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ABSTRACT
Galaxy clusters appear as extended sources in XMM–Newton images, but not all extended sources are clusters. So, their proper
classification requires visual inspection with optical images, which is a slow process with biases that are almost impossible to
model. We tackle this problem with a novel approach, using convolutional neural networks (CNNs), a state-of-the-art image
classification tool, for automatic classification of galaxy cluster candidates. We train the networks on combined XMM–Newton
X-ray observations with their optical counterparts from the all-sky Digitized Sky Survey. Our data set originates from the
XMM CLuster Archive Super Survey (X-CLASS) survey sample of galaxy cluster candidates, selected by a specially developed
pipeline, the XAmin, tailored for extended source detection and characterization. Our data set contains 1707 galaxy cluster
candidates classified by experts. Additionally, we create an official Zooniverse citizen science project, The Hunt for Galaxy
Clusters, to probe whether citizen volunteers could help in a challenging task of galaxy cluster visual confirmation. The project
contained 1600 galaxy cluster candidates in total of which 404 overlap with the expert’s sample. The networks were trained on
expert and Zooniverse data separately. The CNN test sample contains 85 spectroscopically confirmed clusters and 85 non-clusters
that appear in both data sets. Our custom network achieved the best performance in the binary classification of clusters and
non-clusters, acquiring accuracy of 90 per cent, averaged after 10 runs. The results of using CNNs on combined X-ray and optical
data for galaxy cluster candidate classification are encouraging, and there is a lot of potential for future usage and improvements.
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1 IN T RO D U C T I O N

Galaxy clusters are massive systems at the peaks of the cosmic
web. Their composition, rich in dark matter and hot baryonic gas
makes them a potentially powerful tool to constrain cosmological
parameters, growth of structure, neutrino mass, and sterile neutrinos
through cluster number counts, the cluster mass function, and the
baryon fraction (Allen, Evrard & Mantz 2011; Mantz et al. 2015;
Böhringer & Chon 2016).

In recent years, large cluster surveys such as XXL (Pacaud et al.
2016; Pierre et al. 2016), XCS (Mehrtens et al. 2012), X-CLASS
(Clerc et al. 2012; Ridl et al. 2017), Planck (Bartlett et al. 2008),
redMaPPer (Rykoff et al. 2014), or the SPT–SZ survey (Bleem
et al. 2015) have made it possible to statistically improve constraints
on cosmology. However, one of the challenges in using galaxy
clusters for cosmology is understanding and modelling of the cluster
selection function (e.g. Pacaud et al. 2006). The selection function
has to be modelled in terms of observable parameters (such as flux
and apparent size), which can then be converted into galaxy cluster
mass for a given cosmology and galaxy cluster physics evolution.
The selection function of galaxy clusters is not trivial to model and
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often oversimplified. A selection function should not only take into
account the volume and redshift of the survey but also the choice
of clusters, which is often more complicated than a cut in flux. In
X-ray wavelengths, whilst extended emission is generally a robust
indicator of a galaxy cluster, the emission can also be attributed
to nearby galaxies, saturated active galactic nuclei (AGN), and
unresolved double point sources. For this reason, galaxy cluster
candidates are still visually examined together with optical data,
prior to any spectroscopic confirmation (Adami et al. 2018). This
process is tedious and outdated with uncertainties impossible to
model. With large X-ray sky surveys such as e-ROSITA (Merloni
et al. 2012) expecting to discover tens of thousands of new galaxy
clusters, combined with large optical surveys including LSST (Ivezic
et al. 2008) and EUCLID (Racca et al. 2016), the old techniques
will become obsolete. We need to prepare for the future with new
methods that are able to deal with big data and improved accuracy.

Citizen science projects proved to be a great asset for scientific
problems, where human classifications are required for large amounts
of data (e.g. Lintott et al. 2008; Willett et al. 2013). In the first version
of the most well known of all citizen science projects, the Galaxy
Zoo (Lintott et al. 2008), citizen volunteers managed to achieve more
than 90 per cent agreement with experts in a task of morphological
classification of galaxies. While citizen projects are intended to
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provide huge manpower in the assessment of large astronomical data
sets, the question whether this is an advantage over a limited number
of evaluations by experts in the case of the confirmation of galaxy
cluster candidates remains to be addressed. This paper scrutinizes
this issue by evaluating the citizen volunteers success rate.

Machine learning offers a more constructive approach to the
problem. The power of Machine learning has been demonstrated
in astronomy for more than two decades, with applications including
star–galaxy discrimination (Odewahn et al. 1992; Bertin 1993),
classification of galaxy spectra (Folkes et al. 1996), photometric
redshift estimation (Collister & Lahav 2004), or anomaly detection
in X-ray spectra (Ichinohe & Yamada 2019), to name a few. With
the introduction of Convolutional Neural Networks (CNNs, LeCun
et al. 1999) and deep learning (E Hinton 2007), it has been possible
to automate human vision tasks such as image recognition (see e.g.
Goodfellow et al. 2014; Schawinski et al. 2017; Ackermann et al.
2018; Lieu et al. 2018).

Supervised learning with CNNs was designed specifically for
image classification tasks. If the true labels (classification classes) of
the images are known, they can be used to train CNNs. The current
way galaxy clusters are classified are liable to false positives and
false negatives. Galaxy cluster candidates picked by an automated
pipeline are visually analysed by several experts to create an
initial catalogue of galaxy clusters, which are later verified with a
spectroscopic confirmation. This process will not scale with large
data volumes. Citizen science allows us to harness a large number of
opinions on each object classification on a short time-scale, speeding
up the process significantly yet having a reasonable agreement
with experts (see e.g. Willett et al. 2013; Dieleman, Willett &
Dambre 2015). CNNs can be then trained on classifications made
by either experts or citizen volunteers or both, to automate the final
classification of galaxy cluster candidates, or even skipping the first
step of the pipeline picking the candidate clusters. Applying CNN
selection on simulations will enable modelling the selection function.

In this paper, we introduce a citizen science project we created
to obtain large numbers of classified objects. We compare the
performance of citizen volunteers with experts. We train CNNs
on classifications of citizen volunteers and experts and compare
their results. CNNs are tested on spectroscopically confirmed galaxy
clusters and objects classified as non-clusters by experts.

The structure of the paper is as follows: in Section 2 we present our
citizen science project and its development together with a descrip-
tion of the observations and the construction of their classifications
by the experts, in Section 3 we introduce the machine learning
methods we use, Section 4 presents measurements used to evaluate
classification or detection performance, Section 5 presents the results
of the citizen science campaign as well as the results and discussion
of neural networks analysis. Finally, we conclude in Section 6.

2 TH E H U N T F O R G A L A X Y C L U S T E R S

Our citizen science project, The Hunt for Galaxy Clusters,1 was
launched online as an official Zooniverse project on 2018 October
24. There were 1600 galaxy cluster candidates in the project that have
been detected as extended X-ray sources by the XAmin wavelet-
based pipeline (Pacaud et al. 2006). Each object was classified
by at least 30 different volunteers, and this was completed by
2019 April 29. In total, 1227 volunteers participated in the project.

1https://www.zooniverse.org/projects/matej-dot-kosiba/the-hunt-for-galaxy
-clusters

Figure 1. Top left: raw X-ray image with contours showing the areas of
constant X-ray brightness and a cyan cross marking the object selected for
classification. Bottom left: raw X-ray image without contours and markings.
Right: corresponding optical images.

Classifications of not logged in volunteers, as well as classifications
that have been done on each object multiple times by the same
volunteer, were not considered.

The project starts with a short tutorial briefly explaining how to
navigate in the project’s page and how to classify candidate clusters.
Each object comes with four images, covering the exact same area
of the sky (7 × 7 arcmin2): two X-ray and two optical images. Fig. 1
shows all four images of a galaxy cluster candidate as shown to the
volunteers in The Hunt for Galaxy Clusters.

Our project uses six questions to help determine the class of a
galaxy cluster candidate. Each question has two or three possible
answers, and due to the structure of the decision tree (Fig. 2), only
a subset of the questions are answered. Those questions come with
help notes, example images, as well as descriptions to each answer.
We selected example images very carefully to cover a broad range
of objects and/or instrument effects, in order to avoid biases. The
Zooniverse volunteer’s answers were then used to create a binary
classification scheme of cluster and non-cluster.

2.1 Data

The data in this work originate from the XMM CLuster Archive
Super Survey (X-CLASS; Clerc et al. 2012), an X-ray galaxy
cluster search in the archival data of the European Space Agency’s
X-ray observatory XMM–Newton, combined with corresponding
optical counterparts from the Digitized Sky Survey POSS-II (DSS2).
We used XMM–Newton data obtained between 2000 and 2015,
employing selection criteria described in (Clerc et al. 2012), and
excluding the data used by the XXL survey (Pierre et al. 2016).

2.2 X-ray pipeline

Our sample of galaxy cluster candidates has been constructed using
the intermediate XAmin3.5 version (new source models added:
double point source and point + extended source). This version, after
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Figure 2. The decision tree of The Hunt for Galaxy Clusters Zooniverse
citizen science project. The blue cells represent questions, the red cells are
answers leading to the cluster class, and the yellow cells are answers leading
to the non-cluster class.

the processing of the X-CLASS survey, appeared to suffer from a
miscentring problem randomly affecting a tiny fraction of the point-
source population, that led to classify them as extended. In order
to remove misclassified sources, experts then performed an in-depth
screening of the putative cluster candidate lists. The screening dealt
as well with usual nearby galaxies and saturated AGNs so that both
appear extended in the X-ray images.

The pipeline is briefly described next. First, a combined MOS1 +
MOS2 + PN image of an XMM–Newton (Jansen 1999) observation
is smoothed with a dedicated wavelet smoothing program called
mr filter, described by Starck, Murtagh & Bijaoui (1998) and shown
in Starck & Pierre (1998) to effectively recover structures in X-ray
images characterized by low numbers of photons.

Secondly, the wavelet smoothed image is analysed by the source
extraction software SExtractor (Bertin & Arnouts 1996). It
creates a list of candidate sources for further analysis, returning
an estimate of their position and their flux.

Note that, since SExtractor was developed for optical images
that contain many more photons than the X-ray ones, smoothing the
X-ray image is a necessity as SExtractor would not be able to
work with raw data. This smoothing can be performed in several
ways; the wavelet smoothing used by XAmin is one of the possible
ways of smoothing the image and was shown by Valtchanov, Pierre &

Gastaud (2001) to give the best results for X-ray images of diffuse
sources like galaxy clusters.

Finally, we characterize the candidate sources found by SEx-
tractor. This is done by fitting both a point source model given the
XMM–Newton PSF computed at the source position and an extended
β model (Cavaliere & Fusco-Femiano 1976), which better describes
galaxy clusters. A source is declared to be a point source (AGN or
an extended source too faint to be characterized as extended) or an
extended source (galaxy cluster) depending on which of these two
models best fits the candidates source. The details, including the
relevant formulas and the selection criteria for defining an (almost)
pure sample of galaxy clusters, are given in Pacaud et al. (2006).

Coordinates of the galaxy cluster candidates picked by XAmin
are then used to produce normalized images (Appendix A) with and
without X-ray contours to show lines of constant X-ray brightness.
These contours are superimposed on to the optical counterpart image,
together with a cyan cross mark and are used only for human
screening to help visualize the X-ray emission.

2.3 Weighting volunteers classifications

Since each object is classified by 30 volunteers, we may end up
with different classifications for the same galaxy cluster candidate.
Each person’s classification ability may vary according to the class
and the question asked, and there may even be volunteers who
purposely create malicious classifications. To mitigate those effects,
we weight classifications of each user question-wise. Weighting is
done according to the agreement of the majority, so each user has
an accuracy determining a portion of his/her classifications being in
agreement with the majority of votes, which is done question-wise

Gi = Ci

Qi

, i ∈ 1, ..., 6, (1)

where Gi is the weight applied for an individual on question i, Ci is
the number of answers to question i given by the individual that were
in agreement with the majority, and Qi is the total number of answers
the individual has made for question i. Gi essentially describes the
ability of an individual to classify as the majority of volunteers
would. Every classification in the project is then weighted according
to the classifying volunteer’s accuracy for the specific question. The
bottom red leafs of the decision tree (Fig. 2) are classification ending
answers corresponds to the final answers stating that the classified
object is a galaxy cluster. Similarly, all yellow leafs corresponds to
the final answers stating that the object is not a galaxy cluster. Each
galaxy cluster candidate gets 30 votes, each vote is an accuracy of the
voting user for the question of his/her classification ending answer
(one of bottom red leafs or any yellow leaf). Those 30 weighted
scores are summed to galaxy cluster (bottom red leafs) and non-
galaxy cluster (yellow leafs) categories. The higher score determines
the final Zooniverse weighted classification for the galaxy cluster
candidate.

2.4 Classifications of experts

The galaxy cluster candidates generated by the XAmin pipeline are
manually classified by the X-CLASS collaboration. Each galaxy
cluster candidate is classified by two experts and three moderators
make the final classification on conflicting decisions. Fig. 3 shows
how a galaxy cluster candidate is presented to the experts. The images
are provided without redshift or sky coordinate information, and the
experts make decisions without consulting with each other to avoid
any bias. The experts were given the opportunity to classify objects as
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Figure 3. Images of a galaxy cluster candidate classified by experts. Top
left: an X-ray raw image overplotted with contours showing areas of constant
X-ray brightness, and marks produced by the XAmin pipeline. Top right
and bottom left images are smoothed versions of the X-ray images, wavelet
and Gaussian smoothing produced by the XAmin pipeline, respectively. The
Gaussian smoothed image is overplotted with Gaussian contours, the sigma
is chosen to be three pixels (with a pixel size of 2.5 arcsec so the sigma is
7.5 arcsec). Bottom right: the optical counterpart of the X-ray image with
superimposed marks and wavelet X-ray contours. All images cover the exact
same area of the sky, 7 × 7 arcmin2, except for the bottom panel, where we
focus in the central region (4 × 4 arcmin2) of the optical image, because with
the contours and the symbols it is not easy to see the central cluster brightest
galaxy and overdensity of faint galaxies.

a low-redshift cluster (0 < z < 0.3), high-redshift cluster (z > 0.3),
nearby galaxy, point source, star or AGN, double source, artefact,
edge, fossil group, high background image, no optical image, or
dubious source. We create a binary classification scheme where the
last four categories in the list are not used, low- and high-redshift
clusters are collectively referred to as clusters and the remaining
classes are collectively referred to as non-clusters.

3 MAC H I N E L E A R N I N G A P P ROAC H

Now, we turn our attention to a machine learning approach, which
allows us to automatically process astronomical data on much larger
scales than what is possible to achieve by human annotations. We
use neural networks – a parametric model that is able to learn to

approximate a complex function from training examples of inputs
and the corresponding outputs. In our case, each training example
consists of combined X-ray and optical image as the input and the
corresponding output class label obtained from a human annotator.
In our experiments, we consider binary classification, where the
class labels are galaxy cluster and non-cluster, but also multiclass
classification with subcategories that will be discussed in Section 5.5.
From the training examples, our neural networks learn to predict
posterior probabilities of all classes given an input image. In our
experiments, we evaluate the performance of the neural networks
using measures discussed in Section 4. For some of the measures,
we need to make a hard classification decision for each input image
from our evaluation set. In such a case, we simply select the most
probable class.

In this work, we use CNN, which is currently the most popular
and very effective neural network architecture for image processing
(Lecun et al. 1989; Ciresan et al. 2012; Krizhevsky, Sutskever &
Hinton 2012). A deeper knowledge of CNNs is not necessary for
interpreting our results and understanding the presented analyses. It
is only necessary for understanding some of the technical details.
This paper also cannot give a complete tutorial to CNNs therefore
we do not provide a further introduction to CNNs, and we kindly
refer the interested reader to the relevant textbooks (Bishop 2006;
Goodfellow, Bengio & Courville 2016) or the numerous tutorials
available online. We use two CNNs architectures for our experiments:
Using the Keras toolkit (Chollet et al. 2015), we build and train
our custom network, which uses a conventional CNN architecture
with interleaving convolutional and pooling layers and final dense
layers. The second architecture is MobileNet (Howard et al. 2017).
We take these networks as provided by its authors pre-trained on
the ImageNet (Deng et al. 2009) data, which is a large data set of
millions of real-word images categorized into thousands of classes.
We assume that such pre-training can serve as a good initialization
of the CNN parameters, which are further retrained on our training
data for galaxy cluster classification.

3.1 Data preprocessing

For training neural networks, we use images without contours and
marks. For each candidate cluster, a pair of X-ray and optical PNG
images were merged into a single PNG image.As well as our custom
network, we use existing architectures that were designed to take
input images with three colour channels. In order to achieve this, we
grey-scale the X-ray and optical images and stack them together as
individual channels, leaving one channel empty (zero-filled) to create
a single RGB image. Although training of our custom network can
be done with any number of input channels, we use the same three-
channel images as the input to the network unless stated otherwise.
By default, we construct the input images as follows: the blue channel
contains the grey-scaled optical image, the green contains the grey-
scaled X-ray image, and the red is filled with a matrix of zeros
(Fig. 4).

3.2 Data augmentation

With smaller data sets, the risk of overfitting increases, resulting
in poor generalization to data outside the training set. To prevent
overfitting, we use data augmentation to reduce the probability that
the network will see exactly the same image twice and to essentially
increase our training sample size. At each training step, the input
image is randomly scaled to a uniform value between 1/1.3 and 1.3,
rotated by a random uniform angle between 0 and 360◦ and translated
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Figure 4. Left is the 356 × 356 pixel X-ray RGB .PNG image, middle is
its 356 × 356 pixel optical .PNG counterpart, and right is an RGB .PNG
image made by stacking grey-scaled optical image as blue channel, grey-
scaled X-ray image as the green channel, and the red channel was filled with
zeros.

in x and y directions by a random uniform value between −4 and 4
pixels.

4 PE R F O R M A N C E M E A S U R E M E N T S

This section describes the measurement methods we chose to
evaluate our neural networks compared to a baseline.

Accuracy is the most intuitive performance measurement. It is the
ratio of correct predictions to all predictions and is defined as

A = TP + TN

TP + TN + FP + FN
, (2)

where TP refers to the number of true positives, in our case the
number of clusters correctly classified as clusters, TN is a number
of true negatives (number of non-clusters correctly classified as non-
clusters), FP is a number of false positives (number of non-cluster
incorrectly classified as clusters), and FN states for a number of false
negatives (number of clusters incorrectly classified as non-clusters).

Precision is the ratio of the correctly classified positives (i.e.
clusters) and all objects classified as positives. This is defined as

P = TP

TP + FP
. (3)

Recall is the ratio of the correctly classified positives and all
positives examples in the test data. It is defined as

R = TP

TP + FN
. (4)

The receiver operating characteristic (ROC) is a performance
measurement of detection problems plotted as a true positive rate
(recall) against the false positive rate, defined as

FPR = TN

TN + FP
(5)

at various thresholds. The area under the curve (AUC) describes the
model’s capability to distinguish between two classification classes
and is independent of the choice of the threshold. When reporting
detection performance for a class (from the CNN output) in terms
of ROC curve, we compare the posterior probability of the class to a
varying detection threshold.

Figure 5. The receiver operating characteristic (ROC) curves for the clas-
sifications by Zooniverse volunteers, taking the classifications of experts as
the ground truth. Closer the curve copies the left vertical and top horizontal
axis, better the classifier. The dashed line shows how would the results be if
the people guessed totally randomly.

5 R ESULTS AND D I SCUSSI ON

5.1 The hunt for galaxy clusters results

The data set of 1600 galaxy cluster candidates in The Hunt for Galaxy
Clusters contained 404 objects previously classified by experts.

Table 1 displays a comparison of the unweighted and weighted
classifications of the Zooniverse volunteers (Section 2.3) based on
the agreement with the experts. Fig. 5 shows ROC curves computed
for the whole cross-match sample of 404 objects classified by both
the Zooniverse volunteers and experts and the ROC computed on
a subsample of 170 objects, 85 spectroscopically confirmed galaxy
clusters, and 85 objects classified as non-clusters by experts. This
subsample is also used for the testing of the CNNs. The Zooniverse
volunteers performed better on the subsample of 170 objects than
on the whole crossmatch sample of 404 objects. This could be an
indication of a bias towards correctly classifying easier objects since
spectroscopically confirmed galaxy clusters tend to be larger.

Fig. 6 shows the fraction of the Zooniverse volunteer’s individual
answers in agreement with experts to all Zooniverse answers for
classification ending answers, except for not a nearby cluster and
not a distant cluster, which do not have a direct counterpart in the
classification of experts. Assuming that the expert classifications are
the ground truth, the biggest difficulty for the volunteers seems to be
distinguishing extended from point-like X-ray emission. Also, the
volunteers inconsistently classified a large fraction of no emission
classes, suggesting that they struggled to interpret the X-ray images.
The huge discrepancy between volunteer’s individual classifications
and classifications of experts were in the edge category, used for
galaxy cluster candidates close to the edge of XMM–Newton’s chips
and its field of view. Based upon discussions within the online forum,

Table 1. The results of cluster classification by Zooniverse volunteers on two data sets, 404 objects are those classified
by both, scientists and Zooniverse volunteers, the 170 objects data set is a subsample of the 404 objects, where 85 objects
are spectroscopically confirmed clusters and 85 are objects classified as non-clusters by experts.

Data set Zooniverse classifications TP TN FP FN Accuracy Precision Recall

404 objects Unweighted 69 150 0 185 0.542 1.000 0.272
404 objects Weighted 102 149 1 152 0.621 0.990 0.401
170 objects Weighted 55 84 1 30 0.818 0.982 0.647
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Figure 6. A quantification of the Zooniverse classifications for (a) no emis-
sion, (b) edge, (c) point, (d) nearby galaxy, (e) no optical image, (f)
nearby galaxy cluster, and (g) distant galaxy cluster, assuming the ground
truth is the expert classification.

we assume that this bias could emerge from XMM–Newton’s grid-like
pattern created by small gaps between its individual detectors, which
volunteers often mistaken for the edge of the chips. The nearby
galaxy category was also a difficult question for the volunteers.
Again, based on the forum discussion we find that volunteers
often classified nearby galaxy clusters with a prominent brightest
central galaxy as a nearby galaxy class, which could lead to many
nearby galaxy clusters missed. In general, the Zooniverse volunteers
preferentially classified objects as non-clusters.

Some of the biases could be mitigated in possible future versions
of the project if explanations were clearer and more focus was put
on example images in the help notes. Possibly the most important
biases were often a classification of an X-ray emission as no emission
and misclassification of an extended X-ray emission as a point-
like X-ray emission. This are the main reasons why clusters were
missed by the Zooniverse volunteers. We tried to keep in mind the
possibility of low scientific knowledge of the volunteers and not
to overwhelm the volunteers with huge amounts of information,
which could discourage them, but we were still able to provide a
detailed explanation of the X-ray emission in the tutorial and the
help notes, with nice example images and diagrams to help with
the X-ray contours. Small interviews with our beta testers revealed
that around 20 per cent of them did not read the supporting texts.
It might be possible that classifications with a lot of disagreement
in the interpretation of the X-ray emission preferentially came from
volunteers who did not adequately read the supporting material. A
questionnaire would be needed to further probe this possibility. These
biases could be cut down with simpler and shorter explanations
of the X-ray properties, so it would be easier to understand and
less information to digest. Another common tendency was the
misclassification of nearby clusters that contain prominent brightest
cluster galaxies, with that of nearby galaxies. This could be reduced
with a dedicated pair of images for the two situations in the help
notes.

We have to note that even the classifications of experts could be
biased towards low-z clusters, since we use DSS optical images,
which are limited to z ∼ 0.3.

Another possible bias may come from the fact that spectroscopi-
cally confirmed clusters are biased to big clusters, which might affect
our interpretation.

To explore if the Zooniverse volunteers were biased finding
preferentially most prominent galaxy clusters, we made extent–
extension likelihood plane plots (see Appendix B). We found that
the galaxy clusters found by the Zooniverse volunteers populate all

Table 2. The number of objects in the training, validation, and test data sets
classified by Zooniverse and experts.

Class Zooniverse Experts
Train Validate Train Validate Test

Cluster 320 130 845 200 85
Non-cluster 880 100 388 104 85
Total 1200 230 1233 304 170

Figure 7. A Venn diagram presenting the data sets.

of the space, not showing bias and their sample of galaxy clusters
also cannot be recreated by a simple cut in this space.

Even though the Zooniverse volunteers did not show a high
accuracy compared to experts, misclassifying many galaxy clusters
as other options, the sample of galaxy clusters they selected is pure.
This makes us conclude that, via the Zooniverse project, the general
public can help scientific research where a very pure sample of galaxy
clusters is required, but it did not prove to be helpful in a case where
a sample of galaxy clusters should be complete.

5.2 CNN training

We use two different data sets, one classified by experts and one by the
Zooniverse volunteers. We use balanced training batches, containing
the same number of classification classes, randomly sampled from
the training data. This is to prevent the network from being biased
towards the class that occurs most frequently in the training sample.

Regardless of the training data, all the networks were tested on
the same data set of 85 spectroscopically confirmed galaxy clusters
and 85 objects classified as non-clusters by the experts, the 170 test
objects. Table 2 and Fig. 7 describe the numbers of objects used in
the training, validation, and test data sets, classified by experts and
the Zooniverse volunteers for testing on the 170 object test sample.
All the networks were trained on greyscaled and combined X-ray and
optical images as described in Section 3.1 if not stated otherwise.

We experimented with both a custom network (Table 3) and
using three different state of the art CNN architectures: VGG19 (Si-
monyan & Zisserman 2015), InceptionV3 (Szegedy et al. 2016), and
MobileNet (Howard et al. 2017). We used those networks with their
pre-trained weights, using a large learning rate and unfreezing all the
layers. Of the three models, MobileNet, pre-trained on the ImageNet
(Deng et al. 2009), achieved the best performance and therefore we
only discuss this architecture. Similarly, Lieu et al. (2018) found
MobileNet to be the superior architecture for classifying Solar
system objects. The hyperparameters for our custom network and
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Table 3. The architecture of our custom network that achieved the best
performance. Each of the convolutional and dense layers is followed by a
ReLU non-linearity with the exception of the final output dense layer that has
the softmax for classification.

Layer Layer type Filter shape/stride Input shape

1 Conv 3 × 3 × 64/(1, 1) 356 × 356 × 3
2 Max pool 2 × 2/(2, 2) 356 × 356 × 64
3 Conv 3 × 3 × 32/(1, 1) 178 × 178 × 64
4 Max pool 2 × 2/(2, 2) 178 × 178 × 32
5 Conv 3 × 3 × 32/(1, 1) 89 × 89 × 32
6 Max pool 2 × 2/(2, 2) 89 × 89 × 32
7 Conv 3 × 3 × 32/(1, 1) 45 × 45 × 32
8 Max pool 2 × 2/(2, 2) 45 × 45 × 32
9 Conv 3 × 3 × 32/(1, 1) 23 × 23 × 32
10 Max pool 2 × 2/(2, 2) 23 × 23 × 32
11 Conv 3 × 3 × 32/(1, 1) 12 × 12 × 32
12 Max pool 2 × 2/(2, 2) 12 × 12 × 32
13 Flatten – 6 × 6 × 32
14 Dense 256 1152
15 Dense 2 256

Table 4. Hyperparameters of our custom network and the MobileNet
network. The number of iterations, batches yielded during training, is shown
for training on the data set classified by experts.

Hyperparameters Custom net MobileNet

Batch size 10 20
Iterations 153 000 3825
Optimizer SGD Adadelta
Nest. Momentum 0.90 –
Rho – 0.95
Initial lr. 0.0001 1.0
lr. decay 10−6 0.95
Minimal lr. 10−4 0.01
lr. red. patience 14 4
lr. red. factor 0.75 0.85
Dense dropout 0.65 0.65
Output activation softmax softmax
Loss function cat. cross-entropy cat. cross-entropy
Input image size 356 × 356 224 × 224

the MobileNet network are given in Table 4. We used Keras (Chollet
et al. 2015) with TensorFlow (Abadi et al. 2015) backend. The
lr. red. patience and lr. red. factor are parameters
of the ReduceLROnPlateau Keras callback. The parameter lr.
red. patience defines how many epochs without improvement
of the validation accuracy (different proxy can be chosen to monitor)
have to pass to change the current learning rate by multiplying it with
the lr. red. factor.

The batches used to train the networks were randomly generated
during training, always from the whole training sample. Validation
started once a satisfying number of generated batches was presented
to the network, this is the training data set size divided by the batch
size. This was done to maximize the use of our data while keeping
balanced numbers of classes in the yielded training batches, in order
to avoid biasing the network.

5.3 CNN results

We demonstrate that CNNs are capable of high accuracy, automated
galaxy cluster candidate classification. We trained each of our
networks 10 times with the exact same hyperparameters, differing

Figure 8. ROC curves for the best-performing networks when trained on
different data formats. Closer the curve copies the left vertical and top
horizontal axis, better the classifier. The dashed line represents how would an
untrained, randomly guessing classifier score. Training on optical data only
ended up with the poorest results, using only X-ray data achieved much better
results, however, the combination of optical and X-ray data resulted in the
best performance. CN refers to our custom network, MN to the MobileNet
architecture, E to the data set classified by experts, and Z to the data set
classified by the Zooniverse volunteers.

only in the seed for generation of random numbers during network’s
initialization, the order of random image selection into balanced
mini-batches during training and the random sampling of augmenta-
tion values applied during training but keeping the same objects in the
training, validation, and test data sets. The results of individual runs
are averaged and presented together with their standard deviations
in Table 5 and Fig. 8 helping to compare various networks.

To report accuracy (A), precision (P), and recall (R) in Table 5, we
need to make hard classification decision for each example image
from our test set. Our neural networks are trained to output the
probability that the input image is a galaxy cluster. Therefore, we
classify input images as galaxy cluster if this probability is higher
than 0.5.

Our best-performing custom network (CN-E), trained on the expert
classified data set, achieved an average accuracy of (90 ± 3) per cent.
We also explored training on concatenated PNG images, without the
greyscaling, so having six channels instead of three, but this did not
change the performance significantly.

The MobileNet architecture trained on the data classified by
experts achieved an average accuracy of (88 ± 2) per cent. Perhaps
MobileNet has slightly different sensitivity for individual colour
channels due to the potential bias in its original training sample.
We explored this possibility by training it on two additional channel
configurations, X-ray green, optical red, empty blue and X-ray
red, optical green, empty blue, but its performance did not change
significantly.

Training using the labels obtained in the Zooniverse project
resulted in lower performance for both, our custom network (CN-
Z) and the MobileNet (MN-Z), achieving average accuracies (82 ±
1) per cent and (79 ± 2) per cent, respectively.

Lastly, we also explored the training of neural networks on single
wavelength PNG images. Our custom network using expert labels
trained only on the X-ray images without their optical counterparts
(CN-E solo X-ray) achieved an average accuracy of (81 ± 1) per cent.
Our custom network using expert labels trained only on the optical
images (CN-E solo optical) performed the worse, achieving an
accuracy of only 68 ± 2) per cent. This is rather easily understandable
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Table 5. Averaged galaxy cluster candidate classification results of the networks each trained 10 times with the exact
same hyperparameters, only with a different seed for generation of random numbers during its initialization.

Network A ± std P ± std R ± std AUC ± std

CN-E 0.90 ± 0.03 0.89 ± 0.05 0.91 ± 0.03 0.96 ± 0.01
MN-E 0.88 ± 0.02 0.87 ± 0.03 0.91 ± 0.03 0.94 ± 0.01
CN-E solo optical 0.68 ± 0.02 0.64 ± 0.02 0.85 ± 0.04 0.77 ± 0.02
CN-E solo x-ray 0.81 ± 0.01 0.78 ± 0.03 0.86 ± 0.04 0.89 ± 0.01
CN-Z 0.82 ± 0.01 0.96 ± 0.01 0.67 ± 0.02 0.91 ± 0.01
MN-Z 0.79 ± 0.02 0.96 ± 0.03 0.62 ± 0.03 0.86 ± 0.02
CN-E no augm. 0.75 ± 0.02 0.70 ± 0.02 0.87 ± 0.03 0.87 ± 0.01
MN-E no augm. 0.81 ± 0.01 0.75 ± 0.02 0.91 ± 0.01 0.90 ± 0.02

Figure 9. Spectroscopically confirmed galaxy clusters correctly classified
by our custom network randomly selected from the test sample (TP). Left:
optical, middle: X-ray, right: combined.

knowing that the XMM–Newton data are much deeper than the
Second Palomar Observatory Sky Survey (POSS-II) images used for
the current analysis: while XMM–Newton can detect galaxy clusters
as extended sources out to z = 1 at least, the POSS sensitivity strongly
drops beyond z ∼ 0.3 rendering galaxies are hardly identifiable.

Using augmentation (Section 3.2) was critical to achieving good
performance, the accuracy of the network CN greyscale would drop
from (90 ± 3) per cent to (75 ± 2) per cent without the augmentation
and from (88 ± 2) per cent to (81 ± 1) per cent for MobileNet.

5.4 Interpreting the results

We further investigate the results of the best training run of our
custom network (CN-E), which can classify even faint clusters and
those close to the edge of XMM–Newton’s field of view. Fig. 9 shows
some of these randomly selected correctly classified galaxy clusters.

Fig. 10 shows two objects classified as non-clusters by the experts,
but as clusters by our custom network. The top object raised a
concern that it was actually a galaxy cluster. We assume that it
was classified as a galaxy cluster by our custom network because
of the presence of the faint X-ray emission in the centre and that it
is a promising candidate for further investigation and spectroscopic

Figure 10. Non-galaxy clusters incorrectly classified as galaxy clusters (FP)
by our custom network. Left: optical, middle: X-ray, right: combined.

redshift confirmation. Fig. 11 displays images of spectroscopically
confirmed galaxy clusters that have been incorrectly classified by
our custom network as a non-cluster class. The first object from the
top is a non-centred galaxy cluster. The second contains a group
of nearby galaxies with faint extended X-ray emission, which might
have fooled our network. The third is a cluster that falls on a chip gap.
The fourth is a galaxy cluster with three prominent nearby galaxies
along the line of sight that is probably what fooled our network, and
the last object appears like a nearby galaxy, which can be hard to
classify even for the experts.

Fig. 12 shows outputs of the selected filters of our custom network
for a spectroscopically confirmed nearby galaxy cluster. We can see
how the network learned to search for edges and colour patches of
X-ray or optical light. Some filters learned to search primarily for
X-ray emission and others for optical emission. Most of the filters
detected both of the emission components simultaneously. Multiple
filters in the same layer usually learned to search for X-ray emission,
but their sensitivity is different. There are filters that get activated
only by stronger emission, while other filters are more sensitive to
X-ray emission. The network uses the filters to probe the presence
and extent of the X-ray emission in the input image. Note that the
filter output size decreases deeper within the network because of
the max-pooling operation applied in the pooling layer after each
convolutional layer.

5.5 Multiclass classification

We also trained neural networks for multiclass classification using
the labels of the experts. We segregated objects into five classification
classes – low-z cluster, high-z cluster, nearby galaxy, point source
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Figure 11. Galaxy clusters incorrectly classified as non-galaxy clusters (FN)
by our custom network. Left: optical, middle: X-ray, right: combined.

(point, star or AGN, double source), and other (artefact, edge). The
ROC curves and performance measurements were calculated as one
versus all problem.

In this regime, the MobileNet architecture and our custom network
achieved an AUC and accuracy, averaged over all classes, within 1σ .
The MobileNet achieved an AUC score of (91 ± 2) per cent and
accuracy of (86 ± 6) per cent , and our custom network obtained an
AUC of (88 ± 2) per cent and (85 ± 4) per cent accuracy (Table 6).

In the case of multiclass classification problems, ROC and AUC are
plotted for each of the classes separately as one versus all, reducing
the problem to the binary case. From the ROC curves (Fig. 13),
we see that the point source and high-z galaxy cluster were the
hardest classes to detect, and in the custom network, the nearby
galaxy class was the easiest to distinguish. We interpret this as a
consequence of nearby galaxies being very distinct from the other
classes in the optical. Interestingly, this category did not achieve the
best performance for the MobileNet network, however, it was still
placed among the top-performing classes.

We note that since we have trained the neural networks on a sample
of galaxy cluster candidates picked by the XAmin pipeline, our
sample of point sources is biased towards objects with some spatially
extended emission. Thus, we cannot consider the networks trained
for multiclass classification as a reliable point source classifiers since
they are not representative of the population and do not reflect the

Figure 12. Top: Input image to the trained network. Each row from second
to last shows outputs (activation maps) of three selected filters from second,
fourth, and sixth convolutional layer of our custom network, respectively.

typical appearance of an X-ray point source. If one would like to
use our neural networks for point source detection, re-training or
fine-tuning of our models on a representative sample of X-ray point
sources would be required.

5.6 Cross-validation

We perform 10-fold cross-validation of CN-E to explore, if the test
data set, having all of its galaxy clusters spectroscopically confirmed,
shows significant bias compared to the galaxy cluster sample in
the training data set. Table 7 contains the number of example
images in each data set for a single fold of the cross-validation. The
cross-validation accuracy scores between 87 per cent and 92 per cent
(Table 8, Fig. 14) and our CN-E achieved accuracy 90 per cent on
average (Table 5, Fig. 8). Those results are consistent and the test
sample we used does not seem to have any significant bias on the
network’s performance.

6 SU M M A RY

In this paper, we have presented convolutional neural networks to
classify extended X-ray sources detected by the XAmin pipeline.
This automated method can be used to replace the traditional manual
screening confirmation task of the XAmin galaxy cluster candidates,
which is often tedious and slow.

First, we built a crowd-sourcing Zooniverse project – The Hunt for
Galaxy Clusters, to obtain a classification of a large number (1600) of
galaxy cluster candidates in a short time frame (6 months). Our vol-
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Table 6. Results from the multiclass classification networks.

Class A P R AUC

MN greyscale
Low-z cluster 0.77 0.62 0.94 0.93
High-z cluster 0.87 0.56 0.22 0.91
Point source 0.87 0.88 0.36 0.89
Nearby galaxy 0.90 0.70 0.73 0.92
Other 0.91 0.65 0.68 0.92

CN greyscale
Low-z cluster 0.79 0.68 0.81 0.89
High-z cluster 0.84 0.44 0.65 0.89
Point source 0.84 0.75 0.27 0.88
Nearby galaxy 0.89 0.74 0.57 0.85
Other 0.87 0.52 0.64 0.88

Table 7. The number of objects in the training, validation, and test data sets
in a single fold of the 10-fold cross-validation.

Class Experts
Train Validate Test

Cluster 904 113 113
Non-cluster 399 57 114

Table 8. Classification results of our custom networks for a 10-fold cross-
validation on classifications done by experts.

Fold A P R

1 0.89 0.89 0.88
2 0.92 0.91 0.93
3 0.90 0.90 0.91
4 0.88 0.91 0.83
5 0.87 0.88 0.86
6 0.87 0.87 0.88
7 0.88 0.90 0.86
8 0.92 0.89 0.95
9 0.88 0.84 0.94
10 0.89 0.92 0.87

unteers obtained 62 per cent agreement with experts for identifying
clusters and non-clusters in an overlapping sample of 404 objects. We
found that the volunteers were often incorrectly classifying objects as
point sources or no emission. Of 254 objects classified as galaxy clus-

Figure 14. ROC curves for 10 fold cross-validation of our custom network
trained on expert classifications.

ters by experts in the overlapping sample, volunteers agreed on 104 of
those (66/146 low-z and 38/108 high-z galaxy clusters), which is only
about 40 per cent, but they inconsistently classified only one non-
cluster as a galaxy cluster. In total, the volunteers found 506 clusters
from 1600 candidates. We suspect the reason behind this low perfor-
mance of the Zooniverse volunteers in The Hunt for Galaxy Cluster,
if compared to, e.g. Galaxy Zoo, to be the complexity of combined
X-ray and optical data of galaxy cluster candidates, burdened by
multiple projection and instrumental effects (see Section 5.1 for dis-
cussion of biases the Zooniverse volunteers exhibited). We also tested
a hypothesis that the Zooniverse volunteers would preferentially
find prominent galaxy clusters and that their sample could be easily
recreated by a cut in the extent – extension likelihood plane (Pacaud
et al. 2006), however, the Zooniverse volunteers found galaxy clusters
across the entire extent – extension likelihood space (Appendix B),
pointing out that their help could be used for a galaxy cluster science.

Next, we trained CNNs on XMM–Newton X-ray images combined
with their optical counterparts from DSS2, to distinguish galaxy
clusters from non-clusters. The cross-validation of our custom
network shows consistent results (Table 8, Fig. 14) with accuracy
scoring between 87 per cent and 92 per cent. We further developed
networks on a fixed training, validation, and test samples, the
networks trained on Zooniverse classified data having a different
training and validation samples than those trained on data classified
by experts, but both having the same test sample. Our best network

Figure 13. ROC curves for multiclass classification performed by the MobileNet architecture (left) and our custom network (right).
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(CN-E) obtained an average accuracy of 90 per cent (Section 5.3).
This network used our custom architecture and was trained on labels
made by experts. The test sample of 170 objects is composed of
85 spectroscopically confirmed galaxy clusters (62 low z and 23
high z), and 85 galaxy cluster candidates classified as non-clusters
by experts. For comparison, a similar network using the MobileNet
architecture (MN-E) obtained an average accuracy of 88 per cent
and using the custom architecture with the Zooniverse classifications
(CN-Z) gave an average accuracy of 82 per cent at best.

In this work, we show that CNNs trained using either X-ray only or
optical only images had significantly lower performance in reliably
identifying galaxy clusters in comparison to using the combined
data. While in the X-rays XMM–Newton detects galaxy clusters as
extended sources to z = 1 at least, the optical POSS-II data sensitivity
strongly drops beyond z ∼ 0.3, making galaxies hardly identifiable.
This is evident from the high number of false-positive detections of
galaxy clusters (low precision) using the optical only data. The X-ray
only network achieved higher accuracy (81 per cent) than the optical
only network (68 per cent).

Additionally we train our networks for multiclass classification
using expert classified labels: low-z galaxy cluster, high-z galaxy
cluster, point source, nearby galaxy, and other. In this case, the
MobileNet architecture performed slightly, but not significantly,
better than our custom network (Table 5).

This project is a pilot study to determine the potential of CNNs
for the detection of galaxy clusters. In the future, we intend to apply
our methods to large sky surveys such as the new eROSITA or LSST
and Euclid. Their enormous data sets are expected to contain tens of
thousands of new galaxy clusters, which will require automated, fast,
and reliable methods to identify, as human screening of such large
data volumes will be impossible. Our methods can also be applied to
simulated data. Our custom network can be easily fine-tuned to, e.g.
eROSITA simulations and deliver an automated search tool for galaxy
clusters from X-ray images. Applying our CNN on simulations will
also enable modelling of the cluster selection function, important for
cosmological studies, which cannot be done with clusters selected
by human inspection due to their inconsistent biases.
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APPENDIX A : IMAGE PREPRO CESSING

The output of the XAmin pipeline is an image with the following
normalization: if a pixel value is lower than min cut, it is attributed a
value of 255; if a pixel is greater than max cut it is attributed a value
of 0; and 255 × (1 – (data – min cut)/(max cut – min cut)) otherwise
Table A1. To produce the .png images used in the neural networks,
XAmin applies the normalization separately to each of the channels
according to Table A2.

Table A1. Threshold values used by the XAmin pipeline, std and median
are the standard deviation and the median of the image data.

X-ray Optical

Min cut 0 Median – Std
Max cut Median × 14 Median + 5 × Std

Table A2. PNG image channel values as constructed by the XAmin
pipeline. pix refers to the pixel value after cutting.

Channel Pixel value Normalized pixel value

R pix > = 176 255
pix < 176 pix × 255/176

G pix > = 120 (pix – 120) × 255/(255 – 120)
pix. < 120 0

B pix > = 190 (pix – 190) × 255/(255 – 190)
pix < 190 0

Figure B1. Extent–extension likelihood plane for objects of the 170 test
sample classified by experts and the Zooniverse volunteers.

Figure B2. Extent–extension likelihood plane for objects of the experts train
sample and the Zooniverse train sample.

APPENDI X B: EXTENT–EXTENSI ON
L I K E L I H O O D P L A N E P L OTS

The extent–extension likelihood plane plots (Figs B1 and B2) of
our C1 sample of galaxy cluster candidates, as described in Pacaud
et al. (2006), were used to analyse the Zooniverse sample of galaxy
clusters and investigate our initial hypothesis that the Zooniverse
volunteers will preferentially find most prominent galaxy clusters.
We find that the sample of the Zooniverse galaxy clusters span the
entire extent–extension likelihood plane and cannot be recreated by
a simple cut in this space. Please note, however, that the XAminv3.5
we used to make the C1 sample had an issue fitting the point source
peak, resulting in many non-clusters in the C1 region on the plots
and that it is not the same pipeline as the XXL collaboration used
before.
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