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ABSTRACT

A key uncertainty in galaxy evolution is the physics regulating star formation, ranging from small-scale processes related to the
life-cycle of molecular clouds within galaxies to large-scale processes such as gas accretion on to galaxies. We study the imprint of
such processes on the time-variability of star formation with an analytical approach tracking the gas mass of galaxies (‘regulator
model’). Specifically, we quantify the strength of the fluctuation in the star-formation rate (SFR) on different time-scales, i.e. the
power spectral density (PSD) of the star-formation history, and connect it to gas inflow and the life-cycle of molecular clouds.
We show that in the general case the PSD of the SFR has three breaks, corresponding to the correlation time of the inflow rate,
the equilibrium time-scale of the gas reservoir of the galaxy, and the average lifetime of individual molecular clouds. On long
and intermediate time-scales (relative to the dynamical time-scale of the galaxy), the PSD is typically set by the variability of the
inflow rate and the interplay between outflows and gas depletion. On short time-scales, the PSD shows an additional component
related to the life-cycle of molecular clouds, which can be described by a damped random walk with a power-law slope of
B =~ 2 at high frequencies with a break near the average cloud lifetime. We discuss star-formation ‘burstiness’ in a wide range of
galaxy regimes, study the evolution of galaxies about the main sequence ridgeline, and explore the applicability of our method

for understanding the star-formation process on cloud-scale from galaxy-integrated measurements.
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1 INTRODUCTION

The past two decades have been momentous in understanding the
buildup of galaxies through most of cosmic time, especially in terms
of their global properties and behaviour. Today, the unknown physics
of star formation and feedback represent the main uncertainty in our
understanding of galaxy formation (e.g. Naab & Ostriker 2017). It
is challenging to gain further insight on star formation and feedback
because these processes act on multiple spatial and temporal scales.
In this paper, we address the question of how different processes
— external and internal to galaxies — shape the variability of star
formation on a wide range of time-scales.

On galactic and cosmic scales, star formation as manifested in the
cosmic star-formation rate (SFR) density and the star-forming main
sequence can be understood as an interplay between the buildup of
dark matter haloes and self-regulation, as demonstrated by empirical
and semi-analytical models as well as more detailed hydrodynamical
models that link recipes of star formation to ACDM structure
formation (e.g. Somerville & Davé 2015; Wechsler & Tinker 2018).
The cosmic SFR density increases from the early Universe to the peak
at Cosmic Noon (redshift z ~ 1-3) because of an increase in both
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the gas accretion rate of individual galaxies and the number density
of galaxies that are able to form stars efficiently (e.g. Hernquist &
Springel 2003; Springel & Hernquist 2003; Behroozi, Wechsler &
Conroy 2013; Tacchella, Trenti & Carollo 2013; Birrer et al. 2014).
Toward lower redshifts, the cosmic SFR density declines because
the accretion rates decline and some galaxies fully cease their star
formation (‘quenching’, e.g. Faber et al. 2007; Peng et al. 2010b;
Schaye et al. 2010; Renzini 2016).

Closely related, a wide range of models reproduce the observed
evolution of the star-forming main sequence (correlation between
SFR and stellar mass M,; Brinchmann et al. 2004; Daddi et al.
2007; Noeske et al. 2007a; Whitaker et al. 2014; Boogaard et al.
2018), where the decline of the specific SFR (sSFR = SFR/M,)
with time is consistent with the decline of the gas accretion rate
on to galaxies, which itself is closely related to the evolution of the
cosmological specific accretion rate into dark matter haloes (Neistein,
van den Bosch & Dekel 2006; Noeske et al. 2007b; Bouché et al.
2010; Dutton, van den Bosch & Dekel 2010; Lilly et al. 2013). The
observed, rather small scatter of the star-forming main sequence
suggests that galaxies self-regulate their growth and propagate along
this SFR—M, ridgeline. Although galaxies’ dark matter haloes build
hierarchically, most stars from in ‘normal’, main-sequence galaxies,
which sustain their SFRs for extended periods of time in a quasi-
steady state of gas inflow, gas outflow, and gas consumption (Bouché
etal. 2010; Daddi et al. 2010; Genzel et al. 2010; Tacconi et al. 2010;
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Davé, Finlator & Oppenheimer 2012; Dekel et al. 2013; Lilly et al.
2013; Forbes et al. 2014a,b; Hopkins et al. 2014; Mitra, Davé &
Finlator 2015; Tacchella et al. 2016a).

The key question — which time-scale is encoded in the main se-
quence scatter? — remains observationally unanswered. As discussed
in Abramson et al. (2015, see also Muioz & Peeples 2015), if the
scatter arises due to short-term fluctuations in the star-formation
history, similar-mass galaxies mostly grow-up together (e.g. Peng
et al. 2010a; Behroozi et al. 2013). On the other hand, if the main
sequence scatter arises due to long-term fluctuations, similar-mass
galaxies do not grow-up together and the star-forming sequence is not
an attractor solution, but is just an observed coincidence (Gladders
et al. 2013). In the latter case, we expect that the star-formation
histories of galaxies are correlated throughout the age of the Universe
(Kelson 2014).

Theoretically, based on the cosmological zoom-in simulations
VELA, Tacchella et al. (2016a) proposed that the self-regulated
evolution of galaxies through phases of gas compaction, depletion,
possible replenishment, and eventual quenching, leads to an attractor
state of the main sequence. While galaxies evolve about the main
sequence ridgeline, they build up their bulge component (Tacchella
et al. 2016b). Rodriguez-Puebla et al. (2016) found that the scatter
of the halo mass accretion rate in the Bolshoi—Planck simulation
is comparable to the scatter of the main sequence, suggesting that
halo accretion histories play an important role in determining the
scatter. Based on the EAGLE simulations, Matthee & Schaye (2019,
see also Katsianis et al. 2019) show that the main sequence scatter
originates from a combination of fluctuations on short time-scales
(ranging from 0.2 to 2 Gyr) that are associated with self-regulation
and on longer time-scales that are related to differences in the
halo accretion. Models such as these forecast how galaxies oscillate
about the main sequence ridgeline, making predictions concerning
oscillation time-scales and star-formation distribution on spatially
resolved scales. However, an important caveat in numerical simula-
tion studies is the effect of stochasticity of the SFR due to small-scale
dynamical chaos, seeded by numerical round-off and through explicit
randomness in many subgrid models (Genel et al. 2019; Keller et al.
2019).

In more general terms, the scatter of the main sequence is directly
related to the variability of star-formation histories of individual
galaxies, which encodes a wealth of information about the star-
formation process, baryon cycle, galaxy—galaxy mergers, strength of
stellar and black hole feedback and dark matter accretion histories.
On short time-scales (<100 Myr), the strength of the fluctuations
may encode the formation and destruction of individual giant
molecular clouds (GMCs) where feedback is locally too weak
to prevent gravitational collapse (Scalo & Struck-Marcell 1984,
1986; Quillen & Bland-Hawthorn 2008; Kruijssen et al. 2014;
Krumholz & Kruijssen 2015; Torrey et al. 2017; Faucher-Giguere
2018; Orr, Hayward & Hopkins 2019), or even individual massive
stars when the SFR is sufficiently low that the IMF is not fully
sampled (e.g. Fumagalli, da Silva & Krumholz 2011; da Silva,
Fumagalli & Krumholz 2012, 2014). On intermediate time-scales
(~0.1-1 Gyr), galaxy mergers, disc instabilities, galactic winds, bar-
induced inflows, and environmental effects are thought to drive the
variability of star formation (Gunn & Gott 1972; Hernquist 1989;
Mihos & Hernquist 1996; Robertson et al. 2006; Oppenheimer &
Davé 2008; McQuinn et al. 2010; Dekel & Burkert 2014; Zolotov
et al. 2015; Tacchella et al. 2016a; Sparre et al. 2017; Torrey et al.
2018; Wang & Lilly 2020a). On the longest time-scales (>1 Gyr),
dark matter haloes of galaxies, as well as galaxy quenching, play
crucial roles (Behroozi et al. 2013; Moster, Naab & White 2013,
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2018; Birrer et al. 2014; Rodriguez-Puebla et al. 2016; Tacchella
et al. 2018; Behroozi et al. 2019).

It is challenging to invalidate these predictions observationally
based solely on estimates of the SFR from individual bands or lines
of an individual galaxy because these quantities are only measured
at one point in a galaxy’s lifetime. The maturing approach of spectral
energy distribution modelling allows a more robust measurement
(in particular of the associated uncertainties) of the star-formation
history of individual galaxies on long time-scales (Pacifici et al. 2016;
Iyer & Gawiser 2017; Leja et al. 2017, 2019; Carnall et al. 2019;
Iyer et al. 2019). However, star-formation histories of individual
galaxies are still poorly determined from observations on short time-
scales (<100 Myr). The short term variability of star formation, i.e.
‘burstiness’, is usually inferred by comparing a shorter to a longer
SFR tracer, such as nebular emission line versus continuum flux
(Weisz et al. 2012; Kruijssen & Longmore 2014; Guo et al. 2016;
Kruijssen et al. 2018; Broussard et al. 2019; Caplar & Tacchella
2019; Emami et al. 2019; Faisst et al. 2019). The main difficulty
is to break the degeneracy between these measures of burstiness,
and variation in the initial mass function, ionization parameter, dust
attenuation, stellar population model, or metallicity (e.g. Johnson
et al. 2013; Haydon et al. 2018; Shivaei et al. 2018; Broussard et al.
2019).

To quantify the variability of star formation on a range of different
time-scales, Caplar & Tacchella (2019) introduced the framework
of modelling star-formation histories as a stochastic process, which
can be described through a power spectral density (PSD). The PSD
framework, widely used for stochastic modelling of the short-term
variability (~1 yr) of active galactic nuclei (AGNs; Kelly, Bechtold &
Siemiginowska 2009; MacLeod et al. 2010, 2012; Dexter & Agol
2011; Caplar, Lilly & Trakhtenbrot 2017), is a powerful tool to
measure the amount of power contained in SFR fluctuations on a
given time-scale and therefore encodes the variability or ‘burstiness’
on that time-scale. Iyer et al. (in preparation) show that the PSD
contains a wealth of information about different physical processes
and that different galaxy formation models (ranging from empirical
models to hydrodynamical simulations) predict widely different
PSDs for similar-mass galaxies, i.e. measuring and constraining
the PSD parameters can be used to differentiate and constrain
theoretical models. Based on z ~ 0 observations of the main sequence
scatter (Davies et al. 2019a), star-formation histories of galaxies
with M, ~ 10'Mg show a break in their PSD at ~200 Myr,
indicating that galaxies lose ‘memory’ of their previous activity
on this time-scale. A similar conclusion was reached by Hahn,
Tinker & Wetzel (2019), who studied the scatter of the stellar-
to-halo mass relation. Wang & Lilly (2020b) used MaNGA data
to constrain the PSD of star formation in local galaxies, finding
slopes between 1.0 and 2.0, which indicates that the power of the
star-formation variability is mostly contributed by longer time-scale
variations.

In this paper, we link this PSD framework to physical processes
that take place in and around galaxies. Specifically, processes acting
on different spatial scales, including formation and distribution of
GMCs, spiral arms, galaxy—galaxy mergers, and galaxy- and halo-
scale cosmological inflows and outflows, drive variations in the SFR
on different time-scales, which are reflected and measurable through
the PSD. What does the variability of star formation tell us about the
physics of galaxies? Is the variability mainly related to gas physics
acting on large scales (e.g. accretion and inflow) or to small-scale
cloud physics where the star-formation takes place? How does this
depend on galaxy stellar mass and cosmic time? Bottom line: we aim
at building a physical intuition for the PSD in this work.
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Although hydrodynamical simulations have made tremendous
progress in simulating large populations of galaxies at high resolution
(e.g. Hopkins et al. 2014; Schaye et al. 2015; Ceverino, Glover &
Klessen 2017; Tremmel et al. 2017; Hopkins et al. 2018; Nelson et al.
2019; Pillepich etal. 2019), these models are still limited by exploring
a small range of parameter space (it is difficult to re-run simulation
with different input physics) and galaxy regimes (high versus low
redshifts, low- versus high-mass galaxies). In order to bridge the gap
between small and large-scale physics and to explore a wide range of
galaxy regimes, our approach is based on the idea of regulator models,
where we model the gas cycle through galaxies with analytical
equations that we numerically solve. The model is described in detail
in Section 2. Our simplistic approach allows us to study how different
physical processes drive the SFR variability, i.e. the shape of the PSD
(Section 3). We discuss in Section 4 how in the future, properties such
as GMC lifetimes can be constrained from integrated observations
and how key aspects of our model can be tested by both more detailed
hydrodynamical models and observations. Furthermore, we show
how gradients across the main sequence depend on the time-scale
of the SFR indicator. Finally, we conclude in Section 5. Throughout
this paper, we denote with ( - ) the per-GMC average (approximately
the same as the number-density-weighted average ( - ),), while (-),,
denotes the GMC mass-weighted average and ( - ), is the average
over a long time interval relative to the dynamical time-scale of the
galaxy.

2 FROM GAS ACCRETION TO THE PROCESS
OF STAR FORMATION

In this section, we describe our model to understand the variability
of star formation on different time-scales, arising from both galaxy
internal and external processes. We build on the considerations
of the regulator model (Sections 2.1 and 2.2), which uses mass
conservation to derive the evolution of the gas mass and the SFR
with cosmic time (e.g. Bouché et al. 2010; Davé, Oppenheimer &
Finlator 2011; Davé et al. 2012; Lilly et al. 2013; Birrer et al.
2014; Dekel & Mandelker 2014; Forbes et al. 2014b). We call
this model the basic regulator model throughout this work. In this
basic regulator model, the variability of the SFR is driven by a
stochastic inflow rate processed through a single gas reservoir. In
Section 2.3, we introduce the extended regulator model, which
addresses a puzzle associated with the basic regulator model,
namely exactly what gas is included in the gas reservoir. Specif-
ically, we assume that the SFR is sustained by a population of
individual GMCs, which form from the diffuse reservoir of gas
(which we may now roughly identify as HI), and which have
a certain star-formation efficiency and lifetime distribution. In
this extended regulator model, the source of variability in the
SFR is driven by both the variability of the inflow rate and the
stochasticity of GMC formation. An overview of the key functions
and parameters of our model are given in this section and in
Table 1.

2.1 Regulator model — general considerations

The time-evolution of the gas and stellar mass content of a galaxy
can be described with the regulator model. We build on the model
described in Lilly et al. (2013), in which the SFR is regulated by
the gas mass (Mg,) in a reservoir within the galaxy. In the basic
regulator model, stars form directly out of this reservoir, while
in the extended regulator model, the gas mass of this reservoir
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only includes the neutral gas from which the molecular gas (My,o1)
forms, i.e. it does not include Mo, which we track separately via
a population of GMCs. The key ingredients of this model are as
follows.

The fundamental equation originates from mass conservation of
the gas reservoir within the galaxy where we have separated the
source and sink terms as in Fig. 1:

dr
where ®(7) is the gas inflow rate to the gas reservoir, R(f) is the
rate of mass returned from stars to the gas reservoir, V() is the
outflow rate, and G(¢) describes the rate at which mass from the
reservoir is converted to molecular gas and stars, i.e. star-formation
processes.

We describe ®(7) in detail in Section 2.5. It is important to note that
the inflow rate ®(f) not only includes pristine gas inflow into Mg,
from the outside of the dark matter halo, but describes all gas inflow
into the gas reservoir. Specifically, ®(7) describes the whole interface
between the gas reservoir and the circumgalactic medium, which
is not well-understood and rather complex (Tumlinson, Peeples &
Werk 2017). This includes processes such as pristine gas inflow
into the halo, gas cooling within the halo, cold streams feeding the
galaxy, galaxy—galaxy mergers, recycling of outflows, and flows of
gas within the galaxy from regions of inefficient star formation (e.g.
interarm regions or extended HI discs). Therefore, we parametrize
®(7) as a general stochastic process, allowing it to describe a wide
range of physical mechanisms. As we show later in the paper, ®(7)
is one of two key drivers of the time-variability of the SFR in our
model.

The rate at which mass is returned from stellar populations to the
gas reservoir, R(¢), is obtained from stellar population models (e.g.
Bruzual & Charlot 2003). We highlight the details in Appendix A.
Briefly, for a simple stellar population (SSP), R(¢) exponentially
declines with time, leading to a linear increase of the returned mass
fraction (fz) with log-time. When considering long-term evolution
of the gas reservoir, instantaneous return is often assumed so that a
fraction (1 — f) steadily builds up a population of long-lived stars and
stellar remnants (Tinsley 1980). However, this assumption will break
down in galaxies with young ages, such as high-redshift galaxies (z >
4; see Tacchella et al. 2018). Furthermore, Leitner & Kravtsov (2011)
show that gas from stellar mass-loss can provide most or all of the
fuel required to sustain today’s level of star formation in late-type
galaxies. Therefore in our numerical implementation we track R(f)
and compute it based on the star-formation history at each time-step
self-consistently throughout this work.

Furthermore, star formation may drive a wind out of the galaxy,
which we characterize as outflow rate throughout this paper as

= @) + R(t) — W (1) — G(), ey

W(t) = A - SFR(?), 2

where A is the mass-loading factor. The mass-loading factor A is
still uncertain, both observationally and theoretically, depending
critically where it is measured (around star-forming regions or
at a certain fraction of the virial radius) and how it is defined.
In theoretical models, there is a significant difference between a
measured mass-loading factor (ratio of the ouflow rate to the SFR)
and the injected mass-loading factor in the sub-grid model (e.g.
Torrey et al. 2019). Recent observations (e.g. Bouché et al. 2012;
Newman et al. 2012; Bolatto, Wolfire & Leroy 2013; Kacprzak
et al. 2014; Schroetter et al. 2015, 2019; Davies et al. 2019b;
Forster Schreiber et al. 2019; Kruijssen et al. 2019; Chevance et al.
2020) measure mass-loading factors of between 0.1 and 30.0 for
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Table 1. Functions and parameters our model, roughly split into regulator and GMC specific quantities. The columns indicate the variable names, give a short
description, and provide additional information.

Function/parameter

Description

Additional comments

Regulator specifics:

Mgas(1) gas mass of the reservoir
M1 (1) molecular gas mass
M., (1) stellar mass content of the galaxy
SFR() star-formation rate of the galaxy
(1) gas inflow rate into the reservoir
depends on: x(7) random variable (distributed standard normal)
" normalization of the gas inflow
o normalization of variability of the gas inflow rate
W (1) mass outflow rate

depends on: 1
Gg@)

mass-loading factor
star-formation process

given by equation (1)

given by the sum of all active GMCs

given by equation (3) (basic) and equation (16) (extended)
stochastic process, given by equation (22)

described by PSDy (equation (23) with ty, B, and By)
typically within [0.1, 10.0]

typically within [0.5, 2.0]

given by equation (2)

typically within [0.1, 10.0]

given by equation (3) (basic) and equation (15) (extended)
specified in Appendix A

given by equation (3)

given by equation (4)

given by equation (12)
given by equation (11)
given by equation (14)
given by equation (18)

R(t) mass return rate from stars to reservoir

Tdep depletion time

Teq equilibrium timescale

GMC specifics:

mp mass of an individual GMC at formation (birth)
m mass of an individual GMC

SFRGMmc (mp) SFR of a GMC with birth mass my,

Npirtn (1) number of GMCs drawn in a given time step
Nomce(t) number of active / star-forming GMCs

Tmol molecular gas formation timescale

ny(mp) GMC birth mass function

depends on: ap power-law slope

Muin, Mmax minimal/maximal mass of GMCs

Nobs (M) observed GMC mass function
depends on: oops low-mass power-law slope of observed mass function
T (mp) GMC lifetime
depends on: 7 normalization
aj power-law slope
&(mp) GMC star-formation efficiency

depends on: &g normalization
e power-law slope

calibrated via equation (17)

given by equation (7)

typically within oy, = [ — 1.5, 2.5]
Mimin = 10% — 10° Mg and max = 107 — 10° Mg
given by equation (B4)

Uobs = b + O]

given by equation (9)

typically within [3.0, 50.0] Myr
typically within [0, 0.5]

given by equation (10), upper limit of 1
typically within [0.01, 1.0]

typically within [0, 0.5]

star-forming galaxies at z = 0 — 2, only depending weakly on stellar
mass and redshift, which is in rough agreement with theoretical
models that measure the mass-loading factor (e.g. Barai et al. 2015;
Muratov et al. 2015; Torrey et al. 2019). Connecting the regulator
model with metallicity yields, Zahid et al. (2012) and Lilly et al.
(2013) constrain the mass-loading factor to be between 0.1 and 0.8
for star-forming galaxies in the local universe.! Because of the large
uncertainty in the mean value of A, we assume it to be fixed in time
in our model, but we note that this is an assumption that could be
relaxed. In this work, we assume a fiducial value for the mass-loading
factor of A = 1.0, and investigate variation between 0.1 and 30.0.

Finally, G(¢) describes the star-formation process. As described in
the next section (Section 2.2), in the basic regulator model, the SFR
is directly related to gas mass in the reservoir via the depletion time.
In Section 2.3, we expand on this by assuming that star formation is
sustained by GMCs, which constitute the molecular gas phase M.
In this extended regulator model, we assume that the formation of
GMCs is stochastic and, hence, G(¢) is the second key driver of the
variability of the SFR.

IThe exact value depends on the adopted yield and fx.

2.2 Basic regulator model

In the basic regulator model, we assume that the SFR in the galaxy
is determined by the mass of gas in the internal reservoir, which
is motivated by a Kennicutt—Schmidt-type relation (Schmidt 1959;
Kennicutt 1989):

Mgas (t)

Tdep

G(t) = SFR(1) = 3

where T4, is the depletion time. Equation (3) is in some sense the
definition of the depletion time, where again for simplicity we have
assumed that the depletion time is constant. With these specifications
(equations 2 and 3), equation (1) can be solved numerically.

In order to gain further intuition and link to earlier works, we
can momentarily adopt a single constant value of fz and ®(¢) =
®(1)/Taep, Which together with A and 74, define the equilibrium
time-scale

'Cdep
Tgg= —————. 4
T fath @
We can then re-write equation (1) as:
dSFR(z) 1 -
———— 4+ — - SFR(#) = ®(1). 5)
dr Teq
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- .

Figure 1. Illustration of how gas cycles through galaxies in our extended regulator model. Gas flows into the gas reservoir Mg,s with an inflow rate @ (blue
arrow). Giant molecular clouds (GMCs) form out of this reservoir (green arrow) and constitute the molecular gas mass M. These GMCs sustain an SFR that
builds up the stellar mass M, (orange arrow), while some of this GMC mass is returned to the gas reservoir due to inefficient star formation (cyan arrow). Some
of the stellar mass, which is not locked up in long-lived stars, is returned to the gas reservoir at a rate R (pink arrow). Finally, some gas is expelled from the
galaxy by an outflow rate W that is assumed to be proportional to the SFR (red arrow). The mass of gas in the reservoir is free to vary and this regulates the
formation of GMCs, and hence star formation. The main goal of this model is to understand the source of variability of the SFR due to gas inflow and stochastic

GMC formation.

The equilibrium time-scale 7.4 describes the time-scale by which
the SFR converges towards a stable-state, equilibrium solution. This
can directly be seen by solving equation (5) analytically (assuming
that @, fz, A, and 74, are all constant or only change slowly with
time, see also Peng & Maiolino 2014):

SFR(t) = (SFR(ZO) — &) . e~ Ted (t=10)
l—fr+2
()

+ .
I—fr+2

(0)
The equilibrium SFR is given by the last term of this equation and it
can be reached for # > >7.4. These considerations motivate calling
this framework the ‘regulator model’: the SFR of a galaxy regulates
itself as described by equation (5). If the gas inflow rate goes up,
the gas mass of the reservoir increases, and hence the SFR becomes
larger. However, as the SFR increases, so does the consumption rate
from the gas reservoir both via star formation and outflows, which
slows the growth of the gas mass, and hence the SFR.

In order to solve equation (5) generally and compute the time-
evolution of the SFR, we need to specify the inflow rate ®, the
depletion time 74y, and the mass-loading factor A. In the general
case, we expect @, A, and 74ep to vary with cosmic time and galaxy
properties, such as stellar mass, gas density, and metallicity. For
example, Tacchella et al. (2016a), based on cosmological zoom-
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in simulations, showed that inflow rate, gas mass, gas distribution,
and depletion time play a role in determining the SFR at a given
stellar mass: galaxies above the main sequence ridgeline have
higher cold gas masses in a more compact configuration and shorter
depletion times than galaxies below it. This is consistent with recent
observations that show such gradients about the main sequence
(Genzel et al. 2015; Tacconi et al. 2018; Freundlich et al. 2019),
though uncertainties remain in the determination of SFRs as well
as gas masses that could lead to spurious correlations. In case of
variable inflow, the observed SFR will be both function of this
variable inflow rate and the parameters of the regulator. We refer the
reader to further discussion of this interplay in Wang & Lilly (2020a).
Wang & Lilly (2020a) also argued that variation of the depletion
time plays only a secondary role in determining the variation of SFR
with respect to the variation of inflow rate based on the regulator
model.

From these considerations, we assume for the basic regulator
model that the variations in ®(f) are dominant, and variations in
Tgep and A with time (and galaxy property) are negligible for the
evolution of individual galaxies. Specifically, for a certain realization
of the model (i.e. computation of SFR(?)), we vary ®(r), while
holding the other parameters of the basic regulator model (7 4., and
A) fixed. As shown by equation (5), the key quantity that regulates
the SFR of the galaxy in the basic regulator model is the equilibrium
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time-scale (equation 4), which itself depends to first order on 7
and A when A 2> 1, and weakly on R(¢). In the extended regulator
model (next section), in which star formation is sustained by GMCs,
the depletion time varies self-consistently with time as described in
Section 2.4.

2.3 Extended regulator model: star formation sustained by
GMCs

We now expand on the above formalism of the basic regulator model
by adding more physical realism to the star-formation process G(z).
This is necessary in order to describe the variability of the SFR
by a combined effect of the inflow rate ® and the galaxy-internal
star formation process itself. In particular, at each time-step dz, we
assume that a population of GMCs is formed. The sum of all living
(i.e. star-forming) GMCs make up the molecular gas mass My, and
they sustain a certain SFR to build up the stellar mass of the galaxy
M,, as shown in Fig. 1.

2.3.1 GMC parametrization

Our model of star formation sustained by GMCs is primarily based
on recent observational results of the GMC population, i.e. we take
a rather empirical approach. This is different from the approaches
by Faucher-Giguere (2018) based on recent simulations and analytic
models of star formation in galaxies, or by Scalo & Struck-Marcell
(1984, see also Scalo & Struck-Marcell 1986; Struck-Marcell &
Scalo 1984, 1987) which models the details of the position-velocity-
mass phase space of GMCs and the resulting variability of star
formation. Specifically, we assume that the GMC population of a
galaxy can be characterized by functions describing distributions
in mass, lifetime, and star-formation efficiency. We parametrize all
these functions as power laws, which allow for enough flexibility
to describe the star-formation processes in local and high-redshift
galaxies, and are consistent with current observational constraints.
As we highlight below, it is important to differentiate between
GMC properties at time of formation (‘birth’) and at time of
observation, i.e. we model GMCs as time-dependent entities in
galaxies.

But what do we mean by GMCs exactly? The physical properties
of GMCs have been studied in the Milky Way and in a growing
number of nearby galaxies, including the LMC, M51, M83, and
M33 (e.g. Rosolowsky et al. 2007; Colombo et al. 2014; Garcia
et al. 2014; Faesi, Lada & Forbrich 2016; Rice et al. 2016; Freeman
et al. 2017; Faesi, Lada & Forbrich 2018; Sun et al. 2018). It is well
known that stars form in GMCs (e.g. Myers et al. 1986; Mooney &
Solomon 1988; Scoville & Good 1989; Williams & McKee 1997)
and that the interstellar medium is turbulent and highly structured.
As aresult, clouds that undergo gravitational collapse generally have
several different centres of collapse, which are evident as filamentary
structures in both observations and simulations (e.g. Goodman et al.
1990; Elmegreen & Scalo 2004; Padoan, Haugbglle & Nordlund
2012; Lee, Chang & Murray 2015; Raskutti, Ostriker & Skinner
2016; Rice et al. 2016; Grudi¢ et al. 2018; Li, Gnedin & Gnedin
2018).

GMC mass function: In our extended regulator model, we assume
that the total SFR of a galaxy is sustained by a population of
independent GMC:s (see Kruijssen & Longmore 2014; Kruijssen et al.
2018 for approaches employing similar assumptions). We assume
that these GMCs are born with a certain molecular gas mass m,
and that the fraction of GMCs with birth masses between my, and
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my, + dmy, i.e. the GMC birth mass function ny(my,), can described
by a simple power law:

np(my)dmy, = Apmydmy, 7

where A, is the normalization and «}, is the power-law slope.
In addition, we assume that a negligible fraction of GMCs form
below myin (=10* Mg) or above miy,y (=107_9M@). We choose
the normalization A}, so that ny, is a probability density function (i.e.
fr;"n::‘ ny(my)dmy, = 1). Observationally the upper truncation in the
mass function tends to be around miy,, ~ 10° — 107 Mg in local
galaxies (Rice et al. 2016), and is believed to be greater in galaxies
that have greater gas surface density and gas fraction (i.e. galaxies at
higher redshifts) on theoretical grounds (e.g. Escala & Larson 2008;
Reina-Campos & Kruijssen 2017). A population of GMC:s that fully
populate the birth mass function following equation (7) will have an
average birth mass of:

Mmax
nhay = [ sy, o3~ I (o £ <D (8)

GMC lifetimes: For a given GMC birth mass my,, we assign
a certain lifetime 7y (m,) and star-formation efficiency e(m;). We
define the lifetime of GMCs to be the time when the GMC is actively
forming stars, i.e. the time between the formation of the first star
until the time when the GMC is disrupted and further star formation
is prevented. We assume that the lifetime of GMCs depends on the
GMC birth mass m, and can be described by the following power-law
relation:

nmy, “l
TL(mp) = 7o - (W) . 9)
o]

Assuming that the lifetime is a multiplicative factor of the free-fall
time and that GMCs have a characteristic surface density (Larson
1982), then o) = 0.25, i.e. more massive GMCs tend to live longer
(Fall, Krumholz & Matzner 2010). In reality GMCs have substantial
scatter in their surface densities, likely resulting from variations in
ISM pressure (Sun et al. 2018), which would presumably introduce
a corresponding scatter in their lifetimes which we do not include
here for simplicity.

GMC SFRs: We define the star-formation efficiency as the
fraction of the GMC birth mass m,, that gets turned into stellar
mass over the lifetime of the GMC. This is sometimes called the
integrated star-formation efficiency. We assume that this efficiency
can be parametrized by the following power-law relation:

e(mp) = €0 - (m’f—&) . (10)
©

Again, this relation likely has substantial scatter in nearby galaxies.
Krumholz & Thompson (2012) argues that there is little scatter in
the efficiency per freefall time, but this issue remains controversial
in the literature (e.g. Lee, Miville-Deschénes & Murray 2016). Our
model avoids any explicit reference to the freefall time of individual
GMCs, relying instead on generic power laws.

We assume that the SFR of a GMC is constant throughout its
lifetime. Following the above definitions, we can express the SFR of
an individual GMC with birth mass my, by

my &0

I4ae—o
m . (1)
wimy) 10

SFRgmc(myp) = e(my) -

Since GMCs are generally not 100 per cent efficient at transforming
their gas into stars, the question of how GMC mass is returned to
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the gas reservoir arises. Physically the process of GMC disruption
is poorly understood, but may be mass-dependent, closely tied to
different forms of feedback, or the large-scale environment of the
GMCs (e.g. Goldbaum et al. 2011; Lopez et al. 2011; Matzner &
Jumper 2015; Li et al. 2019). For simplicity we assume that these
processes act to linearly reduce the cloud mass to zero at the end of
its lifetime, so that the current mass m of an individual GMC can be
expressed as:

m(t') = my [1 — s } , (12)

TL(my)

where ¢ is the time since formation. A fraction of &(my) of this mass
decrease is continuously converted into stars, while the remaining
fraction (1 — &(my)) is returned back to the gas reservoir. This treat-
ment neglects important processes, especially accretion (Goldbaum
et al. 2011) and potentially slow star formation near the beginning
of a GMC’s lifetime (e.g Lee et al. 2016; Chevance et al. 2020).
Altering this assumption would change the fine-scale details of the
PSD, e.g. the cosine factor derived in Appendix C, but we neglect
this factor anyway (see Section 3.2).

In the case where the GMC lifetimes are mass dependent (o) 7#
0), the actual GMC mass function at any given moment, 7gps(11),
is different from the birth mass function n,(m) (see also Huang,
Zhou & Lin 2013; Kobayashi et al. 2017, for more complex examples
of evolving mass functions). As we show in Appendix B, nops(71) can
also be described by a power law with a high mass turnover, similar
to a Schechter (1976) function (equation B4). Over most of the mass
range, the observed mass function is well described by a power law
(ngbs 0 m@bs with a power-law slope of aops = ap + o). For a positive
«, this means that the observed mass function is shallower than the
birth mass function because more massive clouds tend to live longer.
This parametrization allows us to capture the diversity of observed
mass functions between different galaxies as well as within a given
galaxy. Observers typically measure a power-law slope oqps ranging
from —2.5 to —1.5 depending on environment — typically it is more
top-heavy (i.e. aops less negative) in the inner parts of galaxies and
more bottom-heavy (i.e. oops more negative) in the outer parts. For m
below mpi,, the mass function turns over, and the overall fraction of
molecular mass and star formation in that regime is negligible, but
accounted for in our model.

Example: In order to build an intuition for this parametrization,
Fig. 2 shows the resulting properties of a random draw of Ny, =
10° GMCs. Specifically, these GMCs have been drawn from the birth
mass function assuming a, = —2.0, Mpyin = 10* Mg, and mp, =
107 Mg Then the lifetime (ry = 10.0Myr, a; = 0.25) and star-
formation efficiency (¢p = 0.02, o = 0.25) for each GMC has been
obtained using equations (9) and (10). We derive the SFR for each
GMC (equation 11) and SFR function is plotted in the right-hand
panel. With this parametrization, the mass-weighted lifetime, star-
formation efficiency, and SFR is (7i)y, = 26.8 Myr, (&), = 0.05,
and (SFRGmc)m, = 2.9 - 1072 Mg yr~!, respectively. The number-
density-weighted quantities are lower since the abundance of low-
mass GMC:s is higher.

As expected (SFRgmce o my,), more massive GMCs have slightly
higher SFRs. In this random draw, massive GMCs with m > 10® Mg,
contribute significantly (= 40 per cent) to the total SFR, consistent
with measurements from the Milky Way (e.g. Murray 2011). Since
these massive GMCs are rare (see mass function), their contribution
to the total SFR varies significantly between different draws, but they
usually dominate the SFR. It is important to note that Fig. 2 shows
the GMC population at the time of formation. At later times, after
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several such draws, the observed quantities will actually differ: the
mass function will be shallower because the more massive clouds
will live longer (Appendix B). Importantly, this leads to an increase
in the share of star formation in high-mass clouds. Specifically,
since

/ SFR e (m)gps(m)dm oc meow+225, (13)

low-mass GMCs start to dominate the total SFR only when
dops < —2.25, i.e. when the observed mass function is extremely
steep (and the birth mass function is even steeper).

2.3.2 Drawing of GMCs

How many GMCs need to form within a given time step dz? We
assume that the number of newly formed GMCs follows a Poisson
process P and can be written as:

Niian(t) = P (L MLS(”dt) : (14)
<m)nb Tmol

where 7., is the time-scale for the formation of molecular gas and
(m)y, is the ny-weighted average GMC birth mass (see equation 8).
We are assuming that molecular gas forms in proportion to the
amount of gas available in the reservoir of non-molecular cold gas
M,,s, so that on average in each time step a mass of dtMg,(1)/T mol
forms molecular clouds. This mass is then partitioned into molecular
cloud masses according to the birth mass function, so that the number
of new GMC:s is on average the mass of forming GMCs divided by
the typical mass of those clouds. Rather than setting 7, directly,
we can relate it to the overall depletion time 74ep as we show in the
next section. Throughout this paper, we specify 7., for each model
run and calculate 7, self-consistently according to equation (17).
Typically, 7, Will be of the order of 10-200 Myr, i.e. comparable
to the dynamical time-scale in the denser parts of galaxies (see also
Semenov, Kravtsov & Gnedin 2018).

In each time-step, we then draw Ny, GMCs from the birth mass
function, thereby obtaining for each GMC i a birth mass my, ;.
Following this, we use equations (9), (10), and (11) to compute
the GMCs’ SFRs, which they sustain over their lifetimes 7y (my,;).
Only a fraction e(my, ;) of the initial GMC mass m,, ; is converted
into stars. We assume that the remaining molecular gas mass,
(1 — e(my, 1)) - my, i, is returned to the gas reservoir over the time-scale
T (my, ;).

With these assumptions, we can write for a given time step df :

Noirin (1) Namc ()

1 .
G0 == > mui— Y (1= e(my) (15)
i=1

= (M)

where the first term describes the rate at which mass from the gas
reservoir is converted into GMCs and, hence, molecular gas (green
arrow in Fig. 1), while the second term describes the molecular
gas mass that is not converted into stars and transferred back to
gas reservoir (cyan arrow in Fig. 1). The second sum is over all
living GMCs j (there is a total of Ngmc(?) living GMCs at time
1) that have t — #; < t.(my,;), where ¢ is the time when GMC j
was formed. Similarly, the SFR sustained by these GMCs can be
written as:

Namc (1) Namc (1) m
SFR(1) = Y SFRawc(myj)= Y &(my))
L

=1 j=1

(16)
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Figure 2. Physical properties of an example draw of 1000 GMCs at the time of formation. We show the distribution of GMC mass my, (left-hand panel) and
SFR (right-hand panel). We draw the mass of each GMC from the birth mass function, given by equation (7) with oy, = —2.0. We use equations (9) and (10) to
obtain lifetimes and star-formation efficiencies, assuming 7o = 10.0 Myr, «; = 0.25, g9 = 0.02, and ae = 0.25. With this parametrization, the mass-weighted
average lifetime, star-formation efficiency, and SFR is (71.)m, = 26.8 Myr, (&), = 0.05, and (SFRgMmC)m, = 2.9 - 1073 Mo yr‘l. Important to note is that this
is the GMC population at the time of formation. At later times, after several such draws, the mass function will be shallower because massive GMCs live longer
(see Appendix B for details). This leads to an increase in the importance of massive clouds, which are significantly contributing (in some cases dominating) the
SFR. Since these massive clouds are rare overall, their contribution to the total SFR fluctuates significantly with time.

In summary, we introduced a self-consistent description for how
gas cycles from a reservoir into the molecular phase, forms stars, and
gets returned back to the reservoir. We call this the extended regulator
model. It allows us to capture galaxy-internal physics related to the
star-formation process.

2.4 Connecting global and local star formation: basic and
extended regulator model

In this section, we connect the basic to the extended regula-
tor model, basically connecting global with local star forma-
tion. Our considerations are similar to the ones by Semenov,
Kravtsov & Gnedin (2017), who used the idea of gas cycling
between star-forming and non-star-forming states on certain char-
acteristic time-scales under the influence of dynamical and feedback
processes to explain why the depletion time-scale is significantly
longer than the time-scales of processes governing the evolu-
tion of interstellar gas (see also Burkert 2017; Semenov et al.
2018).

In order to connect the basic with the extended regulator model,
we impose that the average SFR in the entire galaxy will correspond
to the basic gas regulator model’s value, which is SFR = My,/7 gep-
For the total SFR of the regulator model, we can write for an average
of Ngmc active GMCs:

(SFR){ = (Ngmc) ((SFRGMC) i » (17)

where ( - )¢ is the average over a long time interval and (-)p
is the average over the instantaneous GMC population (see equa-
tion 13). For the remainder of the paper, we use this equation to
calibrate 7, which sets via equation (14) Ny, and therefore
Ngmc- This means that we specify 74, for both the basic and
extended regulator model, and 7, will the be given via equa-
tion (17).

On average, in a steady state, the formation and disappearance
rate of GMCs should be equal, and the following equation will hold

approximately?:
(Nbirn )t/ Nomc (18)
dr L t
which leads to:
(SFRgmc) (L)
Tmol A Taep* —— = Tdep * (€)- (19)
’ (m)n, ’

As expected, the depletion time on average is directly related to
the time-scale molecular gas forms and the efficiency of converting
molecular gas into stars.

The depletion time-scale 7 4cp is defined as the ratio of the mass in
the gas reservoir and the SFR (see equation 3). This definition leads
to slightly larger values for 74, than quoted in the observational
literature, since the latter case usually only considers the molecular
gas mass, which we call molecular depletion times Tgep, mol- In a
similar fashion, we can estimate T gep, mol:

o M)y, ()
ot = ISFRame) () 20
For a star-formation efficiency of a few per cent and 7| of a few to a
few tens Myr, this leads to a molecular depletion time of 0.3—1 Gyr,
which is consistent, but slightly smaller than observational estimates,
which show only a weak redshift and stellar mass dependence (e.g.
Daddi et al. 2010; Genzel et al. 2015; Saintonge et al. 2017; Tacconi
et al. 2018). In summary, we build our model in a way that the long
molecular depletion times in galaxies are due to star formation that
is sufficiently inefficient to counteract the relatively short molecular
lifetimes. This is consistent with similar investigations by Burkert
(2017) and Semenov et al. (2017), as well as recent observations
(Kruijssen et al. 2019; Chevance et al. 2020). Furthermore, equa-
tion (20) implies that 7 gep, mol 2 const when (7 ) and (e) are constant,

2The exact expression for the disappearance of GMCs (the right-hand side of
equation 18) is more complicated.
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resulting in a linear Kennicutt—Schmidt relation for molecular gas.
More generally, the linear slope of molecular Kennicutt—Schmidt
relation can be explained by a cancellation of (r) and (¢) trends in
equation (20) (Semenov, Kravtsov & Gnedin 2019).

Similarly, we can estimate what the average molecular-to-total gas
mass ratio:

(M) (1)

Rmol ~ ~ 5
(SFRGMC) Taep  Tmol

(21

which is consistent with the expectation that this ratio depends on the
time-scale on which molecular gas forms and how long these clouds
live. For 7 of a few Myr and t,, of a few tens to a hundred Myr,
we obtain Ry, &~ 0.01 — 0.3. Again, this is consistent, but slightly
on the low end in comparison with observational estimates (Dame,
Hartmann & Thaddeus 2001).

Important to note is that our molecular gas mass, My, only
includes molecular gas that is in actively star-forming GMCs.
However, there are observational indications that molecular gas also
exists in a diffuse phase (e.g. Wolfire, Hollenbach & McKee 2010),
though the quantity depends on the precise definition of molecular
clouds (e.g. Miville-Deschénes, Murray & Lee 2017) and in non-
star-forming GMCs (Kruijssen et al. 2019). This can explain why
our rough estimates Of Tgep, mot and Ryl are slightly smaller than
observations.

2.5 Gas inflow rate ®(¢)

The inflow rate ®(7) and its variability with time, as well as its
dependence on galaxy properties, is uncertain observationally as well
as theoretically. As mentioned above, in this work, the gas inflow rate
®(7) includes not only pristine gas inflow into the gas reservoir Mg,
from the outside of the halo, but also complex physical processes
such as gas cooling within the halo, cold streams feeding the galaxy,
galaxy—galaxy mergers and recycling of outflows. This means that
we do not necessarily want to assume that the gas inflow rate solely
arises from the growth rate of the dark matter halo (e.g. Lilly et al.
2013; Dekel & Mandelker 2014; Forbes et al. 2014b), so we take a
somewhat more general approach. Many physical variables related
to star formation (including the scatter about the star-forming main
sequence) follow a lognormal distribution. Numerical simulations
show that this might also be the case for the inflow rate (e.g. Goerdt &
Ceverino 2015; Mitchell, Schaye & Bower 2020). We therefore
generalize the assumption made by Forbes et al. (2014b), that the
inflow rate ®(7) is a lognormal distribution with fixed median and
scatter:

®(1) = exp(u + o x(1)). (22)

As in Forbes et al. (2014b) x(¢) is a random variable with values
distributed as a standard normal (zero mean, unit variance). While
Forbes et al. (2014b) drew a new value of x at fixed time intervals
so that during these time intervals x was constant, i.e. perfectly
correlated, we generalize this by assuming a spectrum of time-scales
over which x varies. This comes at the cost of some simplicity and
analytical tractability, but has the virtue of being both more general
and more realistic. We concentrate on a particular family of PSD,
described a broken power law:

PSD(f) = (23)

N CR
(Txf)ﬁl + (Txf)ﬂh '

where f denotes frequency, C is a normalization constant with units
1/f, Ty is the break time-scale, and 8, and B, describes the power-law
slopes at low and high frequencies relative to 1/, respectively. The
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normalization constant C is chosen so that Var(x) = 1 over the defined
frequency regime. We choose this parametrization because it allows
us to describe a large variety of stochastic processes (see discussion
in Caplar & Tacchella 2019 and examples below). Furthermore, Iyer
et al. (in preparation) show that the PSD of dark matter accretion
histories and of star-formation histories can indeed be well described
by (broken) power laws in cosmological simulations.

If the stochasticity of x(¢) can be described with PSD,, then the
PSD of ®(z) is given by the following renormalization of PSD,:

Var(®)

PSDg =
® Var(x)

PSD; = exp(2is + o})[exp(c?) — 1.0]PSD,.

(24)

We generate the time-series x(f) using the GPU-accelerated frame-
work presented in Sartori et al. (2019), which is based on the approach
presented in Emmanoulopoulos, McHardy & Papadakis (2013). The
high efficiency of the algorithm enables us to generate time-series
x(#) with a given power spectral density, while covering the whole
age of the Universe with dense (0.1 Myr) sampling.

We show three examples of x(¢) and their corresponding ®(¢) in
Fig. 3. Specifically, the left-hand panels show the time-evolution of
these quantities, while the right-hand panels display their PSDs. We
convert x(¢) to ®(7) using equation (22), arbitrarily adopting u = 1.0
and o = 1.0 for the moment. As discussed above, the PSD of ®(¢) is
related to the PSD of x(7) via a re-normalization (equation 24).

The simplest parameter choice of the model is where 8, = S, =
0, i.e. PSDy is a constant. This time-series is generated by the white
noise and it is indicated as purple lines in Fig. 3. The red and
yellow lines correspond to broken power-law PSDs with g, = 0
and By = 2. In these two cases, also called damped random walk,
the high-frequency slope B, of the PSD determines how quickly x(#)
(and hence ®(7)) changes on short time-scales and the break time-
scale Ty sets time-scale on which x(¢) and ®(7) lose ‘memory’ of
previous accretion history (Caplar & Tacchella 2019; this is similar
to the coherence time-scale in the Forbes et al. 2014b approach).
Specifically, the red line corresponds to an example with g, = 2
and T, = 50Myr, while the yellow line corresponds to B, = 2
and 7, = 1000 Myr. Since the time-series’ variance, i.e. f PSD(Hdf,
is the same in all three examples, the orange PSD has the most
power on long time-scales and the least power on short time-
scales. This makes this example less bursty than the others. We
refer the reader to Caplar & Tacchella (2019) for more examples
of PSDs.

3 VARIABILITY OF THE STAR-FORMATION
RATE ON DIFFERENT TIME-SCALES

In the previous section, we have introduced the regulator model (a
basic and an extended version) to study how gas cycles through
galaxies and drives star formation. We now make a step forward
and link the physical parameters and processes (Table 1) to the
variability of the SFR. We quantify the variability (or ‘burstiness’)
with the PSD, which is a measure of the amount of power contained
in SFR fluctuations on a given time-scale. We show how different
features, breaks in particular, in the PSD correspond to different
time-scales governing the regulation of star formation. We start with
some simple considerations (Sections 3.1 and 3.2) to build up to the
general case in Section 3.3. In Section 3.4, we show and analyse
PSDs of galaxies in different regimes (from dwarf to high-redshift
galaxies).
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Figure 3. Three examples of stochastic inflow rates. We model the inflow rate ®(7) via a stochastic process, which we described as a random variable x(#) with
a certain power spectral density PSDx (equation 23). ®(#) can be directly obtained from x(7) (equation 22) and their PSDs are related as well (equation 24). We
assume 1 = 1.0 and o = 1.0. The time-evolution of x(#) and ®(r) are shown on the left, while their corresponding PSDs are shown on the right. The inset panel
zooms in on the inflow rate in the time interval 5210-5290 Myr. The thick solid lines are given by equation (23). The three examples correspond to white noise
(purple lines), broken power-law with high-frequency slope f, = 2 and break-time-scale 74 = 10 Myr (red lines), and broken power law with high-frequency
slope Bn = 2 and break-time-scale 7x = 1 Gyr (orange lines). The latter two examples correspond to a damped random walk process (low frequency slope of
Bi = 0). All three examples have the same total variance (i.e. [PSD(f)df) within the given frequency bounds, but the orange example has the most power on
long time-scales (low frequencies) relative to short time-scales (high frequencies), leading to a more continuous evolution with time (i.e. less bursty).

3.1 Basic regulator model

We start by considering the basic regulator model. Specifically, we
solve equation (5) for the SFR(#), assuming that the driving term
d(7) is a stochastic process as described in Section 2.5. The inflow
®(1) sets the amount of ‘randomness’ entering the system, while
the equilibrium time-scale 7.4 describes the time-scale by which the
process converges towards a stable-state, equilibrium solution. In the
simplest case, where ®(7) is a continuous white-noise process (PSD
with power-law slope of 0, i.e. i = By = 0, and with no break),
the solution to this equation is a damped random walk® with the
following PSD (Kelly et al. 2014):
2 o2

_ Tint _ reg
PSD() = 12 +Qrf? 1+ Qatef)? @5

3This process is also known as Orstein-Uhlenbeck process in physics, or the
Vasicek model in financial literature.

where o2, = C - Var(®) and, hence, Ufeg = rezqoif“ =C ;zezq Var(®)

lep
employing the definition of ®. From equation (24), the variance
of ®(¢) is given by Var(®) = exp(2u + o?)[exp(0?) — 1.0] as
specified in equation (24). As pointed out in Wang & Lilly 2020b,
we see that the response of the regulator is given by PSD of the inflow
and the frequency-dependent response (for more detailed treatment
of a non-stochastic case see also Wang et al. 2020a). The PSD of
a damped random walk (equation 25) is a broken power law. The
time-scale of the break is at 27w 7.q. The ‘long-term’ variability is
given by orzeg, which is set by the stochasticity of the inflow rate
(1) . We can transform this PSD to the autocorrelation function
(ACF), i.e. translate from frequency to time-domain, via the Wiener-
Khinchin theorem (Wiener 1930; Khinchin 1934; Emmanoulopou-
los, McHardy & Uttley 2010):

ACF(t) = exp(—1/Tey). (26)

The meaning of this is the following: the evolution of the SFR of
the basic regulator is highly correlated on short time-scales / high
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Figure 4. How does the basic regulator model shape the PSD? The upper panels show the time evolution of the inflow rate ® (re-normalized by 0.1) and SFR,
while the lower panels show the corresponding PSDs. We hold the parameters of the basic regulator fixed, while changing only the PSD of & from right to left.
In the left-hand panels, PSDg is constant (white noise process), while in the panels to the right, we show broken power-law PSDs with high frequency slopes
Bn = 2, low frequency slopes B = 0, and increasing break time-scales (tx = 10, 100, and 1000 Myr). The parameters of the basic regulator model were fixed
in all four runs: the depletion time is Tgep = 100 Myr, the star-formation efficiency g9 = 0.1 with no mass dependence (e = 0), and the mass-loading A = 5.
These numbers lead to an equilibrium time-scale of 7¢q = 18 Myr. In addition to the break at 7, the PSD of the basic regulator model has a break at 27 7cq ~
110 Myr. Above this time-scale (towards lower frequencies), the PSD of the regulator model follows the shape of PSDg, while below this time-scale, the slope

is steeper by 2, as in equation (27) (solid green lines). The overall strength of the PSD is given by 0.2

frequencies with ACF ~ 1 and described with a PSD with a slope
that equals 2. Then, the process becomes rapidly decorrelated at a
time-scale 7.y, and at long time-scales (low frequencies), the ACF
drops quickly (ACF ~ 0) and the PSD is well described with a flat
slope.

We show examples of the PSD resulting from the basic regulator
model in Fig. 4. Specifically, the left-hand panels show the result
for the case where PSDg is a white-noise process (constant PSD).
The upper panels show one example of the inflow rate and SFR
(the inflow rate has been re-normalized by 0.1 in order to increase
visibility), while the lower panels show the associated PSDs for
three examples. In all panels, we assume for the inflow rate ® a
normalization © = 1 and dispersion of o = 1.0, which set the
overall strength of the PSD. For the basic regulator model, we
assume a depletion time-scale of 74, = 100 Myr, a star-formation
efficiency of ¢p = 0.1 with no mass dependence (¢, = 0), and
a mass-loading of A = 5. These numbers give an equilibrium
time-scale of 7,y = 18 Myr. We choose this rather short 7.4 just
for pedagogical reasons, i.e. to be able to clearly differentiate the
cases where 7 is smaller than, similar to, and larger than 7.,. We
see that the PSD of the SFR indeed shows a break at 277, ~
110 Myr. Below this break, the PSD has a slope of 2, as given by
equation (25).

We can now move to a more complex case, where the inflow ® is a
correlated process itself, i.e. we assume that PSDy, is a broken power
law, as described in equation (24) and shown in Fig. 3. Consistent
with the above picture, the basic regulator model correlates the star-
formation history on time-scales shorter than 7.y, giving rise to a
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which is set by the stochasticity of the inflow rate ®(7).

reg?

break in the PSD in addition to the one from @ at t. This gives rise
to a triple power-law PSD* given by:
1
1/73 + Qr f)?
Oreg 2
L+ Qateq f)* (2 )P + (7 )P

2
2areg

(P 4 (5 )P 4 Qg 2Tl fB2 4 o fhne2)’
@7n

PSD,(f) = PSDg

This equation describes a PSD with two breaks. One break lies at
a time-scale 7, the other at 277 7q. The order of the slopes depend
on the relative locations of 7, and 27 7.q. In the case where 7, >
27 Toq, the slope on low frequencies (long time-scales, i.e. f < 1/7)
is given by B. At intermediate (1/7, < f < 1/(2wtq)) and high
(f > /(2 tq)) frequencies, the slopes of the PSD are g}, and B, +
2, respectively. In the case where 7, < 27 Ty, the slopes are B, i +
2 and By, + 2 at low, intermediate and high frequencies, respectively.
Essentially, the basic regulator model correlates the star-formation

“This solution for the damped random walk process is motivated by ex-
amining the stochastic differential equation (equation 5) in Fourier space,
namely i@wF(SFR) + (1/7eq) F(SFR) = F(®). It follows that F(SFR) =
F(®)iw+ l/req)_l. In the case of a white noise source term, we re-derive
equation (25), and in the more general case, any non-white-noise shape of
the driver’s PSD propagates through without modification.
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history on time-scales shorter than 2774, leading to a factor of 2
steeper slope at high frequencies.

We show examples of this Fig. 4: the three column to the right
show an inflow PSDg, with increasing break time-scale of 74 = 10,
100, and 1000 Myr. In all panels, the basic regulator model is run
with the same input parameters as described above, giving rise to
the same 7.4 of 18 Myr. In the second panel from the left, 7 is
shorter than 277 7.4: the PSD of the SFR shows two breaks, where for
intermediate time-scales, the slope of the PSD is 2, while on shorter
time-scales than 7, the slope changes to 4. The panel on the right
shows the opposite case, where Ty > 277 Teq.

In summary, we have shown that the basic regulator model
introduces an additional feature in the PSD of the SFR. In particular,
the basic regulator model correlates the SFR on time-scales shorter
than 74, giving rise to a break in the PSD at 27 7. Below this break,
the PSD has a slope that is steeper by 2 than what is present in PSDg,.
This implies that measuring this break will give us a handle on the
equilibrium time-scale of the systems, and hence on the depletion
time and the mass-loading factor A. Importantly, the normalization,

2

which is proportional to (;ﬂ) ~ (1 — fr + )72, will give us an
ep

additional joint constraint on the mass-loading factor and the variance

of the forcing ®.

3.2 Imprint of the lifetime of molecular clouds on the PSD

In a second step, before moving to our extended regulator model,
we want to constrain the PSD imprint of GMCs as described in
Section 2.3. To first order, since the the lifetime of GMCs, i,
correlates the SFR on this time-scale, we expect an imprint of 7y,
on the PSD. To show this, we run a simplified model. Specifically,
we assume a constant gas mass in the reservoir. At each time-step,
we then draw a population of GMCs as specified by the equations
in Section 2.3. Importantly, we do not solve the equations of the
regulator model, i.e. we assume that there is no mass exchange
between the GMC population and the gas reservoir: Mg, is constant
throughout, so the only source of variability is the random draws
from the distribution of GMC masses.

We analytically derive the solution for a simplified case, with
a single GMC mass, lifetime, and SFRgmc, in Appendix C. This
idealized case is a good approximation to our full GMC model
when the SFR is dominated by the high-mass end of the GMC
mass function, but in general the PSD will be smoother than what we
derive analytically as the result of averaging over the full population
of GMCs. We therefore use a broken power law that has the same
asymptotic behaviour as the analytically derived PSD, namely a
damped random walk process:

2
PSDovc(f) = {1 potey (28)
with
aéMC = 7 (1) Var(SFR) = 7 (1) Var(Ngmce - SFRgme)
= 7(11.)[Cov(Ngyc: SFRGuc) + (SFREyc) - (Ngwc)

— (Cov(Ngmc, SFRame) + (SFRaue) - (Nowie))’]

~ 1 (1) [Var(Nme ) (SFRamc ) + Var(SFReuce) - (Nowc)?

+ Var(Ngmc) - Var(SFReme)], (29)
where ( - ) is the average over all living GMC. The last step in
the aforementioned equation usually holds, since the covariance

between Ngme and SFRgmc is negligible in the cases we consider.
This means that the break of the PSD is sensitive to the average

Star-formation variability 709

lifetime of GMCs: the SFR is correlated on time-scales below
27 (TL), while it is uncorrelated on longer time-scales (as expected
from a Poisson process). The overall normalization depends on the
number of GMCs drawn and the SFR of GMCs. These numbers
depend themselves on the GMC mass function, the star-formation
efficiency ¢(M), as well as the molecular gas formation time-scale
T mol -

Fig. 5 shows PSDs of example star-formation histories obtained by
sampling the GMC population. In all panels, we assume a constant
gas mass reservoir of My, = 10° M, a depletion time-scale of Tdep =
500 Myr and a GMC birth mass function with a slope of ap, = =2
with cutoffs at myin, Mmmax = [10*, 107]. Furthermore, we set &g =
0.02 and . = 0.25. In panels from left to right, we increase the GMC
lifetimes: 79 =2, 5, 10, and 20 Myr with oy} = 0.25. As expected from
equation (28), we find in all panels a PSD consistent with a damped
random walk. The break is related to the average lifetime (ry):
increasing the lifetime of GMCs leads to a star-formation history
that is correlated on longer time-scales.

3.3 Extended regulator model

After discussing the basic regulator model (Section 2.2) and the star-
formation prescription (i.e. GMC model, Section 3.2), we are now
ready to study the PSD of the extended regulator model. The PSD
of the extended regulator model can be described by the following
combination of the PSD of the basic regulator model, the PSD of the
GMC model, and their cross PSD?:

PSDext(f) = PSDGMC(f) + PSDreg(f) - 2Re[PSI)GMereg], (30)

where PSD,,(f) and PSDgmc(f) are given by equations (27) and
(28), respectively, and PSDgwmc x reg 15 the cross PSD. This follows
from the fact that, roughly speaking, the SFR in the extended
regulator model is the SFR from the basic regulator model mod-
ulated by the stochasticity of randomly drawing GMCs, i.e. SFR &
SFRee Y _SFRamc/({Nomc) (SFRemce).

Fig. 6 shows a schematic diagram of the PSD of the extended
regulator model (red line). The PSD of the extended regulator model
can be decomposed into the PSD of the GMC model (orange line)
and the PSD of the basic regulator model (green line), which itself
depends on the PSD of the inflow rate (blue line). In general, we
expect the PSD to have three breaks, corresponding to the time-scale
of the average lifetime of GMCs, the equilibrium time-scale of the
regulator model, and the correlation time-scales of the inflow rate.
Typically, we expect the short time-scales (high frequencies) to be
determined by the GMC model, while the intermediate and long
time-scales are dominated by the physics related to outflows and
inflows. Hence, the slope of the PSD at short time-scales is § =
Baomc = 2, while at longer time-scales, the PSD slope depends on
the shape of the inflow PSD. We discuss four practical case studies
(galaxy regimes) in Section 3.4.

The cross PSD, PSDgwmc x reg. 18 likely to be important on time-
scales where the average number of GMCs is determined by the SFR
of the basic regulator model. On shorter time-scales, the individual
GMC draws will entirely determine the power spectrum, while on
longer time-scales the SFR is determined by the PSD of the gas
supply. Therefore this cross-term only contributes in the relatively

SWhile the PSD is defined as the Fourier Transform of the autocorrelation
function, the cross PSD is defined as the Fourier Transform of the cross-
correlation function between two signals.
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Figure 5. PSDs of example star-formation histories obtained by sampling GMCs. In this simplified model, we assume a constant mass of the reservoir of
Mgas = 10° M, and sample from this reservoir GMC according to the equations given in Section 2.3. Specifically, we assume a depletion time-scale of Tdep =
500 Myr, a GMC birth mass function with a slope of ap = —2 and mmin, Mmax = [10%, 107], and a star-formation efficiency of g = 0.02 and o = 0.25. The
panels from left to right show the PSDs of the resulting star-formation histories with increasing GMC lifetimes with 7o = 2, 5, 10, and 20 Myr with o; = 0.25.
In all panels, we plot the PSDs of three example star-formation histories. The PSDs are consistent with a damped random walk: the star-formation histories
that originate from sampling the molecular cloud mass function are correlated below a timescale of (1) (with a powerlaw slope of 2), resulting in a PSD that
has a break at 27 (71) (vertical dashed line in all panels). On longer time-scales, the star-formation histories are uncorrelated. The orange solid lines show the
expected PSD from equation (28), which is in good agreement with the numerically obtained PSDs.

small range of time-scales where the PSD is transitioning from one
regime to another.

3.4 Case studies: different galaxy regimes

After the rather theoretical discussion of PSDs in Section 3.3, we
now turn to some practical case studies. We want to demonstrate
how the star-formation histories and PSDs look in different galaxy
regimes. Specifically, we focus on the following regimes:

(i) low-mass (M, ~ 107 — 10%), dwarf-like galaxy at z ~ 0
(‘Dwarf”);

(i1) Milky Way-like galaxy at z ~ 0 (‘MW’);

(iii) massive (M, ~ 10'® — 10'"), star-forming galaxy at z ~ 2
(‘Noon’); and

(iv) high-z (z > 6) galaxy (‘High-z’).

The choices of the input parameters are listed in the first half of
Table 2. The second half of Table 2 lists the derived properties from
our extended regulator model, such as the average number of active
GMCs. The numbers in the brackets show the standard deviations of
these quantities.

These parameter choices are motivated by reproducing the ob-
served properties of typical galaxies in these regimes. Clearly, some
of the observational constraints are quite uncertain (see Section 2.1)
and galaxies in these regimes also have diverse properties. Therefore,
these choices are necessarily somewhat arbitrary. In particular, the
PSD of the inflow rate is uncertain. Since the inflow rate is likely
related to the circumgalatic gas in the halo, we assume that the inflow
rate is correlated up to the halo dynamical time:

3
TDM,dyn =

172
—_ ~0.1ty, 31)
32G ono,cm) "

where 7y is the Hubble time (at the epoch of observation). This
means we set Ty ~ 0.1ty. We assume that on longer time-scales
than 7, the inflow rate is uncorrelated, i.e. §; = 0, while on shorter
time-scales, it is correlated with 8, = 2.

MNRAS 497, 698-725 (2020)

The depletion time T4, and mass-loading factor are motivated
by observations of galaxies across cosmic time (Tacconi, Gen-
zel & Sternberg 2020, and reference therein). Finally, the GMC
parametrization is motivated by observations of the Milky Way and
local galaxies (see Section 2.3, including Murray 2011 and Kruijssen
etal. 2019). We assume m,x = 107 Mg, in local galaxies (Rice et al.
2016) and m = 10872 M, at higher redshifts (e.g. Escala & Larson
2008; Reina-Campos & Kruijssen 2017).

We then run our model with these input parameters, sampling
the star-formation history in steps of 0.1 Myr, which is enough to
resolve the ages of the youngest GMCs with at least 30 temporal
resolution elements. Furthermore, the length of the produced star-
formation history corresponds to roughly the Hubble time of the
different galaxy regimes, i.e. the length of the star-formation history
of the Dwarf, MW, Noon and High-z regimes is 10, 10, 4, and 2 Gyr,
respectively.

The resulting average quantities are shown in the second half of
Table 2. The most important quantity predicted by our model is
the SFR. The time-averaged SFR is in excellent agreement with
observational estimates for all of the four galaxy regimes. The
depletion time of the molecular gas (T gep, mot) 18 @ well-constrained
quantity in observations. However, as we mention in Section 2.4,
the molecular gas mass — and therefore 7gep moi and Ryo — may
be underestimated in our model, because our model only accounts
for the molecular gas in GMCs, and misses diffuse molecular gas
and molecular gas in non-star-forming clouds (or equivalently early
phases of GMC formation with little star formation present).

Fig. 7 shows the star-formation histories (for one realization of our
model) and PSDs (five realizations) of the four galaxy regimes. From
top to bottom, we show an example of the Dwarf regime, the MW
regime, the Noon regime, and the High-z regime. We find that the
resulting star-formation histories are qualitatively different (left-hand
panels), both in absolute normalization and variability. In the Dwarf
regime, the star-formation history looks bursty and, consistently, the
PSD shows substantial power on short time-scales relative to longer
time-scales. In this regime, PSD does not exhibit two breaks, i.e.
the PSD transitions smoothly from the GMC regime to the white
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Figure 6. What can we learn from the power spectrum density (PSD) of the SFR? This schema summarizes the key conclusion of the paper. In the extended
regulator model, the PSD of the SFR (red line) is shaped by the combined effect of the inflow process (blue line), processes related to the regulation of gas
flow (green line), and the star-formation process related to the formation of GMCs (orange line). Specifically, the PSD can be described by equations (27), (28),
and (30). The inflow rate to the gas reservoir describes the variability of the SFR on the longest time-scales on the order of 7. A combination of the depletion
time-scale, the mass-loading factor, and the average star-formation efficiency are shaping the intermediate time-scales around the equilibrium time-scale 7¢q. The
shortest time-scales are dominated by the star formation process: particularly, the average lifetime of GMCs (z1) correlate the SFR on the shortest time-scales

and imprint an additional break in the PSD.

noise regime. This is because the equilibrium time-scale is short and
comparable to the average lifetime of GMCs.

In the MW regime (second panel from the top in Fig. 7), the
star-formation history and PSD indicate that longer time-scales play
a more important role in the star-formation variability. Although
the PSD of the GMC component is similar to the Dwarf regime,
fluctuations on longer time-scales are more pronounced because
the equilibrium time-scale is significantly longer than the average
GMC lifetime. This leads to a clear separation of the GMC and the
basic regulator component, allowing in principle a constraint on the
average lifetime of GMCs from the galaxy-integrated star-formation
history or PSD alone.

In the Noon regime, the strength of the basic regulator component
relative to the GMC model further increases. The main reason for this
is the shorter depletion time and higher mass loading with respect to
the MW regime, leading to a shorter equilibrium time-scale. In this
regime, the break of the GMC model is invisible, and the break of
the regulator model is clearly present.

Finally, in the High-z regime, the equilibrium time-scale is even
shorter. The inflow rate contributes significant power on short time-

scales since 74 is now comparable to the average GMC lifetime
and the equilibrium time-scale. The PSD of the GMC component is
clearly sub-dominant over most of the time-scale considered, only
dominating around time-scales of a few Myr.

In summary, we show that the different galaxy regimes give rise
to different PSDs. As expected, dwarf galaxies today and high-z
galaxies are bursty, i.e. showing significant power on short time-
scales. However, the reason for this burstiness is different: in dwarf
galaxies, GMCs are responsible for the power on short time-scales,
while in high-z galaxies, burstiness is related to short equilibrium
time-scales and large variability of the inflow rate. Consistently,
Faucher-Giguere (2018) studies the origin of bursty star formation in
galaxies using a simple analytic model. They identify two regimes in
which galaxy-scale star formation should be bursty: at high redshift
for galaxies of all masses and at low masses (depending on gas
fraction) for galaxies at any redshift. At high redshift, burstiness is
enhanced because of elevated gas fractions in the early Universe
and because the galactic dynamical time-scales become too short for
supernova feedback to effectively respond to gravitational collapse
in galactic discs. In dwarf galaxies star formation occurs in too few
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Table 2. Choice of parameters and derived properties for the case studies presented in Section 3.4 and Fig. 7. The four cases include a
low-mass (M, ~ 107 — 108), dwarf-like galaxy at z ~ 0 (Dwarf), a Milky Way-like galaxy at z ~ 0 (MW), a massive (M, ~ 1010 — 10! ),
star-forming galaxy at z ~ 2 (Noon), and a high-z (z > 6) galaxy (High-z). The numbers in parentheses show the standard deviations of

these quantities.

Parameter Definition Dwarf Milky Way (MW) Noon High-z
Input:

7x (Myr) Equation (23) 1000 1000 500 100

Bi Equation (23) 0 0 0 0

Bh Equation (23) 2 2 2 2

n Equation (22) 0.1 0.5 6.0 5.0

o Equation (22) 1.0 1.0 1.0 1.0

A Equation (2) 30 1.0 5.0 20.0
Tdep (Myr) Equation (3) 1000 4000 1000 300

o Equation (7) —2.0 —2.0 —-2.0 -2.0
Mmin> Mmax (Mg) Equation (7) 10%, 107 10%, 107 10%, 10° 104, 108
€0 Equation (10) 0.02 0.02 0.02 0.02

e Equation (10) 0.25 0.25 0.2 0.0

70 (Myr) Equation (9) 5.0 20.0 20.0 5.0

Q) Equation (9) 0.25 0.25 0.2 0.1
Derived:

(@), Mg yr!) Equation (22) 1.0 (0.6) 1.5(0.8) 231.6 (152.2) 170.1 (109.4)
(Mgas), Mg) Equation (22) 3.2(1.6) x 107 6.6 (2.7) x 10° 6.6 (3.3) x 10'0 3.8 (2.3) x 10°
(SFR), M, yr™ 1) Equation (16) 0.03 (0.02) 1.7 (0.1) 80.1 (36.9) 13.0(7.8)
Tmol (Myr) Equation (20) 52 211 121 47

Teq (Myr) Equation (4) 33 2448 177 15

T dep, mol (Myr) Equation (20) 124 498 493 203
(tL) Myr) Equation (9) 7.3 29.1 42.1 5.6

() Equation (10) 0.03 0.03 0.04 0.03
(Namc), — 60 (31) 11862 (459) 36672 (18551) 39466 (23 694)
(Rmol), Equation (21) 0.16 (0.10) 0.12 (0.01) 0.62 (0.09) 0.70 (0.09)
(fr), — 0.38 0.37 0.34 0.30

bright star-forming regions to effectively average out, leading to
bursty star formation.

4 DISCUSSION

We showed in the previous section how the SFR variability, i.e. the
shape and normalization of the PSD, depends on different physical
processes, such as gas inflow, gas regulation within galaxies, and
the star formation process (GMC-related physics). We now use this
framework to highlight that the lifetime of GMCs can in principle be
measured in certain regimes of galaxy-integrated constraints on the
variability. Furthermore, we discuss the main sequence scatter and
gradients of galaxy properties across the main sequence. We end by
discussing caveats and the next steps ahead.

4.1 Constraining the time evolution of the GMC life-cycle

We highlighted in the introduction that it remains a major challenge
to derive a theory of star formation and feedback, because there
are only a few robust empirical constraints on the GMC lifecycle.
Currently, the best observational constraints are obtained from z ~
0, spatially resolved measurements. For example, Engargiola et al.
(2003) infer an upper limit of 10-20 Myr on GMC lifetimes based
on positions of GMC along H1 filaments in M33: most GMCs still
are associated with their HI filaments, which suggests that they do
not live long enough to drift across the filament. Another approach
is based on classifying GMCs according to their evolutionary states
(GMCs, H1 regions, and young stellar objects): such studies find
that GMC lifetimes are 20-40 Myr (e.g. Kawamura et al. 2009;
Miura et al. 2012). Furthermore, Kruijssen & Longmore (2014,
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see also Kruijssen et al. 2018) developed a statistical method to
measure GMC lifetime based on the ‘uncertainty principle for star
formation,” which assumes that peaks in star formation tracers
and molecular gas tracers correspond to an evolutionary sequence
(GMC:s to young star clusters) leading to an anticorrelation between
the two at small spatial scales. Applying this method to spatially-
resolved (~100pc) CO and H« maps, Kruijssen et al. (2019) and
Chevance et al. (2020) were able to probe the physical variation
of the underlying GMC lifecycle in a large sample of galaxies
(10 and growing). Thanks to a single homogeneous methodology
and unprecedented precision (< 30 per cent uncertainties), they infer
GMC lifetimes of 10-30 Myr, where the range reflects environmental
variation.

Similar measurements are challenging at earlier cosmic time,
because spatial resolution and depths are lower than at z = 0. Since
the PSD can be measured from integrated galaxy properties (Caplar &
Tacchella 2019), we now investigate in which regimes constraining
the PSD will help us to measure the lifetime of spatially unresolved
GMCs. As shown in Fig. 5 and equation (28), the PSD of the GMC
component depends on the average lifetime of the GMC population
(tL). Specifically, the break of the PSD is at 27 (). Hence, if one
is able to measure the break of the PSD at short time-scales (i.e. if
the GMC PSD dominates), one is able to infer the average lifetime
of GMCs. We find in the previous section that the GMC PSD is
more prominent in certain regimes (i.e. Dwarf and MW regime). We
now investigate in which regimes a constraint on the average GMC
lifetime can be obtained, i.e. in which regimes the break of the GMC
PSD is visible. Note that in our work, the GMC lifetime is defined
as the time interval during which the GMC is forming stars. Other
methods might use a different definition.
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Figure 7. Star-formation histories and PSDs for four different galaxy regimes. From top to bottom: dwarf galaxy (‘Dwart’), Milky Way-like galaxy (‘MW”),
massive galaxy at z ~ 2 (‘Noon’), and galaxy at z > 6 (‘High-z’) regime. The parameters for these four regimes are given in Table 2. Note that the ranges of the
axes are different in the different panels. For each example, we plot the star-formation history of the extended model in the left-hand panel. In the right-hand
panel, the blue line shows the PSD of the inflow rate ®, while the red line shows the PSD of the SFR from five realizations of the extended model (only one of
those star-formation histories is shown in the left-hand panel). The green and orange line show the predictions for the basic regulator and the GMC-only models,
respectively. The vertical dashed line indicate the relevant time-scales of the breaks in the PSD, related to the average GMC lifetime, the equilibrium time-scale,
and the decorrelation time-scale of the inflow. We find that the PSD encodes interesting physical processes and that the different galaxy regimes span a wide
range of PSD shapes.
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Figure 8. Measurability of the GMC lifetime: is the break of the GMC PSD visible? We quantify the measurability of the GMC lifetime by the excess of the
GMC PSD relative to the PSD of the basic regulator at (1) (break of the GMC PSD): Apsp = log (PSDgmc({z1L))/PSDyeg({71))). We plot Apsp as a function
of depletion time 74ep and mass-loading factor A, for four different lifetime distributions (panels from left to right show 7o =5, 10, 20, and 40 Myr with while
a) = 0.25, leading to (1) = 7.3, 14.6, 29.2, and 58.3 Myr). The colour coding is shown with the colour bar on the right: red indicates that the GMC PSD has
a smaller amplitude than the PSD of the basic regulator model, i.e. the break of the GMC break is hidden below PSD of the basic regulator model, making it
impossible to measure the average lifetime of GMCs. On the other hand, blue indicates that the GMC of the PSD lies above the PSD of the basic regulator
model, implying that the break and hence the average lifetime can be inferred. We see that the average GMC lifetime can be better measured if the lifetimes and

depletion times are short, and the mass-loading is high.

We quantify the visibility of the break of the GMC PSD by
taking the ratio of the amplitudes of the GMC PSD and the basic
regulator model at the time-scale of the break, i.e. 2w (t): Apsp =
log (PSDgmc(fi)/PSDie, (f1.)), Where fi. = 1/(27 (7). Positive Apsp
indicates that GMC PSD is the dominating PSD and therefore the
break time-scale (and the average lifetime) is in principle measurable.
On the other hand, a negative Apgp implies that the PSD of the basic
regulator model is dominant and the break of the GMC PSD is
hidden.

The value of Apsp depends on several of our input parameters.
For the analysis here, we focus on varying the GMC lifetime, the
depletion time, and the mass-loading factor. We assume an inflow
rate similar to the dwarf/MW regime: 7, = 1000 Myr, g; = 0,
Bn =2, u = 1.0, and 0 = 1.0. Furthermore, we fix the following
parameters of the GMC prescription: o, = —2.0, Mpin = 10* Mo,
Mmax = 107 Mg, g9 = 0.02, and &, = 0.25. We vary the depletion
time from 74e, = 30 Myr to 3000 Myr, and the mass-loading factor
from L = 0.1 to 10.0. For the GMC lifetimes, we investigate
9o = 5, 10, 20, and 40Myr, all with o = 0.25, which gives
rise to average lifetimes of (r.) = 7.3, 14.6, 29.2, and 58.3 Myr,
respectively.

Fig. 8 shows Apsp in the 7o, — A plane. The panels from left to
right show increasing GMC lifetimes. The colour coding is shown
in the colour bar on the right: blue corresponds to positive Apsp,
the break of the GMC PSD is visible and the lifetime is measurable,
while red corresponds to negative Apgp, implying that the lifetimes
are not measurable. In this latter case, a lower limit on the GMC
lifetime can in principle be obtained.

Fig. 8 highlights that shorter GMC lifetimes are easier to measure.
For a given setup of 74, and A, shorter GMC lifetimes move the
GMC PSD break to shorter time-scales, making it more apparent.
Furthermore, GMC lifetimes are easier to measure if the mass loading
is high. A higher mass loading leads to a lower equilibrium time-
scale 74 (equation 4), and therefore a lower normalization (0 )
and a shorter break time-scale of the PSD of the basic regulator.
Finally, the depletion time mainly sets the break time-scale of the
PSD of the regulator model, thereby amplifying aforementioned
trends.

In summary, we show that the PSD on time-scales of the order
to the lifetime of GMCs comprises information about the GMC

MNRAS 497, 698-725 (2020)

lifetime. In certain galaxy regimes, in particular for galaxies with
high mass-loading factor and short depletion times, the PSD of the
star-formation history shows a break, which corresponds to 27 (7).
Important to note is that this analysis has been done by solely
considering theoretical limitations. Clearly, observational limitations
are at least as important to consider. A detailed investigation of the
constraining power of observations concerning GMC lifetimes is
beyond the scope of this work. Nevertheless, we discuss current
observational constraints on the PSD and ideas on how to make
progress in Section 4.5.

4.2 Evolution about the main sequence ridge-line

We mentioned in the Introduction that the main sequence ridgeline
(normalization, slope, scatter, and evolution with redshift) is naturally
reproduced by a wide range of different galaxy evolution models.
However, the key question — which time-scale is encoded in the
main sequence scatter (oys)? — remains both observationally and
theoretically unanswered.

In this work, we model galaxies as self-regulating entities, giving
rise to PSDs with breaks related to GMC and gas-regulation physics.
These breaks introduce preferred scales related to the underlying
physics of star formation. In this picture, the scatter of the main
sequence is due to physics related to self-regulation, including
feedback processes (e.g. Forbes et al. 2014a,b; Tacchella et al.
2016a). Interestingly, models that assume a scale-free PSD can
equally well describe the evolution of the main sequence evolution
and its scatter. Specifically, Kelson et al. (2020) show that dark
matter accretion rates behave as a scale-free, 1/f stochastic process
— the same kind of process that was identified at the galaxy level by
studying the main sequence of star formation and the stellar mass
function (Kelson, Benson & Abramson 2016). We would argue that
this works well because of (i) on short time-scales, the coincidence
that the scatter of the star-forming main sequence is comparable
to the scatter of dark matter accretion rates (e.g. Rodriguez-Puebla
et al. 2016); and (ii) on long time-scales, star-formation histories are
well described by dark matter accretion histories (e.g. Behroozi et al.
2019).

Clearly, progress can be made by studying the PSD of SFR
fluctuations of main sequence galaxies, measuring the slope and
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Figure 9. Movement of galaxies about the main sequence ridgeline. Each panel shows seven example galaxies from the four different galaxy regimes (Table 2).
The time axis (x-axis) in each of the panels is different. The y-axes show the log distance from the star-forming main sequence (Ays = log (SFR/SFRys ), where
the SFR of the main sequence, SFRys, is the overall average SFR. We find that galaxies in the four different regimes move about the MS ridgeline (Aps =
0) very differently. The width of the star-forming main sequence (o\s, measured by averaging the SFR over 1 Myr) is also distinct in the different cases, as

indicated in the upper right corners of the panels.

identifying breaks (Caplar & Tacchella 2019). Another probe that
could potentially shed light on to main sequence oscillations are
gradients across the main sequence. For example, observations
indicate the the distance from the main sequence is correlated with
the depletion time (e.g. Genzel et al. 2015; Tacconi et al. 2018;
Freundlich et al. 2019).

4.2.1 Scatter of the main sequence

We first study the scatter of the main sequence. Fig. 9 shows how
galaxies evolve relative to the main sequence ridgeline. Each panel
shows seven example galaxies from the four different galaxy regimes
(Table 2). The y-axis shows the log distance from the star-forming
main sequence (Ays = log (SFR/SFRys), where the SFR of the main
sequence, SFRys, is the overall average SFR.® We find that galaxies
in the four different regimes move about the MS ridgeline (Ays =
0) very differently. First, the amplitudes of the oscillations about the
ridgeline vary between the different galaxy regimes. This is directly
reflected in the main sequence scatter, oys, Which is the standard
deviation of oys after the SFR is averaged over 1 Myr (for more
on this see below). We find a scatter of oys = 0.17, 0.24, 0.27, and
0.53 dex for the MW, Noon, High-z, and Dwarf regimes, respectively.
Secondly, the asymmetry between the excursions above and below

OWe ensure that that there is no imprint of the initial conditions.

the main sequence is different in the different regimes. For bursty
star formation, where the scatter is large, galaxies are able to dive
significantly further below the ridgeline than above it. No galaxies
in the Dwarf regime have Ays > 1dex during the considered time
intervals, but they have several episodes with Ays < —1 dex. On
the other hand, galaxies in the Noon and MW regimes are moving
about the ridgeline more symmetrically and can also spend long
periods (several ten of dynamical times) above or below the main
sequence.

The drivers of the scatter in the main sequence are discussed further
in the following subsection by analysing how the gas mass, depletion
time, and number of GMCs vary across the main sequence. On short
time-scales, a galaxy’s position relative to the main sequence, and
hence ultimately the overall scatter of the main sequence in that
regime, is driven primarily by the number of GMCs. Because so few
GMCs are active at any one time in the dwarf galaxy regime, their
SFRs may deviate asymmetrically far below the main sequence, and
their scatter may substantially exceed the variance in the accretion
rate (which we have set to be the same in all four galaxy regimes).
In the basic regulator model, this cannot happen (as in Forbes
et al. 2014b, where the scatter in the main sequence was always
< the scatter in the accretion rate). Remarkably this means that the
physics of individual GMCs has a direct impact on oys, a quantity
typically viewed as the domain of larger scale galaxy evolution
processes.

MNRAS 497, 698-725 (2020)
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Figure 10. Scatter of the main sequence for galaxies in the four different regimes (Table 2). The scatter of the main sequence, o s, is the standard deviation of
the logarithm of the measured SFRs. We plot os as a function of the time-scale t.y, over which the SFR is averaged. SFRs measured over longer time-scales
typically lead to a smaller oys, with the steepness of the decline depending on the time-scale over which the SFR is correlated. Bursty star-formation, such as
seen in dwarf and high-z galaxies, lead to a larger os for SFRs measured on short time-scales, but then oys declines rapidly to longer time-scales since one
averages over several ‘bursts’ of star formation. The vertical grey regions indicate typical averaging time-scales for Ha and UV + IR SFR indicators; those
are approximate since these time-scales depend on the burstiness itself. The coloured regions (hatched according to the different galaxy regions) show oums
measurements from observations (Speagle et al. 2014; Shivaei et al. 2015; Davies et al. 2019a). We find overall good agreement for the regimes.

Clearly, the resulting scatter of the main sequence is very different
in the different regimes. Caplar & Tacchella (2019) discuss exten-
sively how the scatter (and also normalization) of the main sequence
depends on the averaging time-scale as well as the PSD itself.
Therefore, the scatter of the main sequence measured with different
SFR indicators (i.e. averaging time-scales’) allows constraints on
the PSD. As an example, we plot in Fig. 10 the scatter of the main
sequence oys as a function of averaging time-scale over which the
SFR has been measured. We show the four galaxy regimes (Dwarf,
MW, Noon, and High-z) that we introduced in Section 3.4. The
vertical grey region indicate typical averaging time-scales for the
Ho and UV + IR SFR indicators; those are approximate since
these time-scale depend on the burstiness itself. Since the dwarf
and high-z galaxies have the largest variability on short time-scales,
o ms 1s the largest for those cases when measured on short (<10 Myr)
time-scales. However, because their star-formation history quickly
decorrelates, o vis declines with increasing averaging time-scale: one
basically averages over several bursts, i.e. the measured SFR is not
able to trace these short-term bursts anymore. On the other hand, the
star-formation histories in the MW and Noon cases are correlated on
longer time-scales, which gives rise to a weaker decline of oys with
averaging time-scale. This decline can be derived from first principles

7 As discussed in Caplar & Tacchella (2019), SFR indicators are not strictly
speaking simple averages, but actually convolutions, of the past star-formation
history.

MNRAS 497, 698-725 (2020)

(see equation 16 in Caplar & Tacchella 2019), i.e. one can relate the
measured o s to the intrinsic scatter of the main sequence via the
autocorrelation function of the underlying stochastic star-formation
processes. This decline of oys with longer averaging time-scale is
also consistent with results of numerical zoom-in simulations, see
fig. 12 of Hopkins et al. (2014).

The coloured regions in Fig. 10 indicate observational constraints
from the literature. Measuring the scatter of the main sequence
from observational data is difficult, since the intrinsic scatter of
the main sequence (oys) is convolved with errors in observ-
ing/deriving relevant physical quantities (i.e. photo-z, stellar mass,
and SFR) and, when the data are binned in z-intervals, with the
evolution of the main sequence ridgeline itself within the given
time interval. These corrections have been considered in detail in
Speagle et al. (2014). We therefore rely on those o \;s measurements
wherever available.® We supplement these observational constraints
by measurements of Davies et al. (2019a) for the Dwarf regime
and of Shivaei et al. (2015) for the Noon regime for the Ha
SFR tracer, applying corrections as outlined in Speagle et al.
(2014).

8The work by Speagle et al. (2014) is based on a large literature compilation,
including Elbaz et al. (2007), Elbaz et al. (2011), Karim et al. (2011), Lee
etal. (2012), Reddy et al. (2012), Rodighiero et al. (2011), Salim et al. (2007),
Santini et al. (2009), Sobral et al. (2014), Steinhardt et al. (2014), Whitaker
etal. (2012).
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Figure 11. Gradient across the main sequence. In all panels, the solid lines indicate the median of a certain galaxy property as a function of distance from the
main sequence ridgeline (Ayps = log (SFR/SFRys)), while the shaded region shows the 16th to 84th percentiles. The panels from left to right show the gradients
where the SFR is averaged over longer time-scales: t,yg = 3, 30, 100, and 500 Myr. The top, middle, and bottom panels show the depletion time 7 gep, the gas
mass Mgy, and the number of active GMCs Ngmc. In all panels, the solid lines indicate the median, while the shaded region shows the 16th to 84th percentiles.
The blue, purple, orange, and red colours indicate the results for the four different galaxy regimes (Table 2). The gradients depend on both the galaxy regime and
the averaging time-scale. For example, for High-z galaxies, main sequence gradients in the depletion time are only significantly present if the SFR is average
over long time-scales (fayg > 10 Myr), while the opposite is true for Mgas and Ngmc. This shows that in the High-z regime, short-term fluctuations about the
main sequence are mainly set by GMC-related physics, while the longer-time oscillations by depletion time variations.

Although the observational constraints are quite broad, we can find
clear indications that the scatter of the main sequence depends on the
galaxy regime as well as the tracer used. Our model regimes lie in
the ballpark of the observations, reproducing the observations both
qualitatively and quantitatively. For the High-z regime, we are still
missing direct estimates of H a-based SFRs. Our model predicts a
scatter of o vs(H o) & 0.3 dex, which can be tested with the upcoming
James Webb Space Telescope.

4.2.2 Gradients about the main sequence

Secondly, we now turn to main sequence gradients. In general,
variation in the SFR for a given set of galaxies with the same
underlying PSD may be driven by variation in the gas mass, or
variation in the depletion time. In the basic regulator model, depletion
time gradients do not exist unless they are imposed by hand since
the depletion time is assumed to be constant and the SFR is given
by SFR = M,/T4cp at all times. Hence all variability in the SFR
comes from variability in the gas reservoir. However, in the extended

regular model, the latter equation only holds on long time-scales.
Therefore we expect some depletion time variations across the main
sequence.

Fig. 11 shows how the median depletion time (top panels), gas
mass (middle panels), and number of active GMCs (bottom panels)
vary across the main sequence. The distance from the main sequence
is defined as Aps = log (SFR/SFRys), where SFRys is the SFR of
the main sequence. In the context of our model, each galaxy case
study is run for a long time; the resulting star-formation history is
then filtered with a top-hat window of the given averaging time-scale.
SFRys is then the average SFR of this filtered time series, and each
point in the filtered time series may then be assigned a value of Ays.
In each panel, we show the gradients for the four different galaxy
regimes. From left to right, the columns show how the gradients
depend on increasing values of the averaging time-scale of the SFR
(tavg)-

Fig. 11 may be interpreted to show which galaxy properties are
responsible for main sequence oscillations on certain time-scales
for the different galaxy regimes. When averaging over short time-
scales (f3yg < 10Myr), we only find weak 74, gradients across

MNRAS 497, 698-725 (2020)
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the main sequence in all galaxy regimes (top left-hand panel of
Fig. 11). Averaging over longer time-scales increases the strength
of the 74, gradients: averaging the SFR over >100 Myr gives rise
to a depletion time gradient of Tgep X Ay with y &~ 0.1 — 0.5,
depending on the galaxy regime. Recent observations of massive
galaxies at z = 0 — 3 reveal gradients consistent with these estimates
(Genzel et al. 2015; Tacconi et al. 2018; Freundlich et al. 2019), the
exact number depending on how upper limits and incomplete data
are treated (Feldmann, in preparation).

For the Mg, gradients across the MS (middle panels of Fig. 11),
we find the opposite behaviour. Specifically, shorter averaging
time-scales lead to stronger gradients in all galaxy regimes. For
fag = 3Myr, we find M, A;,[ls in the MW, Noon, and High-z
regimes and a slightly shallower dependence in the Dwarf regime.
Averaging over longer time-scales weakens these gradients in all
galaxy regimes, except the MW and Noon regimes, where the
gradient roughly remains. Looking at the number of active GMCs
(Nomc; bottom panels of Fig. 11), we find a similar behaviour
as for the M,,. This is not too surprising since M,,s and Ngmc
are closely related to each other. This effect may be amplified
by considering the dynamical influence of galaxy morphology on
GMC formation. For instance Martig et al. (2009) and Gensior,
Kruijssen & Keller (2020) show that simulated galaxies have less star
formation (and presumably fewer GMCs) if they have more massive
spheroids, which tend to stabilize the disc against local gravitational
collapse.

In summary, the gradients across the main sequence depend on the
averaging time-scale of the SFR (i.e. the SFR tracer) and, hence, can
be used to pin down which physical process is responsible for main
sequence oscillations on certain time-scale. The exact dependence of
galaxy properties on the distance from the main sequence depend on
the galaxy regimes. Typically, we find that the short-term oscillations
(<10 Myr) are mainly set by the number of active GMCs and the gas
mass in the reservoir, while the longer term oscillations (>10 Myr)
contain a contribution from depletion time variations, which come
from variability in the inflow .

4.3 Clumpy galaxies at z ~ 1.5 — 3.0

Observations of star-forming galaxies at z & 1.5 — 3.0 show evidence
of giant kpc-scale clumps of star formation (e.g. Conselice et al.
2004; Elmegreen & Elmegreen 2006; Genzel et al. 2008; Forster
Schreiber et al. 2011a; Guo et al. 2012; Wuyts et al. 2012), which are
extremely rare in massive, low-redshift galaxies. These star-forming
clumps are of great interest because their occurrence and lifetimes
are highly sensitive to the stellar feedback prescription in galaxy
formation models (e.g. Mandelker et al. 2016; Oklop¢i¢ et al. 2017).
However, their exact nature and properties are still debated. For
example, it is unclear whether clumps are single entities or rather
clusters of small star-forming regions, blurred into kpc-size clumps
due to lack of spatial resolution (Behrendt, Burkert & Schartmann
2016).

In this short sub-section, we briefly investigate if such giant, star-
forming clumps are present in our model. We study their occurrence,
but we postpone a more detailed discussion and comparison to
observations to future work. We focus now on massive, star-forming
galaxies at z &~ 1.5 — 3.0. Specifically, we adopt the model runs
from the previously introduced Noon regime (Table 2), which has a
GMC mass function with a high-mass cutoff of m,,x = 10° Mg,. For
simplicity, we define these giant star-forming clumps as entities with
molecular gas masses of >5 x 108 M. This threshold is motivated
by observations that indicate the these clumps have stellar masses of
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Figure 12. Distribution function of number of giant star-forming clumps in
galaxies at z & 1.5 — 3.0. The orange line shows our model prediction for
massive, star-forming galaxies at z ~ 2 (Noon regime as specified in Table 2).
‘We indicate variants of the Noon regime with brown (shallower mass function
with ap = —1.5), yellow (steeper mass function with ap, = —2.5), and red
lines (lifetimes have no mass dependence, i.e. @, = 0.0). We define giant
star-forming clumps as entities with a molecular gas mass of >5 x 108 Mg
We find that ~ 65 per cent of the galaxies have at least one clump and that
galaxies have on average 1.5 clumps. We compare our model predictions with
observations by Guo et al. (2018), focusing on star-forming galaxies at z ~
1.5 — 3.0 with log (M,/Mg) = 10 — 11. The standard Noon model agrees
well with the observational data, indicating that these observed star-forming
clumps might indeed be individual star-forming regions.

10® — 10° My, (e.g. Forster Schreiber et al. 2011b; Guo et al. 2018).
We randomly choose a galaxy from the Noon regime and the epoch of
observation (time-step in the time-series), and then count the number
of such massive clumps. We reduce the number of clumps by 1 to
make it comparable to observations, as a 1-clump galaxy would not
be identified as clumpy.

Fig. 12 shows the normalized distribution of number of giant,
star-forming clumps. The distribution peaks at O and has a tail up
to ~8 clumps. We find that ~ 65 per cent of the galaxies have at
least one clump, while the average per galaxy is 1.5 clumps. In our
model, these clumps have typically a lifetime of 7;, & 150 Myr, an
integrated star-formation efficiency of ¢ ~ 0.2, and a star-formation
rate of SFR ~ 1 — 10 Mg, yr~!, which is about 10—20 per cent of the
total SFR. Fig. 12 also shows variants of the Noon model. We find
that the adopted birth mass function has the largest impact on the
clump distribution. The brown and yellow line indicate the clump
distribution assuming a shallower («, = —1.5) and steeper (o, =
—2.5) mass function. Adopting no mass dependence on the GMC
lifetimes (o) = 0.0, red line) has a negligible effect.

We compare our occurrence of clumps with observations by Guo
et al. (2018, see also Guo et al. 2015). They provided a sample of
3193 clumps detected from 1270 galaxies at 0.5 < z < 3.0. We select
star-forming galaxies at z &~ 1.5 — 3.0 with log (M,/Mg) = 10 — 11.
‘We plot the distribution of the number of clumps per galaxy as a black
line in Fig. 12. We obtained a rough estimate of the error from the
uncertainties on the fraction of clumpy galaxies in Guo et al. (2015).
Our model agrees well with this observational estimate, qualitatively
reproducing the trend that ~ 40 per cent of the galaxies have no such
massive, off-centred clump. Furthermore, the observed galaxies at
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this epoch and mass range have on average 1.3 clumps, consistent
with our model. Finally, the aforementioned physical properties of
the clumps are also in rough agreement with observations (e.g. Guo
et al. 2018; Zanella et al. 2019).

In summary, our model with the parameters from the Noon regime
naturally reproduces massive, star-forming clumps. This indicates
that the observed giant star-forming clumps may indeed be individual
star-forming regions, and not composed of a cluster of small star-
forming regions. Specifically, these giant clumps might be just the
upper tail of of the GMC mass function and therefore a sensitive
probe of it.

4.4 Caveats

The strength of our approach lies in the simplicity of the physical
model: it allows us to explore a wide range of parameters and
understand with analytical arguments the emerging trends. At the
same time, this simplicity is also a weakness because we might miss
certain physical processes.

In particular dynamical processes, such as spiral arms or bars
inducing star formation, can give rise to correlated star formation
on roughly the dynamical time-scale, which is longer than the GMC
lifetime, but shorter than the equilibrium time-scale in most galaxies
(e.g. Jeffreson & Kruijssen 2018). For example, bars are able to
trigger central star formation (e.g. Athanassoula 2013; Chown et al.
2019), while spiral arms can sweep up diffuse gas thereby leading
to star formation (e.g. Dobbs & Baba 2014). Relatedly, the star-
formation activity in the Central Molecular Zone (CMZ, i.e. the
central 500 pc) of the Milky Way is consistent with episodic cycles
of star formation, where a ring-shaped region at ~100 pc undergoes
episodic starbursts, with bursts lasting ~5 — 10Myr occurring
at ~20 — 40 Myr intervals (Kruijssen et al. 2014; Krumholz &
Kruijssen 2015; Krumholz, Kruijssen & Crocker 2017). Such process
can approximately be captured by modifying the inflow rate & and/or
the star-formation prescription G(r) by implementing stochastically
varying Tmyo. However, the detailed investigation of this is beyond
the scope of this paper.

Additionally, although the parametrization of the inflow rate is
flexible, it does not directly couple to the outflow rate. Therefore,
any connection between the expelled and re-accreted gas (‘gas
recycling’) might be underestimated. Based on the FIRE simulations,
Anglés-Alcazar et al. (2017) show that in galaxies of all masses
wind recycling can be the dominant accretion mode, with median
recycling times of ~100 — 350 Myr. In principle, our model could
be extended further to include this mode of accretion explicitly.
However, since our inflow rate prescription is flexible, we believe
that the stochasticity of the SFR will not be changed significantly
beyond what we have explored here.

Related to the outflow prescription are processes that cease the
SFR of galaxies (quenching). Throughout this paper, we focus on
star-forming galaxies and do not attempt to model quenching. As
discussed in Iyer et al. (in preparation), quenching leads to an increase
in power on long time-scales. In the future, we can expand on the
model presented here by including processes such as quenching
and by modelling galaxies in a cosmological context, ensuring
that the long-time-scale PSD is consistent with expectation from
ACDM.

Furthermore, our GMC formation and evolution model is rather
simplistic. Lee et al. (2016) argue that the GMC properties, in
particular the star-formation efficiency per free-fall time, changes
with time for individual GMCs in order to explain the large dispersion
in the rate of star formation. On the other hand, we assume the the
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GMC properties are constant and are set based on the birth mass
of the GMC, without any scatter. Again, we can in principle extend
our model to make the star-formation efficiency (as well as the mass
loss) of GMCs time-dependent. This will change the details of the
gas cycling within galaxies, however, not affect the stochasticity of
the star formation.

In this work, we also assume that the GMC population consists
of independent star-forming region. As we discuss in Section 2.3,
the interstellar medium is turbulent and clouds undergoing collapse
generally have several different centres, making it difficult to count
independent star-forming regions. We could imagine that the birth
rate and lifetime distribution of GMC of different masses depend
on the previous history. For example, a massive GMC will affect
neighbouring, smaller GMCs by for example disrupting them, but
also by increasing their formation rate. This correlation in the GMC
lifetimes and number density would affect the PSD, but it is difficult
to capture in our model. Numerical models could be used to estimate
the importance of this effect. Here we basically use the operational
definition that an independent region is one that resides on an
evolutionary timeline in a way that is independent of its neighbours
on that time-scale (see also Kruijssen & Longmore 2014; Kruijssen
et al. 2018 for a discussion of the independence of star-forming
regions).

Beyond uncertainty in modelling the GMCs, there is stochasticity
in the values of SFR indicators produced by random sampling from
the IMF (da Silvaetal. 2012; Krumholz 2015). In particular, most star
formation indicators are correlated with the effects of rare, massive
stars, so for SFRs below about 1073 Mg, yr~!, draws from the IMF
may begin to dominate the power spectrum.

Finally, throughout this work, we represent the variability of star
formation with a PSD. The power spectrum is a quadratic descriptor
of a random field: it contains information about the amplitudes
of the Fourier components, but not about any phase relationships
that might have evolved through non-linear processes (e.g. Jones
et al. 2004). The PSD characterizes fully a Gaussian random
field, which has Fourier modes that are independent. However, in
principle, a star-formation history could have Fourier components
with higher order correlations. The next order descriptors are cubic:
the three-point correlation function and its Fourier counterpart, the bi-
spectrum. However, since the PSD is already challenging to measure
observationally (see the next section), we postpone the exploration
of the bi-spectrum to later. Nevertheless, it would be interesting to
quantify the importance of the bi-spectrum of the inflow rate and
SFR in numerical simulations.

4.5 Way forward: numerical simulations and observations

In this work we propose that the variability of star formation can
be well described by the PSD, which is shaped by a combination
of processes related to the small-scale physics of star formation and
the overall, large-scale gas cycle of galaxies. The key predictions of
this paper, in particular the shape of the PSD, can be tested in more
advanced, numerical simulations, which model the star-formation
and feedback processes self-consistently. This could help to address
some of the aforementioned caveats.

Iyer et al. (in preparation) study the PSD of the star-formation his-
tories of galaxies from an extensive set of simulations, ranging from
cosmological hydrodynamical simulations (Illustris, IllustrisTNG,
Mufasa, Simba, Eagle), zoom simulations (FIRE-2, g14, and Mar-
vel/Justice League), semi-analytic models (Santa Cruz SAM), and
empirical models (UniverseMachine). They find that variability
on long time-scales accounts for most of the power in galaxy
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star-formation histories, and is tied to the dark matter accretion
histories of their parent haloes and quenching of star formation.
However, this alone is insufficient to explain the overall shape of
star-formation histories, since the PSDs exhibit a broken power-law
behaviour, where the time-scale of the breaks as well as the high
frequency slope vary significantly between different simulations.
They highlight that observational constraints in the PSD space
will help constrain the relative strengths of the physical processes
responsible for these star-formation fluctuations.

More generally, zoom-in simulations such as VELA (Ceverino
etal. 2014; Zolotov et al. 2015) and FIRE (Hopkins et al. 2014, 2018)
allow for resolving GMC-based star formation in a cosmological
context (Mandelker et al. 2016; Oklopci¢ et al. 2017; Benincasa
et al. 2019). Similarly, idealized simulations allow for studying the
formation and disruption of GMCs (e.g. Li et al. 2018; Semenov
et al. 2018). Such simulations are well suited to test some of our
predictions. Specifically, one can indeed study how the GMC lifetime
distribution shapes the PSD on short time-scales, and how this is
connected to the overall gas cycle on longer time-scales. Fixed-
volume cosmological simulation are making tremendous progress in
resolving the sites of star formation (e.g. TNG50; Nelson et al. 2019;
Pillepich et al. 2019), but still miss a factor of a few in resolution
to self-consistently model the interstellar medium and hence GMCs.
Nevertheless, these simulation can be used to test our predictions
on longer time-scales, particularly constraining the PSD shape on
the time-scale of the depletion time-scale. Furthermore, it would
be interesting to understand the details of how black hole feedback
and dark matter accretion shape the PSD on the longest time-scales
(>1Gyr).

After showing that the PSD is a powerful measure of star-formation
variability that allows us to constrain models of galaxy formation
(Iyer et al. in preparation), the next step is to move to observations.
Caplar & Tacchella (2019) put forward the idea of how the PSD
can be used to quantify the variability of star formation and provide
a first observational estimate. They show how the measurements
of the normalization and width of the star-forming main sequence,
measured in several pass-bands that probe different time-scales, give
a constraint on the parameters of the underlying PSD, assuming
that the galaxy sample can be characterized by a single PSD. They
first derive these results analytically for a simplified case where
they model observations by averaging over the recent star-formation
history. However, since SFR indicators are not just simple averages
of the past star-formation history, they show that more realistic
observational cases need to be treated numerically. As a proof of
concept, Caplar & Tacchella (2019) use observational estimates
from the GAMA survey of the main sequence scatter at z ~ 0 and
M, ~ 10" Mg measured in Ha, UV + IR, and the u-band (Davies
et al. 2019a). Assuming a high-frequency slope of « = 2, they find a
break time-scale of 17074%” Myr, which implies that star-formation
histories of galaxies lose ‘memory’ of their previous activity on
roughly the dynamical time-scale. They highlight several caveats in
their analysis, including that the dust attenuation correction for the
different SFR indicators is uncertain.

Wang & Lilly (2020b) infer the SFR averaged over 5, 800 Myr, and
the ratio of the two by using D,,(4000), EW(H §), and EW(H «) from
SDSS/MaNGA. They use these quantities to constrain the PSD. They
characterize the PSD with a single power law (i.e. without breaks),
meaning they assume that the star-formation histories of individual
galaxies are effectively correlated over the age of the universe (similar
to the approach by Kelson 2014). They also explore the consequences
of existence of the variation of the SFR within the population
at a given epoch that are unrelated to the temporal variations of
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individual galaxies which they call the ‘intrinsic scatter’. The PSD is
strongly degenerate with the assumed value of the intrinsic scatter,
but if the intrinsic scatter is subdominant they find that the PSDs
of star-forming galaxies with M, = 10%° — 10" M have slopes
between 1.0 and 2.0, consistent with the slopes inferred by Caplar &
Tacchella (2019) and with the slopes found in this work. As discussed
in Caplar & Tacchella (2019), a limited number of observational
constraints allows only a limited number of inferences about the
properties of star-formation variability.

Moving forward, an important step lies in breaking the degeneracy
between the star-formation history of galaxies and other stellar
population parameters, such as dust attenuation, metallicity, and the
initial mass function. A full Bayesian approach in modelling the spec-
tral energy distribution allow estimates of the co-variance between
different parameters and therefore a more robust determination of the
star-formation history (e.g. Iyer & Gawiser 2017; Leja et al. 2017,
2019; Carnall et al. 2019; Iyer et al. 2019). Under the assumption
that a galaxy ensemble can be constructed that follows a single PSD,
one possibly could constrain the PSD via hierarchical modelling (e.g.
Curtis-Lake, Chevallard & Charlot 2020). Future work will provide
guidance of how to best tackle the challenge of measuring the PSD
observationally.

5 CONCLUSIONS

Itis challenging to gain further insight on star formation and feedback
because these processes act on multiple spatial and temporal scales.
In this paper, we address the question of how different processes —
external and internal to galaxies such as formation and distribution
of GMCs, spiral arms, galaxy—galaxy mergers, and galaxy- and halo-
scale cosmological inflows and outflows — drive the variability of star
formation on a wide range of time-scales. We use the power spectral
density (PSD) of the star-formation history to quantify the star-
formation variability: the PSD shows the strength of SFR variations
as a function of frequency.

In order to probe a wide range of different galaxy regimes and
parameter space, we build our analytical model on the previously
studied regulator model, which assumes mass conservation of the gas
reservoir. We add more physical realism to the model by assuming
that the SFR of a galaxy is sustained by a population of GMCs. In
this extended regulator model, the variability in the SFR is driven
by both the variability of the gas inflow rate and the stochasticity of
GMC formation. Our key conclusions are the following:

(1) The PSD of the star-formation history generically has three
breaks, corresponding to the correlation time of the inflow rate,
the equilibrium time-scale of the gas reservoir of the galaxy, and
the average lifetime of individual molecular clouds. On long and
intermediate time-scales (relative to the dynamical time-scale of the
galaxy), the PSD is typically set by the variability of the inflow
rate and the interplay between outflows and gas depletion. On short
time-scales, the PSD shows an additional component related to the
life-cycle of molecular clouds, which can be described by a damped
random walk with a power-law slope of 8 ~ 2 at high frequencies
and a break proportional to the average cloud lifetime.

(i1) Since the short-term variability of the SFR is set by GMCs,
measuring the PSD at high frequencies (short time-scales) allows us
to learn about star-formation physics, even without spatially resolved
observations. Specifically, the PSD break at short time-scales enables
us to constrain the average GMC lifetime within a galaxy. Short GMC
lifetimes in combination with a high mass loading and short depletion
time are easier to constrain.
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(iii) The PSD provides a framework with which one can rigorously
define ‘bursty’ star formation (short-term versus long-term variabil-
ity). We study the PSD in four different galaxy regimes in detail:
Milky-Way-like galaxies (‘MW’), dwarf galaxies (‘Dwarf”), massive
galaxies at Cosmic Noon (z ~ 2; ‘Noon’), and high-z galaxies (z >
6; ‘High-z’). We find that today’s dwarf and high-z galaxies are
both bursty, but for different reasons. In dwarf galaxies, GMCs
are responsible for the power on short time-scales, while in high-
z galaxies, burstiness is related to the short equilibrium time-scale
and large variability of the inflow rate.

(iv) Consistently, the scatter of the star-forming main sequence
owus for the Dwarf and High-z galaxy regimes are larger than for
the MW and Noon regimes when the SFR is measured over short
time-scales (i.e. using an SFR tracer that is susceptible to short-
term fluctuations, such as H o). However, because the star-formation
histories of galaxies in the Dwarf and High-z regimes quickly
decorrelate, os declines with increasing averaging time-scale of
the SFR: one basically averages over several bursts and the SFR is
not able to trace these short-term bursts anymore. On the other hand,
the star-formation histories in the MW and Noon cases are correlated
on longer time-scales, which gives rise to a weaker decline of o g
with averaging time-scale. Remarkably we find that the physics of
individual GMCs has a direct impact on oy in the Dwarf regime,
a quantity typically viewed as the domain of larger scale galaxy
evolution processes.

(v) Similarly, gradients of galaxy properties (such as the depletion
time or the number of GMC) depend on the SFR averaging time-
scale (i.e. SFR tracer) used: we find that the short-term oscillations
(<10 Myr) are mainly set by the number of active GMCs and the gas
mass in the reservoir, while the long-term oscillations (>10 Myr) are
controlled by depletion time variations, which come from variability
in the inflow.

(vi) An additional outcome of our approach is that we model the
GMC population of galaxies. We demonstrate that the giant star-
forming clumps in massive z ~ 1.5 — 3.0 galaxies are naturally
produced in our model in the Noon regime. This indicates that
these observed star-forming clumps might indeed be individual
star-forming regions. Furthermore, we show that the GMC birth
mass function can be significantly different from the observed mass
function, depending mainly on the GMC lifetime distribution. We
show that a single power law for the birth mass function gives natural
rise to an observed mass function that is double power law, similar
to a Schechter function.

Clearly, several of the ideas and results outlined here need to
be analysed in more detail with more complex numerical models.
Specifically, learning about the GMC-scale star-formation physics
from integrated galaxy measurement is of great potential and interest,
since it would allow us to shed new light on to star formation
within the first galaxies with the upcoming James Webb Space
Telescope.
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APPENDIX A: MASS RETURNED TO THE GAS
RESERVOIR

We define the stellar mass M, to be the mass in stars and remnants,
i.e. after subtracting stellar mass-loss due to winds and supernovae.
This mass returned to the gas reservoir can again be available for
star formation. In our model (see Section 2.1), we track this mass
return self-consistently and abandon the assumption of instantaneous
recycling. Specifically, at each time 7, we compute from the newly
formed stellar mass, SFR(7) x dr, the mass that will be returned to
the gas reservoir at # > 7 . This self-consistent treatment is important
in certain regimes, such as at high redshifts, when galaxies are
dominated by young stellar population (Tacchella et al. 2018), or
in low-redshift late-type galaxies where the gas from stellar mass-
loss can provide most or all of the fuel required to sustain the today’s
level of star formation in (Leitner & Kravtsov 2011).

We estimate the stellar mass-loss due to winds and supernovae
with the stellar population synthesis code Flexible Stellar
Population Synthesis (FSPS; Conroy, Gunn & White 2009;
Conroy & Gunn 2010). In particular, we follow the mass-loss of stars
due to winds as they evolve along the MIST isochrones (Choi et al.
2016; Choi, Conroy & Byler 2017). We follow the stars until the end
of their lifetime, where we then assign remnant masses according to
Renzini & Ciotti (1993). We assume solar metallicity and a Chabrier
(2003) intial mass function. Stellar mass-loss depends only weakly
on metallicity, and therefore changing the metallicity does not affect
our results significantly.

Fig. Al shows the fraction of mass returned to the gas reservoir
for a Simple Stellar Population (SSP) as a function of time (left-hand
panel) and the return rate R(¢) at which this mass transfer takes
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Figure Al. Stellar mass-loss from a Simple Stellar Population (SSP). Left-hand panel: fraction of mass returned back to the gas phase (fz) due to winds and
supernovae as a function of the SSP’s age. Right-hand panel: return rate 7R(¢) at which mass is transferred from the stellar to the gas reservoir, normalized to an

initial SSP mass of 1 M.

place (right-hand panel). Most of the mass return takes place within
less than a Gyr. After ~1 Gyr, the mass locked in long-lived stars
(=1 — fr) converges to roughly 60 per cent.

APPENDIX B: RELATION BETWEEN BIRTH
AND OBSERVED GMC MASS FUNCTION

As discussed in the main text, the birth mass function and the
observed mass function differ in the general case, because the GMC
lifetime 71 depends on the birth mass my,. As shown in equation (7),
we assume that the birth mass function is a simple power law with
slope « and remains constant with time. Therefore, the birth rate
function is 1y (my) = n{)mg". Furthermore, each formed GMC loses
mass according to equation (12) due to the formation of stars and
gas return to the gas reservoir. We can then derive the observed mass
function n by integrating over the whole lifetime of the GMCs at
different masses:

nobs(m) :/ ilb(mb)dl
0
o d
- / i () — dit
0 dmy,

Timax(m) t l—ap
nym / (1 - ) dr
0 TL(my)

where the birth mass m;, and the observed mass m at some later time
are related via equation (12) and Ty, (m) is the maximal lifetime of
a GMC of mass m. This maximal lifetime is determined by the upper
cutoff of the birth masses, .y, i.. by

(BI)

T (1) = T (M) (1 - L) . (B2)

Mpax

The analytical solution of the full integral is unwieldy given the
time dependence within the 7. factor. However, the integral can be
easily evaluated in the case when o = 0, i.e. when the lifetimes of
GMCs are not mass dependent. In this special case:

—ap
7o m
Nobs(m) = nym® —— |1 — ( ) .
—0p Mmax
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Figure B1. Comparison of the birth and observed GMC mass functions.
The blue histogram shows the normalized mass distribution for a population
of GMC drawn from the birth mass function (equation 7). The red line
shows the observed mass function, computed by sampling the birth mass
function over 1000 Myr (1000 time steps) and evolving the GMC population
forward in time, assuming the same GMC parameters as in Fig. 2. Since more
massive GMC live longer, the observed mass function is shallower than the
birth mass function. The orange histogram shows the observed mass function
approximated by equation (B4), which is in excellent agreement with the
numerically calculated observed mass function. The slopes of the birth and
observed mass functions are related via the power-law index of the lifetime
function, i.e. aops = ap + ;.

Numerical experiments shows that the final expression, in the cases
when o is small (o) < 1.0) can be well approximated by simply
replacing 7 with the full 7, i.e.

—ap
Nobs(M) = 11{Jm"‘bm 1— ( m ) .
—Qp M max

This function has a low-mass power-law slope of aps = ap + ¢
and a cutoff at high masses, similar to a Schechter (1976) function.

(B4)
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Fig. B1 compares the birth mass function with the observed
mass function. The blue histogram shows the normalized mass
distribution for a population of GMC drawn from the birth mass
function (equation 7). The red line shows the observed mass
function, computed by sampling the birth mass function over
1000 Myr (1000 time-steps) and evolving the GMC population
forward in time, assuming the same GMC parameters as in Fig. 2,
ie. ap, = —2.0, 9 = 10.0Myr, and «; = 0.25. The orange line
shows the observed mass function approximated by equation (B4),
which is in excellent agreement with the numerically calculated
observed mass function. Since more massive GMC live longer,
the observed mass function is shallower than the birth mass
function.

APPENDIX C: ANALYTIC DERIVATION OF
THE GMC POWER SPECTRUM

The contribution to the PSD introduced by having stars form from
a fixed reservoir of gas through GMCs is well-described by a
broken power law, with short time-scales proportional to 1/ f2, and
long time-scales constant. In this appendix we derive this result
analytically for the case of a single GMC mass and lifetime, and as
in the rest of the paper, assuming that GMCs form stars at a constant
rate throughout their lifetimes.

In this regime, SFR o Ngpmc, so we focus on deriving the PSD
of Nomc. Because the gas reservoir is assumed to be constant, the
expected value of Ngmc is also constant. To simplify the notation,
we hereafter drop the GMC subscript on N. To compute the PSD, we
first compute the autocovariance, namely

R(t) = E[(N(1) = (N)(N(t + ) — (N)]. (ChH

When t > 7, the number of clouds will be completely independent,
because any clouds that were active at time 7 will have vanished by
t + 7. The ACF is therefore zero in this case.

When 7 < 71, some clouds may exist in common between the
two epochs. To describe this possibility, we can split N(¢) as follows:
N(t) = Ning, 1 + Ncommon, Where Ning 1 is the number of clouds that
formed before 7+ t — 7, and are hence guaranteed to be independent
of the number of clouds at time ¢ + 7. Similarly, we set N(t) =
Nind, 2 + Neommon Where Nipg, 2 is the number of clouds formed after
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t + 71.. The autocovariance can then be written

R(‘[) = (Nind,1><Nind,2) + <Ncomm0n>((Nind,l> + (Nind,2>)
+ <A’czommon> - <N>2

for0 <7 < 1, (C2)

where we have used the fact that Ny 1 and Niyg o are inde-
pendent of each other by construction. These two variables also
have the same expectation value, (N)t/tL, i.e. the average fraction
of clouds which are not common between the two epochs. The
number of common clouds between the two epochs is Poisson
distributed with expectation value (N)(1 — t/tr), so that (N2 ) =
(N1 = 72/72) + (N)(1 — T/7).

Inserting each of these averages into equation (C2), every term
cancels except (N)(1 — t/ty). Finally, to compute the autocorrelation
function, we divide out the variance of N, which for a Poisson
process is just (V). Thus the ACF decreases linearly from 1 at 7 =
0 to 0 at T = 71, and remains O thereafter. This ACF is similar
to the exponentially declining case of the damped random walk,
and so has similar limiting power-law slopes (see below), but the
behaviour at intermediate frequency values is quite different, with,
unsurprisingly, the exponential ACF (damped random walk) case
yielding a smoother transition between the two regimes.

Via the Wiener-Khinchin theorem, we can compute the PSD as
the Fourier transform of this function,

PSDy = / ” R(7)dt = / TL(N)(] — /7 )e T e (C3)
— 0

o0

Integrating by parts and taking the real component yields
1 —cos(2m ftp)
(27 f)?

In the limit of high frequencies, i.e. f— 0o, the PSD behaves as 1/ f2,
while for low frequencies, the leading-order expansion of the Taylor
series of cosine yields an f? term that cancels the denominator’s,
yielding a constant white noise spectrum. In the general case with
a whole spectrum of GMC properties, the higher order aliases from
the cosine term are largely washed out, though they are still visible
in the parts of the PSD dominated by GMCs.

PSDy = (N) (C4)
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