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ABSTRACT
An analysis of two-dimensional viscous, radiation hydrodynamic numerical simulations of thin α-discs around a stellar mass
black hole reveals multiple robust, coherent oscillations. Our disc models are initialized on both the gas- and radiation-
pressure-dominated branches of the thermal equilibrium curve, with mass accretion rates between Ṁ = 0.01LEdd/c

2 and
10 LEdd/c

2. In the initially radiation-pressure-dominated disc, we confirm the presence of global inertial–acoustic oscillations
of frequency slightly above the maximum radial epicyclic one. In the gas-pressure-dominated Schwarzschild-metric models,
we find a velocity oscillation occurring at the maximum value of the radial epicyclic frequency, 3.5 × 10−3 t−1

g , which is
most likely a trapped fundamental g-mode. For the Kerr-metric, gas-pressure-dominated disc with dimensionless black hole
spin parameter a∗ = 0.5, the mode frequency is well below the epicyclic frequency maximum, thus confirming that this
oscillation is a trapped g-mode. Additionally, the total pressure fluctuations in the discs strongly suggest standing-wave p-modes
with frequencies below the apparent g-mode frequency, some trapped in the inner disc close to the innermost stable circular
orbit (ISCO), others present in the middle/outer parts of the disc. The strongest oscillations occur at the breathing oscillation
frequency and are present in all the numerical models we report here, as are weaker velocity oscillations at the vertical epicyclic
frequencies. The vertical oscillations show a 3:2 frequency ratio with oscillations occurring approximately at the radial epicyclic
frequency, which could be of astrophysical importance in systems with observed twin peak, high-frequency quasi-periodic
oscillations.
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1 IN T RO D U C T I O N

It has long been established that thin accretion discs are prone to os-
cillations, with several relativistic eigenmodes having been predicted
by two groups (Kato & Fukue 1980; Okazaki, Kato & Fukue 1987;
Nowak & Wagoner 1991, 1992, 1993) prior to the first observations
of high-frequency quasi-periodic oscillations (HFQPOs) in the X-ray
light curves of black hole candidates (Morgan, Remillard & Greiner
1997; Remillard et al. 1999). HFQPOs at characteristic frequencies
have since been detected from several luminous accreting neutron
stars, as well as a few black hole candidates in X-ray binaries (see
Remillard & McClintock 2006; van der Klis 2006, for reviews).

While it seems clear that some HFQPOs must be a manifestation
of eigenmodes of the accretion disc in general relativity (GR),
their exact theoretical interpretation remains to be agreed upon.
A linear theory of thin-disc oscillations in GR (often called ‘dis-
coseismology’) has been worked out in great detail (reviewed in
Wagoner 1999; Kato 2001; Kato, Fukue & Mineshige 2008). It is
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natural to search for such oscillations in the temporal behaviour of
simulated global accretion disc models. High-frequency periodicities
compatible with discoseismic modes have been found in several early
simulations. One-dimensional (height-integrated) disc simulations
revealed global oscillations (i.e. modes) at frequencies close to
κ̃max, the maximum value of the radial epicyclic frequency (Honma,
Matsumoto & Kato 1992; Chen & Taam 1995; Milsom & Taam
1996). Similar oscillations have been found in a two-dimensional
simulation (Milsom & Taam 1997). In all these cases, the oscillations
have been associated with inertial–acoustic oscillations.

Initially, discoseismology seemed quite promising (Wagoner,
Silbergleit & Ortega-Rodrı́guez 2001). However, after the discovery
that the ∼6 M� black hole candidate GRO J1655-40 exhibits a pair
of HFQPOs at 300 Hz and 450 Hz (Strohmayer 2001), it has been
noted that the two frequencies are in a 3:2 ratio (Abramowicz &
Kluźniak 2001), and a non-linear resonance model was developed
to account for the ratio (Kluźniak & Abramowicz 2001; Kluzniak &
Abramowicz 2002; Bursa et al. 2004; Kluźniak, Abramowicz & Lee
2004; Kluźniak 2005). Currently, about four black holes are known to
exhibit pairs of HFQPOs, in all cases in a 3:2 or 5:3 ratio, apparently
(Kluzniak & Abramowicz 2002; Remillard et al. 2002; Remillard
2004; Homan et al. 2005). It is possible that the observed HFQPOs
correspond to eigenmodes of thick tori/discs (Rezzolla et al. 2003;
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Bursa et al. 2004; Blaes, Arras & Fragile 2006; Mishra et al. 2017).
It has been pointed out (Remillard & McClintock 2006) that the
HFQPOs in black holes are not associated with the thermal soft state
thought to correspond to thin discs, although it is not excluded that a
thin disc is present (along with other structures) in the intermediate
hard state in which the HFQPOs do occur.

In this paper, we would like to examine the oscillations of
simulated state-of-the-art thin discs to gain a better understanding
of the non-linear dynamics of oscillations in radiatively efficient
accretion flows in strong gravity. It should be remarked that analytic
work on thin disc oscillations often deals with simplified steady-state
disc models, often with Keplerian flow (without radial inflow). Time
dependent, non-linear solutions obtained in disc simulations, such
as the ones analysed here, likely afford a better approximation to
reality than simplified analytic models. It is thus of great interest to
see if the predicted disc modes and other oscillations are present in
numerically simulated discs. More generally, it seems worthwhile
to investigate temporal behaviour, which is beyond reach of current
analytic models. While we hope to identify promising candidates for
the actually observed frequencies, detailed predictions of the light
curves observed at infinity are beyond the scope of this work.

Our approach is similar to the work of O’Neill, Reynolds & Miller
(2009), who analysed the oscillations of a thin α-disc simulated
numerically in Newtonian gravity. However, the simulations we
discuss here were performed in the framework of general relativistic
radiative hydrodynamics (they are described in detail in Fragile et al.
2018). The simulated disc is axially symmetric and therefore so are all
the oscillations reported in this paper. To facilitate comparison with
O’Neill et al. (2009), and the large body of analytic results mentioned
above, we use the terminology adopted in discoseismology (e.g. Kato
2016). The following modes are thought to be the most promising in
the context of observable HFQPOs (Wagoner, Silbergleit & Ortega-
Rodrı́guez 2001):

Inertial–acoustic waves (p-modes): The fundamental (i.e. ones
with no vertical nodes) p-modes are evanescent within the epicyclic
frequency curve, i.e. wherever their observed frequency satisfies ν <

κ̃(r) (Kato 2001), where ν and κ̃(r) are the oscillation and radial
epicyclic frequencies. Therefore, they may either travel in the outer
part of the disc [note that at large radii, 2πκ̃(r) tends to the angular
Keplerian frequency �(r)], or they may be trapped between the inner
disc radius, say at the innermost stable circular orbit (ISCO), and
that radius r, for which ν = κ̃(r) (Ortega-Rodrı́guez, Silbergleit &
Wagoner 2002).

Inertial-gravity waves (g-modes): In contrast, the fundamental g-
modes1 are evanescent for ν > κ̃(r); hence, they remain trapped close
to the location of κ̃max (for a non-rotating black hole, the maximum
value of κ̃ is attained at circumferential radius rmax = 8GM/c2 ≡
8 rg), and their eigenfrequencies belong to a discrete spectrum. In
the Schwarzschild metric, the eigenfrequency of the fundamental
(no node, even parity) g-mode is σ0/(2π ) = 3.49552 × 10−3 t−1

g , for
a 0.1 LEdd radiation-pressure-dominated disc, and slightly higher at
lower luminosities (Perez et al. 1997).

The m = 1 precessing c-mode: This mode, a trapped non-
axisymmetric corrugation wave, requires a splitting between the

1Here, the ‘g’ stands for gravity. Other authors use the name r-mode to stress
that the restoring force is related to rotation, while the name g-modes is
reserved for those modes in which (to use Newtonian language) the vertical
component of gravity provides the restoring force (Lubow & Ogilvie 1998),
as in our ‘corrugation’ modes. The p-modes may on occasion be referred to
as the f-modes in the literature.

vertical epicyclic and orbital frequencies and is related to the Lense-
Thirring precession (Silbergleit, Wagoner & Ortega-Rodrı́guez
2001). As our focus in this paper is primarily on non-rotating
black holes, we do not discuss non-axisymmetric c-modes. Their
study would require a fully three-dimensional simulation in the Kerr
metric. The axisymmetric (m = 0) corrugation oscillation is simply
the vertical epicyclic oscillation.

In this work, we use the simulations of Fragile et al. (2018) to
study the discoseismic oscillations in thin accretion discs. The initial
configurations of these simulations are set using standard thin α-
disc model (Shakura & Sunyaev 1973) in its general relativistic
incarnation (Novikov & Thorne 1973). Although these simulations
are purely hydrodynamical, we hope that their study can shed
some light on the quasi-periodic phenomena in real discs. As we
will see in the rest of this article, trapped p-modes are present
in all of our simulations of thin discs. We also observe p-modes
for r > 8 rg, particularly strong global inertial–acoustic oscillations
are present throughout the simulation in the (initially) radiation-
pressure-dominated run. The presence of the fundamental g-mode
is additionally rather prominent in the data. Besides these well-
identified modes, there is a rich spectrum of other, mostly local,
oscillations; in particular, the vertical breathing oscillation is promi-
nent (Section 3.5). For the first time in a numerical simulation,
we see evidence for a 3:2 resonance between two disc oscillations
(Section 3.6).

The numerical methods and initial setups of the reported simula-
tions are presented in Section 2. In Section 3, we discuss the results
and findings for both non-rotating and rotating black hole cases. In
Section 4, we compare our findings with previous results. Finally,
in Section 5, we summarize our conclusions. Throughout the article,
the units of length and time are the gravitational radius, rg = GM/c2,
and time, tg = GM/c3, respectively.

2 NUMERI CAL SETUP

The simulations reported here are performed using general
relativistic radiative magnetohydrodynamical (GRRMHD) code
COSMOS++ (Anninos, Fragile & Salmonson 2005; Fragile et al.
2012; Fragile, Olejar & Anninos 2014). However, in order to reduce
the required computational cost, we restricted the setup to purely
hydro and axisymmetric simulations. This allowed us to study
multiple initial disc profiles with different initial luminosity (Fragile
et al. 2018). A detailed description of viscosity treatment and set of
equations we used in COSMOS++ are specified in Fragile et al.
(2018).

The simulations are initialized using Novikov & Thorne (1973)
accretion disc model, which adds GR effects to the standard α-
viscosity disc model (Shakura & Sunyaev 1973). The disc is not
subjected to any external perturbations or forces exciting or damping
the oscillations we are studying. We used horizon penetrating Kerr-
Schild metric in spherical polar coordinate system (t, r, θ , φ). The grid
resolution is 256 × 192 in radial and polar directions. The simulation
domain is restricted to a small radial and polar domain and hence
our chosen grid leads to a well-resolved set of simulations. The inner
and polar boundary conditions are such that the gas and radiation are
allowed to flow only off the grid. However, to provide a supply of
fluid at a steady mass accretion rate, the outer boundary conditions
hold initial disc profile in ghost zones together with allowed outflow
of gas and radiation.

The standard disc model has three regions: an inner radiation-
pressure-dominated one and middle and outer gas-pressure-
dominated ones (dominated by electron scattering and free–free
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Table 1. Simulation models and parameters. The models are named by the initial mass
accretion rate in units of LEdd/c2; rmin, rmax, θmin, and θmax correspond to the radial and
polar boundary limits; the q parameter dictates how concentrated the grid is towards the disc
midplane (q = 0.1 is more concentrated than q = 0.3); and tstop represents the stop time of the
numerical simulation.

Name BH spin ṁ rmin rmax θmax − θmin q tstop

(LEdd/c2) (rg) (rg) (rad) (tg)

S01E 0.0 0.01 5 20 0.289 0.1 80 485
S01Ea5 0.5 0.01 4 20 0.289 0.1 80 485
S1E 0.0 1 5 20 0.401 0.1 80 652
S3E 0.0 3 4 40 0.476 0.3 42 964
S3Ep 0.0 3 4 40 0.476 0.3 29 665
S10E 0.0 10 4 40 0.871 0.3 27 492

absorption opacities, respectively). The numerical challenge of
achieving steady flow in geometrically thin discs up to large radial
distances hinders setting up these separate regions in a single
simulation. This led us to perform separate simulations for radiation-
pressure-dominated and gas-pressure-dominated discs, controlled
by Ṁ . Our lowest mass accretion rate setup (thinnest disc) has
Ṁ = 0.01 LEdd/c

2 (S01E). The intermediate cases have mass ac-
cretion rate of Ṁ = 1 LEdd/c

2 (S1E) and Ṁ = 3 LEdd/c
2 (S3E). The

highest mass accretion rate case has Ṁ = 10 LEdd/c
2 (S10E). In

this paper, we shall primarily focus on the simulations S1E, S01E,
and S01Ea5 (S01E case with black hole spin of a∗ = 0.5). The
S1E model is initialized as a radiation-pressure-dominated disc and
eventually collapses to a gas-pressure-dominated one. On the other
hand, the S01E setup is initialized as a gas-pressure-dominated disc
and remains thermally stable.

The gas- and radiation-pressure-dominated cases have slightly
different ranges of inner boundaries and inner truncation of the disc to
avoid certain technical difficulties mentioned below. The initial disc
in the S01E model extends from r = 6 rg to rmax = 20 rg. The inner
boundary of the simulation domain for S01E model is at rmin = 5 rg

and the polar domain spans in a range of θmax − θmin = 0.289 rad.
The initial disc in the S1E model is truncated at an inner radius of
7.5 rg to avoid the extremely thin analytic solution of the disc near
the ISCO. The inner boundary for the S1E model is at rmin = 5 rg

and the outer boundary is at rmax = 40 rg. The S01Ea5 setup has an
inner boundary at rmin = 4 rg to keep the ISCO within the simulation
domain. The setup parameters are summarized in Table 1.

The initial vertical profile of the disc is governed by vertical hydro-
static equilibrium, with the gas-pressure-dominated case assuming an
isothermal disc, while the radiation-pressure-dominated one assumes
a polytropic equation of state. The gas-pressure-dominated disc
profile, represented in cylindrical coordinates, has

ρ(r, z) = ρ0(r)e−z2H−2(r)/2 (1)

and

Ptot(r, z) = GMBHH 2(r)

R3
ρ(r, z) . (2)

The radiation-pressure-dominated case has,

ρ(r, z) = ρ0(r)

[
1 − z2

2H 2(r)

]1/(�−1)

(3)

and

Ptot(r, z) = κ(r)ρ�(r, z) , (4)

where

κ = GMBHH 2

�(� − 1)ρ�−1
0 R3

. (5)

In the radiation-pressure-dominated case, we assume � = 4/3.
Assuming a local thermodynamic equilibrium, we compute the

gas temperature by solving quartic equation,

Ptot = Pgas + Prad = kbρTgas

m̄
+ 1

3
aRT 4

gas, (6)

where m̄ = 0.615mH and aR = 4σ /c. The above quartic equation
gives only one positive, real solution for gas temperature. Using the
gas temperature, we compute the radiation energy density,

Erad(R, z) = aRT 4
gas. (7)

The initial radiation flux is computed using the gradient of this
radiation energy density. In order to compute the radiation energy
density in the radiation rest frame, we use transformations outlined
in Sa̧dowski et al. (2013).

In this paper, the radial coordinate r (rendered as R in the figures)
always denotes the circumferential radius in the equatorial plane.

3 D ISC O SCILLATIONS

We now turn to the inferred oscillations from our set of thin disc
simulations. Unlike previous simulations of thin, viscous accretion
discs, the Fragile et al. (2018) simulations were carried out in a GR
framework with radiative transfer. The radiation was treated using
the M1-closure scheme (Mihalas & Mihalas 1984). As described
above, the presence of g-modes and p-modes in the inner part of a
thin viscous disc had been investigated in Newtonian simulations
with the Paczyński-Wiita pseudo-potential (O’Neill et al. 2009).
Analytic discoseismic studies (Nowak & Wagoner 1992; Perez et al.
1997) reveal that the oscillatory modes of a thin accretion disc in
the Schwarzschild metric should be qualitatively similar. On these
grounds, we expect that our simulations will reveal similar modes
as the ones in O’Neill et al. (2009). However, this is by no means
certain, as their simulation had an effectively optically thin disc
(entropy was artificially removed at the rate of viscous heating)
while our simulation includes full radiative transfer, and the disc is
optically thick. Thus, one aim of our study is to find out whether
the inclusion of radiation suppresses or preserves the g- and p-
modes reported in previous numerical, non-radiative, Newtonian
studies.

In this work, we distinguish between mode angular frequencies,
ω, along with their corresponding radial epicyclic and orbital
angular frequencies, κ and �, and the usual frequencies (reported
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Figure 1. Space-time plot over the time interval 2.0–3.0 × 104 tg (left) and PDS over the complete duration (80 652 tg) (right) of the local mass accretion rate
of simulation S1E. The solid blue line in the right-hand panel, and in analogous figures below, is a plot of the radial epicyclic frequency κ(r)/(2π ); the white
dashed line is the Keplerian frequency �(r)/(2π ).

by observers in Hz), ν ≡ ω/(2π ), with the corresponding radial
epicyclic and orbital frequencies, κ̃ ≡ κ/(2π ) and �̃ ≡ �/(2π ).
In the Schwarzschild metric, the maximum value of the radial
epicyclic frequency, κ̃max = 3.51686 × 10−3 t−1

g , is attained at r =
rmax = 8GM/c2 ≡ 8 rg and happens to satisfy κ̃max = �̃(rmax)/2. In
spherically symmetric gravity, so in the Schwarzschild metric, as
well as the Paczyński-Wiita pseudo-potential, the vertical epicyclic
frequency, ν⊥, coincides with the orbital frequency �̃. However, in
general, they are not equal, e.g. for prograde orbits in the Kerr metric,
ν⊥ < �̃.

3.1 Simulation S1E (radiation-pressure-dominated setup)

The most robust timing feature in our simulations is a persistent,
coherent oscillation in the local mass accretion rate ṁ(r) (mass flux
through a sphere of radius r). This is qualitatively seen in each
of the reported simulations. An example is given in the left-hand
panel of Fig. 1 for the S1E simulation in the time interval 2.0–
3.0 × 104 tg. The oscillation at r ≈ 8 rg is quite coherent, persisting
throughout the simulation. The reader can easily count 35 nearly
horizontal stripes/cycles in the exhibited time interval of 104 tg,
yielding a frequency ν = 3.5 × 10−3 t−1

g . Note that in the upper
half of the diagram (t > 2.5 × 104 tg), the stripes are horizontal at
r ≈ 8 rg and are curving upwards on both sides, consistent with a
trapped oscillation exciting traveling waves on both sides of the
trapping domain. On the other hand, at the bottom of the figure
(t < 2.3 × 104 tg), the stripes are consistent with a wave starting at
r ≈ 7.5 rg traveling towards larger radii.

The corresponding power density spectrum (PDS) of mass flux
in the right-hand panel of Fig. 1 shows the power in a fast Fourier
transform of the entire time series from t = 0 to 80 652 tg. The power
is normalized by the zeroth frequency power (which is the initial
mass accretion rate in the case of Fig. 1). Here, apart from broad-
band noise, particularly strong below the ISCO (r < 6rg), the most
prominent feature is a stripe covering nearly the complete radial
range of the simulation (its harmonics are also clearly visible). The
stripe corresponds to a frequency close to the maximum of the radial
epicyclic frequency and is horizontal in the right-hand panel of Fig. 1

for r > r1 with r1 ≈ 8rg but follows the epicyclic frequency curve
for r < r1. Clearly, the latter segment is a manifestation of local
oscillations at the radial epicyclic frequency, while the former, with
frequencies uniform in the range r > r1, corresponds to eigenmodes
of the disc. We now turn to a discussion of the interpretation of these
modes.

As remarked in the previous section, the disc set up to be radiation-
pressure-dominated in fact collapses to a gas-pressure-dominated
one. This is because radiation-pressure-dominated thin discs are
unstable (Shakura & Sunyaev 1976; Piran 1978; Mishra et al.
2016; Fragile et al. 2018). This had the unintended consequence
of introducing what is effectively an initial vertical perturbation to
the disc solution. In the sense that our radiation-pressure-dominated
initial setups collapse vertically into gas-pressure-dominated discs
in equilibrium (see Fig. 1 in Fragile et al. 2018), they resemble the
O’Neill et al. (2009) simulations, which were all vertically perturbed,
and so we would expect to recover similar results, albeit at a lower
value of the viscosity parameter, α = 0.02, than their comparable
α = 0.1 results. Generally, the power density spectra of the vertically
perturbed discs of O’Neill et al. (2009) are somewhat noisy, but
the authors were able to infer global oscillations at a frequency
close to κ̃max of the Paczynski-Wiita pseudo-potential, which they
interpreted as trapped g- and/or p-modes, as well as traveling
p-waves.

The left-hand panel of Fig. 2 shows the local PDS of ṁ(r) for the
same S1E run computed at r = 7.7, 8.0, and 8.3 rg (i.e. three vertical
slices through the PDS in the right-hand panel of Fig. 1). The most
prominent peak is at least a factor of 100 above the background
noise and is at a frequency very close to 3.52 × 10−3 t−1

g . There are
four possibilities for the oscillation type at this frequency: (1) the
fundamental g-mode; (2) radial oscillations at the maximum radial
epicyclic frequency; (3) p-modes leaking into the evanescent region;
and (4) a blend of the g-mode and penetrating p-modes. Note that
the peak power at r = 8.3 rg exceeds that at r = 8 rg by a factor of
about 3, disfavouring the expectations of a p-mode originating to the
left of the κ̃ curve (r < 8 rg) and leaking/exciting a g-mode. If this
were the case, the maximum power should have been at r = 7.7 rg.
A p-wave originating to the right of the κ̃ curve (r > 8 rg) can also
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Figure 2. Left: PDS of local mass accretion rate at three radii (7.7, 8.0 and 8.3 rg) for simulation S1E. Right: PDS of total midplane pressure at the same radii.
The vertical dotted line shows the eigenfrequency for the fundamental g-mode.

leak into the evanescent region and enhance the power at r = 8.3 rg.
Despite the fact that the power in the left-hand panel of Fig. 2 is not
maximal at r = 8 rg, the presence of a g-mode cannot be discounted.

A better understanding of the modes in our simulations can be
achieved by examining the PDS of total pressure variations (left-hand
panel of Fig. 3). Again, there is power corresponding to local radial
epicyclic oscillations at small radii (somewhat below 8rg) and very
strong white noise below the ISCO (r < 6rg). There is remarkably
little power below the radial epicyclic frequency curve κ̃(r) (the solid
blue curve), in agreement with the predictions of the linear theory
of discoseismology. Turning to the eigenmodes, here we see a stripe
of power running from the location of the maximum of the epicyclic
frequency curve to larger radii, extending past the vertical epicyclic
frequency curve. Its power is distributed in a fairly narrow band of
frequencies just slightly larger than κ̃max, although there is also some
power just below κ̃max. Comparing the left-hand panel of Fig. 3 with
the right-hand panel of Fig. 1, we see that the oscillations are present
both in the pressure and in the mass accretion rate and therefore
also in radial velocity. Clearly, these are inertial–acoustic m = 0
(axisymmetric) p-modes2 from the continuum spectrum, ν > κ̃max.
The frequency-radius PDS diagram in the left-hand panel of Fig. 3
also shows a p-mode at the frequency of the fundamental g-mode
just below the maximum radial epicyclic frequency. In addition to
standing p-waves at slightly higher frequencies, note the narrow,
diagonal, dark strips strongly suggestive of lines of nodes. There is
also excess power just below the maximum of the radial epicyclic
frequency curve, which could be the trapped, fundamental g-mode.

The right-hand panel of Fig. 2 again shows the local PDS, this time
of total pressure. The PDS is computed at the same radii as before.
No harmonics are apparent in the PDS of total pressure above the
noise level, contrasting with the PDS of ṁ in Figs 1 and 2. A closer
examination (inset) reveals two frequency peaks for each radius and
for two of the radii (7.7 and 8.0), one of the peaks is precisely at
3.516 × 10−3 t−1

g , i.e. at κ̃max. The extra power at 3.7 × 10−3 t−1
g

in the solid, blue curve indicates the effects of the p-mode having

2Although it is somewhat surprising that the oscillations do not seem to extend
to r < 8rg, the alternative interpretation that this is an m = 1 g-mode (which
would extend between the �̃ − κ̃ and �̃ curves, Kato 2016) would have the
problem that the wave does not become evanescent for ν > �̃. At any rate,
no m 	= 0 modes can be seen in our 2D simulations.

ν > κ̃max. The dotted, red curve has its maximum exactly at the
expected g-mode frequency. This suggests that the g-mode is present
irrespective of the modes of slightly different frequencies (ν > κ̃max)
altering/blending the power in the region with ν < κ̃max.

Alternatively, we could try to interpret the strong oscillations seen
at three different radii in the right-hand panel of Fig. 2 as a p-mode
transmitted through the evanescent region, where ν < κ̃(r). Such a
possibility follows from the work of Giussani, Kluźniak & Mishra
(2014), who computed the entire spectrum of the axisymmetric (m =
0) inertial–acoustic modes in the pseudo-potential of Kluźniak & Lee
(2002), and showed that the modes with up to eight nodes belong
to the discrete spectrum (i.e. they are trapped between the ISCO
and the κ̃(r) curve), while standing waves with nine radial nodes
in the inner trapping region are transmitted through the evanescent
region to larger radii. Also, the lower boundary of the continuum
frequency spectrum of p-waves is below κ̃max. This is illustrated
in the right-hand panel of Fig. 3 reproduced from Giussani et al.
(2014), showing one such eigenmode. The plot clearly shows that,
based on this hypothesis, the power at r = 8 rg should be less than
at both edges of the evanescent region. Again, this is not what we
see in our simulations, as the left-hand panel of Fig. 2 clearly reveals
an increase of power with increasing radius. However, the high α

results of O’Neill et al. (2009) do show more power at the edges of
the evanescent zone than at the radial location of κ̃max in their vertical
velocity plots, with the exception of model EQ0.1 (their figs 7 and
8), suggesting that the transmission of p-waves with frequency less
than κ̃max is a possible alternative explanation to their g-mode feature
(unless, of course, theirs is a g-mode with one radial node, which
would also explain the lower power in the middle of the trapped
domain).

3.2 Simulation S01E (gas-pressure-dominated setup)

Up to this point, we have been discussing a simulation that was ini-
tialized assuming a radiation-pressure-dominated setup but actually
achieved a gas-pressure-dominated equilibrium following its thermal
collapse, so some oscillations may have been excited by the vertical
collapse of the disc. To avoid such a strong initial perturbation, it
would be preferable to have a disc initialized with a stable solution.
Let us now turn to the one case of a thermally stable disc from Fragile
et al. (2018) that being simulation S01E. Similar to simulation S1E,
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Variability in thin discs 1071

Figure 3. Left: PDS of total midplane pressure for simulation S1E. Right: An inertial–acoustic mode (solid, blue line) from the continuum part of the spectrum
transmitted through the evanescent region identified by the intersection of κ(r) (dashed, red line) and the eigenfrequency (dot-dashed, green line). Here, a is the
radius of the inner edge of the disc (plot reproduced from Giussani, Kluźniak & Mishra 2014).

this disc manifests strong, persistent, and coherent oscillations in its
local mass flux. The left-hand panel of Fig. 4 shows the PDS of ṁ(r)
performed over the entire duration (80485 tg) of simulation S01E.
The disc spectrum is remarkably quiet. The white noise near the
ISCO dominates the power. Other than a feature near κ̃max, there is
hardly any power at all below the radial epicyclic frequency curve.
However, there is excess power at radii r < 8 rg and frequencies in the
range κ̃(r) < ν(r) < κ̃max. As predicted in linear theory (Kato 2001),
these oscillations correspond to inner trapped p-modes between the
ISCO and the epicyclic barrier. With a finer grid, one could possibly
resolve the number of radial nodes in such oscillations, and with a
longer run resolve the discrete spectrum of these modes. With the
simulations performed to date, this is not feasible.

Similar to simulation S1E, there is power to the right of the radial
epicyclic curve (i.e. for r > 8 rg). We are uncertain of the nature of
these oscillations. They could correspond to n = 1 (single vertical
node) g-modes, which are trapped in the range κ̃ < ν < Ñz, where
Ñz is the Brunt–Väisällä frequency, which for our strongly stratified
disc is expected to be on the order of the vertical epicyclic frequency,
which is equal to the Keplerian orbital frequency (white dashed line in
the figure) in the Schwarzschild metric, so Ñz ∼ �̃. It is remarkable
that there are hardly any oscillations at frequencies ν > κ̃max. The
strip of power in the upper right corner of the left-hand panel of
Fig. 4 is tied to the breathing oscillation (Mishra, Kluźniak & Fragile
2019), discussed in Section 3.5.

The most prominent feature in Fig. 4, though, is the oscillation
at ν = κ̃max, extending from the inner edge of the disc to r ≈ 12 rg.
This is seen as a rather narrow peak at ν = 3.50 × 10−3 t−1

g in the
right-hand panel of Fig. 4, which shows the PDS at three distinct
local radii, r = 7.7, 8.0, and 8.3 rg. Note that the peak power is at
least three orders of magnitude above the background power, and the
harmonic is prominently absent (relative to the peak, the power is
down by four or five orders of magnitude at 2κ̃max). Ideally, we aim to
identify the frequency peak and classify it to see if it belongs to the set
of theoretically calculated discoseismic modes. As discussed earlier,
the maximum epicyclic frequency in the Schwarzschild metric is
κ̃ = 3.51686 × 10−3 t−1

g ; the lowest order fundamental g-mode has
ν0 = 3.49552 × 10−3 t−1

g (Perez et al. 1997), the difference being
only 2 × 10−5 t−1

g . It would, therefore, be difficult to resolve these

frequencies in a simulation run for a time of <105 tg. The relation
between these two frequencies is illustrated in the right-hand panel of
Fig. 5, the dashed line showing the radial extent of the trapping region
of the fundamental g-mode. As the g-mode becomes evanescent on
each side of this radial domain, the amplitude of the oscillation close
to the boundaries of the trapping range should be lower than that
at the centre of the trapped domain (r = 8 rg in the Schwarzschild
space-time). This does not seem to be the case in any of the viscous
runs of O’Neill et al. (2009), although their inviscid run may have
this property (their Fig. 2). We also do not see the amplitude behaving
this way in the PDS of the mass flux (although we see a hint of this in
the PDS of pressure for the S1E run, as seen in the right-hand panel of
Fig. 2). We suspect that such a behaviour of the amplitude for p- and
g-modes is due to their mutual interference. Again, in the right-hand
panel of Fig. 4, there is less power in the ν = 3.5 × 10−3 t−1

g peak at
r = 8 rg than at one of the radii at the edge of the trapping zone of the
g-mode, this time at the inner edge at r = 7.7 rg. This advocates for
a leakage of the inertial-acoustic p-mode into the evanescent region
and constructive coupling to the g-mode, leading to larger power in
the dashed, green curve. We noted a similar feature in the S1E case
but from a larger radius.

Considering the PDS of total (gas + radiation) pressure for
the same S01E simulation, as shown in Fig. 6, we draw similar
conclusions as with the PDS of ṁ. Again, there is remarkably
little noise in the disc (except at very low frequencies). Just as
in the left-hand panel of Fig. 4, there is clearly a fair amount
of power in the domain expected for trapped p-modes, at radii
r < 8 rg and frequencies κ̃(r) < ν < κ̃max, an excess of power at
ν = κ̃max extending from the ISCO to r ≈ 12 rg, and some power
to the right of the epicyclic curve, i.e. at radii larger than those
radii for which ν = κ(r), with ν < κ̃max. Note the alternating dark
and bright, diagonal stripes above the radial epicyclic frequency
curve for r > 8 rg; the right-hand panel of the figure has a restricted
power range to enhance these stripes. The dark lines are the lines
of nodes of oscillations. At a fixed frequency (horizontal line in the
figure), one can clearly see alternating nodes and crests/troughs of
the standing wave. The wavelength decreases with increasing radius.
This argues for fundamental (n = 0) p-modes, rather than n = 1 g-
modes trapped by the Brunt–Väisällä frequency, as the wavenumber
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1072 B. Mishra, W. Kluźniak and P. C. Fragile

Figure 4. Left: PDS of the local mass accretion rate for simulation S01E over the complete duration (80 485 tg). Right: Local PDS at radii 7.7, 8.0, and 8.3 rg.
The vertical dotted line represents the lowest trapped g-mode eigenfrequency.

Figure 5. Left: Zoomed PDS for the local mass accretion rate of simulation S01E. Right: Lowest frequency, trapped g-mode frequency (dashed line) over the
trapping region defined by the radial epicyclic frequency (blue, solid line) for the Schwarzschild metric.

Figure 6. Left: PDS for the total midplane pressure of simulation S01E. Right: Same in a restricted power range to enhance the features at r > 8 rg and ν >

κ(r)/(2π ). Note the lack of power for ν > κmax/(2π ) in the range 6 < r < 12.
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Variability in thin discs 1073

would then be dropping to zero at the edges of the evanescent zone.
For the n = 0 p-modes, there is only one edge, at that radius rin

at which ν = κ̃(rin), while for the n = 1 g-modes, there would be a
second (outer) boundary at rout, with ν(rout) = Ñz(rout) ≈ �̃(rout), the
latter frequency being given by the dashed white line. The vertical
stripes are due to numerical noise present at all radii. However, these
vertical stripes have very low power at the higher frequencies that
we are interested in in this study and hence the conclusions of this
article are not affected by them.

3.3 Spinning black hole case

In previous subsections, we quantitatively studied g-/p-modes in
accretion discs around non-rotating black holes. We also mentioned
previously that the lowest order g-mode in the Schwarzschild case
differs by only a fraction of a per cent from the maximum radial
epicyclic frequency. This makes it difficult to differentiate between
these oscillations based on frequency alone. In order to break this
degeneracy, we performed a new S01E, gas-pressure-dominated disc
simulation around a rotating black hole with dimensionless black
hole spin parameter a∗ = 0.5 (named S01Ea5).

In Fig. 7, we show the radial profile of the PDS of ṁ. The left-
hand panel shows the global PDS, with solid curves representing the
epicyclic frequencies for a non-rotating black hole and dashed curves
representing the epicyclic frequencies for an a∗ = 0.5 black hole. The
total pressure PDS (Fig. 8) for the spinning black hole also shows
evidence of discoseismic oscillations, just as in the non-rotating black
hole case. We note that the power appears to originate from the inner
region with ν ≥ κ̃(r) and then leak into the evanescent region with the
same ν now satisfying ν ≤ κ̃(r). The g- and p-mode oscillations have
clearly adapted to the correct radial epicyclic frequency (compare the
solid and dashed curves in both Figs 7 and 8).

The right-hand panel of Fig. 7 magnifies the region close to the
maximum radial epicyclic frequency (κ̃max = 5.46 × 10−3 t−1

g ) to
illustrate that most of the power is in a strip at ν = 5.28 × 10−3 t−1

g .
This strip is fairly wide in frequency, with a full width half maximum
stretching roughly from ν = 5.23 × 10−3 t−1

g to ν = 5.3 × 10−3 t−1
g

(Fig. 9). These frequencies are fully compatible with the fundamental
g-mode frequency ν0 = 5.2315 × 10−3 t−1

g of a thin disc for an a∗ =
0.5 black hole, or another g-mode with no azimuthal or radial nodes
at ν = 5.25 × 10−3 t−1

g (Perez et al. 1997).
In Fig. 9, we present the local PDS of the mass accretion rate

at r = 5.6, 5.7, and 5.8 rg, which provides further evidence of a
trapped g-mode and its interference with a p-mode. The maximum
power in the magnified subplot is close to r = 5.6 rg (green dashed
curve), which is slightly lower than the radius of the maximum radial
epicyclic frequency. Similar to the non-rotating black hole case, the
prominent power in the green, dashed curve gets enhanced by p-
waves originating from the inner regions (ν ≥ κ̃) of the disc and
penetrating the evanescent region (ν ≤ κ̃). The power at r = 5.46 rg

(radius of the maximum radial epicyclic frequency in this case) has
a slightly lower magnitude compared to the one at r = 5.6 rg. This
again suggests the constructive coupling of p-waves and g-waves
leading to larger power at r = 5.6 rg. The power in the peak at
r = 5.8 rg is approximately 25 per cent smaller than the power at
r = 5.6 and 5.7 rg. This indicates that there was no power leakage
due to a p-mode originating at larger radii, r > 5.7. To the contrary, the
g-mode apparently excites a p-wave at r > 6.8 rg. A similar feature,
i.e. power decreasing from small to large radii, is seen in the right-
hand panel of Fig. 7. This argues in favour of the presence of trapped
g-mode (together with p-mode) oscillations also being present in

the Schwarzschild S01E case, though not as easily distinguish-
able from oscillations occurring at the maximum radial epicyclic
frequency.

3.4 Identification of the trapped mode

Let us briefly summarize the arguments leading to the identification
of the prominent high-frequency mode as a trapped g-mode. The
oscillation is present in a definite radial interval; this suggests a
trapped mode. Both the trapping region close to the location of the
maximum of the epicyclic frequency (Kato & Fukue 1980) and the
frequency of the oscillation (clearly distinct from the maximum of
the radial epicyclic frequency and below it) are as predicted for the
fundamental g-mode (Perez et al. 1997). The oscillation has a great
deal of power in the mass accretion rate in Fig. 5 (as we will see
shortly, this corresponds to oscillations of radial velocity) and is
hardly present, if at all, in the pressure PDS (Fig. 6); this suggest an
inertial-gravity mode.

It may be of interest to examine the eigenfunctions of this mode,
and we exhibit them in the panels of Fig. 10 showing the overlap of
the radial and vertical components of the velocity, with the sinusoidal
and cosinusoidal oscillations at the mode frequency. The sinusoidal
component of total-pressure variations is shown in the lower panels.
Reflection symmetry in the z = 0 plane is clearly apparent in all
panels. The trapping region of the g-mode corresponds to the radial
extent of the roughly rectangular blue patch in the middle right-hand
panel (sine component of Vr). Overall, the pattern is compatible with
the (m = 0, n = 0, j = 0) even parity, zero node g-mode from the
relativistic calculation of Perez et al. (1997) for adiabatic index 7/5 <

� < 3. It is significant that the patch is of fairly uniform amplitude; if
this were a p-mode being transmitted through the evanescent region,
the amplitude would have dropped substantially in the middle of the
region at r = 8rg (cf., the right-hand panel of Fig. 3). As we can see
in the bottom panels, the pressure amplitude is also fairly uniform
radially in the trapping region.

The situation is quite different at smaller and larger radii. Note the
nearly vertical stripes in the middle panels of Fig. 10 to the left and
right of the trapping region. They clearly correspond to a standing
p-wave as can be seen by comparing the bottom panel of Fig. 10
with Fig. 6. The pressure enhancement in the bottom panel of the
Fig. 10 corresponding to the power enhancement in Fig. 6. Note that
pressure leads the radial velocity by a quarter phase (e.g. Mishra,
Kluźniak & Fragile 2019), so the sine component of pressure in the
bottom panel has maxima where there is compression in the cosine
component of radial velocity – for example, the boundary at r = 7rg

of radial outflow (red) and inflow (blue) in the left middle panel of
Fig. 10 corresponds to a pressure maximum in the bottom panel. The
pressure maxima also correspond to vertical outflow seen in the top
left-hand panel (motion away from the disc midplane, blue below and
red above the midplane), while pressure minima clearly correspond
to vertical inflow (red for z < 0 and blue for z > 0). In this way,
vertical motion is coupled by pressure to radial motion. Note the
suppression of vertical motion near the equatorial plane at about 1/3
of the disc height (white ‘triangular’ area in the top panels) – the
surface of the disc is at h/r ≈ 0.016, so, e.g. at z = 0.16rg for R =
10rg. It is interesting to note that a strong velocity oscillation persists
in the plunging region within the ISCO (top and middle panels of
Fig. 10 at r < 6rg), but there is no coherent pressure oscillation in the
same region (bottom panels). The latter fact strongly suggests that
the power strip below r < 6rg in Fig. 6 corresponds to incoherent
acoustic white noise.
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1074 B. Mishra, W. Kluźniak and P. C. Fragile

Figure 7. Left: PDS of the local mass accretion rate for the Kerr black hole simulation S01Ea5. Right: Zoomed-in region of left-hand panel. The solid curves
show epicyclic frequencies for a non-rotating black hole, while the dashed curves are for an a∗ = 0.5 rotating black hole.

Figure 8. Left: PDS of the total midplane pressure for simulation S01Ea5. Right: Zoomed-in region of left-hand panel.

Figure 9. PDS of local mass accretion rate for simulation S01Ea5 at r = 5.6,
5.7, and 5.8 rg.

3.5 Breathing oscillations

Thin discs admit a family of axisymmetric (m = 0) vertical oscilla-
tions, of which the fundamental is the vertical epicyclic oscillation,
an incompressible inertial-gravity mode. The first overtone (with
one node in the vertical component of velocity, located in the disc
midplane) is a gravito-acoustic ‘breathing’ oscillation. The expres-
sions for vertical oscillation frequencies, including the breathing
oscillation, can be found in Perez et al. (1997) and Bollimpalli
& Kluźniak (2017), the breathing mode frequency for a γ = 5/3
polytrope being ν = √

8/3 ν⊥. In the numerical simulations of thin
discs reported here, we find breathing oscillations at all radii larger
than the ISCO. This is best seen in the left-hand panels of Figs 7
and Fig. 8 and the right-hand panel of Fig. 11, where we observe
curves of large power, at frequencies ν(r) ≈ 1.63ν⊥(r), starting from
the outer regions of the disc all the way down to the inner edge.
The vertical epicyclic frequency ν⊥ is shown by the dashed cyan
curve. A detailed study of these breathing oscillations for the S01E
case was reported in Mishra et al. (2019), who showed that the
vertical motions in the disc at these frequencies match the predicted
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Variability in thin discs 1075

Figure 10. Eigenfunctions of the g-mode for simulation S01E. Top: Vertical component of the fluid velocity. Middle: Radial component of the velocity. The
cosine components of velocity are shown in the left-hand panels, and the sine components in the right ones Bottom: Total pressure with the sine component
shown on the left and cosine on the right for ease of comparison with the velocity pattern.

eigenfunctions. Thus, the identification of the breathing mode is
unambiguous. One important conclusion of that paper was that the
ratio of the breathing oscillation frequency to the vertical epicyclic
frequency was approximately 5:3 (note that

√
8/3 ≈ 1.63 is very

close to 5/3 ≈ 1.67). That conclusion also holds true for the spinning
black hole simulation, S01Ea5, reported here.

3.6 Resonant oscillations at 3:2 frequency ratio for
non-rotating black hole

While the variability of radial component of the midplane velocity
(right-hand panel of Fig. 11 reflects the properties of the mass
accretion rate (left-hand panel of Fig. 4), a detailed study of the
vertical component of the fluid three velocity shows one of the most
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1076 B. Mishra, W. Kluźniak and P. C. Fragile

Figure 11. Left: Time variability of the vertical velocity 〈Vz〉ρ at r = 8 rg for simulation S01E. Right: The PDS of midplane radial velocity for simulation
S01E. The dashed line is the vertical epicyclic frequency, and the bright strip of power above it corresponds to the breathing oscillation.

striking oscillation features. In the left-hand panel of Fig. 11, we
show the time evolution of the density weighted vertical component
of velocity 〈Vz〉ρ at r = 8 rg for simulation S01E (similar results are
seen for the spinning black hole case as well). It clearly shows fluid
oscillations with small positive and negative velocities. This suggests
obvious vertical oscillations across the disc midplane. The presence
of the wave trains suggests additional oscillation features, which can
best be analysed by looking at the Fourier transform in the right-
hand panel. We find evidence of vertical oscillations from the bright
strip of power tracing the black dashed curve of Keplerian orbital
frequency, equal in this Schwarzschild case to the vertical epicyclic
frequency, ν⊥ = �̃(r). Additionally, we see power tracing the radial
epicyclic frequency, κ̃(r) (solid blue curve). Examining more closely,
we see enhanced power in the vertical oscillations relative to the
oscillations occurring close to radial epicyclic frequency at small
radii, but the opposite at larger radii. There is very little power along
the radial epicyclic curve in the interval 9 rg < r < 14rg; this makes
the feature at r = 10.8 rg, with excess power at both the radial and
vertical epicyclic frequency, quite striking.

The resonance models put forward to explain the observed 3:2
frequency ratio in twin-peak HFQPOs (Abramowicz & Kluźniak
2001) predict that resonance will occur between oscillations at
commensurate frequencies. To the extent that the frequencies are
a function of the mean radial position of the moving fluid, the
resonance may occur when the oscillating structure is positioned
at certain specific locations; for example, r = 10.8 rg gives a 3:2
frequency ratio between the vertical and radial epicyclic frequencies
for a Schwarzschild black hole, and this has been exploited to predict
resonance between the vertical and radial eigenmodes of oscillating
slender tori (Bursa et al. 2004; Kluźniak 2005). Whether one expects
similar motions in a thin disc is unclear, but given that both the radial
and vertical epicyclic frequencies are associated with excess power
in vertical motion over a wide range of radii, as seen in the right-hand
panel of Fig. 12, one could expect that the corresponding motions
could similarly be coupled in a non-linear resonance. This seems to
be indeed the case, with the appearance of the feature at r = 10.8 rg.
We plot PDSs at this specific radius for different time intervals in the
left-hand panel of Fig. 12. The largest power is in the time window
t = 60 000–80000 rg, although, the power grew steadily during the
earlier evolution (see the solid black, solid red, and dashed green
curves), implying that the resonant oscillation takes time to build up.

In the right-hand panel of Fig. 12, at larger radii, we see horizontal
strips of power at fixed frequencies. The most prominent of these
is the clearly apparent strip of power at 14rg < r < 16rg below the
radial epicyclic frequency, with no obvious counterpart at a higher
frequency. Apparently, in this radial domain, a wide annular fragment
of the disc is executing coherent motion with a non-zero midplane
vertical velocity oscillation at a frequency corresponding to the radial
epicyclic frequency at r = 16rg. The nature of this oscillation remains
unknown. At larger radii still, the annulus at 17rg < r < 18rg seems
to be executing vertical motions at more than one frequency. It is
interesting to note that none of these features shows up in radial
motion (right-hand panel of Fig. 11).

4 C OMPA RI SON W I TH PREVI OUS STUDIES
AND D I SCUSSI ON

In a series of papers, Reynolds & Miller (2009) and O’Neill
et al. (2009) carried out the first detailed study of discoseismic
oscillations in hydrodynamic and MHD simulations of geometrically
thin discs. Our study differs in several important ways, including
the initial accretion disc profiles, our full treatment of the general
theory of relativity, and self-consistent radiative transfer (with a
frequency-integrated approximation). Despite these differences, we
reproduce all of the findings of the hydrodynamical simulations in
Reynolds & Miller (2009) and O’Neill et al. (2009), while also
discovering modes of oscillation that were not reported in their
study. Specifically, Reynolds & Miller (2009) and O’Neill et al.
(2009) found evidence for g-modes in their viscous hydrodynamic
simulations in the Paczyński & Wiita (1980) pseudo-potential, but
not in the MHD simulations, as well as p-modes. Our hydrodynamic
simulations, performed in GR, correspond to their viscous case, and
we confirm the presence of g-modes, both in the Schwarzschild-
and Kerr-metric simulations. The frequency of this mode clearly
corresponds to the analytic predictions of the linear theory (Perez
et al. 1997). In our simulation, p-modes are also abundantly
present.

O’Neill et al. (2009) have studied the time variability in a
2D Newtonian simulation of a geometrically and optically thin
polytropic α-disc using the Paczynski-Wiita pseudo-potential, which
mocks up qualitative effects of the Schwarzschild metric, such as
the marginally stable orbit and a local maximum in κ(r). Most of
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Variability in thin discs 1077

Figure 12. Left: PDS of the vertical velocity 〈Vz〉ρ at r = 10.8 rg over various time windows. The time windows cover the first 2 × 104 tg (solid black),
2 − 4 × 104 tg (solid red), 4 − 6 × 104 tg (dashed green), and 6 − 8.4 × 104 tg (solid blue). Right: PDS of the vertical midplane fluid velocity for a range of
radii (simulation S01E). The dashed line is the vertical epicyclic frequency. Note the absence of power at the breathing oscillation frequencies.

their simulations were initialized with a vertically perturbed disc,
specifically one with its initial height exceeding the equilibrium
height.

Given the fact that our S1E, S3E, and S10E simulations collapse
into much cooler gas-pressure-dominated discs (see Fragile et al.
2018), and that the S01E disc is in vertical hydrostatic equilibrium
with an initial Gaussian density profile, our ṁ(r) plots should
correspond to the midplane radial velocity plots of O’Neill et al.
(2009). Indeed, both studies reveal white or red noise at r < 6 rg,
i.e. below the ISCO, as well as a strip of power at a frequency close
to κ̃max (seen more clearly in the left-hand panels of Figs 3 and 4).
However, the latter characteristic is present only at high values of
the viscosity parameter, α > 0.07 in the O’Neill et al. (2009) study
(see their Fig. 6), while in our simulations, it is present even at α =
0.02. It could be that a combination of general relativistic effects
and radiation enhances certain oscillating features. There is also
moderately higher power for frequencies equal to and slightly larger
than κ̃(r) at larger radii (r > 16 rg in O’Neill et al. 2009, and at
all radii in our simulations). A number of features in our global
simulations had not been reported in previous numerical studies
on discoseismic modes (O’Neill et al. 2009; Reynolds & Miller
2009). In addition to the horizontal strip of power at the frequency
of about κ̃max, we can clearly see harmonics at 2κ̃max and 3κ̃max, as
well as the corresponding harmonics of the excess power at κ̃(r) for
r < 8 rg.

We also confirm the presence of p-modes at radii larger than that
of the maximum of the radial epicyclic frequency. With our superior
resolution to the right of the radial epicyclic curve, we clearly see
standing p-waves with ν < κ̃max. The previously reported excess
power close to the inner edge of the disc (O’Neill et al. 2009) is
clearly present in our simulations. Some of this power we interpret
as trapped p-modes.

We identify the breathing mode, and here our interpretation differs
from Reynolds & Miller (2009), who discuss a similar feature in
terms of high frequency, purely vertical acoustic waves in a locally
vertically isothermal atmosphere. Our atmosphere is not vertically
isothermal, so we do not expect these specific acoustic modes to
be applicable. Also, the spectrum of these oscillations is different
from that of the vertical oscillations to which the breathing mode
belongs. We rewrite equation (4) of Reynolds & Miller (2009) in the

form

ν2 = (m + 1)n + m

n
ν2

⊥, (8)

and compare it with the vertical gravito-acoustic oscillations dis-
cussed in Perez et al. (1997), Bollimpalli & Kluźniak (2017), and
Bollimpalli et al. (2019),

ν2 = m(m + 2n − 1)

2n
ν2

⊥, (9)

where the polytropic index is γ = 1 + 1/n, and m = 0, 1, 2, ... is the
mode number. Specializing to a γ = 5/3 polytrope (n = 3/2), we can
rewrite equation (8) as ν2/ν2

⊥ = 1 + (5/3)m = 1, 8/3, 13/3, 6, ...,
while equation (9) yields ν2/ν2

⊥ = m(m + 2)/3 = 0, 1, 8/3, 5, 8, ...

for m = 0, 1, 2, 3, 4, .... Clearly, while the first two non-zero
eigenfrequencies happen to coincide in the series, these two classes
of oscillations are completely different. This suggests that the m =
2 vertical p-modes reported in Reynolds & Miller (2009) do not
belong to the same class of modes that we reported in Mishra et al.
(2019). As stated above, the identification of the power at 1.63 ν⊥ as
a manifestation of breathing oscillations is unambiguous following
an analysis of the wavefunctions (Mishra et al. 2019). Further details
on the classification of oscillation modes can be found in Section
4.2.1 in Kato (2016).

Some of the oscillations reported here, including the breathing
one, have their analogue in the oscillations of tori. For instance, the
radial and vertical epicyclic motions and their resonance are thought
to be a promising candidate for the black hole HFQPOs in a 3:2 ratio
(Bursa et al. 2004). For slender tori, these epicyclic oscillations occur
at the same frequencies as reported here for thin discs (and the same
as test-particle epicyclic frequencies; for thick torii, the frequencies
are lower, Rezzolla et al. 2003; Mishra et al. 2017). The theory of
eigenmodes of slender tori is mature (Blaes, Arras & Fragile 2006),
and the analytically computed modes have counterparts in simulated
geometrically thick tori (Mishra et al. 2017), whose motions were first
investigated numerically by Rezzolla et al. (2003). Upon inclusion
of ray-tracing, it was possible to compute the photon flux at infinity
from such tori and to identify clear signatures of the known modes,
including the epicyclic modes and the breathing mode (Mishra et al.
2017).
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1078 B. Mishra, W. Kluźniak and P. C. Fragile

In the case of thin discs, a numerical study of the imprint of the
oscillations discussed here on the photon flux observed at infinity
must be postponed to a later date. First, the thin disc discussed here
may not correspond to the stable luminous disc actually present in
black hole systems – recent magnetohydrodynamical simulations,
whether Newtonian (Mishra et al. 2020) or in GR (Lančová et al.
2019), suggest that the photosphere of stable black hole discs at near-
Eddington luminosity may be high above the geometrically thin,
dense core. More importantly, unlike in the case of geometrically
thick tori, where the physical time-scales may be well separated,
in thin discs, the photon diffusion time-scale and many others are
comparable with the oscillation frequency. A robust prediction of
the time variability of the emergent flux will require a much more
sophisticated radiative transfer scheme than currently feasible in
GRRMHD simulations, such as the M1 closure used by us.

5 C O N C L U S I O N S

We have analysed the high-frequency timing variability of simulated
radiation- and gas-pressure-dominated thin accretion discs. Using
the approximation of an α-viscosity prescription instead of directly
simulating magnetically driven turbulence, we see a rich set of
oscillation features.

1. A coherent oscillation occurring close to the maximum radial
epicyclic frequency, κ̃max = 3.5 × 10−3 t−1

g (= 108 Hz for a 6.6M�
non-rotating black hole) is present in all of our Schwarzschild
simulations. This is consistent with the presence of a g-mode.

2. In the Kerr-metric simulation (S01Ea5), there is a great deal
of power associated with velocity oscillations in the inner disc at a
frequency of ν ≈ 5.28 × 10−3 t−1

g , well below the maximum radial
epicyclic frequency value of 5.46 × 10−3 t−1

g . The frequency is as
predicted for the fundamental g-mode by Perez et al. (1997), and the
radial distribution of power is also consistent with a trapped g-mode.

3. In the initially radiation-pressure-dominated simulations, which
are subject to thermal collapse, such as S1E, we confirm the presence
of inertial–acoustic oscillations (Honma, Matsumoto & Kato 1992;
Chen & Taam 1995; Milsom & Taam 1996, 1997), or the p-modes, at
frequencies just above κ̃max throughout the disc (at all radii larger than
8rg). In the gas-pressure-dominated simulations, standing p-waves
are present for all frequencies less than or equal to the fundamental
g-mode frequency and apparently not above this frequency.

4. The stable, gas-pressure-dominated simulations, S01E and
S01Ea5, show much quieter PDS. There is no detectable high-
frequency power in the pressure below the radial epicyclic frequency
curve (cf. Fig. 6), consistent with the predictions of the linear theory
of discoseismology (Wagoner 1999; Kato 2001). In the mass flux
PDS, there is strong evidence for standing p-mode waves outside the
radial epicyclic frequency curve, always with angular frequencies
below κ̃max, with a rather sharp power cutoff at ν = κ̃max.

5. Vertical gravito-acoustic oscillations occurring at the breathing
oscillation frequency approximately 1.63 ν⊥ are prominent in all of
our reported simulations. For details, see Mishra et al. (2019).

6. Evidence of pairs of oscillations occurring at a 3:2 frequency
ratio is seen in all of our simulations, including a possible resonance
between the radial and vertical epicyclic frequencies at r = 10.8rg in
simulation S01E.

In general, the simulation results support detailed analytic predictions
for the modes and oscillations of thin discs. For instance, in addition
to the points 1, and 3–5 above, linear theory predicts that on a radius
versus frequency plot, there should be no p-modes below the radial
epicyclic curve, and we do not find any – in the PDS of pressure, there

Figure 13. Comparison of the full set of modes reported in this work.
Triangles show oscillations seen in PDS of the vertical midplane velocity,
filled circles show oscillations seen in PDS of the radial midplane velocity,
‘plus’ symbols show oscillations seen in PDS of the vertical velocity
integrated above the midplane (to show the breathing oscillations). The colour
bar shows power normalized to the initial radial velocity amplitude. The
solid, dot–dashed, and dashed curves are plots of the radial epicyclic, vertical
epicyclic, and the breathing oscillation frequency, respectively.

is very little power for ν(r) < κ̃(r). There were also some surprises.
For example, we did not expect to see vertical motion at the radial
epicyclic frequency, and yet they are clearly present over a wide
range of radii, as can be seen in the right-hand panel of Fig. 11.

A complete picture of all the reported disc oscillations in this
study is provided in Fig. 13. Although multiple types of oscillations
are identified, the power is mainly concentrated in the breathing
and radial epicyclic oscillations. The vertical oscillations occurring
near the vertical and radial epicyclic frequencies have six orders
of magnitude less power. A comparison of the radial distribution
of power shows an increase of power with radius for the breathing
mode, while the power in the vertical and radial epicyclic modes
generally decreases with radius.

The rich spectrum of oscillations reported in this work mostly
corresponds to either local oscillations varying in frequency with
its radial position or p-modes from the continuum spectrum. The
most striking feature of the observed HFQPOs in black holes is
that their frequency does not vary in time. The only modes at fixed
frequencies identified by us in the stable (gas-pressure-dominated)
thin disc simulations are the fundamental g-mode and the 3:2 resonant
epicyclic oscillations.
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Giussani L., Kluźniak W., Mishra B., 2014, in Ztuchlı́k Z., Török G., Pecháček
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Kluźniak W., Abramowicz M. A., 2001, Acta Physica Polonica B, 32, 3605
Kluzniak W., Abramowicz M. A., 2002, preprint (arXiv:e-prints)
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