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ABSTRACT
We report an automated morphological classification of galaxies into S-wise spirals, Z-wise spirals, and non-spirals using big
image data taken from Subaru/Hyper Suprime-Cam (HSC) Survey and a convolutional neural network (CNN)-based deep
learning technique. The HSC i-band images are about 36 times deeper than those from the Sloan Digital Sky Survey (SDSS)
and have a two times higher spatial resolution, allowing us to identify substructures such as spiral arms and bars in galaxies at z

> 0.1. We train CNN classifiers by using HSC images of 1447 S-spirals, 1382 Z-spirals, and 51 650 non-spirals. As the number
of images in each class is unbalanced, we augment the data of spiral galaxies by horizontal flipping, rotation, and rescaling of
images to make the numbers of three classes similar. The trained CNN models correctly classify 97.5 per cent of the validation
data, which is not used for training. We apply the CNNs to HSC images of a half million galaxies with an i-band magnitude of i
< 20 over an area of 320 deg2. 37 917 S-spirals and 38 718 Z-spirals are identified, indicating no significant difference between
the numbers of two classes. Among a total of 76 635 spiral galaxies, 48 576 are located at z > 0.2, where we are hardly able
to identify spiral arms in the SDSS images. Our attempt demonstrates that a combination of the HSC big data and CNNs has a
large potential to classify various types of morphology such as bars, mergers, and strongly lensed objects.
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1 IN T RO D U C T I O N

Spiral arms are one of the most beautiful structures in galaxies
and attract the interest of many people. Density wave theory is a
traditionally accepted concept to explain spiral patterns in galaxies
(Lin & Shu 1964) whereas recent numerical simulations support
that spiral arms are formed due to a swing amplification associated
with galactic shear motion (e.g. Baba, Saitoh & Wada 2013; Dobbs &
Baba 2014), which was originally suggested by Goldreich & Lynden-
Bell (1965). The winding direction of spiral arms with respect to
the galaxy rotation direction has also been a classic subject of
controversial debates in observational and theoretical studies of
spiral galaxies until around the decade of the 1960s. Iye, Tadaki &
Fukumoto (2019) demonstrate a corroborative evidence that all
galaxies are trailing spirals provided that the dark lane dominant
side is the side of the disc near to us. Once the winding direction
of spiral arms is identified, we can infer the spin vector of galaxies,
which is one of important physical properties in the process of galaxy
formation. In the framework of the tidal torque theory (e.g. Peebles
1969; Doroshkevich 1970; White 1984), galaxies acquire angular
momentum by the tidal fields of their neighbours in the linear stage
of structure formation. Thus, the winding direction, which is the
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spin vectors, of galaxies would have been randomly located, leading
to the isotropic distribution that the number of S-wise spirals (S-
spirals) is identical to that of Z-wise spirals (Z-spirals). If there is a
global anisotropy in the spatial distribution of the winding direction,
a large-scale vorticity such as galaxy-cluster tidal interaction would
affect the spin of galaxies (Sugai & Iye 1995). However, a statistical
analysis of the winding direction was not well developed in the past
two decades, except for a few studies (Hayes, Davis & Silva 2017;
Shamir 2017).

We can immediately identify spiral arms in a galaxy and judge
whether it is a S-spiral or a Z-spiral by visual inspection. However,
it is not easy to repeat this procedure 10 000 times or more. Another
problem is that visual classification depends on the expertise and
experience of people who look at images. In the Galaxy Zoo project
(Lintott et al. 2011; Willett et al. 2013), about 100 000 volunteers
classified the morphology of ∼900 000 galaxies at 0.001 < z < 0.25,
drawn from the Sloan Digital Sky Survey (SDSS; York et al. 2000).
Masters et al. (2010) studied 5433 face-on spiral galaxies at 0.03 <

z < 0.085 from the Galaxy Zoo data base. To make a similarly large
sample of more distant spiral galaxies at z > 0.1, we require higher
sensitivity and higher resolution imaging data set over a wide area.

We are conducting a multiband imaging survey by using Hyper
Suprime-Cam (HSC) in Subaru Strategic Program (HSC-SSP; Ai-
hara et al. 2018). The HSC has the largest field of view of 1.5-deg
diameter on 8-m class telescopes. The Wide layer of the survey
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covers 1400 deg2 in five broad-bands (grizy) with a 5-σ point-source
depth of i ∼ 26.2, which is about 3.9 magnitudes deeper than SDSS
(York et al. 2000). The increased sensitivity allows us to characterize
spiral arms in distant galaxies at z > 0.1 while at the same time the
wide survey produces images of more than one million galaxies. We
therefore need to develop an automated method for morphological
classification in the big data era. Commonly used parametric methods
such as Sérsic model fitting (e.g. Peng et al. 2010) and non-parametric
ones such as the concentration (C), asymmetry (A), clumpiness
(S) method, and the Gini/M20 parameters (e.g. Conselice 2014) are
not suitable for identifying substructures in galaxies, such as spiral
arms, bars, and tidal streams. Currently, only several studies succeed
in automatically extracting spiral structures (Davis & Hayes 2014;
Kuminski & Shamir 2016; Hart et al. 2017).

In 2012, deep learning has been dramatically developed enough
to correctly recognize the picture of a cat as a cat with high
accuracy of ∼84 per cent (Krizhevsky, Sutskever & Hinton 2012).
The accuracy of image classification has exceeded human accuracy in
2015 (∼95 per cent; He et al. 2016). A convolutional neural network
(CNN) is now a commonly used technique for classifying images
into multiple categories (e.g. Fukushima 1980; LeCun et al. 1998;
Russakovsky et al. 2015). CNNs convolve images with multiple
kernels (filters) to reduce the amount of information and efficiently
extract local features in images. Dieleman, Willett & Dambre (2015)
have applied a CNN technique to astronomical images for galaxy
morphology classification and successfully reproduced the results
from the Galaxy Zoo with the accuracy of 99 per cent (see also e.g.
Huertas-Company et al. 2015; Abraham et al. 2018; Domı́nguez
Sánchez et al. 2018). These approaches are mostly supervised
learning, which requires a training data set with pre-labelled images.
On the other hand, there are some studies that adopt an unsupervised
learning approach for automated morphological classification (e.g.
Hocking et al. 2018; Martin et al. 2019). Furthermore, Schawinski
et al. (2017) generate super resolution images from artificially de-
graded low-resolution images using a generative adversarial network
(Goodfellow et al. 2014) although they caution about application
to unknown galaxy population, which is not included in a training
data set. CNNs and other deep learning techniques are becoming
increasingly common in astronomy.

In this paper, we present CNN models to identify spiral arms in
galaxies by using the HSC imaging data. In Section 2, we describe
the imaging data taken from the HSC–SSP survey and build a
training data set. We show the architecture of CNNs and estimate
the accuracy of morphological classification by using validation data
sets in Section 3. We apply the trained CNNs to an unlabelled data
set of a half million galaxy images and present a catalogue of 80k
spiral galaxies in Section 4.

2 DATA

2.1 Subaru Hyper Suprime-Cam data sample

This work is based on data from the second public data release
(PDR-2) of the HSC–SSP for the Wide layer (Aihara et al. 2019).
For morphological classification, we use i -band images, which
have reached an exposure time of about 20 min. Fig. 1 shows the
images from the HSC–SSP data and SDSS for two spiral galaxies,
demonstrating the superb image quality with which we can identify
the spiral winding sense even in distant galaxies at z > 0.1.

We use galaxies with 5.7 arcsec aperture magnitudes i < 20 so
that we can visually classify their morphology. It is still possible

Figure 1. Comparisons between SDSS and HSC i -band images for an S-
wise spiral galaxy (left) with i = 18.7 at z = 0.16 and a Z-wise spiral galaxy
(right) with i = 18.8 at z = 0.19. The image sizes are all 10.8 arcsec × 10.8
arcsec.

to identify spiral arms in HSC images even for galaxies with i ∼
21, allowing for morphological classification of galaxies at higher
redshift. However, as such cases are rare, the inclusion of fainter
objects makes it difficult to identify a larger number of spiral galaxies
for training CNNs. We therefore choose a magnitude cut of i < 20
in this work.

Stars are removed in advance by the flag of
i extendedness value in the HSC–SSP data base. As
most galaxies are observed in other four broad-band filters (grzy),
their photometric redshift is available, provided by the Direct
Empirical Photometric code (DEmP: Hsieh & Yee 2014). For
galaxies with i < 20, the photometric redshift error of �z = (zphot

− zspec)/(1 + zspec) and the outlier fraction of |�z| > 0.15 is σ�z =
0.02 and 5–10 per cent, respectively (Tanaka et al. 2018; Nishizawa
et al. 2020). We remove nearby galaxies with spectroscopic redshift
of zspec < 0.05, provided by VIPERS (Garilli et al. 2014), SDSS
(Alam et al. 2015), Wiggle-Z (Drinkwater et al. 2010), GAMA
(Liske et al. 2015), and PRIMUS (Cool et al. 2013), as the physical
scale resolution becomes significantly different from that at z > 0.1.
Edge-on-like objects with a major-to-minor axial ratio of less than
0.1 are also removed in advance because it is hard to distinguish
between spirals and non-spirals. For a subsample of 56 787 galaxies
with i < 20 in the Wide XMM Large Scale Structure survey
(XMM-LSS) field, the redshift and stellar mass distributions are
shown in Fig. 2. The stellar mass is estimated from multiwavelength
photometry, empirically given by the DEmP code (Hsieh & Yee
2014). We also derive the completeness as a function of redshift and
stellar mass by calculating the ratio of the number of galaxies with i
< 20 to the number of fainter galaxies with i < 22. The stellar mass
90 per cent completeness limits are log (M�/M�) ∼ 10 at z = 0.2
and log (M�/M�) ∼ 11 at z = 0.4.

We convert FITS images of galaxies to Joint Photographic Experts
Group (JPEG) format by using STIFF software (Bertin 2012).
We adopt GAMMA = 2.2 to automatically adjust the contrast and
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Figure 2. Left: stellar mass versus redshift for galaxies in a subsample of 56 787 galaxies with i < 20 in the Wide XMM-LSS field. Right: completeness as a
function of stellar mass and redshift. Black lines denote the completeness of 90 per cent.

brightness of JPEG images for classification and slightly change this
parameter for data augmentation (Section 2.2). Converting images
to JPEG images could potentially loose information respect to the
original FITS images. Optimization of the grey-scale images is one of
the key challenges for improving classification with deep learning but
is beyond the scope of our work. In this paper, we simply use JPEG
images by following the previous works (e.g. Dieleman et al. 2015;
Huertas-Company et al. 2015; Abraham et al. 2018; Domı́nguez
Sánchez et al. 2018). The size of post-stamp images is 64 pixel ×
64 pixel, covering 10.8 arcsec × 10.8 arcsec, where main spiral
features are covered for most galaxies.

Although colour composite images are often used for classifying
galaxy morphology, we use monochromatic images in the i-band
for two reasons. First, i-band observations are executed in the best
observing conditions for cosmic shear measurements (Mandelbaum
et al. 2018). The median seeing is 0.6 arcsec in the i-band, corre-
sponding to 1.1 kpc at z = 0.1 and 2.1 kpc at z = 0.2, while it
is 0.7∓0.8 arcsec in other bands. Secondly, composite images have
the information of galaxy colours as well as galaxy morphology.
There is a strong correlation between colour and morphology: blue
galaxies tend to have a disc with spiral arms while red galaxies are
ellipticals (e.g. Strateva et al. 2001). Red spiral galaxies are likely to
be an important population for understanding transitions from blue
to red galaxies (Masters et al. 2010) but the number density is smaller
compared to blue spiral galaxies. If colour information is taken into
account, the trained models would tend to classify red galaxies into
non-spirals rather than spirals. We therefore use i-band images to
avoid the colour bias and keep morphology information independent
from colours.

2.2 Training data set

We chose the XMM-LSS field (Pierre et al. 2004) over an area of
∼28 deg2 to make a training data set for CNNs. Among 56 787

objects, we confirm 1447 spiral galaxies with clear S-wise spiral
structure and 1382 with clear Z-wise spiral structure by visual
inspection. They are visually checked by all of the authors. Additional
1177 and 1131 galaxies are identified to have S-wise and Z-wise
spiral structure with somewhat reduced confidence level. To define
as clearly as possible spirals, we classify these galaxies into a
category of unclear/dubious, which is not used for training CNNs.
The remaining 51 650 galaxies are non-spiral galaxies. In this work,
we do not distinguish between mergers and non-mergers. Even if
spiral galaxies are clearly affected by tidal interactions with their
companions, they are categorized as S-spirals or Z-spirals. We show
example images of randomly selected 100 galaxies in each class from
the training data set in Appendix A.

We adopt a K-fold cross-validation technique to evaluate the
performance of CNN models. We randomly divide the original
sample in each class into five subsets, which consist of 289 S-spirals,
276 Z-spirals, and 10 330 non-spirals. Four of them (1156 S-spirals,
1104 Z-spirals, and 41 320 non-spirals) are used for the training and
the remaining one is used for validation. As the numbers of S-spirals
and Z-spirals are much smaller than that of non-spirals, we augment
the data of spiral galaxies. We add horizontally flipped images of Z-
spirals and S-spirals to the S-spiral and Z-spiral classes, resulting in
the same number in S-spirals and Z-spirals. Flipping spiral galaxies
is also important for making an unbiased training data set. When
CNNs are trained by a sample biased to S-spirals, the trained model
would naturally give more S-spirals than Z-spirals. We furthermore
rotate the images by 90 deg, 180 deg, and 270 deg, and rescale
the brightness of the images with GAMMA = 2.0, 2.1, 2.3, and 2.4
parameters (Fig. 3). The data augmentation increases the number of
spiral galaxies by 40 times and makes the numbers of three classes
similar. The training data set therefore contains images of 45 200
S-spirals, 45 200 Z-spirals, and 41 320 non-spirals. We eventually
make five different training data sets by selecting a different subset
for validation.
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Figure 3. Examples of data augmentation. A FITS image of one galaxy is
converted into multiple JPEG images with a different grey-scale value, which
is adjusted by the GAMMA parameter. The original images of S-spirals are
horizontally flipped and are treated as Z-spiral images. Furthermore, these
images are rotated by 90, 180, and 270 deg.

Table 1. Structure of CNNs used in this paper.

Layer Output shape

1 Input (64 pix, 64 pix, 1 map)
2 Convolution (5 pix × 5 pix) (60 pix, 60 pix, 32 maps)
3 Convolution (5 pix × 5 pix) (56 pix, 56 pix, 64 maps)
4 MaxPooling (4 pix × 4 pix) (14 pix, 14 pix, 64 maps)
5 Convolution (3 pix × 3 pix) (12 pix, 12 pix, 128 maps)
6 Convolution (3 pix × 3 pix) (10 pix, 10 pix, 128 maps)
7 MaxPooling (2 pix × 2 pix) (5 pix, 5 pix, 128 maps)
8 Dropout (5 pix, 5 pix, 128 maps)
9 Flatten (3200 features)
10 Dense (3200 features)
11 Dropout (3200 features)
12 Dense (3200 features)
13 Dropout (3200 features)
14 Dense (3 classes)

3 C O N VO L U T I O NA L N E U R A L N E T WO R K S

We make CNN models to classify galaxy morphology into non-
spirals, S-spirals, and Z-spirals in a similar way to previous works
(e.g. Dieleman et al. 2015). Table 1 summarizes the configuration of
the CNN used in this paper. The size of input images is 64 pixel ×
64 pixel. There are four convolutional layers with kernel sizes of
5 pixel × 5 pixel, 5 × 5, 3 × 3, and 3 × 3, respectively. The
number of convolutional filters is 32, 64, 128, and 128, respectively.
Each filter generates a feature map. We add two pooling layers,
which take the maximum value in 4 pixel × 4 pixel and 2 × 2. The
maximum pooling efficiently extracts important features like edges
as well as reduces the amount of information by resampling. After
convolutional layers, 128 feature maps with 5 pixel × 5 pixel are
flattened and fed into a fully connected layer with 3200 features.
These features are combined in dense layers. We also include three
dropout layers to avoid overfitting of the CNNs (Srivastava et al.

2014). In these layers, 20 per cent, 50 per cent, and 50 per cent of
input units are randomly set to zero. The final layer uses the Softmax
function, which is computed as

pi,c = esi,c /

3∑

c=1

esi,c , (1)

where si, c is the output score for the c-th category for morphology
classification (non-spiral, S-spiral, and Z-spiral) of the i-th image
and pi, c corresponds to the predicted probabilities of each class. We
eventually adopt the class with the highest probability to determine
the morphology.

We train the CNNs using the Keras library (Chollet et al. 2015)
with a single GPU, NVIDIA GeForce GTX 1080 Ti. A total of
20 769 539 trainable parameters of the model are determined by
minimizing a loss function, which expresses inconsistency between
actual classes and predicted probabilities. We adopt a cross-entropy
(CE) loss function defined as,

CE loss = −
256∑

i=1

3∑

c=1

ti,c log pi,c, (2)

where ti, c is the ground truth label (1 if true and 0 if false). We
use Adam algorithm (Kingma & Ba 2014), which optimizes the
parameters based on the gradient descent of the loss function with
a subsample of 256 images randomly selected from the training
data set. This method is called the mini-batch stochastic gradient
descent. One epoch ends with 33 s when the entire training data
set has been used once for the calculation of the loss function. We
repeat this 60 times and derive the accuracy, which is simply a ratio
of correctly predicted images to all the images, and the CE loss in
each epoch. The results of one CNN model are shown in Fig. 4.
The training accuracy continues to increase to almost 100 per cent
while the validation accuracy saturates at about 20 epochs. The loss
function takes the minimum at 32 epochs and turns to increase at
the later epochs. As this is clearly overfitting the training data set,
we adopt the CNN models where the validation loss is minimized.
Other four CNN models reach the minimum at 29, 32, 41, and 28
epochs. The validation data set is not directly used for the training
of CNNs but indirectly affects the choice of the best model. We
therefore compute the average accuracy of five CNN models from
the cross-validation (see Section 2.2).

The average accuracy and standard deviation is
97.48 ± 0.14 per cent. For galaxy images with the
predicted probability of >0.95, the accuracy is increased to
99.37 ± 0.10 per cent. Note that the accuracy is different among the
morphology classes. We show the confusion matrix, which is the
fraction of correct or incorrect predictions in each predicted class,
in Table 2. Most of the failures are for the case that non-spirals
are misclassified as either S-spirals or Z-spirals and vice versa.
The fraction that S-spirals (Z-spirals) are misclassified as Z-spirals
(S-spirals) is only 0.2 per cent.

For about 2.5 per cent of the validation data set, the predicted
class is different from the labelled one. Fig. 5 shows examples of
misclassification. Some objects have the second highest probability
of 0.1–0.5 in the labelled class while others are misclassified with
the high probability of >0.95. Non-spirals with different predictions
seem to have some substructures, suggesting that they potentially
have spiral arms with low contrast. Edge-on galaxies seem to be
often misclassified, compared to face-on ones. The accuracy in the
validation data set depends on the major-to-minor axis, which can be
interpreted as an inclination angle (Fig. 6). For galaxies with an axial
ratio of <0.2, the accuracy decreases to 96 per cent. This may be due

MNRAS 496, 4276–4286 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/496/4/4276/5866497 by guest on 09 April 2024



4280 K. Tadaki et al.

Figure 4. The accuracy and the CE loss function for the training (black lines) and validation data set (red lines) for one of the six cross-validation tests. The
blue horizontal lines indicate the epoch when the validation loss is minimized.

Table 2. The fractions of images with the predicted class in each labelled
class from the cross-validation.

Predicted class Labelled class
Non-spiral S-spiral Z-spiral

Non-spiral 96.31 ± 0.47% 1.86 ± 0.20% 1.83 ± 0.34%
S-spiral 1.71 ± 0.17% 98.12 ± 0.24% 0.16 ± 0.10%
Z-spiral 1.90 ± 0.22% 0.19 ± 0.13% 97.91 ± 0.34%

to a lack of edge-on objects in the training data set as it becomes
more difficult to identify spiral arms by visual inspection.

We evaluate the accuracy as a function of i -band magnitude,
photometric redshift, and FWHM size (Fig. 6). There is also a weak
trend that brighter objects are more correctly classified. On the other
hand, the accuracy tends to be constant across a redshift range to
z ∼ 0.5. The FWHM size is estimated from Gaussian-weighted
second-order moment in the i-band images (Bernstein & Jarvis
2002). The moment is stored as i sdssshape shape11,22,12
in the PDR2 data base. We compute the determinant radius as rdet =
(shape11 × shape22 - shape122)0.25. Under the assumption

of Gaussian, we convert the radius to FWHM by applying 2
√

2 ln 2.
The high accuracy in compact galaxies with FWHM∼1 arcsec is due
to the fact that most galaxies are classified as non-spirals in the HSC
images.

We also look at how the sample size affects the performance of
CNNs. We train CNNs by using images of randomly selected 100,
200, 400, and 800 galaxies in each class and measure the accuracy of
validation data. When only original images are used for training, the
accuracy gradually increases from 52 per cent at 100 to 90 per cent at
800. The data augmentation including horizontal flipping, rotation,
and rescaling significantly improves the accuracy from 52 per cent to
89 per cent with the same training data set of 100 images. It requires
at least 100 images to reach an accuracy of more than 90 per cent
with the data augmentation.

4 A C ATA L O G U E O F SP I R A L G A L A X I E S

Now, we apply the trained CNN models to a large data set in other
HSC–SSP fields, where 561 251 galaxy images are available over
an area of ∼320 deg2. We use five CNN models made from the

Figure 5. Examples of HSC images of misclassification in each class. From left to right in the bottom of each images, we show the predicted probabilities of
non-spiral, S-spiral, and Z-spiral.
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Figure 6. The accuracy of the CNN models for the validation data set as a function of i-band magnitude, photometric redshift, FWHM size, and major-to-minor
axial ratio. A blue line shows the overall accuracy, 0.9748.

Table 3. A spin parity catalogue of spiral galaxies. Object ID is
the same in the PDR-2 of the HSC–SSP for the wide layer (Aihara
et al. 2019). p0, p1, and p2 indicate the predicted probabilities of
non-spirals, S-spirals, and Z-spirals, respectively. The full table is
available online.

Object ID Class flaga p0 p1 p2

40959011452899104 2 0.091 0.000 0.909
40959011452899880 2 0.093 0.000 0.907
40959011452901552 1 0.272 0.728 0.000
40959015747870352 2 0.009 0.000 0.991
40959015747871064 1 0.011 0.989 0.000
40959020042835800 2 0.006 0.000 0.994
40959020042837000 1 0.000 1.000 0.000
. . . . .

aFlag: 1 = S-spiral; 2 = Z-spiral.

cross-validation to derive average predicted probabilities of each
class. We identify 37 917 S-spirals and 38 718 Z-spirals and provide
the catalogue including the predicted probabilities in Table 3. The
remaining 484 616 galaxies are non-spirals. The difference between
the numbers of S-spirals and Z-spirals is NS − NZ = −801. The
significance level of is 2.9 σ when only Poisson statistics is applied
to estimate the uncertainties in the number of galaxy images (Gehrels
1986). However, the uncertainties on these numbers are likely to be
dominated by misclassification of CNN-based classification, rather
than Poisson errors. S-spirals and Z-spirals are in principle affected
to the same degree by the contamination. In the validation data set,
the fraction that S-spirals are misclassified as non-spirals is similar to
the fraction that Z-spirals are misclassified as non-spirals while there
are some variations (0.20 per cent, 0.34 per cent) between the CNN
models (Table 2). This is non-negligible because the vast majority of
a half million galaxies is non-spirals. Considering the uncertainties
in the misclassification, the error of the difference would be �(NS −
NZ) = 1932, which is larger than the actual measurement. We also
use five individual trained CNNs for classification of 561 251 images
to calculate the average and the standard deviation of the numbers of
spirals, NS = 38625 ± 1138 and NZ = 39537 ± 1479, corresponding
to the error of �(NS − NZ) = 1866). A stable performance of
0.04 per cent in misclassification is required so that the uncertainty
is dominated by Poisson errors in the HSC imaging data. We would
need to train the model with more validation data.

We do not find a significant difference of the numbers between S-
spirals and Z-spirals. On the other hand, there is a significant excess

of S-spirals over Z-spirals in our training data set and in the Galaxy
Zoo Catalogue (Land et al. 2008; Lintott et al. 2008). This is likely
to be caused by a human selection bias (Hayes et al. 2017). Visual
inspection by human eyes may unconsciously select more S-spirals.
We also calculate the significance level of the number difference
between S-spirals and Z-spirals, (NS − NZ)/�(NS − NZ), in bins of
i-band magnitude, photometric redshift, FWHM size, and major-to-
minor axial ratio (Fig. 7). We take into account the incompleteness
of CNN-based classification (Table 2) as well as the Poisson errors.
We do not find a significant excess of S-spirals or Z-spirals with |(NS

− NZ)| > 3�(NS − NZ).
The fraction of both spirals including S-spirals and Z-spirals to all

the galaxies is 13.7 per cent though it depends on galaxy properties.
Note that we can identify only galaxies with visible spiral arms,
depending on the sensitivity and spatial resolution of images used in
the classification. In the Galaxy Zoo project, the fraction of galaxies
with features such as spiral arms is 10 per cent at z = 0.1 and
∼0 per cent at z = 0.2 (Willett et al. 2013). In the deeper HSC images,
spiral arms are visible in ∼20 per cent of galaxies at z = 0.1−0.2
(Fig. 7). The measured fraction of spiral galaxies should be still
a lower limit because more galaxies with fainter or lower contrast
spiral arms can be identified in even deeper and higher resolution
images. We actually find that ∼50 per cent of extended galaxies with
FWHM∼3 arcsec are classified as spirals since the HSC resolution
is high enough to identify their spiral arms.

Fig. 8 presents examples of S-spirals and Z-spirals with a spectro-
scopic redshift of zspec = 0.2−0.3. 48 576 of 76 635 spiral galaxies
are located at zphot > 0.2, where we are not able to identify spiral arms
with the SDSS images. The fraction of spiral galaxies decreases from
20 per cent at zphot = 0.2 to 10 per cent at zphot = 0.6. The redshift
dependence is strongly affected by the cosmological dimming of the
surface brightness, which decreases as (1 + z)−4. It becomes difficult
to detect an extended substructure such as spiral arms in high-redshift
galaxies. The magnitude dependence of the spiral fraction is coupled
with the redshift dependence since faint sources tend to be at higher
redshift. The decrease of spirals with a small axial ratio of <0.2 is
likely to be caused by human bias since it becomes hard to visually
identify spiral arms in edge-on galaxies.

2524 galaxies are identified to have spiral arms at zphot = 0.5−0.7
in spite of the strong effect of the cosmological dimming. 1455 of
them have a stellar mass of log (M�/M�) > 10.8, which is similar to
that of Andromeda (M31: Geehan et al. 2006). The existence of spiral
arms indicates that the galaxies are still forming stars. The majority
of M31-mass galaxies have an early-type morphology without spiral
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Figure 7. The fraction of S-spirals (red circles) and Z-spirals (blue circles) to all the galaxies as a function of i-band magnitude, photometric redshift,
FWHM size, and major-to-minor axial ratio (top four panels). The middle four panels and the bottom four panels show the number of spiral galaxies and the
significance level of the number difference between S-spirals and Z-spirals, respectively. The error, �(NS − NZ), takes into account both the Poisson error and
the incompleteness of CNN-based classification.

arms at 0 < z < 0.7 and quench the star formation (Papovich et al.
2015). The identified massive spiral galaxies are likely to be the
progenitors of M31.

5 SU M M A RY

We have developed a CNN model to classify galaxy morphology
into three categories (S-spiral, Z-spiral, and non-spiral) by using
images taken by the Subaru HSC survey. The superb image quality
allows us to identify spiral arms in faint galaxies with i ∼ 20
by visual inspection. We have used a total of 0.2 million images
after data augmentation such as flipping, rescaling, and rotation for
training the model. The trained model successfully classifies the test
data set, which is not used for training and validation, and results
in an accuracy of 97.5 ± 0.1 per cent. The accuracy decreases to
∼90 per cent in the case that the training data set consists of less than
100 images in each class. This would become more of a problem
when one finds rare objects.

We have applied the trained CNN model to 561 251 galaxy images
over an area of ∼320 deg2. Our automated classification efficiently
picks up spiral galaxies and determines their winding direction of
spiral arms, providing 37 917 S-spirals and 38 718 Z-spirals. We do
not find a significant excess of S-spirals over Z-spirals, which is seen
in the training data set and the Galaxy Zoo Catalogue. We have also
identified 1455 massive spiral galaxies with log (M�/M�) > 10.8 at
zphot = 0.5−0.7, which are likely the progenitors of M31.

There are some limitations to our CNN-based classification. The
criterion of spiral arms is defined by the training data set, which
is selected by our visual inspection. Although we have used the
sample of galaxies whose spiral arms are clearly seen for the training
to minimize the contamination of non-spirals, the criterion of clear
spirals is still somewhat ambiguous. The ambiguous definition is
probably one of the reasons that 2.5 per cent of the validation data
set is misclassified. It would be important to make a clean training
sample. Creating mock images from numerical simulations is one of
the several efficient methods to prepare a large data set for training
models (e.g. Huertas-Company et al. 2018; Metcalf et al. 2019).
Another direction to define a repeatable class of morphology is an
unsupervised learning approach, which does not require visually
classified training data sets (e.g. Hocking et al. 2018; Martin et al.
2019). Nevertheless, our attempt already demonstrates that CNN
is powerful for making a large sample of galaxies with particular
substructures such as spiral arms from a large data set and efficiently
picking up rare objects such as massive spiral galaxies.
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Figure 8. Examples of HSC images of S-spirals (left) and Z-spirals (right) with the predicted probability of >0.95. They are randomly selected from
spectroscopically confirmed galaxies at zspec = 0.2−0.3.
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A P P E N D I X A : SO M E EX T R A M AT E R I A L

In Figs A1 and A2, we show example images of S-spirals and Z-
spirals, which are randomly selected from the training data set. We
use them for training a CNN model after data augmentation such as
flipping, rescaling, and rotation of images.
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Figure A1. Example images of S-spirals.
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Figure A2. Example images of Z-spirals.
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