imaged system 3, starting with the Bradač lens model. Histograms show results of lensing operators (γ 1, γ 2, κ) for
images 3.1 and 3.2. Lens parameters of image 3.3 are fixed. The remaining histograms present fitting results of the source light model. Dashed lines in
histograms indicate the uncertainties based on the 16th, 50th, 84th percentiles of the samples.

Table 5. Same as the Table 3 but for images 4.1, 4.2, and 4.3, respectively.

Lens Team (γ 1, γ 2, κ)4.1, (γ 1, γ 2, κ)4.2, (γ 1, γ 2, κ)4.3 μ4.1, μ4.2, μ4.3 (m4.1, m4.2, m4.3) (AB)
(Re4.1, Re4.2,
Re4.3)(arcsec)

Bradač (−0.02, −0.57, 0.74), (−0.20, −0.15, 0.59), (0.06, −0.02, 0.40) −3.88, 9.47, 2.81 (26.83, 27.25, 26.92) (0.062, 0.062, 0.072)
Williams (−0.22, 0.42, 0.88), (−0.11, −0.02, 0.29), (0.00, 0.06, 0.41) −4.75, 2.03, 2.90 (27.07, 26.54, 27.07) (0.072, 0.073, 0.072)
CATS (−0.08 , −0.50 , 0.65), (−0.12, −0.11, 0.34), (0.03, −0.03, 0.36) −7.47, 2.46, 2.45 (26.86, 26.61, 27.04) (0.067, 0.076, 0.068)
Zitrin-ltm (−0.08, −0.39, 0.76), (−0.17, −0.10, 0.55), (0.05, −0.10, 0.43) −9.91, 6.11, 3.20 (27.05, 26.98, 26.90) (0.061, 0.069, 0.069)
Sharon (−0.14, −0.44, 0.83), (−0.19, −0.09, 0.46), (0.09, −0.08, 0.46), −5.43, 4.04, 3.61 (26.77, 26.76, 26.87) (0.068, 0.067, 0.071)
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2658 L. Yang, S. Birrer and T. Treu

Table 6. Modelling procedures of multiply imaged systems 4. Columns are as same as in Table 4. D and nmax represent flexion (F1,F2,G1,G2) and shapelets
order, respectively.

Lens team Models χ2 BIC (γ 1, γ 2, κ)4.1, (γ 1, γ 2, κ)4.2, (γ 1, γ 2, κ)4.3 μ4.1, μ4.2, μ4.3 m (AB)
Re

(arcsec)

Bradač γ , κ , ES 2.30 45615.73 (−0.11, −0.36, 0.83), (−0.17, 0.06, 0.45), (0.06, −0.02, 0.40) − 8.87, 3.70, 2.81 26.11 0.12
γ , κ , D, ES 2.03 40440.53 (−0.10, −0.36, 0.83), (−0.16, 0.08, 0.46), (0.06, −0.02, 0.40) − 9.03, 3.85, 2.81 26.10 0.12

γ , κ , D, ES, nmax = 2 1.65 32910.90 (−0.14, −0.37, 0.73), (−0.15, −0.07, 0.51), (0.06, −0.02, 0.40) − 11.96, 4.70, 2.81 26.24 0.10
γ , κ , D, ES, nmax = 4 1.55 31110.69 (−0.13, −0.38, 0.74), (−0.19, −0.05, 0.48), (0.06, −0.02, 0.40) − 10.67, 4.31, 2.81 26.24 0.11
γ , κ , D, ES, nmax = 6 1.50 30175.62 (−0.12, −0.36, 0.75), (−0.19, −0.04, 0.49), (0.06, −0.02, 0.40) − 12.27, 4.50, 2.81 26.30 0.11

Williams γ , κ , ES 2.65 52584.85 (0.28, 0.25, 1.59), (−0.11, −0.02, 0.29), (0.23, −0.13, 0.15) 4.83, 2.03, 1.53 25.48 0.14
γ , κ , D, ES 2.30 45642.70 (0.24, 0.24, 1.57), (−0.11, −0.02, 0.29), (0.19, −0.14, 0.18) 4.77, 2.03, 1.62 25.45 0.14

γ , κ , D, ES, nmax = 2 1.86 37152.67 (0.24, 0.28, 1.57), (−0.11, −0.02, 0.29), (0.20, −0.17, 0.18) 5.29, 2.03, 1.66 25.49 0.14
γ , κ , D, ES, nmax = 4 1.77 35279.24 (0.24, 0.28, 1.58), (−0.11, −0.02, 0.29), (0.21, −0.17, 0.17) 4.99, 2.03, 1.62 25.48 0.14
γ , κ , D, ES, nmax = 6 1.70 34153.55 (0.24, 0.29, 1.59), (−0.11, −0.02, 0.29), (0.20, −0.19, 0.16) 4.84, 2.03, 1.59 25.48 0.14

CATS γ , κ , ES 2.30 45563.37 (−0.10, −0.39, 0.82), (−0.23, 0.06, 0.39), (0.03, −0.03, 0.36) − 7.71, 3.17, 2.45 25.94 0.13
γ , κ , D, ES 2.02 40338.54 (−0.08, −0.39, 0.84), (−0.26, 0.08, 0.38), (0.03, −0.03, 0.36) − 7.52, 3.22, 2.45 25.92 0.13

γ , κ , D, ES, nmax = 2 1.66 33109.41 (−0.14, −0.39, 0.72), (−0.20, −0.07, 0.46), (0.03, −0.03, 0.36) − 10.72, 4.05, 2.45 26.08 0.11
γ , κ , D, ES, nmax = 4 1.56 31312.44 (−0.13, −0.40, 0.72), (−0.21, −0.06, 0.45), (0.03, −0.03, 0.36) − 10.15, 3.92, 2.45 26.10 0.12
γ , κ , D, ES, nmax = 6 1.51 30266.73 (−0.12, −0.39, 0.74), (−0.22, −0.05, 0.45), (0.03, −0.03, 0.36) − 10.11, 3.97, 2.45 26.14 0.12

Zitrin-ltm γ , κ , ES 2.30 45608.29 (−0.11, −0.37, 0.78), (−0.21, −0.02, 0.47), (0.05, −0.10, 0.43) − 9.94, 4.23, 3.20 26.23 0.11
γ , κ , D, ES 2.03 40490.77 (−0.10, −0.38, 0.77), (−0.22, −0.00, 0.44), (0.05, −0.10, 0.43) − 9.85, 3.77, 3.20 26.14 0.11

γ , κ , D, ES, nmax = 2 1.65 32925.93 (−0.14, −0.37, 0.71), (−0.17, −0.09, 0.54), (0.05, −0.10, 0.43) − 13.81, 5.73, 3.20 26.42 0.09
γ , κ , D, ES, nmax = 4 1.55 31047.41 (−0.13, −0.39, 0.70), (−0.20, −0.10, 0.49), (0.05, −0.10, 0.43) − 12.66, 4.76, 3.20 26.38 0.09
γ , κ , D, ES, nmax =6 1.51 30287.42 (−0.12, −0.37, 0.72), (−0.22, −0.10, 0.50), (0.05, −0.10, 0.43) − 13.72, 5.22, 3.20 26.46 0.09

Sharon γ , κ , ES 2.30 45743.04 (−0.12, −0.32, 0.81), (−0.13, 0.00, 0.54), (0.09, −0.08, 0.46) − 12.39, 5.14, 3.61 26.46 0.09
γ , κ , D, ES 2.05 40777.80 (−0.11, −0.35, 0.80), (−0.17, −0.00, 0.50), (0.09, −0.08, 0.46) − 10.57, 4.52, 3.61 26.32 0.09

γ , κ , D, ES, nmax =2 1.64 32679.63 (−0.13, −0.34, 0.73), (−0.14, −0.08, 0.57), (0.09, −0.08, 0.46) − 16.78, 6.29, 3.61 26.53 0.08
γ , κ , D, ES, nmax =4 1.54 30757.36 (−0.12, −0.35, 0.74), (−0.18, −0.06, 0.53), (0.09, −0.08, 0.46) − 14.43, 5.41, 3.61 26.53 0.09
γ , κ , D, ES, nmax =6 1.50 30130.48 (−0.12, −0.34, 0.74), (−0.19, −0.07, 0.54), (0.09, −0.08, 0.46) − 16.03, 5.86, 3.61 26.58 0.09

5 C O M PA R ISON BETWEEN MODELS

Uncertainties in the lens model are a well-known source of system-
atic uncertainty in the use of clusters as cosmic telescopes. One of
the goals of LENSTRUCTION is to allow the wholesale investigation of
this kind of uncertainty in a broad variety of contexts. As a primary
illustration of the effects of the choice of lens model, that is used to
fix the lens parameters of the least magnified image as well as the
improvement introduced by LENSTRUCTION in the relative distor-
tions, we compare the reconstructed sources morphologies among
different lens models in Section 5.1, and compute how they affect the
source magnitude and effective radius for system 4 in Section 5.2.
Then, in Section 5.3 we quantify how well the lensing operator is
constrained by our procedure in the case of multiple images.

In this section, the two systems are considered as multiply
imaged, and corrections are applied to the initial lens models.

5.1 Morphological comparison

Considering lens models from different teams, we perform similar
steps as for the Bradač model for the two multiply imaged systems
3 and 4. The initial magnifications at the position of images among
different models span a range of a factor of a few with some
prominent outliers. For example, the magnifications predicted by the
Williams model for system 3 differ up to an order of magnitude from
the other ones. We also fix the lens parameters of the least magnified
image evaluated from the corresponding team, while the others are
free. For unbiased comparison between the performance of different
lens models, we keep the same range of model complexity as for the
Bradač model. Tables 4 and 6 show the fitting results of multiply
imaged systems 3 and 4. While comparing Tables 3 and 4, it should
be noted that the lens parameters of the least magnified image 3.3 are
kept fixed. While comparing Tables 5 and 6, it should be noted that

Image 4.3 is the fixed one for CATS, Zitrin-lmt, and Sharon teams,
while image 4.2 is the least magnified image from the Williams
models. Corrections to the free parameters are expected, owing to
the information supplied by the extended images. For example, the
data show that the magnification ratios are approximately a factor
of a few. In contrast, the magnification ratios estimated via initial
lens models between images are far larger, underscoring the need
for a correction.

We present the comparison of reconstructed sources from five
teams for the two systems in the bottom panels of Figs 7 and 9,
respectively. From left to right, the starting lens models are from
Bradač, Williams, CATS, Zitrin-lmt, and Sharon teams, respec-
tively. We clearly see differences in the morphology of the source
according to the selected initial lens model. In order to quantify the
effect on observables, we discuss how the magnitude and half-light
radius depend on the estimate of the fixed least magnified image
among the different models in Section 5.2.

5.2 Comparison of inferred source magnitude and size

The AB magnitude mAB in source plane is defined in a standard
manner as

mAB = −2.5log(flux) + zeropoint, (12)

where we adopt as zero-point for ACS F435W 25.673. The
half-light radius Re is defined as the circular aperture that contains
half light. We present the source plane magnitude and Re distribution
of two systems in Fig. 10. Each colour represents the result for
one of the five lens models. Numerical values can be found in
Tables 4 and 6. The upper two panels show the distribution of
the magnitude and half-light radius Re for source 3, respectively.
The source magnitude and Re span 1.5 mag and 0.01 arcsec,
respectively. The bottom left panel shows how the magnitude of
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Figure 9. Demonstration of the modelling results of the multiply imaged system 4, same as Fig. 7. (a) Model complexity, lens model: flexion activated and
shear, convergence acquired from Bradač team, source model: elliptical Sérsic +nmax = 6. (b) Reconstructed source surface brightness distribution via lens
models from Bradač, Williams, CATS, Zitrin-lmt, and Sharon teams, respectively.

source 4 depends on modelling choices. During the modelling
process, the lens parameters of the least magnified image were kept
fixed as initial value acquired from each lens model. The source
magnitude spans a range of about 1 mag, with rms scatter 0.39 mag.
The reconstructed source from the Sharon model is the faintest,
while the one from the Williams model is the brightest. Overall,
the magnitude is stable for each model, especially after additional
model complexity by adding shapelet modes. The bottom right
panel shows Re as a function of model complexity. The scatter in
Re across models is approximately 18 per cent, while the scatter
of the least magnification, i.e. magnifications of the image 4.3,
is approximately 25 per cent. This dispersion suggests that the

differences are fundamentally due to the mass-sheet degeneracy, and
higher order corrections may be required to improve the agreement
between the models further.

5.3 Comparison of magnification ratio between lensed images

The relative magnification of the images is expected to be tightly
constrained by the data. We show relative magnifications μ as a
function of model complexity for each initial lens model in Fig. 11,
colour coded as in Fig. 10. It is clear that the initial estimates of
μ differ dramatically for each lens model (see also Table 3.) For
example, μ of image 3.2 varies from ∼−204.08 to ∼9.93. The
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2660 L. Yang, S. Birrer and T. Treu

Figure 10. Magnitude and half-light radius Re of reconstructed source for systems 3 and 4, respectively. Upper) for system 3, the label ‘κ , γ , ES’ indicates
the lowest complexity, i.e. shear, convergence, and elliptical Sérsic. Bottom) for system 4, magnitude and half-light radius as a function of model complexity.
The labels ‘+D’, ‘+nmax2’, ‘+nmax4’, and ‘+nmax6’ indicate adding flexion and gradually increasing the number of shapelets.

discrepancy is not as dramatic for the absolute value of the relative
magnifications, although it is still quite substantial.

After applying corrections to the initial lens models, we observe a
definite improvement in the consistency of the magnification ratio.
In Fig. 11, the absolute values of relative μ4.1/μ4.2 and μ3.1/μ3.3 get
close to ∼2. In those two cases, the parity is not well determined
(hence the plus/minus dichotomy) because the image does not have
much structure perpendicular to the highly stretched direction. The
ratios μ4.3/μ4.2 and μ3.2/μ3.3 are well constrained to ∼1 and ∼2,
even though the initial models had substantial scatter.

6 SU M M A RY A N D C O N C L U S I O N

From the perspective of lens modelling, cluster-scale lensing is
full of challenges. Most state-of-the-art models are constrained
exclusively by the positions of the lensed images rather than via
extended source reconstruction. Therefore, additional efforts are
needed to reconstruct the background source and determine the
uncertainties associated with the lens model. Manually, performing
source reconstruction on a handful of data is feasible. However,
with current and upcoming observations, the quality and quantity
of cluster lensing data are expected to improve dramatically.

In order to prepare for such an explosion of data, we have
developed and made public a fast and versatile tool LENSTRUCTION.
It adopts a forward modelling approach to perform source recon-
struction with corrections on the initial lens parameters, taking into
account the blurring of the PSF. LENSTRUCTION is implemented in
PYTHON, building on the publicly available code LENSTRONOMY.

In this paper, we describe the current implementation of
LENSTRUCTION as well as present the first illustration of its ca-
pabilities using two sets of multiple images in the HFF cluster
MACS 0717+3745, starting from five publicly available models as
the initial guess of the lensing potential. One system is chosen to be
of a compact source, providing limited information to correct the
lens model. The other system is significantly extended and enables
exploration of complexity, including corrections up to flexion order
in the lens model and up to Sérsic + shapelets (with nmax up to 6)
in the source model.

We find that the choice of initial lens model with the lens model
at the least magnified image held fixed affects the inferred source
magnitude and size at the level of 0.39 mag and 18 per cent rms
scatter, respectively. The scatter does not reduce by increasing
the complexity of corrections on the lens model within the range
considered in this work.
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Figure 11. Ratio of magnification μ between two lensed images in two multiply imaged system, respectively. (Upper left) the ratio between images 3.1 and
3.3. (Upper right) ratio between images 3.2 and 3.3. (Bottom left) the ratio between images 4.1 and 4.2. Bottom right) ratio between images 4.3 and 4.2. Label
‘initial’ indicates value acquired directly from the lens model, others are the same as Fig. 10. Colours represent five lens models.

In contrast, the absolute ratio of magnifications between the
images converges rapidly to a common value, even though the initial
lens models provided sometimes dramatically different estimates.

In conclusion, we observe that our correction scheme produces
a substantial improvement in the relative magnification, i.e. the
quantity directly constrained by the data. Starting with significantly
different initial models, the correction schemes make them all
converge to very similar absolute magnification ratios. The conver-
gence is significantly more pronounced than observation in the case
of magnitudes and effective radii, which are absolute quantities,
and thus their measurement depends on breaking the mass sheet
degeneracy.

In the future, we plan to carry out a similar investigation for a large
sample of objects. The ultimate goal is measuring the irreducible
scatter of current state of the art lens models as a way to quantify
this source of systematic uncertainty in the estimation of the size
luminosity/mass relation, and other observables, through cosmic
telescopes (Yang et al., in preparation).
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