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ABSTRACT
While magnetic fields are important in contemporary star formation, their role in primordial star formation is unknown. Magnetic
fields of the order of 10−16 G are produced by the Biermann battery due to the curved shocks and turbulence associated with the
infall of gas into the dark matter minihaloes that are the sites of formation of the first stars. These fields are rapidly amplified by
a small-scale dynamo until they saturate at or near equipartition with the turbulence in the central region of the gas. Analytical
results are given for the outcome of the dynamo, including the effect of compression in the collapsing gas. The mass-to-flux ratio
in this gas is two to three times the critical value, comparable to that in contemporary star formation. Predictions of the outcomes
of simulations using smooth particle hydrodynamics (SPH) and grid-based adaptive mesh refinement are given. Because the
numerical viscosity and resistivity for the standard resolution of 64 cells per Jeans length are several orders of magnitude greater
than the physical values, dynamically significant magnetic fields affect a much smaller fraction of the mass in simulations than in
reality. An appendix gives an analytical treatment of free-fall collapse, including that in a constant-density background. Another
appendix presents a new method of estimating the numerical viscosity; results are given for both SPH and grid-based codes.
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1 IN T RO D U C T I O N

The first stars and galaxies were the early drivers of cosmic evolution,
directing the Universe towards the highly structured state we observe
today. The radiation emitted during the lifetime of the first stars (also
known as primordial, Population III, or Pop III stars), and the metals
they released through supernova (SN) explosions and stellar winds,
left a crucial imprint on their environment. In the wake of Pop III
stars, the first galaxies emerged to continue the process of reionizing
the Universe (e.g. Kitayama et al. 2004; Sokasian et al. 2004; Whalen,
Abel & Norman 2004; Alvarez, Bromm & Shapiro 2006; Johnson,
Greif & Bromm 2007) and chemically enriching the intergalactic
medium (IGM; e.g. Madau, Ferrara & Rees 2001; Chen et al. 2017;
reviewed in Karlsson, Bromm & Bland-Hawthorn 2013). Before Pop
III stars first formed, no metals or dust existed to aid in the cooling
and condensation of gas into stars. Primordial star formation was
instead driven by cooling through H2 transitions. Thus, Pop III stars
are believed to have initially formed at z ∼ 20–30 in small dark
matter haloes of mass ∼106 M�, since these ‘minihaloes’ were the
first structures whose constituent gas had a sufficient H2 abundance
to allow for star formation (Haiman, Thoul & Loeb 1996; Tegmark
et al. 1997; Yoshida et al. 2003).

Pop III stars are too faint to be detectable by even next-generation
telescopes such as the James Webb Space Telescope (Gardner et al.
2006). Understanding of these objects must instead come from
numerical simulations and indirect observational constraints. Early
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studies found that Pop III stars are massive and form in isolation
(Abel, Bryan & Norman 2002; Bromm, Coppi & Larson 2002;
Bromm & Loeb 2004; Yoshida, Omukai & Hernquist 2008). More
recent work has modified this picture (Turk, Abel & O’Shea 2009;
Stacy, Greif & Bromm 2010, 2012; Bromm 2013; Stacy, Bromm, &
Lee 2016): While the Pop III initial mass function (IMF) is top-heavy,
improved simulations have found that a given massive Pop III star
forms within a disc and tends to have a number of companions with
a range of masses (∼1 to several tens of M�; e.g. Clark, Glover &
Klessen 2008; Clark et al. 2011).

These studies did not include magnetic fields, although magnetic
fields have significant effects in contemporary star formation (see
the reviews by McKee & Ostriker 2007 and Krumholz & Federrath
2019). Magnetic fields have existed on a wide range of astronomical
scales for most of the history of the Universe (see Beck et al. 1996;
Kulsrud & Zweibel 2008; Durrer & Neronov 2013; Subramanian
2016 for reviews). In describing the strength of primordial fields,
we sometimes use the comoving field, Bc = a2B, where a = 1/(1 +
z) is the cosmological scale factor; this is the value the field would
have if it evolved from redshift z to today under the conditions of
flux freezing. Primordial magnetic fields could have arisen during
inflation, but such fields are extremely small unless the conformal
invariance of the electromagnetic field is broken (Turner & Widrow
1988). Even in that case, the fields produced are on very small
scales and will dissipate unless turbulent motions stretch and fold
the field, thereby generating a small-scale dynamo that amplifies
the field (Durrer & Neronov 2013). For example, turbulence driven
by primordial density fluctuations drives a small-scale dynamo
acting on inflation-generated seed fields that Wagstaff et al. (2014)
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estimate produces fields of maximum strength Bc ∼ 10−15 G on
comoving scales of ∼0.1 pc (under the assumption that they were in
equipartition with the turbulence when they were created). Magnetic
fields can also be produced during an electroweak or QCD phase
transition, although in the standard model these transitions are not
first order and do not result in observable fields today (Durrer &
Neronov 2013). If effects beyond the standard model render one or
both these transitions to be first-order phase transitions, then they
could result in fields of 10−15 to 10−12 G on scales of 0.1–100 pc
today (Wagstaff et al. 2014). In any case, it is believed that the peak
in the field strength occurs on a scale L ∼ vA/H, where L is the
correlation length of the field, H is the Hubble parameter, and vA is
the Alfvén velocity; the comoving field decreases, and the comoving
correlation length increases, with cosmic time, and are now related
by Bc ∼ 10−14Lc/(1 pc) G (Banerjee & Jedamzik 2004). This is
only slightly above the observed lower limit on the intergalactic
magnetic field of a few times 10−15 G for correlation lengths of 1 pc
based on gamma-ray observations of blazars (Neronov & Vovk 2010;
Taylor, Vovk & Neronov 2011), although this method of inferring the
field has recently been called into question (Broderick et al. 2018;
Alves Batista, Saveliev & de Gouveia Dalpino 2019). A more exotic
possibility is that the field results from the chiral magnetic effect
in the epoch of the electroweak transition due to a difference in
the number of left- and right-handed fermions, which Schober et al.
(2018) estimate could give a field of Bc ∼ 2 × 10−16(Lc/1 pc)−1/2 G.
In sum, inflation or phase transitions in the early Universe could
generate intergalactic fields as large as ∼10 −13 G on scales of
∼10 pc (Durrer & Neronov 2013); however, these estimates rest
on an uncertain theoretical foundation.

Weaker magnetic fields can definitely be produced through the
Biermann battery process, in which non-parallel gradients in the
electron density and pressure generate solenoidal electric fields
that in turn generate magnetic fields (Biermann 1950; Biermann &
Schlüter 1951). For the Galaxy, these authors estimated that this
process would produce a field of the order of 10−19 G and that this
field would be subsequently amplified in a turbulent dynamo until it
reached approximate equipartition with the turbulent motions. Since
the turbulent velocity increases with scale, the magnetic field will also
increase. Research since then has filled in this basic picture (Pudritz &
Silk 1989; Kulsrud et al. 1997; Davies & Widrow 2000; Xu et al.
2008). Fields created during galaxy formation can be produced in
oblique shocks, with an estimated strength of ∼10−18 to 10−19 G
(Pudritz & Silk 1989; Xu et al. 2008). Weaker fields (∼10−24.5 G
at redshifts z ∼ 10–100) can form throughout the Universe after
recombination due to misalignment of the density gradients in the
gas and the temperature gradients in the cosmic background radiation
(Naoz & Narayan 2013).

The small-scale dynamo is also active during the initial collapse of
the turbulent gas in cosmic minihaloes that leads to the formation of
the first stars. Numerical simulations have shown that the field grows
due to both a small-scale dynamo and compression; a resolution
of at least 32–64 cells per Jeans length is required to see the
operation of the dynamo (Sur et al. 2010; Federrath et al. 2011b;
Turk et al. 2012). These authors noted that the growth rate of the field
increases with the Reynolds number and therefore with resolution;
the results were far from converged even at a resolution of 128
cells per Jeans length. A subsequent simulation (Koh & Wise 2016),
which focused on the evolution of the star, its H II region, and the
subsequent SN, found considerably less dynamo amplification. None
of these simulations were carried to the point that the field reached
approximate equipartition with the turbulent motions prior to the

formation of the star. In view of the challenges faced by numerical
simulations, semi-analytical approaches have been used to follow
the evolution of the field until it saturates: Schleicher et al. (2010)
developed a simple model for the turbulence in a collapsing cloud
and the growth of the field, and both they and Schober et al. (2012b)
used the Kazantsev (1968) equation to follow the growth of the field
in a turbulent medium. A comprehensive analytical treatment of the
small-scale dynamo under conditions appropriate for the formation
of the first stars and galaxies has been given by Xu & Lazarian
(2016).

Magnetic fields can be amplified at later evolutionary times also.
A dynamo driven in a primordial protostellar disc can amplify the
field to the point that the magneto-rotational instability can operate
in the disc, and it can also lead to the generation of outflows and jets
(Tan & Blackman 2004). Simulations by Machida et al. (2006) found
that protostellar jets would be launched for initial field strengths of
B > 10−9

(
n/103 cm−3

)2/3
G. The simulations of Machida & Doi

(2013), which resolved the gas collapse up to protostellar density
and the subsequent evolution for the next few hundred years, found
that sufficiently strong magnetic fields (>10−9 G in a Bonnor–Ebert
sphere with a central density of 104 cm−3) prevented disc formation
and led to the formation of a single massive star. However, they did
not include the turbulence that has been found to be important in
the formation of magnetized discs (Gray, McKee & Klein 2018),
and their assumption of a uniform initial field is incompatible with
having a field of that magnitude being produced by a small-scale
dynamo.

Peters et al. (2014) studied the influence of both magnetic fields
and metallicity on primordial gas cut out from cosmologically
simulated minihaloes, testing metallicities ranging from Z = 0 to
10−4 Z� and initial magnetic fields ranging from 0 to 10−2 G.
They followed their simulations until 3.75 M� of gas was converted
into star(s), and similarly find multiple sink formation in all cases
except for metal-free gas with the largest initial magnetic fields.
Sharda, Federrath & Krumholz (2020) carried out a large number
of simulations of primordial star formation with different initial
field strengths and found that the magnetic field strongly suppressed
fragmentation, thereby significantly reducing the number of low-
mass stars that could survive until today. Both groups conclude that
magnetic fields are essential to determining the IMF as well as the
binarity and multiplicity of Pop III stars.

This is the first of two papers in which we study the magnitude of
the magnetic fields expected in the formation of the first stars and the
effects of these fields on the formation of these stars. As described
earlier, the fields generated either in the early Universe or by the
Biermann battery after recombination are very weak, so the fields
must be amplified in a small-scale dynamo by a large factor in order
to have an effect on star formation. In this first paper, we review the
theory of such dynamos for both the case in which the dissipation is
due to resistivity, which is relevant for numerical simulations, and the
case in which the dissipation is due to ambipolar diffusion, which is
relevant for star formation in the epoch between recombination and
reionization (Section 2). We assume that the initial conditions for the
dynamos are set by the Biermann battery operating in the gas that falls
into a dark matter minihalo. We evaluate the quantities that govern
the behaviour of the dynamos (Table 1) and then include the effects
of gravitational collapse in our analysis. In Section 3, we apply these
results to the formation of the first stars and show that magnetic
fields can grow to approximate equipartition in the gravitational
collapse that forms these stars. It is not currently possible to carry
out simulations with the resolution needed to accurately represent
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Table 1. Turbulent, ambipolar diffusion-dominated dynamo in weakly ionized plasma in a cosmic minihalo.

Parameter Equation Evaluationa

ε = v3
�

�
→ v3(r)

r
– 3.20 × 10−6

(
v3

t,5

r2

)
cm2 s−3

�ν =
(

ν3

ε

)1/4

(3) 1.42 × 1016

(
T 0.63

3 r
1/4
2

v
3/4
t,5 n

3/4
H

)
cm

vν = (εν)1/4 (3) 3.59 × 103

(
T 0.21

3 v
3/4
t,5

r
1/4
2 n

1/4
H

)
cm s−1

�ν = vν

�ν

=
( ε

ν

)1/2
(3) 2.52 × 10−13

(
v

3/2
t,5 n

1/2
H

T 0.42
3 r

1/2
2

)
s−1

Bν = (4πρν )1/2vν (12) 1.90 × 10−8

(
v

3/4
t,5 T 0.21

3 n
1/4
H, ν

r
1/4
2

)
G

Beq = (4πρeq)1/2vt (18) 5.30 × 10−7 vt,5n
1/2
H, eq,i G

tnl = 8

3�ν

ln

[(
ρ0

ρν

)2/3
Bν

B0

]b

(13) 3.35 × 105

(
T 0.42

3 r
1/2
2

v
3/2
t,5 n

1/2
H, ν

)
ln

[(
nH,0

nH, ν

)2/3
Bν

B0

]
yr

Pm = ν

ηAD
= Rm

Re
(1) 1.29

(
φdxi,−4T

0.80
3 r

1/2
2 n

1/2
H

v
3/2
t,5

) (
B2

ν

B2

)

R = 6νni

�ν

= 6

(
B2

B2
ν

)
Pm (28) 7.72

(
φdxi,−4T

0.80
3 r

1/2
2 n

1/2
H

v
3/2
t,5

)

Re = LvL

ν
→ rv(r)

ν
(4) 6.04 × 105

(
vt,5r2nH

T 0.84
3

)

Rm = LvL

ηAD
→ rv(r)

ηAD
(4) 1.00 × 103

(
φdxi,−4T

0.38
3 r2nH

vt,5

)(
B2

eq

B2

)

ar2 is the outer scale of the turbulence in units of 102 pc, vt,5 is the turbulent velocity on that scale in units of 105 cm
s−1, nH is the density of hydrogen in cm−3, T3 = T/(103 K), xi,−4 = xi/10−4 is the normalized ionization fraction, and
ρν and ρeq are the densities at B = Bν (equation 60) and Beq (equation 69), respectively. φd (equation A14) measures
the importance of the ion–neutral drift velocity; φd = 1 for vd = 0 and φd ∝ (vd/cs)3/4 for highly supersonic drift. We
assume nHe/nH = 1/12 so that μH ≡ ρ/nH = 1.33mH.
bAssumes no dissipation and that Pm � 1 for Ohmic resistivity and R � 1 if the resistivity is due to ambipolar diffusion.

the viscosity and resistivity of the gas that forms the first stars,
so in Section 4 we estimate the magnitude of the fields that can
be produced by either a smooth particle hydrodynamics (SPH)
or a grid-based simulation of a small-scale dynamo. Appendix A
summarizes the values of the viscosity and the ambipolar and Ohmic
resistivities under the conditions appropriate for the formation of the
first stars. In Appendix B, we describe gravitational collapse in the
presence of a fixed dark matter background. Finally, in Appendix C,
we estimate the numerical viscosity for both grid-based and SPH
codes, and the resistivity for grid-based codes. In Paper II (Stacy et
al., in preparation), we simulate the formation of a first star from
cosmological initial conditions and compare the results with the
theory developed here.

2 SM A L L - S C A L E DY NA M O S

As noted in the Introduction, the initial cosmological seed field
is very weak, but it can be rapidly amplified by the small-scale
dynamo driven by turbulence (Batchelor 1950; Kazantsev 1968;
Kulsrud & Anderson 1992; Schekochihin et al. 2002a; Schekochihin,
Boldyrev & Kulsrud 2002b; Schleicher et al. 2010; Schober et al.
2012a; Xu & Lazarian 2016). Direct experimental evidence for
dynamo amplification of magnetic fields in a laser-produced turbulent
plasma has been obtained by Tzeferacos et al. (2018). The behaviour

of the dynamo is set by the relative sizes of the viscous scale, �ν ,
where ν is the kinematic viscosity, and the magnetic dissipation scale,
�η, where η is the resistivity (Kulsrud & Anderson 1992; Schober
et al. 2012b). In a fully ionized plasma, �η is set by Ohmic resistivity,
but in a partially ionized plasma it is generally set by ambipolar
diffusion.1 The ratio of these scales is determined by the magnetic
Prandtl number

Pm ≡ ν

η
. (1)

For Kolmogorov turbulence, �ν/�η = P 1/2
m for Pm � 1 (Schekochi-

hin et al. 2002b) and �ν/�η = P 3/4
m for Pm 	 1 (Moffatt 1961). Most

dilute astrophysical plasmas are highly conducting and have Pm �
1 (e.g. Schekochihin et al. 2002b), so that the resistive scale is small
compared to the viscous scale. Turbulence both stretches and folds
the field. The stretching occurs on the eddy scale, and for Pm � 1
the fastest eddies are on the viscous scale. The eddy motions result
in many field reversals, which can survive down to the magnetic
dissipation scale. As a result, the field becomes very anisotropic,
varying on a scale �ν � �η parallel to the field and on a scale that
decreases in time from �ν to a scale ≥�η normal to the field. In the

1The ambipolar resistivity as defined by Pinto, Galli & Bacciotti (2008) is
sometimes termed the magnetic diffusivity.
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opposite limit in which Pm 	 1, the field cannot respond to eddies at
the viscous scale, but is instead driven by eddies on the resistive scale.
In either case, the dynamo is termed ‘small-scale’, since the field is
amplified on scales smaller than the outer scale of the turbulence.

Since primordial gas cannot cool to very low temperatures,
the turbulence in regions where the first stars form is generally
transonic or subsonic, so for simplicity we shall assume Kolmogorov
turbulence in our analytical discussion. The turbulent velocity on a
scale � in the inertial range therefore satisfies v� ∝ �1/3. The quantity
v3

�/� is then constant in the inertial range and is comparable to the
specific energy dissipation rate, ε. Following Pope (2000), we define
the velocity on the scale � as

v� ≡ (ε�)1/3. (2)

One can show that then (1/2)v2
� � kE(k), where E(k)dk is the energy

in the range of wavenumbers dk. In particular, vν = (ε�ν)1/3 is the
velocity that eddies at the viscous scale, �ν , would have in the absence
of dissipation at that scale. The viscous scale length, �ν , is defined
by the condition that the Reynolds number at the scale �ν is unity,
Re(�ν) = �νvν /ν = 1, so that ν = �νvν . As a result, we have

�ν =
(

ν3

ε

)1/4

, vν = (εν)1/4, �ν = vν

�ν

=
( ε

ν

)1/2
, (3)

where �ν is the characteristic eddy turnover rate on the viscous scale.
The hydrodynamic and magnetic Reynolds numbers of a turbulent
flow, Re and Rm, depend on the outer scale of the turbulence, L:

Re ≡ LvL

ν
=

(
L

�ν

)4/3

=
(

vL

vν

)4

, Rm ≡ LvL

η
= PmRe. (4)

2.1 Ideal MHD

If the resistivity is negligible, so that Pm � 1, and if the fluid
is incompressible, then in the kinematic limit the equation for the
magnetic energy density per unit mass, EB = B2/(8πρ) = (1/2)v2

A,
where vA is the Alfvén velocity, is (Batchelor 1950; Kulsrud &
Anderson 1992)

dEB

dt
= 2�EB, (5)

where, as noted earlier, the growth rate, �, is dominated by eddies
on the viscous scale,

� = 〈BB :∇v〉
〈B2〉 � vν

�ν

≡ �ν, (6)

and where the angular brackets 〈 〉 represent a volume average
(Schekochihin et al. 2002a). Now, in Kolmogorov turbulence, the
eddy turnover rate at the viscous scale is related to that at the outer
scale by

vν

�ν

= 1

�ν

(
vL�1/3

ν

L1/3

)
=

(vL

L

)
Re1/2, (7)

where the second step follows from equation (4). Schober et al.
(2012a) used the WKB approximation to solve the equation that
Kazantsev (1968) derived to describe the kinematic dynamo in
incompressible, turbulent fluids and showed that when the resistivity
is negligible (Pm � 1), the growth rate of the field is

� = 37

36

(vL

L

)
Re1/2 = 37

36

(
vν

�ν

)
� �ν. (8)

In other words, the growth rate is the eddy turnover time at the
viscous scale in this limit. Hence, in the kinematic limit the field

energy grows as

EB = EB0 e2�ν t . (9)

On scales larger than the peak of the magnetic power spectrum, the
magnetic power spectrum is given by

M(k, t) = M0(k�ν)3/2 exp

(
3

4

∫
�ν dt

)
(10)

(Kazantsev 1968; Kulsrud & Anderson 1992; Schekochihin et al.
2002a; Xu & Lazarian 2016),2 where we have adopted the normal-
ization of Xu & Lazarian (2016). Under the assumptions that the
spectrum varies as k3/2 up to the wavenumber at the peak, kp, and
then cuts off rapidly (Kulsrud & Anderson 1992; Xu & Lazarian
2016) and that the magnetic energy is initially concentrated at the
viscous scale, kp�ν ∼ 1, the energy in the field is

EB (t) = 1

2

∫ kp

0
M(k, t)dk = EB0(kp�ν)5/2 exp

(
3

4

∫
�ν dt

)
, (11)

where EB0 = M0/(5�ν) and we have set � = �ν , as is appropriate for
Pm > 1. Our normalization for EB differs by a factor of 5 from that
adopted by Xu & Lazarian (2016); it gives EB0 = EB (t = 0) at t = 0
for kp(t = 0) = �−1

ν . This relation is valid so long as the dynamo is in
the kinematic stage and is driven by eddies at the viscous scale, even
in the presence of dissipation, since the exponential growth occurs
on large scales where dissipation is negligible. In the initial stage of
the dynamo, when dissipation is negligible on all relevant scales, the
field energy exponentiates as exp(2�ν t) (equation 9). It follows from
equation (11) that if the spectrum cuts off sharply for k > kp in this
case, then kp ∝ exp[(1/2)�νt]. (In fact, the spectrum does not cut
off sharply at kp and the actual peak of the power spectrum evolves
as exp[(3/5)�νt]; Schekochihin et al. 2002a.) As noted earlier, in
the absence of dissipation the field energy is concentrated at a
wavenumber kp that becomes increasingly larger than the viscous
scale �−1

ν with time as the eddies wind up the field.
The subsequent evolution of the field has been discussed by

Schober et al. (2015), who considered a range of turbulent Mach
numbers such that v� ∝ �θ with 1/3 ≤ θ ≤ 1/2, and by Xu &
Lazarian (2016), who focused on the case of subsonic turbulence
(θ = 1/3) and obtained good agreement with simulations; we shall
follow the latter treatment here. Xu & Lazarian (2016) pointed out
that the exponential amplification slows when the field energy first
reaches equipartition with the viscous eddies on the scale �ν , so
that EB = (1/2)v2

ν ≡ Eν . The corresponding equipartition field (with
v2

A = v2
ν ) is

Bν = (4πρ)1/2vν = (4πρ)1/2(εν)1/4 (12)

from equation (3). In the subsequent transition stage, the turbulent
cascade maintains the viscous-scale eddies while at the same time
amplifying the field on successively larger scales until the peak in the
magnetic power spectrum reaches �−1

ν . They assume that the energy
at the peak (equation 11) remains equal to Eν during this evolution.
The transition stage ends when kp�ν = 1, so that the magnetic forces
can stop the eddies at that scale.

At this time (t = tnl), the dynamo enters the fully non-linear stage.
SettingEB (tnl) = Eν = B2

ν /(8πρ) for kp�ν = 1 in equation (11) gives

tnl = 4

3�ν

ln

(
Eν

EB0

)
= 8

3�ν

ln

(
Bν

B0

)
(Pm � 1) (13)

2Kazantsev (1968) actually gave a range of exponents for the wavenumber;
Kulsrud & Anderson (1992) appear to have been the first to specify that the
exponent is 3/2.
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for the time at which the dynamo enters the fully non-linear stage.
For example, if the equipartition field at the viscous scale is 10 orders
of magnitude above the initial field, then this time is tnl = 61 �ν/vν =
(3760/Re)1/2L/vL. Subsequently, it is the smallest eddies that are not
suppressed by magnetic forces that dominate the magnetic energy,
so that EB � (1/2)v2

� and � = χv�/�, where χ is of order unity. It
follows that

dEB

dt
= 2

(χv�

�

)
· 1

2
v2

� = χε (14)

from equation (5) (Schekochihin et al. 2002a). As a result, the
magnetic energy in the non-linear stage is

EB = EB (tnl) + χε(t − tnl) (t > tnl). (15)

Kulsrud & Anderson (1992) presented analytical arguments sug-
gesting χ = 3/38 = 0.079 for the case in which the dissipation is
dominated by reconnection, and Xu & Lazarian (2016) confirmed
this. Note that in these theories the value of χ is independent of the
rate of reconnection: Kulsrud & Anderson (1992) assumed Petschek
reconnection, which has a rate that depends on Rm, whereas Xu &
Lazarian (2016) assumed turbulent reconnection, which is maximally
efficient and has a rate that is independent of Rm. Numerical
simulations confirm that χ is significantly smaller than unity: Cho
et al. (2009) found χ � 0.07 and Beresnyak (2012) found χ � 0.05.
Collectively, these results indicate that

χ−1 = 16 ± 0.1 dex, (16)

so we shall adopt χ = 1/16 for numerical estimates. For t � tnl,
the time to reach equipartition at a scale � (i.e. the time at which
EB = (1/2)v2

� ) is proportional to the eddy turnover time,

teq(�) = (1/2)v2
�

χε
= �

2χv�

, (17)

so that it takes (2χ )−1 ∼ 8 eddy turnover times at a scale � for the
field to reach equipartition at that scale.

The field stops growing when it reaches equipartition with the
largest eddies, B � Beq, where

Beq = (4πρ)1/2vL = Re1/4 Bν (18)

from equations (4) and (12). Simulations suggest that for subsonic
solenoidal turbulence the magnetic field saturates at a value Bsat =
φsatBeq with φsat � (3/7)1/2 = 0.65 (Haugen, Brandenburg & Dobler
2004) � 0.7 (Federrath et al. 2011a; Brandenburg 2014); for
supersonic solenoidal turbulence, Federrath et al.’s (2011a) results
imply φsat � 0.14.

To determine how long it takes for the field to reach equipartition
at the scale L, we can use equations (3), (12), and (13) and the fact
that EB (tnl) = B2

ν /(8πρ) to rewrite equation (15) as

B2 = B2
ν

{
1 + 2χ

[
�νt − 8

3
ln

(
Bν

B0

)]}
(t > tnl). (19)

Equation (18) then implies that

�νteq(L) = 8

3
ln

(
Bν

B0

)
+ Re1/2 − 1

2χ
� 8Re1/2, (20)

where the final step is for a large Reynolds number and χ = 1/16. If
the field saturates at a value less than Beq, the factor Re1/2 should be
multiplied by φ2

sat.
There is an aspect of this analysis that is overly idealized: We have

assumed that the turbulence is established instantaneously, whereas
in fact it takes at least an eddy turnover time for the turbulence to
develop (e.g. Banerjee & Jedamzik 2004). For a flow that is initialized

at some point in time (e.g. at the epoch of recombination), the size
of the largest eddy in a turbulent cascade at a time t later is L ∼ vLt.
As a result, ε ∼ v2

L/t , and equation (15) implies

v2
A

v2
L

∼ 2χ

(
1 − tnl

t

)
, (21)

provided EB (tnl) is negligible compared to EB (t). Since χ � 1/16, it
follows that the field will be close to equipartition for t � tnl, but can
never reach it unless there is a boundary that sets a limit on L, as we
implicitly assumed in equation (20).

2.2 Evolution of the field in the presence of Ohmic resistivity

The evolution of the field in the presence of Ohmic resistivity, in
both the kinematic and non-linear phases, has been worked out by
Xu & Lazarian (2016), and we summarize their results in Fig. 1. The
magnetic specific energy, EB , increases monotonically with time,
whereas the wavenumber at the peak of the magnetic power spectrum,
kp, initially increases with time for Pm > 1; in the non-linear stage, kp

decreases with time for all Pm. Resistivity has no effect on the dynamo
if it is sufficiently small, it affects the later part of the kinematic stage
of the dynamo for intermediate values of Pm, and it delays the onset
of the non-linear stage of the dynamo for Pm < 1. The change in the
evolution that is apparent in Fig. 1 as one moves from top to bottom
is due to the resistive scale, �η, which is represented by the rightmost
vertical line, moving from right to left as Pm decreases. The resistive
scale is too small to matter in the top panel, and the dynamo evolves
as described earlier for ideal MHD. For intermediate values of Pm

(the middle panel), resistivity prevents the peak wavenumber from
growing past the inverse of the resistive scale, �−1

η . When the peak
wavenumber is fixed due to resistive dissipation, the growth of the
specific magnetic energy becomes

EB = EB0P
5/4
m exp

(
3

4

∫
�ν dt

) [
1 < Pm < (Eν/EB0)1/2

]
(22)

(Xu & Lazarian 2016; see equation 11). Finally, for Pm < 1 (the
bottom panel), the peak in the energy spectrum remains at �−1

η in the
kinematic stage. Since �η > �ν , the damping scale is in the turbulent
cascade, and the eddy turnover rate at the dissipation scale is given
by equation (3) with ν replaced by η (e.g. Xu & Lazarian 2016),

�η =
(

ε

η

)1/2

= P 1/2
m �ν. (23)

The value of the field energy is given by equation (11) with ν replaced
by η and kp�η = 1,

EB = EB0 exp

(
3

4

∫
�η dt

)
(Pm < 1). (24)

The condition for the dynamo to enter the non-linear stage is that
the field energy equal the kinetic energy of the eddies driving the
dynamo. For Pm > 1, these eddies are at the viscous scale, and the
dynamo enters the non-linear stage at the time given in equation (13).
For Pm < 1, so that �η > �ν , these eddies are at the resistive scale,
and the dynamo enters the non-linear stage at the time given by
equation (13) with �ν replaced by �η and Bν replaced by Bη =
P 1/4

m Bν (Xu & Lazarian 2016).
In Paper II, we address the evolution of the magnetic field with an

SPH code (GADGET-2) that can follow the evolution of the kinematic
dynamo and a grid-based code (ORION2) that has full ideal MHD.
Neither treats ambipolar diffusion; both have numerical resistivity.
Lesaffre & Balbus (2007) have argued that grid-based codes have
a numerical magnetic Prandtl number, Pm,num, between 1 and 2,
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Magnetic fields in first star formation – I 5533

Figure 1. Graphical representation of the theory of Xu & Lazarian (2016)
for dynamos with Ohmic resistivity. The magnetic specific energy, EB , which
increases as the dynamo operates, is plotted against the wavenumber at
which the magnetic power spectrum peaks, kp, normalized by the viscous
length scale, �ν . Arrows indicate the direction of time. For very large
values of the magnetic Prandtl number, Pm (top panel), kp increases until
the magnetic energy reaches equipartition with the viscous-scale eddies
(EB = Eν ); EB then remains approximately constant as the energy moves
to larger scales. Once the peak wavenumber reaches the viscous scale,
the energy resumes its growth as it taps the energy of larger eddies. For
intermediate Pm (middle panel), the increase in kp in the kinematic stage
stops when kp reaches the resistive scale. For Pm < 1 (bottom panel),
the peak wavenumber is capped at kp�η ∼ 1, and non-linear growth does
not begin until the field reaches equipartition with the turbulence at that
scale.

depending on wavenumber. In Appendix C, we analyse the results
of Federrath et al. (2011b) and conclude that Pm,num � 1.4 for grid-
based codes, in good agreement with the result of Lesaffre & Balbus
(2007). We adopt the same value of Pm,num for SPH codes.

In order for the dynamo to operate, it is necessary for the magnetic
Reynolds number to exceed a critical value, Rm,cr. Using numerical
simulations, Haugen et al. (2004) found

Rm,cr � 2π×35P −1/2
m = 220P −1/2

m (0.1 � Pm � 3), (25)

where the factor 2π has been inserted in order to convert the
expression for the Reynolds number used by Haugen et al. (2004),
Rm = v/(kfη), where kf = 2π /L is the forcing wavenumber, to the
expression adopted here, Rm = vL/η. Haugen et al. (2004) found that
Rm,cr begins to increase with Pm somewhere beyond Pm = 3, reaching
220 at Pm = 10. Schober et al. (2012a) solved the Kazantsev equation
in the WKB approximation and found Rm,cr � 107 for Pm � 1. For
supersonic turbulence, Federrath et al. (2014) found Rm,cr � 129,
based on large part on simulations with Pm = 10. Since simulations
of the formation of the first stars are characterized by transonic
turbulence and modest values of Pm, the results of Haugen et al.
(2004) are most relevant for our problem, and we shall adopt the
value of Rm,cr in equation (25) here.

2.3 Evolution of the field in the presence of ambipolar diffusion

The first stars form in a weakly ionized plasma in which the
dominant resistivity is ambipolar diffusion (Kulsrud & Anderson
1992; Schober et al. 2012b; Xu & Lazarian 2016). For the case of
weak ionization (ρ i 	 ρn � ρ), where ρn and ρ i are the neutral and
ion mass densities, the resistivity due to ambipolar diffusion is (e.g.
Pinto et al. 2008)

ηAD = B2

4πγADρiρn
= v2

A

γADρi
= v2

A

νni
, (26)

where γ AD is the collisional drag coefficient and νni is the neutral–ion
collision frequency (see Appendix A). It follows that ηAD ∝ v2

A ∝
B2, so that the magnetic Prandtl number, Pm = ν/η, starts off very
large when evaluated for the primordial field, but then decreases
exponentially in time as the small-scale dynamo amplifies the field.
The damping rate of magnetic fluctuations due to ambipolar diffusion
is (Kulsrud & Anderson 1992)

ωd = 1

3

k2EB

νni
, (27)

where the factor 1/3 comes from averaging the rate over angle.
The growth of the magnetic field in the presence of ambipolar

diffusion has been analysed by Kulsrud & Anderson (1992) and,
in more detail, by Xu & Lazarian (2016); we follow the latter
treatment here (see Fig. 2, which summarizes their results). The first,
dissipation-free stage of the kinematic dynamo has been described in
Section 2.1. Damping is important at the wavenumber, kd, at which
the damping rate equals the rate at which the field is being stretched,
ωd(kd) = �ν , where it has been assumed that the field is weak enough
that kd�ν > 1 so that the driving is at the viscous scale. As a result,
equation (27) implies

kd�ν =
(

3νni�
2
ν�ν

EB

)1/2

=
(REν

EB

)1/2

, (28)

where the parameter

R ≡ 6νni

�ν

(29)
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5534 C. F. McKee, A. Stacy and P. S. Li

Figure 2. Graphical representation of the theory of Xu & Lazarian (2016)
for dynamos in the presence of ambipolar diffusion. The magnetic specific
energy, EB , which increases as the dynamo operates, is plotted against the
wavenumber at which the magnetic power spectrum peaks, kp, normalized
by the viscous length scale, �ν . The zero is suppressed: EB begins at EB0

for kp�ν = 1. The damping wavenumber, kd (equation 28, dot–dashed
line), decreases as the magnetic energy increases. Arrows indicate the
direction of time. For large values of the dynamo ionization parameter, R
(equation 29; top panel), kp increases until the magnetic energy reaches
equipartition with the viscous-scale eddies (EB = Eν ). For intermediate
R (middle panel), the damping scale k−1

d becomes large enough that it
determines kp in the later parts of the kinematic stage. For R < 1 (bottom
panel), the damping is strong enough that the magnetic specific energy is
less than that of the viscous eddies (EB = REν < Eν ) when the damping
scale grows to the viscous scale. Thereafter, EB grows as t2 until the
field reaches equipartition with the eddies at kp, when EB = R−1Eν . In
each case, the leftmost stage of evolution is the same as that for Ohmic
resistivity.

plays a role for the case of ambipolar diffusion similar to that Pm plays
in the resistive case. Since R ∝ νni, it varies linearly with the degree
of ionization; we therefore term it the ‘dynamo ionization parameter’.
We can relate it to the magnetic Prandtl number as follows: Since
ηAD ∝ v2

A ∝ B2, we have Pm ∝ B−2. For B = Bν – i.e. when the field
energy is in equipartition with the viscous-scale eddies – we have
v2

A = v2
ν so that

Pm(Bν) = ν

ηAD(Bν)
= ν

v2
ν/νni

= νni

�ν

= 1

6
R. (30)

Hence, R is a measure of the magnetic Prandtl number when B = Bν .
IfR is not too large (R � (Eν/EB0)1/2), the kinematic dynamo enters
a dissipative stage of evolution in which the peak of the magnetic
energy spectrum is at the damping wavenumber, kp = kd, and one
finds from equations (11) and (28) that the magnetic energy grows as
EB ∝ exp(�νt/3). If R > 1 (middle panel of Fig. 2), equation (28)
shows that kp = kd exceeds �−1

ν when equipartition is reached at �−1
ν

(i.e. when EB = Eν). As in the ideal case, the system then undergoes
a transitional stage in which kp drops to �−1

ν while EB = Eν . The
transitional stage ends and the non-linear stage begins at tnl given by
equation (13). On the other hand, for R < 1 (bottom panel of Fig. 2),
the first dissipative stage ends when kd drops to �−1

ν , which occurs
prior to equipartition according to equation (28). Xu & Lazarian
(2016) showed and Xu et al. (2019) confirmed computationally
that subsequently the magnetic energy grows as EB ∝ t2 for a time
interval

�tdamp = 23

3�ν

(
1

R − 1

)
, (31)

so that the dynamo enters the fully non-linear stage at a time tnl +
�tdamp, where tnl is given in equation (13). As in the case of Ohmic
resistivity, transition from the case of very high R in the top panel of
Fig. 2 to low R in the bottom panel can be visualized as the effects of
the line representing EB (kd), no longer vertical, sweeping from right
to left as R decreases.

To gain more insight into the different stages of the dynamo, one
can evaluate the magnetic Reynolds number at the dynamo driving
scale, �dr. With the aid of equation (26), we obtain

Rm(�dr) = R
6

(
�ν

vdr/�dr

)
v2

dr

v2
A

. (32)

If the driving is at the viscous scale (�dr = �ν), we have vdr/�dr =
�ν so that Rm(�dr) > (1/6)R in the kinematic stage (v2

A < v2
dr). For

R ≥ 1, the dynamo enters the non-linear stage at Rm(�ν) = (1/6)R.
For R < 1, one can use the results of Xu & Lazarian (2016) to show
that Rm = 1/6 in the damping stage.

We summarize the parameters describing the growth of the
magnetic field when ambipolar diffusion dominates in Table 1. The
values of the viscosity, ν, and the ambipolar resistivity, ηAD, are
given in Appendix A. Before applying the results in this table, we
first consider the origin of the field and the effect of a time-dependent
background on the dynamo.

2.4 The Biermann battery in a turbulent medium

As shown by Biermann (1950) (see also Biermann & Schlüter
1951), magnetic fields can be generated in an accelerating plasma,
a mechanism referred to as the ‘Biermann battery’. An electric field
arises in such a plasma in order to maintain charge neutrality if
the force per unit mass on the electrons differs from that on the
ions. If the velocity field has a curl, so will the electric field, which
produces a magnetic field by Faraday’s law. These authors estimated
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Magnetic fields in first star formation – I 5535

the magnetic field by noting that the electric field is of the order of
E ∼ (mH/e)dv/dt ∼ (mH/e)v2/�, so that ∂B/∂t ∼ cE/� ∼ (cmH/e)v2/�2

and B ∼ (cmH/e)v/� = 1.0 × 10−4(v/�). As noted in the Introduction,
they estimated that this process would produce a field of the order of
10−19 G in a galaxy.

Harrison (1969, 1970) gave a more rigorous derivation of this result
for the case in which the force is radiation drag on the electrons, and
Kulsrud et al. (1997) did so for the case in which the force is due to
a pressure gradient. The latter authors pointed out that the equation
for the vorticity and that for the magnetic field have the same form,

∂ω

∂t
− ∇×(v×ω) = ∇ρ×∇p

ρ2
+ ν∇2ω, (33)

∂B
∂t

− ∇× (v×B) = − mac

e(1 + xi)

(∇ρ×∇p

ρ2

)
+ η∇2B, (34)

where ma = ρ/na is the mean mass of the atoms (both neutral and
ionized), na is the number density of atoms, and xi ≡ ne/na is the
ionization fraction. These equations are based on the assumption that
xi, ν, and η are constant. The source for ω and B is the baroclinic term
due to non-parallel density and pressure gradients (∇ρ×∇p �= 0),
which arise naturally in curved shocks.

Kulsrud et al. (1997) stated that the viscous and resistive terms in
equations (33) and (34) can be ignored in determining the post-shock
vorticity. To see this for the viscous term, for example, go into the
shock frame, so that ∂/∂t = 0, and integrate equation (33) across
the shock front. Writing p = ρc2

s , where cs is the isothermal sound
speed, we find

�(vω) ∼ �
(
c2

s ln ρ
)

L
+ ν�(∇ω), (35)

where we have assumed that the vectors in equation (33) are not
nearly parallel and where L is the scale of the curvature of the shock.
The post-shock sound speed is of the order of the shock velocity,
vs, so the first term on the right-hand side is of the order of v2

s /L.
The vorticity generated by the shock is of the order of vs/L. The
turbulent cascade behind the shock begins on the scale L, so the
vorticity changes on that scale just behind the shock; as a result, the
second term is of the order of νvs/L2. It follows that the ratio of the
first term to the second is of the order of vsL/ν = Re � 1, so the
viscous term does not affect the generation of vorticity in the shock.
A similar argument can be made for the evolution of the magnetic
field provided that the shock is collisional, as it should be at low
velocities in a primarily neutral medium.

It follows that if the vorticity and field are initially zero, they will
grow in tandem; for the case in which the force is a pressure gradient,
the field is

B = −
[

mac

(1 + xi)e

]
ω. (36)

If the force is due to radiation drag on the electrons, the field is
B = −(mac/e)ω in a fully ionized plasma (Harrison 1969); if the
plasma is partially ionized, one can show that the field is larger by
a factor of x−1

i . Balbus (1993) showed that fields generated by the
Biermann battery are so weak that the Larmor radius, rL,i = vion/�i �
(vion/v�)�, can exceed the scale � on which the vorticity is measured;
here, vion is the velocity of an individual ion, whereas v� is the mean
velocity on the scale � and is less than vion for subsonic flows.

Numerically, for a vorticity ω = vt(r)/r and for nHe = nH/12, this
field is

B = 1.29 × 10−4ω = 4.17 × 10−19

(
vt,5

r2

)
G, (37)

where vt,5 is the turbulent velocity in units of 105 cm s−1 and
r2 is the radius in units of 100 pc. Although very weak fields
(∼10−24.5 G) can be generated within linear perturbations in the
post-recombination Universe (Naoz & Narayan 2013), significantly
stronger fields are generated in curved shocks associated with galaxy
formation (Pudritz & Silk 1989) and the accretion of gas into
minihaloes.

Turbulence leads to an increase in the field in two separate stages,
the turbulent Biermann battery and then the small-scale dynamo.
First, since the post-shock flow is at high Re (Table 1), the vorticity
on a scale L leads to a turbulent cascade in which the vorticity
increases in time as it cascades to smaller and smaller scales, ω ∼
v�/� � (L/�)2/3vL/L. Correspondingly, the magnetic field increases on
smaller scales according to equation (36) (Kulsrud 2005). For Pm >

1, this process ceases when viscous damping terminates the turbulent
cascade on the scale �ν . The vorticity on this scale is ∼�ν , so that
the field due to a turbulent Biermann battery is

B = 3.24 × 10−17

(
v

3/2
t,5 n

1/2
H

T 0.42
3 r

1/2
2

)
G (38)

at the end of this process (see Table 1).
Once the turbulent cascade has been established, in a time of

the order of L/vL, the vorticity no longer grows and the growth of
the field is due to a small-scale dynamo as discussed earlier. Here,
the difference between equations (33) and (34) becomes important:
ω = ∇×v is a function of v, whereas B is not. Thus, while the
vorticity no longer grows once the turbulent cascade is established,
the magnetic field can grow exponentially.

2.5 Dynamos in a time-dependent background

To this point, we have assumed that the dynamo is operating in a
medium with a density that is independent of time. However, the
gas that forms a primordial star first expands with the cosmological
expansion, contracts with the formation of a minihalo, and then
contracts further as it forms a protostellar core. As a result, the
evolution equations for the small-scale dynamo must be revised
to account for the temporal evolution of the mean density. For
homologous expansion or collapse, mass and flux conservation
imply that ρ ∝ 1/r3 and B ∝ 1/r2, where r is the distance from
an arbitrary point in a homologous expansion or from the centre of
the collapse, which is assumed to be spherical. As a result, B ∝ ρ2/3.
Collapse is generally not homologous, so these relations need not
hold locally. Nonetheless, prior to the formation of a star, the mean
density and mean field satisfy B̄ ∝ ρ̄2/3 under the conditions of
flux freezing. Lazarian et al. (2015) and references therein argue
that reconnection in a turbulent medium leads to violations of
flux freezing, and Li, McKee & Klein (2015) found evidence for
this in their simulations. Those same simulations found that this
was a modest effect, however, and were consistent with an overall
dependence EB ∝ B2/ρ ∝ (ρ/ρ0)1/3 = ξ 1/3. Following Schleicher
et al. (2010) and Schober et al. (2012b), we assume that the effects
of the dynamo and the time-dependent background are separable. As
a result, equations (11) and (24) for the kinematic dynamo become

EB = EB0ξ
1/3(kp�ν)5/2 exp

(
3

4

∫
�ν dt

)
(Pm > 1), (39)

EB = EB0ξ
1/3 exp

(
3

4

∫
�η dt

)
(Pm < 1), (40)
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where

ξ ≡ ρ

ρ0
(41)

is the compression ratio and ρ0 is the initial density. After a star
forms, these equations need not hold, since the mean gas density no
longer varies as 1/r3 and the magnetic flux released from the star can
evolve in a complex manner.

Recall that the dynamo enters the non-linear stage when EB = Eν ,
the specific energy of the viscous-scale eddies, and also that kp�ν =
1 at this time. (If ambipolar diffusion dominates, the case in which
R < 1 is more complicated as discussed in Section 2.3, so we do
not discuss that case in this section.) Let ρν be the density at the
time that the dynamo enters the non-linear stage, and let 〈�ν〉 be the
time-averaged value of �ν prior to that time. Expressing EB in terms
of B, we then find that the dynamo enters the non-linear stage at

tnl � 8

3〈�ν〉 ln

(
ξ−2/3
ν

Bν

B0

)
, (42)

where ξν ≡ ρν /ρ0. As we shall see in Section 3, tnl is expected to
be small compared to the dynamical time in the formation of the
first stars, so the factor ξν in equation (42) is close to unity and 〈�ν〉
� �ν0, the initial value of �ν . However, this is not the case for the
simulations (Section 4).

For the non-linear dynamo (t > tnl), equation (14) becomes

dEB

dt
= χε + EB

d ln ξ 1/3

dt
, (43)

where we have assumed that the field has not reached equipartition
with motions on the outer scale of the turbulence (B < Beq). The scale
of the dynamo enters through ε = v3

t /�. Equation (43) then gives

EB (t) =
(

ξ

ξν

)1/3

EBν
+ χξ 1/3

∫ t

tnl

ε(t ′)ξ (t ′)−1/3 dt ′, (44)

where EBν
= EB (tnl) is given by

EBν
≡ B2

ν

8πρν

= 1

2
v2

ν = 1

2
(εν)1/2 = 1

2

ε

�ν

. (45)

The first term in equation (44) represents the compression (assuming
the density is increasing) of the field at the beginning of the non-linear
stage (Bν), whereas the second term represents the field produced by
the non-linear dynamo, including the amplification of that field due
to compression.

We approximate the density dependence of a quantity x as x ∝
ρqx ∝ ξqx . In particular, ε ∝ ρqε and � ∝ ρq� , so that

EB (t) = 1

2

(
ξ

ξν

)1/3
ε0

�ν0
ξqε−q�
ν + φffχε0tff,0ξ

1/3Iqε−1/3(ξν, ξ ), (46)

where ξν = ξ (tnl), �ν0 is evaluated at the initial density, ρ0, and

Iq (ξ1, ξ2) ≡ 1

φff tff,0

∫ t(ξ2)

t(ξ1)
ξ (t ′)q dt ′ (47)

is evaluated in Appendix B, including the effects of dark matter.
Here, tff,0 is the free-fall time for the gas alone and φff is a parameter
of order unity that allows the collapse time for the gas alone to differ
from tff,0 due to the fact that the collapse is not pressureless, for
example. Observe that dt ∝ dtff ∝ dξ /ξ 3/2 so that Iq is a number of
order unity for q < 1/2 and ξ � 1.

Define the dynamo amplification factor A(t) by

B(t) ≡ B0A(t)ξ 2/3; (48)

in terms of the specific magnetic energy, this is

EB = EB0A2(t)ξ 1/3. (49)

In the kinematic phase, equations (39) and (40) show that A = Akin

is exponentially sensitive to the input parameters. For the non-linear
phase, we have

B = BνAnl(ξ/ξν)2/3 (ξ > ξν), (50)

where

Anl = [
1 + 2φffχ�ν0tff,0ξ

(1/3)+q�−qε
ν Iqε−1/3(ξν, ξ )

]1/2
(51)

from equation (46) after expressing EB in terms of B. Note that the
second term is proportional to

�ν0tff,0 =
(

ε0

ν0

)1/2

tff,0 =
(

vttff,0

L0

)
Re1/2. (52)

For gravitational collapse, the factor in parentheses in the final
expression is of order unity, so it follows that Anl ∝ Re1/4 for large
Re.

We now show that the non-linear dynamo amplifies the field to a
significant fraction of equipartition provided the dynamo amplifica-
tion factor is large (A2

nl � 1). First, consider the case in which the
kinematic stage of the dynamo ends early in the collapse, so that ξν

∼ 1. Since ε0 = v3
t0/L0, equation (46) implies

EB

1
2 v2

t0

� 2χ

(
φffvt0tff,0

L0

)
ξ 1/3Iqε−1/3(1, ξ ). (53)

The factor in parentheses is of order unity; for example, for sonic
turbulence in which the outer scale of the turbulence is the Jeans
length, vt0tff,0/L0 = (3/32)1/2. As noted earlier, when q < 1/2,
corresponding to qε < 5/6, the factor Iq is a number of order unity
for ξ � 1; on the other hand, for q ≥ 1/2, Iq is an increasing function
of ξ . It follows that even in the absence of the compression factor
ξ 1/3, the non-linear dynamo will bring the field up to an energy of
order 2χ ∼ 0.1 of equipartition. In the opposite case in which the
non-linear stage of the dynamo begins late in the collapse (ξν � 1),
Iq(ξν , ξ ) can be inferred from equation (B17). As a result, the field
energy for ξ � ξν is

EB

(1/2)v2
tν

� 2χ

(
φffvtν tff,ν

Lν

)
2

3π ((5/6) − qε)

(
ξ

ξν

)1/3

(54)

for qε < 5/6, where vtν is the turbulent velocity at a density ρ(tnl) =
ρ(ξν), etc. For qε ≥ 5/6, the field energy is larger than this. Hence,
for A2

nl � 1, the non-linear dynamo is efficient at bringing the field
close to equipartition when ξν � 1 as well. In both cases, the relative
importance of amplification of the field by the non-linear dynamo
and by compression is given by the ratio Anl(ξν/ξ )2/3. By contrast,
this ratio for the specific magnetic energy, EB , is A2

nl(ξν/ξ )1/3, which
is generally much larger.

As remarked earlier, Lazarian et al. (2015) have argued that flux
freezing is violated due to reconnection in a turbulent medium. We
note that the effect of eliminating the effect of compression in the
evolution of the non-linear dynamo (i.e. omitting the second term in
equation 43) would be to omit the factors of ξ and ξν and replace
qε − 1/3 by qε in equations (53) and (54); this would not affect the
conclusion that the non-linear dynamo is capable of bringing the field
close to equipartition in a gravitational collapse.

We now estimate the magnitude of the field in the gas that forms
the first stars.

3 PREDI CTED MAGNETI C FI ELD IN THE
F O R M AT I O N O F TH E F I R S T STA R S

We first discuss the initial Biermann field expected in a minihalo
(or galaxy) and then the final value that results from the turbulent
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Figure 3. Predicted growth of the magnetic field in a minihalo of total mass
3 × 105 M� at z = 25 under the assumption that the initial field is zero.
We have assumed that the turbulent velocity is half the virial velocity (φt =
0.5) and that T = 103 K. The initial Biermann battery due to curved shocks
on the scale of the minihalo generates a field of about 2 × 10−19 G. As
turbulence cascades to smaller scales, the field generated by the Biermann
battery increases to ∼10−16 G. A small-scale dynamo amplifies this field to
about 3 × 10−8 G during the kinematic stage. Because the growth rate of the
dynamo is so large in this stage, the density is about constant in time. The
non-linear dynamo is much slower, so the baryons are compressed by a factor
of ∼4000 during this stage as they collapse due to the combined gravity of the
dark matter and the baryons. In this stage, the field grows to about 5 × 10−5 G.
The dynamo amplifies the field by only a factor of ∼7 in the non-linear stage;
most of the growth of the field is due to compression. The non-linear stage
ends when the field reaches equipartition with the turbulence, with vt � 2 km
s−1. Subsequently, the field remains in approximate equipartition with the
turbulence.

cascade. We show that the Biermann field is amplified rapidly in the
kinematic stage of a small-scale dynamo, so that the density in this
stage is approximately equal to the initial value. In the non-linear
phase of evolution of the dynamo, the field is amplified primarily
by the compression due to the gravitational collapse that leads to
star formation. This compression drives the field to equipartition,
and it remains approximately in equipartition until non-ideal MHD
effects take over. An overview of the predicted evolution of the field
is shown in Fig. 3.

3.1 The initial field

As discussed in the Introduction, processes in the very early Universe
might create comoving fields in the range Bc ∼ 10−15 to 10−12 G,
but these processes are hypothetical. The Biermann battery process
prior to reionization produces much weaker fields, B ∼ 10−25 to

10−24 G, in the IGM (Naoz & Narayan 2013) or B ∼ 10−19 G in
protogalaxies (Biermann & Schlüter 1951); the comoving fields are
smaller by a factor of a2 = 1/(1 + z)2. However, these fields are
based on well-established physics, so we focus on them here.

The field produced by the Biermann battery in a minihalo or a
galaxy in the process of formation is due to the oblique shocks
(Pudritz & Silk 1989) associated with the formation of these
objects. As discussed in Section 2.4, the magnitude of this field
is 1.29 × 10−4ω, where ω is the vorticity. We estimate the vorticity
on the outer scale of the turbulence as ω ∼ vvir/rvir, where rvir =
(3Mm/4πρmh)1/3 and vvir = (GMm/rvir)1/2 are the virial radius and
velocity, respectively, where Mm is the mass of all the matter in the
halo, including the dark matter, and where ρmh is the average matter
density in the minihalo. It follows that

ω ∼ vvir

rvir
=

(
4πGρmh

3

)1/2

, (55)

where for a simple tophat model of the formation of the minihalo,
ρmh is approximately 18π2 times the ambient density in the Hubble
flow at that time (e.g. Barkana & Loeb 2001),

ρmh = 27πH 2
0 �m

4G

(
1 + z

26

)3

. (56)

Here, we have normalized to a redshift of 25, since that is a
typical redshift at which a minihalo collapses (Greif et al. 2012;
Stacy et al., in preparation). For simplicity, we henceforth make the
approximation 1 + z � 26z25, where z25 = z/25, which is accurate
to within 1 per cent for 20 < z < 33 and accurate to 4 per cent
for z > 12. Following Stacy et al. (in preparation), we set H0 =
70 km s−1 Mpc−1, �m = 0.30, and �b = 0.04. It follows that the
matter density in the minihalo is ρmh = 8.62 × 10−24z3

25 g cm−3,
so that ω ∼ 1.5 × 10−15z

3/2
25 s−1 and B ∼ 2.0 × 10−19z

3/2
25 G at the

outer scale of the turbulence. At z ∼ 25, this field is almost exactly
as Biermann & Schlüter (1951) estimated.

As discussed in Section 2.4, the turbulent cascade increases the
vorticity, and therefore the field, on smaller scales. To evaluate
the final Biermann field, which occurs on the viscous scale where
the vorticity is a maximum (ω � �ν), and the properties of the
subsequent dynamo, we assume that the turbulence is governed
by the properties of the minihalo. We then have for the outer
scale of the turbulence in the minihalo r � rvir = 123M

1/3
m,6/z25 pc,

where Mm,6 = Mm/(106 M�) (cf. Barkana & Loeb 2001). The virial
velocity is vvir = 5.9M

1/3
m,6z

1/2
25 km s−1. Simulations indicate that the

turbulent velocity is somewhat less than this; for example, the results
of Greif et al. (2012) show that vt � 2 km s−1 to within a factor of
1.5 in the range r ∼ 5–50 pc for Mm � 3 × 105 M�, corresponding
to vt � 0.5vvir, and a similar result was obtained by Stacy et al. (in
preparation). We therefore set

vt = φtvvir (57)

and adopt φt = 0.5 as a fiducial value. The density of hydrogen
in the minihalo corresponding to the matter density ρmh is nH =
(�b/�m)ρmh/μH = 0.52z3

25 cm−3, where μH = 2.23 × 10−24 g is the
mass per H atom. Equation (38) then implies that the final Biermann
field is

B0 = 3.0 × 10−16

(
φ

3/2
t M

1/3
m,6z

11/4
25

T 0.42
3

)
G. (58)

For a minihalo with Mm = 3 × 105 M� at z = 25, this gives B0 �
7 × 10−17 G (with φt = 0.5 and T3 = 1).
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3.2 The kinematic dynamo

The field produced by the Biermann battery is too weak to have
any dynamical effects, so the dynamo begins in the kinematic,
dissipation-free stage and the field exponentiates as B ∝ exp(�ν t)
(Section 2.1). In order to determine the subsequent evolution of the
field, we must first determine how long the kinematic stage lasts
in comparison with the dynamical time of the minihalo. Ambipolar
diffusion is the dominant dissipation mechanism for B � 10−13nH G
(Appendix A3), and as discussed in Section 2.3, the properties of
the dynamo in the presence of ambipolar diffusion are governed by
dynamo ionization parameter,R = 6νni/�ν (equation 29). Using the
just cited values of the density and radius of the minihalo, we find

R = 1.2

[
φdxi,−4T

0.80
3 z

1/4
25

(2φt)3/2M
1/3
m,6

]
(59)

from Table 1, where xi,−4 = xi/10−4 is the normalized ionization
fraction. The results of Greif et al. (2012) give xi,−4 ∼ 1 for
r � 10 pc. For T � 500 K, which is generally the case for the
average gas in the minihalo (Abel et al. 2002; Greif et al. 2012),
this implies R � 0.7/M

1/3
m,6. This is larger than the value found by

Xu & Lazarian (2016) since the ion–neutral collision rate in the
post-recombination universe is larger than the value they adopted, as
discussed in Appendix A. Since R is of order unity, the evolution
of the dynamo is intermediate between the tracks shown in the
bottom two parts of Fig. 2, so the scale of the turbulent field in
the kinematic stage remains constant at about �ν . Furthermore, we
can use equation (42) for the time at which the dynamo becomes non-
linear, tnl. Recall that tnl ∝ ln(Bν/(B0ξ

2/3
ν ) and that the initial field

in the minihalo is B0 � 10−16 G from equation (58). Initially, the
dynamics of the gas in the minihalo are determined by the dynamical
time, tvir = rvir/vvir = 20.4z

−3/2
25 Myr. Anticipating that tnl/tvir will be

<1, we infer that the density is about constant so that the density at
the end of the kinematic stage, ρν , is about the same as the initial
density (i.e. ξν � 1) and 〈�ν〉 � �ν . We then obtain

Bν = 5.80 × 10−8φ
3/4
t T 0.21

3 z
11/8
25 M

1/6
m,6 G (60)

from Table 1. In evaluating tnl, we set φt = 1/2, and in the logarithmic
factor we set the remaining parameters equal to unity, so that

tnl

tvir
� 0.10

(
T 0.42

3

M
1/3
m,6z

5/4
25

)
. (61)

We conclude that for a typical minihalo, the dynamo can reach a
non-linear amplitude in a time significantly less than the virial time.

Reference to Fig. 2 shows that the dissipation-free stage in
the kinematic dynamo lasts until EB = (R2EB0/Eν)1/3Eν , which
corresponds to a magnetic field B � (R1/2Bν/B0)2/3B0. For R
and the remaining parameters all of order unity, this implies that
the field is amplified by almost factor of 106 before dissipation
becomes important. Once that occurs, the field grows more slowly,
B ∝ exp(�ν t/6) (Kulsrud & Anderson 1992; Xu & Lazarian 2016).
For R � 1, as is the case here, this exponential growth continues
until the dynamo reaches the non-linear stage at t = tnl.

3.3 The non-linear dynamo

As noted earlier, the value of the dynamo ionization parameter, R,
is initially of order unity. As the gas collapses in the non-linear
stage of the dynamo, R ∝ xin

1/2
H r1/2 from Table 1. Since the gas

is in ionization equilibrium, the ionization varies as n
−1/2
H so that

R ∝ r1/2 ∝ ξ−1/6. As we shall see, dynamo amplification in the

non-linear stage is significant only during the initial stages of the
collapse, so we shall continue to use the results for R � 1. The
field is then given by equation (50) with Anl given by equation (51).
The non-linear amplification factor Anl depends on how the energy
dissipation rate depends on density, ε ∝ ρqε , with qε = 3qv − qL,
through the factor Iqε−1/3(ξν, ξ ) (equation 51). Since tnl is only a
fraction of the dynamical time, tvir, it follows that the density at
tnl is close to the initial density, ρν � ρ0, so that ξ (tnl) = ξν �
1. The maximum value of Iq(1, ξ ) is reached when the collapse
is complete, and as shown in equation (B18), it is of order unity
provided that qε − 1/3 < 1/2, which it generally is. Simulations
such as those of Greif et al. (2012) show that although the turbulent
velocity is roughly constant, it does vary by a factor of � 3 in a
complex manner, so the effective value of qε is uncertain. For a
simple analytical estimate, we shall take advantage of the fact that
Iq,∞ = O(1) and set q = qε − (1/3) = 0. Equation (47) then gives
I0,∞ = tcoll/(φfftff,0). Approximating the collapse time as tvir and
recalling that tnl 	 tvir, we find from equation (51) that the total
amplification by the non-linear dynamo is

Anl,tot ∼ (1 + 2χ�ν0tvir)
1/2 . (62)

Noting that tvir = (3/4πGρmh)1/2, we find

Anl,tot ∼
[
1 + 66(2φt)

3/2z
5/4
25 T −0.42

3 M
1/3
m,6

]1/2
, (63)

so the non-linear dynamo amplifies the field by less than an order
of magnitude in a minihalo. This relatively small amplification is
because the field energy grows linearly in time in the non-linear
dynamo, but the time available for growth varies as ξ−1/2 and is
small in the late stages of the collapse. Using equations (B5) and
(B17), one can show that 90 per cent of the amplification by the
dynamo is completed before the time that ξ = 30. (The fact that
the dynamo amplification is concentrated in the early stages of the
collapse justifies our assumption that we can follow the evolution of
the non-linear dynamo with the initial value ofR ∝ ξ−1/6, which is of
order unity.) As shown in Fig. 3, the growth of the field is dominated
by compression (B ∝ ξ 2/3 ∝ n

2/3
H ) for most of the non-linear stage.

3.4 Equipartition

As the collapse continues, the field eventually reaches approximate
equipartition with the turbulence. When does this occur? We antici-
pate that it occurs only after significant compression, at a time close
to the time tcoll at which the gas in the minihalo has collapsed. Now,
for B > Bν we have

EB = EBν
A2

nlξ
1/3 (64)

from equation (50) with ξν � 1. With the aid of equations (45) and
(3), we have EBν

� (1/2)(ε0ν0)1/2 = (1/2)ε0/�ν0. Since A2
nl, tot � 1

from equation (63), it follows that the first term in equation (62),
representing the field due to the kinematic dynamo, is negligible. We
then have

EB � χε0ξ
1/3tvir (t � tcoll � tvir). (65)

Since ε0tvir � (v3
t /rvir)(rvir/vvir), this implies that

v2
A

v2
t

= EB

(1/2)v2
t

� 2χξ 1/3 vt

vvir
= 2φtχξ 1/3. (66)

Equipartition first occurs when this ratio is unity, corresponding to a
compression of

ξeq,i = 1

(2φtχ )3
� 4100

(2φt)3
, (67)
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which is only a small fraction of the total compression the gas
experiences as it collapses into a protostar. Note that this condition
for equipartition is independent of all the dimensional parameters
of the problem, as expected from equations (53) and (54). The
corresponding density is

nH, eq,i =
(

1

2φtχ

)3

nH,0 � 2.1 × 103

(
z25

2φt

)3

cm−3. (68)

The initial equipartition magnetic field is then

Beq,i = (
4πρ0v

2
t

)1/2
ξ 1/2

eq,i � 7.2 × 10−5

[
z2

25M
1/3
m,6

(2φt)1/2

]
G. (69)

As noted by Schleicher et al. (2010), we expect that once the
field reaches equipartition, it will remain there as the compression
continues, so that the field will increase as ρ1/2 (for a constant
turbulent velocity) rather than ρ2/3 (see Fig. 3). This behaviour is
consistent with the results of the simulations of collapsing turbulent
cores by Mocz et al. (2017), who found that the field remained close
to equipartition with the turbulent energy as the density increased
by orders of magnitude. For an initially weak field, they found
that the field eventually increased as ρ2/3, presumably because the
turbulent velocity increased near the nascent protostar; we note that
if v2

t ∝ r−1, then B2
eq ∝ ρ/r ∝ ρ4/3. Our conclusion that the dynamo

reaches equipartition in the formation of stars at z ∼ 25 differs from
that of Xu & Lazarian (2016), who concluded that equipartition is
reached at t ∼ 6 × 108 yr (corresponding to z ∼ 8), because they did
not consider the increase in density that accompanies star formation.

As noted in Section 2.1, it is possible that the field could saturate
at a value different from the equipartition value,

B2
rms = B2

sat = 4πφ2
satρv2

t , (70)

with φsat most likely somewhat less than 1. In that case, the Alfvén
Mach number in the saturated state would be MA = vt/vA = 1/φsat;
the field would be dynamically insignificant for φsat 	 1. Equa-
tion (66) implies that the field saturates at a compression ξsat =
φ6

satξeq,i. For φsat = 0.7, corresponding to the subsonic turbulence
(e.g. Federrath et al. 2011a) relevant for the formation of the first
stars (Abel et al. 2002; Greif et al. 2012), this gives ξ sat = 480/(2φt)3.

3.5 The magnetic field versus gravity

How does the force associated with the magnetic field compare with
that due to gravity? The magnetic critical mass is the mass for which
the gravitational and magnetic forces balance. There are two forms
for the critical mass, M� � �/(2πG1/2), where � = πr2Brms is the
magnetic flux based on the rms field in the cloud, and

MB = M3
�

M2
= 9

128π2G3/2

(
Brms

2

ρ4/3

)3/2

, (71)

where M(r) is the gas mass inside r (e.g. McKee & Ostriker 2007).
The force of gravity exceeds that due to magnetic fields for M > M�

or M > MB, so a necessary condition for gravitational collapse is that
these inequalities be satisfied (note that M� = MB for M = M�, so
that this is actually a single condition).

As the baryons collapse, they form a core with a power-law density
profile, ρ ∝ r−kρ with kρ � 2.2. For example, a fit to the results of
Greif et al. (2012) and Stacy et al. (in preparation) gives kρ � 2.3
and 2.16, respectively, while the theoretical model of Tan & McKee
(2004) has kρ = 20/9 � 2.22. The fraction of the mass with a density
greater than ρ is then

M(> ρ)/M0 = M(> ξ )/M0 = ξ−(3−kρ )/kρ , (72)

where M0 is the total mass of gas in minihalo; for kρ = 2.2, this is M(>
ξ )/M0 = ξ−0.36. The field is at its equipartition value for the inner
5 per cent of the core for φt = 1/2 since M(>ξ eq)/M0 = 0.05(2φt)1.08.
As an example, for a minihalo of mass 3 × 105 M�, we have M0 =
4 × 104 M�, so that the central 2000 M� has an equipartition field.
If the field saturates at a value other than the equipartition value,
then the mass of gas with a saturated field would be 2000φ−2.16

sat M�,
which is 4300 M� for φsat = 0.7.

We have seen that most of the amplification of the field in the non-
linear stage is due to compression, so that Brms scales approximately
as ρ2/3 prior to equipartition (ξ < ξ eq); it follows that MB is
approximately constant during this phase. Under the assumption that
the turbulent velocity remains about constant, after equipartition we
have B2

rms = 4πρv2
t so that MB ∝ ρ−1/2. To cover both cases, we note

that equations (66) and (67) imply

B2
rms = min

[(
ξ

ξeq

)1/3

, 1

]
4πρv2

t (73)

for pre- and post-equipartition, respectively. From equation (71),
we then find that magnetic fields limit the mass that can undergo
gravitational collapse to be at least

MB =
[

3χ (2φt)3

16

]3/2 (
�m

�b

)1/2

min

[
1,

(
ξeq,i

ξ

)1/2
]

Mm, (74)

MB = 3470 (2φt)
3 min

[
(2φt)

3/2,

(
4100

ξ

)1/2
]

Mm,6 M�, (75)

where we set χ = 1/16 and �m = 7.5�b in the second equation. Note
that equation (74) applies to present-day Giant Molecular Clouds
(GMCs) for equipartition fields if ξ eq is inserted from equation (67)
and �m is set to �b. Since φt = vt/vvir, the value of MB is very
sensitive to the turbulent velocity, vt. Prior to equipartition (first term
in the above equations), MB is constant, but for ξ > ξ eq (second
term), MB varies as ξ−1/2 ∝ rkρ/2. In order for gravity to overcome
magnetic fields for masses much less than 3500 M�, high densities
are required; for example, reducing MB below 100 M� requires nH �
106.5 cm−3 for φt ∼ 1/2 and Mm,6 ∼ z25 ∼ 1.

To compare with contemporary star formation, we recast these
results in terms of the ratio of the gas mass inside r to the critical
mass at that radius,

μ� ≡ M(r)

M�(r)
=

[
M(r)

MB

]1/3

. (76)

Equation (74) then implies that

μ� = 4ξ (kρ−2)/2kρ

(2φt)
√

3

(
�b

�m

)1/2

max

[(
ξeq,i

ξ

)1/6

, 1

]
. (77)

Just as in the case of equation (74) for MB, this result applies to
GMCs for equipartition fields if ξ eq is inserted from equation (67)
and �m is set to �b. For the particular case kρ = 2.2 and φt = 1/2,
equation (77) becomes

μ� = 1.23 max

[(
4100

ξ

)0.12

,

(
ξ

4100

)0.045
]

. (78)

Note that the density dependence of μ� is weak: The entire minihalo
(ξ = 1) has μ� = 3.4; the minimum value, μ� = 1.23, occurs at
the point that the gas first reaches equipartition (ξ = 4100); and ξ

must exceed 2 × 1013 in order for μ� to exceed 3.4. Over this entire
density range, μ� � 2 ± 0.2 dex.
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As noted earlier, the field might saturate at a value that differs
from the equipartition value by a factor of φsat, and correspondingly,
μ� would differ from the values given in equations (77) and (78) by
a factor of 1/φsat. The Mach number in the simulations of Abel et al.
(2002) is of the order of 1/3, which is subsonic, so that φsat ∼ 0.7
(Haugen et al. 2004; Federrath et al. 2011a) and μ� ∼ 2/0.7 ∼ 3;
the simulations of Greif et al. (2012) have Mach numbers ∼1, which
would give a somewhat larger value of μ�.

The results we have obtained for the magnetic fields in a minihalo
are quite comparable to those for the fields in contemporary star-
forming regions. Equation (68) shows that the field is in equipar-
tition with turbulent motions at densities �103 cm−3, comparable
to the densities in molecular clumps today. As discussed earlier,
equation (78) shows that the equipartition value of the mass-to-
flux ratio is μ� ∼ 2, which is the value expected on theoretical
grounds for Galactic GMCs (McKee 1989); at present, there is no
direct measurement available for μ� for GMCs. Star-forming clumps
within GMCs have μ� � 2–3 (Crutcher 2012; Li et al. 2015), which
is also in good agreement with the predicted value in equation (78).

Krumholz & Federrath (2019) have recently reviewed the role of
magnetic fields in contemporary star formation. For typical mass-
to-flux ratios (μ� ∼ 2–3), magnetic fields reduce the rate of star
formation by a factor of a few. Magnetic fields have little direct
effect on the peak of the IMF since radiative feedback is generally
dominant. Magnetic fields reduce fragmentation, particularly in
discs, which could suppress the formation of low-mass primordial
stars that could survive until today. Reduced fragmentation also
favours the production of massive stars. One of the main effects
of magnetic fields is that if they are ordered, they produce outflows
that reduce the typical stellar mass by a factor of ∼2–3. However,
recent simulations show that no outflows are produced by turbulent
magnetic fields (Gerrard, Federrath & Kuruwita 2019), so that effect
should not be present in primordial star formation.

In sum, the kinematic dynamo is able to amplify the field from
very small values (∼10−25 to 10−19 G) to moderate values (∼10−8 G),
with very little of the amplification due to compression. On the other
hand, the non-linear dynamo is much less efficient, providing an
amplification of less than an order of magnitude in our example. The
initial equipartition field of ∼10−4 G is attained with a compression
somewhat less than 104, and we anticipate that the field will remain
in approximate equipartition as the collapse continues to higher
densities. During this phase of the collapse, the mass supported by
the field against gravity, MB, declines as ξ−1/2 (equation 75) so that
the mass-to-flux ratio in the core is nearly independent of density
(equation 78). The equipartition field, as characterized by the ratio
of the turbulent velocity to the virial velocity, φt = vt/vvir ∼ 1/2,
results in a normalized mass-to-flux ratio, μ�, somewhat above unity.
We estimate μ� ∼ 3 for subsonic turbulence, comparable to that in
contemporary star-forming regions. As a result, magnetic fields could
play a role in the formation of the first stars.

4 TH E O RY O F SI M U L AT I O N S

One of the principal difficulties in simulating astrophysical fluids is
that the physical viscosity is generally orders of magnitude smaller
than the numerical viscosity, so that the actual Reynolds number is
orders of magnitude larger than that in the simulation. For dynamos
in minihaloes, the physical viscosity is set by collisions in neutral
hydrogen and is ν ∼ 1020 cm2 s−1 for T3 ∼ 1 and nH ∼ 1 cm−3

(Appendix A), whereas the numerical viscosity in SPH or grid-based
codes is of the order of 1023 cm2 s−1 for the same physical conditions
and for resolutions corresponding to about 64 cells per Jeans length.

As a result, the characteristic growth rate in the kinematic stage
of the dynamo, ∼�ν ∝ ν−1/2 (equation 6), is smaller by a factor of
∼101.5. A corollary of this is that the time at which the dynamo enters
the non-linear stage, tnl ∝ �−1

ν (equation 42), is larger by about the
same factor. Thus, whereas the actual minihalo dynamo enters the
non-linear stage prior to significant compression, simulated minihalo
dynamos do so only after significant compression. We must therefore
use the results for a dynamo in a time-dependent background given
in Section 2.5.

Another important difference between the simulations considered
here and reality is that we assume that the simulations are based
on ideal MHD, so that the resistivity is numerical. As a result, the
resistivity in the simulations is independent of B, whereas in the
weakly ionized plasma that forms the first stars it is dominated by
ambipolar diffusion and varies as B2; the effect of this approximation
is less significant than the large discrepancy between the simulated
and actual viscosities, however.

The theoretically predicted evolution of the magnetic field shown
in Fig. 1 is dramatically different from that in the simulations of Turk
et al. (2012) and Stacy et al. (in preparation), principally due to the
difference between the actual viscosity and that in the simulations.
As noted by Sur et al. (2010) and Turk et al. (2012), the growth rate
of the dynamo increases with the Reynolds number and therefore
with resolution. [This follows directly from the growth rate of the
kinematic dynamo � ∼ �ν (equation 6), and the fact that �ν ∝ Re1/2

(equations 3 and 4).] Here we seek to predict the outcome of a
simulation of the evolution of the magnetic field in the formation of
the first stars so that we can understand how it relates to the theoretical
expectation described in the previous section and portrayed in Fig. 3.

4.1 SPH simulations of minihalo dynamos

We now estimate the outcome of an SPH simulation of a minihalo
dynamo. The numerical viscosity for SPH is

νsph = 1.50 × 1023

(
hfm

′1/3
sph T

1/2
3

n
1/3
H

)
cm2 s−1 (79)

(equation C20), where hf normalizes the SPH smoothing length
(equation C16) and m′

sph = msph/(1 M�) is the normalized SPH
particle mass. For example, Price (2012b) adopted hf = 1.2, whereas
Stacy et al. (in preparation) adopted hf = 3.63; Price (2012b) did not
need to adopt a value for msph, but Stacy et al. (in preparation)
adopted msph � 0.03 M� in the high-resolution portion of their
run, corresponding to hfm

′1/3
sph = 1.13; their simulation had about

3 × 107 particles representing the gas. As noted earlier, we expect
the kinematic stage to extend well into the gravitational collapse of
the star forming in the minihalo, and as a result, the effective outer
scale of the turbulence is the Jeans length (Federrath et al. 2011b),
λJ = 386(T3/nH)1/2 pc. The Reynolds number in the simulation of a
gravitationally collapsing cloud is then

Re = λJvt

νsph
= 800

(
vt,5

hfm
′1/3
sph n

1/6
H

)
. (80)

In order for a dynamo to operate, the magnetic Reynolds number,
Rm = PmRe, must exceed a critical value, Rm,cr, as discussed in
Section 2.2. We adopt the result of Haugen et al. (2004), Rm,cr �
220P −1/2

m for 0.1 � Pm � 3, so that

Rm

Rm,cr
= 3.6

(
P 3/2

m vt,5

hfm
′1/3
sph n

1/6
H

)
. (81)
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The maximum density for the operation of the dynamo is determined
by setting this ratio equal to unity,

nH,max = 2.18 × 103

(
P 3/2

m vt,5

hfm
′1/3
s

)6

cm−3. (82)

In Appendix C3, we estimate that the magnetic Prandtl number for
grid-based codes is Pm � 1.4, and we adopt the same value for SPH
codes. Then, for a typical turbulent velocity of 2 km s−1 (Greif et al.
2011), we find that the dynamo can operate only below a density of
nH,max � 3 × 106/(hfm

′1/3
sph )6 cm−3. This is in the upper range of the

densities in the SPH simulation of Stacy et al. (in preparation), which
has hfm

′1/3
sph � 1.

In the kinematic phase of a simulated dynamo, the dynamo
amplification factor is

Akin = exp

(
3

8

∫ t

t0

�ν dt ′
)

(83)

from equations (39) and (49). Here, we have taken kp�ν � 1 in
equation (39) since it lies between 1 and P 1/2

m � 1 (see the middle
panel of Fig. 1). Since our focus is on dynamos in gravitationally
collapsing clouds, we consider the case in which the growth rate
varies as a power of the density, �ν = �ν0ξ

q� , where ξ = ρ/ρ0 is the
compression ratio and, in general, x ∝ ξqx . Recall that �ν = (ε/ν)1/2

(equation 3) and ε = v3
t /L, so that if the outer scale of the turbulence

is set by the Jeans length, then we have

q� = 1

2
(qε − qν) = 1

2

(
3qv − 1

2
qT + 1

2
− qν

)
. (84)

Simulations (e.g. Greif et al. 2011) show that whereas there is some
variation of vt and T in the collapse, it is not systematic, so we shall
generally treat them as constant and set qv = qT = 0. It follows that
for SPH, qν = −1/3 (equation 79), so that qε = 1/2 and q� = 5/12.

In Appendix B, we discuss the gravitational collapse of gas
embedded in stationary dark matter. We consider the idealized case
in which both the gas and the dark matter initially have spatially
constant densities so that the density of the gas remains spatially
constant when it undergoes free-fall collapse. We assume that the
infall velocity is a factor of φff below the free-fall value so that the
collapse time is φff times greater, where tff,0 = (3π /32Gρ0)1/2 is the
initial free-fall time in the absence of dark matter. The integral that
appears in the dynamo amplification factor can be expressed as∫ t

t0

�ν dt ′ = �ν0φff tff,0Iq�
(1, ξ ) (85)

in terms of the integral Iq evaluated in Appendix B; here, the density
dependence of �ν is given by �ν ∝ ξq� . Since the outer scale of the
turbulence in a collapsing cloud is the Jeans length (Federrath et al.
2011b), it follows that the factor ε that enters �ν is

ε = v3
t

λJ
= 8.40 × 10−7v3

t,5

(
nH

T3

)1/2

cm2 s−3. (86)

For the SPH viscosity given in equation (C20), we then have

�ν0tff,0 = 3.33

(
v

3/2
t,5

h
1/2
f m

′1/6
sph T

1/2
3 n

(1/2)−q�

H,0

)
, (87)

so that

Akin = exp

[
1.25

(
φffv

3/2
t,5

h
1/2
f m

′1/6
sph T

1/2
3 n

(1/2)−q�

H,0

)
Iq�

(1, ξ )

]
(88)

from equations (83) and (85).

The growth of the field in a contracting medium is often charac-
terized by the logarithmic derivative, d ln B/d ln ρ. For the kinematic
stage of the dynamo, the field is B = B0(ρ/ρ0)2/3Akin (equation 48).
Since Akin is given by equation (83), we have

d ln B

d ln ρ
= 2

3
+ d lnAkin

dt

(
dt

d ln ρ

)
, (89)

d ln B

d ln ρ
= 2

3
+ 3

8
�ν

(
r

3|v|
)

, (90)

where in the last step we used ρ ∝ r−3. Late in the collapse (r 	 r0,
ξ 1/3 � 1), the velocity is |v| � vg(r0/r)1/2 = vgξ

1/6 with vg ∼ r0/tff,0

(see equations B8 and B9), so that

d ln B

d ln ρ
= 2

3
+ 1

4π
φff�ν0tff,0ξ

q�−(1/2), (91)

d ln B

d ln ρ
= 2

3
+ 0.26

(
φffv

3/2
t,5

h
1/2
f m

′1/6
sph T

1/2
3 n

1/12
H,0

)
ξq�−(1/2). (92)

So long as q� < 1/2, the variation of B with ρ in the kinematic stage
approaches B ∝ ρ2/3 at high densities – i.e. it is compression, not the
dynamo, that amplifies the field then. As we shall see later, the slope
is driven to 2/3 when the dynamo leaves the kinematic stage.

As an example, consider the case in which vt and T do not have a
systematic variation during the collapse (i.e. qv = qT = 0). As noted
above equation (84), it follows that q� = 5/12, so that equation (B17)
gives

I5/12(1, ξ ) � 2.43
(
1 − 1.05ξ−1/12

) (
ξ 1/3 � 1

)
, (93)

where we have evaluated I5/12(1, ∞) numerically. For vt,5 ∼ 2, nH,0

∼ 1 cm−3, and T3 ∼ 1, we then find

Akin � exp

[
8.6φff

h
1/2
f m

′1/6
sph

(
1 − 1.05ξ−1/12

)] (
ξ 1/3 � 1

)
. (94)

The quantity B/n
2/3
H , which is just B0Akin in the kinematic stage,

is plotted in Fig. 4(a) for three values of φff, providing a graphic
demonstration of the exponential sensitivity of the simulated dynamo
to the input parameters. Note that for a kinematic dynamo, an increase
in resolution at a fixed value of ξ (which is numerically the same as
nH in Fig. 4 since nH,0 = 1 cm−3 there) is equivalent to an increase
in φff; for example, increasing the linear resolution by a factor of 2
corresponds to reducing msph by a factor of 8 and increasing φff by√

2.
First, consider the case in which φff = 1, so that the collapse

occurs at the free-fall rate. This is sufficiently rapid that the dynamo
cannot reach the non-linear stage before dynamo action is terminated
because the density reaches nH,max and Rm drops below the critical
value. In this example, and for hfm

′1/3
s � 1, equation (94) gives

an amplification factor for the kinematic dynamo of Akin(ξmax) ∼
102.6, where ξmax = nH,max/nH,0 � 3 × 106. The growth of the field
by compression (ξ 2/3

max � 104.3) is much greater than the growth due
to the dynamo (∼102.6). The slope of B(ρ) is driven to 2/3 when
the kinematic stage terminates. For nH > nH,max, the field grows
by compression until it reaches equipartition. As shown in Fig. 4(a),
which is based on the assumption that the initial field is B0 = 10−11 G,
this occurs at a density of ∼1015 cm−3, corresponding to M/M0 ∼
4 × 10−6 for a power-law density profile with kρ = 2.2 (equation 72).
For a minihalo with a gas mass of 4 × 104 M�, the mass that reaches
equipartition is very small, ∼0.2 M�. Thus, in this case, the magnetic
field has a negligible effect throughout most of the core, at least up
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5542 C. F. McKee, A. Stacy and P. S. Li

Figure 4. The expected value of B/n
2/3
H for SPH (a) and grid-based (b) simulations of the gravitational collapse of a turbulent gas in a dark matter minihalo.

Illustrated are cases in which the collapse occurs at the free-fall rate (φff = 1), half that rate (φff = 2), and a quarter of that rate (φff = 4). The equipartition field,
Beq = (4πρv2

t )1/2, and the field at which non-linear effects become important at the viscous scale, Bν = (4πρv2
ν )1/2, both normalized by n

2/3
H , are also plotted.

The initial field and density are B0 = 10−11 G and nH,0 = 1 cm−3, and we adopt T = 103 K and vt = 2 km s−1. The magnetic Prandtl number for simulations
is taken to be Pm = 1.4 (Appendix C). In reality (Fig. 3), the magnetic field begins at a value well below the minimum in this figure, intersects the non-linear
curve (Bν ) at nH � 1 cm−3, and then bends over to become nearly horizontal before intersecting the equipartition line (Beq). (a) The SPH simulation is assumed

to have hfm
′1/3
s = 1 (see Appendix C2). For φff = 1, the kinematic dynamo amplifies the field until the magnetic Reynolds number drops to the critical value

below which the dynamo ceases, which occurs at a density nH,max. For φff = 2 or 4, the field becomes non-linear on the viscous scale (B = Bν ). In any case, the
non-linear dynamo does not have much time to operate, so the field then grows primarily by compression in the non-linear stage until it reaches equipartition
with the turbulence. Subsequently, the field remains in approximate equipartition. (b) As in the SPH case, the non-linear dynamo does not have much time to
operate, so the growth of the field in this stage is primarily by compression. The maximum density at which the dynamo can operate based on the condition
Rm < Rm,cr is nH,max = 1.2 × 1012 cm−3 for the resolution of the AMR (adaptive mesh refinement) simulation of Stacy et al. (in preparation).

to the time that the protostar begins to form. If the initial field were
less than 10−11 G, the magnetic field would be even less important.

Next consider the case φff = 2, in which the collapse occurs at
half the free-fall rate so that the dynamo has more time to act. In this
case, the field grows to Bν before the density reaches nH,max. At this
point, the Alfvén velocity vA equals the velocity of the viscous scale
eddies, vν = (εν)1/4 (equation 3), so that

Bν = (4πρ)1/2vν = 1.00 × 10−7
(
hfm

′1/3
s

)1/4
v

3/4
t,5 n

13/24
H G, (95)

which is plotted in Fig. 4(a). Since vA = vA0Akinξ
1/6 up to the point

that B reaches Bν (equation 48), the compression required for the
field to reach Bν is

ξν =
(

vν

vA0Akin

)6

=
(

vν0

vA0Akin

)12/[2−3(qε+qν )]

, (96)

where we used vν = vν0ξ
(qε+qν )/4 in the second expression. The

exponential dependence on the uncertain parameters in Akin that
describe the collapse (see equation 94) means that ξν is essentially
unpredictable for simulations with a numerical viscosity several
orders of magnitude larger than the actual one, as is generally the
case. By contrast, ξν is well determined in Nature: the small viscosity
means that the exponent in the expression for Akin (equation 88)
is large enough to make ξν � 1 (Section 3). For the hypothetical
simulation with φff = 2 shown in Fig. 4(a), the field reaches Bν at
ξν � 104 with Akin � 103.7, so that the dynamo amplification is an
order of magnitude greater than that due to compression. On the other
hand, for φff = 4 the field reaches Bν at ξν � 80, and the dynamo

amplification Akin � 104 is almost three orders of magnitude greater
than the factor �20 due to compression.

After reaching Bν , the dynamo enters the non-linear stage. The
non-linear amplification factor is given by (equations 51 and B17)

A2
nl = 1 + 2χφff�ν0tff,0ξ

(1/3)−(1/2)(qε+qν )
ν Iqε−(1/3)(ξν, ξ ), (97)

A2
nl � 1 + 0.088

(5/6) − qε

(
φffv

3/2
t,5

h
1/2
f m

′1/6
sph T

1/2
3 n

1/12
0

)
ξq�−(1/2)
ν

×
[

1 −
(

ξν

ξ

)(5/6)−qε

] (
ξ 1/3
ν � 1

)
, (98)

where we used equation (84) for q� and equation (96) for ξν . This
equation applies only for ξ < ξmax since the dynamo cannot operate
at higher densities. In the absence of systematic variations in T or
vt, we have qε = 1/2 and q� = 5/12, so Anl is typically ∼1. For
example, the case portrayed in Fig. 4 has A2

nl � 1 + 0.75φffξ
−1/12
ν

for (ξν /ξ )1/3 	 1. As a result, the non-linear amplification of the
field is primarily due to compression of the field. The fact that Anl is
smaller for simulations than for the physical case is expected since
Anl ∝ Re1/4 (see below equation 52) and Re is much smaller for
simulations.

The dynamo reaches equipartition at ξ eq. However, just as in the
case of ξν , the uncertainty in Akin means that we cannot predict the
equipartition density or field in a simulation with any certainty. In
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equipartition, we have vA = vt, so that

ξeq =
(

vt

vA0Aeq

)6

, (99)

where Aeq = AkinAnl(teq) is the amplification factor at the time
that the field reaches equipartition. In Fig. 4(a), we know all the
parameters. For φff = 2, for example, the field reaches equipartition
at nH � 1.2 × 107 cm−3, when B � 4 × 10−3 G. Keep in mind
that these values are based on the assumption that B0 = 10−11 G; if
the initial field were weaker, it would reach equipartition at a higher
density with a correspondingly higher value of the field strength. The
field then remains in equipartition and grows as n

1/2
H . As discussed in

Section 3.5, equipartition fields with φt ∼ 1/2 result in mass-to-flux
ratios μ� ∼ 2–3, which are small enough that magnetic fields can
significantly affect star formation. Note that the full effect of this low
mass-to-flux ratio is felt only in the central 3 × 10−3 of the core for
ξ eq ∼ 107 (equation 72), or about 100 M� for a minihalo with a gas
mass of 4 × 104 M�. If the field saturates at a value φsat less than the
equipartition value (equation 70), then it would saturate at a density
φ6

sat less than that in equation (99), corresponding to a mass φ−2.16
sat

times greater; for φsat = 0.7 (Federrath et al. 2011a), this is about a
factor of 2.

We conclude that SPH simulations can follow a significant growth
of the field in a gravitational collapse due to the action of a small-
scale dynamo, but the mass in which the field reaches equipartition
is small compared to the correct value and it is difficult to predict the
final field in advance. The results presented here will be compared
with SPH simulations in Paper II.

4.2 Grid-based simulations of minihalo dynamos

Grid-based simulations of minihalo dynamos are quite similar to
SPH simulations, except that the numerical viscosity is somewhat
different (Appendix C). Since the kinematic stage extends well into
the gravitational collapse due to the large value of the viscosity, the
outer scale of the turbulence is the Jeans length, as for the SPH
case. The Reynolds number is then given by Re = 512/(64Jmax )4/3

(equation C13), where Jmax is the maximum value of the ratio of the
grid size to the Jeans length allowed in the adaptive mesh simulation.
The ratio of the magnetic Reynolds number to the critical value,
Rm,cr = 220/P 1/2

m (see the comment above equation 81), is then

Rm

Rm,cr
= 2.33P 3/2

m

(
1/64

Jmax

)4/3

(100)

with the aid of equation (C13). As discussed in Appendix C, this
implies that that the dynamo can operate (Rm > Rm,cr) for λJ/�x >

16–32, as found by Federrath et al. (2011b), provided Pm is in the
range 1–2. More precisely, the dynamo can operate provided

Jmax < 0.03P 9/8
m , (101)

which is 1/23 for our adopted value Pm = 1.4. For a given grid
size, �x, the maximum density is the Truelove–Jeans density,
ρTJ = πJ 2

maxc
2
s /(G�x2) (equation C10). Equation (101) then sets

the maximum density for a dynamo to operate in a grid-based
simulation,

nH,max = 1.23 × 1011

(
P 9/4

m T3

�x2
14

)
cm−3, (102)

where �x14 = �x/(1014 cm). The highest resolution in the grid-based
simulation of Stacy et al. (in preparation) is �x = 0.47 × 1014 cm.
This gives nH,max = 1.2 × 1012 cm−3, slightly less than the maxi-
mum density in their simulation. The fact that nH,max is much larger

in the grid-based simulation than in the SPH simulation of Stacy et
al. (in preparation) was by design: the grid-based simulation was a
zoom-in on the cosmological SPH simulation.

The dynamo amplification factor in the kinematic stage is given by
equation (83). Using the grid-based viscosity from equation (C14),
which has νg ∝ vt(T/nH)1/2, we have �ν ∝ Mn

1/2
H so that

�νtff,0 = 6.93

(
1/64

Jmax

)2/3

Mξ 1/2, (103)

where M = vt/cs is the turbulent Mach number. In terms of 〈M〉,
the weighted average value of the Mach number over the range of
compression ratios from 1 to ξ , equations (83) and (47) then imply

Akin = exp

[
2.60φff

(
1/64

Jmax

)2/3

〈M〉I1/2(1, ξ )

]
, (104)

where I1/2 � (2/3π )ln ξ (equation B19). As in the case of SPH, the
value ofAkin is very sensitive to the input parameters: Fig. 4(b) shows
the significant differences resulting from a factor of 2 difference in
φff. Just as in the case with SPH simulations, grid-based simulations
of gravitational collapse can follow large amplifications of the field
provided the resolution is high (Jmax � 1/64), but the amplification
cannot be predicted in advance with any accuracy. For the kinematic
stage of the dynamo, an increase in resolution at a fixed value of ξ

is equivalent to an increase in φff in determining the magnitude of
the kinematic amplification: doubling the linear resolution (reducing
Jmax by a factor of 2) is equivalent to increasing φff by a factor of
22/3. The effects of an increase in resolution on a kinematic dynamo
can thus be inferred from Fig. 4.

The logarithmic slope of B(ρ) is given by equation (91). For grid-
based simulations, we have q� = (1/2) + qM from equation (103),
so that

d ln B

d ln ρ
= 2

3
+ 0.55φffM0

(
1/64

Jmax

)2/3

ξqM . (105)

Note that the slope grows without bound as the resolution increases –
i.e. as Jmax and νg ∝ J 4/3

max decrease. Indeed, as discussed in Section 3,
a viscosity as small as the actual viscosity allows the kinematic
dynamo to amplify the field by many orders of magnitude before the
density changes significantly.

The dynamo leaves the kinematic stage of evolution when the field
reaches the value

Bν = (4πρ)1/2vν = 1.11 × 10−7

(
Jmax

1/64

)1/3

vt,5n
1/2
H G, (106)

which is plotted in Fig. 4(b). The discussion of the values of ξν

and ξ eq, which mark the onset of the non-linear stage and reaching
equipartition, respectively, is similar to that in the previous section
for the φff = 2 and 4 cases in SPH (for which nH,max plays no role):
The exponential uncertainty in Akin implies that these quantities
are essentially indeterminate in advance. Of course, if one specifies
the uncertain parameters, one can describe the kinematic dynamo
accurately. For 〈M〉 = 1 and vt,5 = 2, one can show with the aid of
equation (104) that Akin(ξν) ranges from 103.3 for φff = 1 to 104 for
φff = 4. The values of ξν are 2.4 × 106 and 100, respectively,
so compression dominates dynamo amplification by an order of
magnitude in the first case, but is relatively minor in the second.

We now consider the non-linear evolution of the dynamo in a grid-
based simulation. From the discussion above equation (103), we have
q� = qM + (1/2); simulations (e.g. Greif et al. 2012; Stacy et al., in
preparation) show that the Mach number is approximately constant
over a large range of densities in the collapse so that qM ∼ 0. The
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non-linear amplification factor (equation 97) then becomes

A2
nl � 1 + 0.18φffM0

(5/6) − qε

(
1/64

Jmax

)2/3

ξqM
ν

×
[

1 −
(

ξν

ξ

)(5/6)−qε

] (
ξ 1/3
ν � 1

)
. (107)

The exponent qε � 1/2 if there is no systematic variation of velocity
or temperature in the collapse (qv � qT � 0; see equation 84). For
grid-based codes, non-linear dynamo amplification is small (as it is
for SPH codes) provided the Mach number does not increase with
compression (qM � 0). For the case shown in Fig. 4(b) (M0 = 1,
qε = 1/2, qM = 0, and Jmax = 1/64), the amplification factor for
the energy is A2

nl = 1 + 0.55φff . Equation (99) then implies that the
field reaches equipartition at ξeq � (8 × 109, 7 × 106, 5 × 104) for
φff = (1, 2, 4), respectively. If the field saturates at a value φsat =
0.7 times smaller than the equipartition field (Federrath et al. 2011a),
then these values are reduced by a factor of 8.5. For a density power
law kρ = 2.2, the field is saturated in the central (11, 140, 800) M�,
respectively.

4.2.1 Comparison with Federrath et al. (2011b)

As noted earlier, uncertainties in the parameters prevent an accurate
prediction of the amplification of the field in the kinematic stage
of the dynamo. However, once the simulation has been done, it is
possible to compare our theoretical estimates with the results of the
simulation. Here, we compare with the simulation of a kinematic
dynamo in a gravitationally collapsing cloud by Federrath et al.
(2011b). Their simulations covered the range Jmax = 1/8 to 1/128,
and they found dynamo action for Jmax = 1/32 but not for 1/16. They
presented their results in terms of the time normalized by the free-fall
time, dτ F = dt/tff, so that (equation B13)

τF = 1

tff,0

∫ t

t0

ξ 1/2 dt = φffI1/2(1, ξ ). (108)

(Note that their simulations did not include dark matter, so I1/2 �
(2/3π )ln(64ξ ) for ξ 1/3 � 1.) Federrath et al. (2011b) show that their
results at late times imply B/ρ2/3 ∝ Akin varies as exp(�τ F). We
find

� = 2.60

(
1/64

Jmax

)2/3

〈M〉 (109)

from equation (104). Over the normalized time interval from τ F =
8 to τ F = 12, the Mach number in the inner part of their simulation
increases by a factor of 2 and has a typical value M � 0.5. We
therefore predict � � 1.3[(1/64)/Jmax ]2/3.

How does this compare with their results? First of all, they find that
Akin ∝ exp(�τF) at late times, with � = const in a given simulation;
we predict that � ∝ 〈M〉, which is nearly constant (their numerical
results imply 〈M〉 � (M0M)0.5 ∝ ξ 0.05 approximately). The values
they found, � = 0.4 at Jmax = 1/64 and 0.5 at Jmax = 1/128, are
somewhat less than the values we predict. In agreement with their
theoretical analysis, we predict that � ∝ Re1/2 (equations 109 and
C13), but as they point out, this does not agree with their numerical
results, which are close to � ∝ Re0.3 for constant Pm. We note that our
result follows from having the growth rate vary as ν−1/2 (Section 2)
and having the numerical viscosity for grid-based codes vary as �x4/3

(Appendix C), both of which appear reasonable. It is possible that
the actual scaling of � with Jmax (or, equivalently, Re) appears only
at higher resolution.

5 C O N C L U S I O N S

Magnetic fields affect the fragmentation of gravitationally collapsing
gas, and that in turn affects the IMF. This is particularly important
for the first stars since it determines the nucleosynthesis that results
when the stars explode as SNe and whether Pop III stars can form
with low enough masses that they survive today. As discussed in
the Introduction, a great deal of work has been done on the origin
of primordial magnetic fields. In the absence of any observational
data, their role in the formation of the first stars must come through
theory and simulation. The aim of this paper has been to make a
theoretical estimate of the magnitude of the field in regions where
the first stars formed and then compare that with the results that are
expected from simulations, given that the numerical viscosity and
resistivity are orders of magnitude larger than the actual values. In
a companion paper (Stacy et al., in preparation), we describe the
results of a simulation of the formation of the first stars that includes
magnetic fields.

As discussed in the Introduction, it has been realized for some time
that small-scale dynamos can produce dynamically important mag-
netic fields in regions of Pop III star formation. Dynamos require seed
fields, and a great deal of effort has gone into determining possible
mechanisms for generating such fields. Mechanisms that might have
occurred in the early Universe, such as those due to inflation or phase
transitions, are very uncertain. The one mechanism that depends
only on known physics is the Biermann battery (Biermann 1950;
Biermann & Schlüter 1951), which can produce fields of ∼10−24.5 G
throughout the IGM after recombination (Naoz & Narayan 2013)
and ∼10−19 G in newly formed galaxies (Biermann & Schlüter
1951). Such fields must be amplified by small-scale dynamos in
a turbulent medium to become dynamically or observationally
significant. Observations of gamma-rays from blazars set a lower
limit of 10−17 G on intergalactic magnetic fields with a correlation
length exceeding 1 Mpc, with larger values for smaller correlation
lengths (Neronov & Vovk 2010; Taylor et al. 2011), although this
result has recently been called into question (Broderick et al. 2018;
Alves Batista et al. 2019).

The overall conclusion of our analysis is that a small-scale dynamo
can amplify primordial fields created by the Biermann battery
mechanism to the point that the dynamo enters the non-linear stage
and that subsequent compression brings the field into approximate
equipartition with the turbulent motions in the collapsing gas cloud.
However, because the numerical viscosity is typically orders of
magnitude greater that the actual value, the field in a simulation
becomes dynamically significant in a much smaller mass than in
reality. We now separately summarize our results for the fields
expected theoretically and those expected in numerical simulations.

(1) The Biermann battery generates weak magnetic fields
(∼10−4ω, where ω = ∇×v is the vorticity) due to forces that produce
unequal accelerations of the electrons and ions and have a curl, such
as non-parallel pressure and density gradients. We confirmed the
statement by Kulsrud et al. (1997) that dissipative processes in shocks
do not significantly affect the operation of the Biermann battery.
Standard estimates for the Biermann field are based on the vorticity
produced by curved shocks on galactic scales and give values of
∼10−19 G (Biermann & Schlüter 1951; Pudritz & Silk 1989), and
we find a similar value for cosmic minihaloes. We show that the
subsequent turbulent cascade gives fields on the viscous scale in
cosmic minihaloes (∼0.01 pc) of the order of 10−16 G.

(2) The small-scale dynamo. We summarized some of the key
results on small-scale dynamos, which begin by amplifying fields
on the viscous scale (or resistive scale, if that is larger). Extensive
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theoretical work and simulations have shown that turbulence can
amplify weak magnetic fields until they reach approximate equipar-
tition (provided the magnetic Reynolds number, Rm = LvL/η, is
large enough – see equation 25). For magnetic Prandtl numbers
exceeding unity (Pm = ν/η > 1, where ν is the viscosity and η

is the resistivity), the largest fields are on subviscous scales until
equipartition is reached on the viscous scale; we label that field Bν .
Subsequently, both the magnitude and the scale of the field grow as
it reaches equipartition with larger and larger eddies. In the post-
recombination Universe, ambipolar diffusion provides the dominant
resistivity for fields B � 10−13nH G (Appendix A). We followed the
treatment of Xu & Lazarian (2016) in treating non-ideal effects on
the dynamo, summarizing their results on the complex behaviour
of the dynamo in two figures, one for the case of Ohmic resistivity
(Fig. 1) and one for resistivity due to ambipolar diffusion (Fig. 2).
The field grows exponentially in the kinematic phase of the dynamo
(B < Bν) and as t1/2 in the non-linear phase (B > Bν) provided Pm(Bν)
is not too small. The values of the parameters describing dynamos in
minihaloes are summarized in Table 1.

(3) Dynamos in a time-dependent medium. The magnetic
Reynolds number in a typical cosmic minihalo is large (see Table 1),
so flux freezing is a good approximation for the effects of com-
pression. We determine the growth of the field in a time-dependent
medium due to both compression, B ∝ ρ2/3, and the dynamo. Because
the growth rate of the field in the non-linear stage of the dynamo is
much less than that of the kinematic dynamo, compression generally
dominates dynamo amplification of the field in the non-linear stage.
On the other hand, dynamo amplification is relatively more important
for the specific magnetic energy, EB = B2/8πρ, and as a result, the
non-linear dynamo generally amplifies the magnetic field energy to
the point that it is within an order of magnitude of equipartition in a
gravitational collapse, even in the absence of compression.

(4) Gravitational collapse. In a cold dark matter universe, the
first stars form via the gravitational collapse of gas in a cosmic
minihalo. In Appendix B, we first develop an approximation for
the free-fall collapse of a constant-density sphere; our analytical
expression for r(t) is complementary to the approximation for t(r)
obtained by Girichidis et al. (2014). We then idealize the contraction
of the baryons in the minihalo as a free-fall collapse of uniform
density sphere of gas in a static dark matter halo of constant density
and show that the dark matter accelerates the collapse by slightly
more than a factor of 2.

(5) Theoretically predicted magnetic field in the formation of the
first stars. The evolution of a dynamo in a collapsing minihalo
depends on a large number of parameters: the initial density, nH,0,
the turbulent velocity, vt (which we parametrize in terms of the virial
velocity, vt = φtvvir), the temperature, T, the mass of the collapsing
cloud, M0, the rate of collapse (parametrized by φff), and the rate at
which these quantities vary with density (denoted by qx for quantity
x). (The initial value of the field, B0, enters only logarithmically, and is
important only if it is many orders of magnitude less than our estimate
of ∼10−16 G.) Choosing values of these parameters that are consistent
with simulations (e.g. those of Greif et al. 2012), we find that the
time for the field to grow from its initial amplitude of ∼10−16 G
to equipartition at the viscous scale, Bν ∼ 10−8 G, is less than the
virial time in the minihalo; hence, the exponential growth of the field
occurs at approximately constant gas density. This rapid growth of the
field is consistent with that found in previous work (e.g. Schleicher
et al. 2010; Schober et al. 2012b). The subsequent non-linear dynamo
amplification is sufficient to bring the field energy to within about
an order of magnitude of equipartition; none the less, the overall
amplification of the field is generally dominated by compression.

We estimate that the field first reaches equipartition with turbulent
velocities of the order of 2 km s−1 (taken from simulations) at a
value of ∼10−4 G; the field subsequently grows as n

1/2
H . The field

reaches equipartition with the central 5 per cent of the mass of the
gas. Our conclusion that the field reaches equipartition in a minihalo
at z ∼ 25 differs from that of Xu & Lazarian (2016), who found that
equipartition was not reached until a time of about 6 × 108 yr (the
age of the Universe at z � 8) since they did not consider the increase
in density that occurs in star formation.

(6) Magnetic effects on the first stars. The ratio of the mass-to-flux
ratio to the critical value, μ�, is predicted to be about 2–3. Magnetic
fields in contemporary star formation regions are also in approximate
equipartition and have similar values of μ� (Crutcher 2012), so
magnetic fields could play an important role in the formation of the
first stars. The fields in regions of first-star formation were produced
in a turbulent small-scale dynamo and lack large-scale order, in
contrast to those in regions of contemporary star formation, and
as a result, protostellar outflows are unlikely from the first stars.

We then discussed the possible outcome of simulations of the
growth of magnetic fields in the formation of a primordial star in a
minihalo, using either an SPH or a grid-based ideal MHD code. The
viscosity and resistivity in the simulations are assumed to be purely
numerical.

(1) Numerical viscosity and resistivity. We developed a method of
estimating the numerical viscosity, ν, that is in agreement with the
estimate of Benzi et al. (2008) for grid-based codes and of Bauer &
Springel (2012) for SPH codes. The value of the numerical viscosity
in current simulations is typically more than 1000 times greater than
the actual viscosity in weakly ionized primordial gas. We estimate
that the magnetic Prandtl number is Pm = ν/η ∼ 1.4 for grid-based
codes based on the results of Federrath et al. (2011b); we adopt the
same value for SPH codes.

(2) Suppression of the dynamo by numerical resistivity. Dynamos
cannot operate if the magnetic Reynolds number, Rm, is too small.
We determined the maximum density, nH, max, at which dynamos
can operate for both SPH and grid-based AMR codes under the
assumption that the length scale in the Reynolds number is set by the
Jeans length (equations 82 and 102). Low values of nH, max lead to
high values of the density at which the field reaches equipartition and
therefore small fractions of the collapsing mass in which the field is
dynamically significant.

(3) Predicted magnetic fields in simulations of gravitational
collapsing gas. The large value of the numerical viscosity for a
resolution of 64 cells per Jeans length (J = 1/64), a typical value in
current simulations, implies that the growth rate of the kinematic
dynamo is � 1/30 of the physically correct value. As a result,
the growth of the field by compression is predicted to exceed
that due to the dynamo if the collapse occurs at the free-fall rate
(φff � 1). After the dynamo enters the non-linear stage, dynamo
amplification is predicted to be relatively less important compared
to compression in simulations than in reality. As noted earlier, the
evolution of the dynamo depends on a number of parameters; in
simulations, the resolution is an additional important parameter.
The total amplification in the kinematic stage of the dynamo is
exponentially dependent on these parameters, so the growth of the
field in a simulation is difficult to predict in advance. Examples of the
predicted outcomes of simulations of the growth of magnetic fields
in a gravitationally collapsing cloud are given in Fig. 4. Increasing
the resolution of the simulation increases the mass fraction in which
the field can reach equipartition.
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APPENDIX A : V ISCOSITY AND RESISTIVITY
O F P R I M O R D I A L G A S

A1 Viscosity

For a primordial gas with nHe/nH � 0.1, the viscosity is very close
to that of atomic hydrogen. A fit to the results of Vranjes & Krstic
(2013) for the dynamic viscosity of atomic hydrogen based on the
measured cross-section for H–H scattering gives

ηvisc,HH = 1.14 × 10−5T 0.84
3 kg s−1 m−1. (A1)

They quote (3.95, 5.5, 8.6) × 10−5 kg s−1 m−1 at T =
(4400, 6560, 11150) K, whereas the fit gives (3.96, 5.53, 8.64),
for excellent agreement. There are no data for T = 1000 K, but
the cross-section for H–H scattering, σ HH, continues to rise and
ηvisc, HH ∝ 1/σHH continues to fall as the energy decreases, consistent
with the behaviour of equation (A1). In cgs units, the viscosity is
10 times larger. We adopt a helium abundance nHe/nH = 1/12, a
good approximation to the most recent value (1/12.20) from big
bang nucleosynthesis combined with observations of the cosmic
microwave background (Fields et al. 2020). The mass per H nucleus
is then μH = 2.23 × 10−24 g, and the kinematic viscosity is

ν � ηvisc,HH

ρ
= ηvisc,HH

nHμH
= 5.11 × 1019 T 0.84

3

nH
cm2 s−1. (A2)

A2 Ambipolar resistivity

The ambipolar resistivity (in the terminology of Pinto et al. 2008) is

ηAD = B2

4πρiνin
= B2

4πρiρnγAD
, (A3)

where ρ i is the mass density of ions, ν in is the ion–neutral collision
frequency, and the collisional drag coefficient, γ AD, is defined
through

ρiνin = ρiρnγAD. (A4)

The expression for ηAD follows from balancing the drag force,
ρ iν invd, where vd is the relative ion–neutral velocity, with the Lorentz
force, B2/4π�B, where �B is the length scale over which the field
varies, and then setting ηAD ∼ �Bvd (for an actual derivation, see
Brandenburg & Zweibel 1994 or Pinto et al. 2008). In our case,
there is one dominant ion, H+, and (prior to molecule formation) two
dominant neutrals, H and He. For low ionization, H and He will have
the same velocity, so that

ρiνin = �jninjμij 〈σv〉ij (A5)

(Glassgold, Krstić & Schultz 2005), where the sum is over the
neutrals and μij is the reduced mass. Because the H+–He collision
rate is only about 1/6 of the H+–H collision rate Pinto & Galli
2008) and the He abundance is low (xHe ≡ nHe/nH = 1/12), H+–He
collisions make a negligible contribution to the ion–neutral collision
rate. Under the assumption that the ionization is very small, we then
have

νin = 1

2
nH〈σv〉H H+ . (A6)

The neutral density is ρn = (1 + 4xHe)nHmH, so that

γAD = νin

ρn
= 〈σv〉H H+

2(1 + 4xHe)mH
. (A7)

In the text, we also need the neutral–ion collision frequency, νni,
which satisfies ρnνni = ρ iν in, so that νni = ρ iγ AD. Glassgold et al.
(2005) modified Draine’s (1980) determination of the rate coefficient
for H–H+ collisions, obtaining 〈σv〉H H+ = 2.13 × 10−9v0.75

rms,5 cm3

s−1 for vrms > 1 km s−1, which leads to

γAD = 6.36 × 1014

(
v0.75

rms,5

1 + 4xHe

)
cm3 s−1 g−1. (A8)

For xHe = 0.1, this agrees with the result of Glassgold et al. (2005);
for xHe = 1/12, this gives γAD = 4.77 × 1014v0.75

rms,5 cm3 s−1 g−1.
To express γ AD in terms of the temperature, we note that for two

species, s and s
′
, with Maxwellian velocity distributions moving at a

relative velocity vd, we have

vrms =
(

v2
d + 8kTss′

πμss′

)1/2

, (A9)

where

Tss′ = ms′Ts + msTs′

ms + ms′
→ T , (A10)

μss′ = msms′

ms + ms′
→ 1

2
mH (A11)

(e.g. Pinto & Galli 2008) and where the simplified results apply to
an H–H+ plasma.3 Expressing vrms as

vrms =
(

8kTss′

πμss′

)1/2

φ
4/3
d , (A12)

we have for H–H+ collisions

vrms = 6.48 × 105 φ
4/3
d T

1/2
3 cm s−1, (A13)

φd =
[

1 +
( vd,5

6.48

)2 1

T3

]0.375

, (A14)

〈σv〉HH+ = 8.65 × 10−9φdT
0.375

3 cm3 s−1, (A15)

3Note that for vd = 0, vrms is actually the mean particle velocity, not the rms
velocity, but we follow the notation of Pinto & Galli (2008) here.
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γAD = 1.94 × 1015 φdT
0.375

3 cm3 s−1 g−1, (A16)

νni = ρiγAD, (A17)

νni = 3.24 × 10−13 φdxi,−4nHT 0.375
3 s−1, (A18)

where φd is determined from equation (A9), the final two expressions
are for xHe = 1/12, and xi,−4 = (ni/nH)/10−4 is the normalized
ionization fraction. Our result for γ AD is larger than that of Xu &
Lazarian (2016) since we used the value of 〈σv〉 given by Glassgold
et al. (2005) instead of that by Draine, Roberge & Dalgarno (1983);
in addition, the value adopted by Xu & Lazarian (2016) appears to
be for the case of molecular clouds, for which the dominant ions are
heavy molecules such as HCO+.

Since the magnetic field and therefore the ambipolar resistivity,
ηAD ∝ B2, vary by orders of magnitude, it is convenient to express ηAD

in normalized form. Normalizing the Alfvén velocity with respect to
the turbulent velocity on large scales, vt, and the field relative to the
equipartition value at the viscous scale, Bν (equation 12), we have

ηAD = 3.08 × 1022

(
v2

t,5

φdxi,−4nHT 0.375
3

)
v2

A

v2
t

cm2 s−1, (A19)

ηAD = 3.96 × 1020

(
T 0.04

3 v
3/2
t,5

φdxi,−4n
3/2
H r

1/2
pc

)
B2

B2
ν

cm2 s−1. (A20)

Alternatively, in terms of β = 8πρc2
s /B

2 = 2c2
s /v

2
A, we have

ηAD = 2c2
s

βρiγAD
= 4.13 × 1023

(
T 0.62

3

φdxi,−4nHβ

)
cm2 s−1. (A21)

A3 Ohmic resistivity

As noted by previous authors (e.g. Kulsrud & Anderson 1992),
the Ohmic resistivity is generally negligible compared to the AD
resistivity unless the field is very weak: Since the drag due to ion–
neutral collisions is much greater than that due to electron–neutral
collisions, the Ohmic resistivity is determined by electron–ion and
electron–neutral interactions

Pinto et al. 2008),

ηO = c2

4π

(
me

e2ne

)
(νei + νen) , (A22)

where

νss′ =
(

ms′

ms + ms′

)
ns′ 〈σv〉ss′ (A23)

is the collision rate for momentum transfer between particles of type
s and those of type s

′
. (We follow Pinto et al. 2008 in writing ηO =

c2/(4πσ cond) for the Ohmic resistivity, where σ cond is the electrical
conductivity.) Pinto & Galli (2008) give

〈σv〉eH+ = 2.30 × 10−3

T
3/2

3

(
ln �

20

)
cm3 s−1, (A24)

〈σv〉eH = 1.41 × 10−7T 0.6
3 exp

(
−0.43T

1/2
3

)
cm3 s−1, (A25)

where ln � is the Coulomb logarithm and where we have assumed
that the drift velocity of the electrons relative to the neutrals is much

less than 100 km s−1 in the second expression. As a result, we have

ηO =
[

6.5 × 108

T
3/2

3

(
ln �

20

)

+ 4.0 × 108T 0.6
3

xi,−4
exp

(
−0.43T

1/2
3

)]
cm2 s−1, (A26)

which is negligible compared to ηAD for nHβ 	 1015 cm−3. More
specifically, ambipolar diffusion dominates electron–ion Ohmic
resistivity and electron–neutral Ohmic resistivity for

B > 8.9 × 10−14

[
xi,−4φd

T 1.12
3

(
ln �

20

)]1/2

nH G, (A27)

B > 7.0 × 10−14φ
1/2
d T 0.49

3 exp
(
−0.22T

1/2
3

)
nH G, (A28)

respectively. Hence, ambipolar diffusion is typically dominant for
B � 10−13nH G.

APPENDIX B: FREE-FA LL COLLAPSE

Gravitational collapse is often described approximately by the
collapse of a uniform, pressureless sphere of gas, which has the
parametric solution (Spitzer 1968)

r = r0 cos2 ψ, (B1)

ψ + 1

2
sin 2ψ = π

2

(
t

tff,0

)
, (B2)

where tff,0 = (3π/32Gρ0)1/2 = 1.41 × 1015n
−1/2
H,0 s is the initial free-

fall time of the gas – i.e. the time at which a cloud beginning at rest
with a radius r0 collapses to a singularity. In cosmology, this is the
tophat solution. Girichidis et al. (2014) have shown that it is possible
to obtain an accurate approximation for the time as a function of the
radius for free-fall collapse; unfortunately, solving this relation for
the radius as a function of time does not give an accurate result at
late times. Instead, one can show that in a free-fall collapse, gas that
is initially static at a radius r0 is at a radius

r = φrr0(1 − τ 2)2/3 (B3)

at a time t, where τ ≡ t/tff,0. The factor φr → 1 for τ → 0 and φr →
(3π /8)2/3 = 1.115 for τ → 1. The approximation φr � 1.05 is accurate
to within 6 per cent for all τ between 0 and 1. An approximation that
is accurate to within 0.3 per cent for all τ in this range is

φr �
[
0.234 + 0.766

(
1 − τ 3/2

)2/3
]−0.075

. (B4)

The normalized density is

ξ ≡ ρ

ρ0
=

( r0

r

)3
= 1

φ3
r (1 − τ 2)2

. (B5)

Taking φr = (1, 1.05) gives an accuracy of (40 per cent, 20 per cent)
for the density, respectively; taking 1/φ3

r = (8/3π )2 = 0.72 is accu-
rate to 10 per cent for ρ > 100ρ0. The time is given by

τ =
[

1 −
(

ρ0

φ3
r ρ

)1/2
]1/2

→ 1 − 4

3π

(
ρ0

ρ

)1/2

, (B6)

where the final step gives an accuracy for 1 − τ that is better than
10 per cent for ρ > 100ρ0.

In minihaloes, dark matter is initially dominant, so we generalize
the treatment above to allow for this. In addition, we allow for the
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possibility that the collapse occurs at a rate φff less than free fall due
to the fact that real collapses are not pressureless. The equation of
motion for a shell of gas at radius r inside a collapsing cloud is then

dv

dt
= − 1

φ2
ff

[
GM(r)

r2
+ 4πGρdr

3

]
, (B7)

where M(r) is the mass of gas inside r and the numerical factor φff ≥ 1
in the absence of external compression, since the gas pressure resists
collapse. We assume that the density of dark matter, ρd, is spatially
constant and remains constant in time; that is, we neglect the adiabatic
compression of the dark matter, and we assume that the free-fall time
is much less than the age of the Universe. Note that inside the cloud,
we have M(r) ∝ r3, so that dv/dt ∝ r and the collapse of a constant-
density sphere in a constant-density background is homologous, just
as in the case with no dark matter. The solution of this equation is

v2 = v2
g

[
1

y
− 1 + fdb(1 − y2)

]
, (B8)

where y ≡ r/r0,

vg ≡ 1

φff

[
2GM(r0)

r0

]1/2

, (B9)

and

fdb ≡ �d

2�b
, (B10)

which is fdb = 3.25 for the parameters adopted in the text. At late
times in the collapse, when y 	 1, we have

v2 � 2GM(r)

φ2
ffr

, (B11)

since M(r) = M(r0). This relation can be used to determine the value
of φff in a simulation.

Since the time for the gas to collapse to infinite density in the
absence of dark matter is now φfftff,0, we generalize the definition of
τ to

τ = t

φff tff,0
. (B12)

Note that tff,0 = (3π /32Gρ0)1/2 is the initial free-fall time for the gas
alone.

In the text, we need the integral of ξ q over time,

Iq (ξ1, ξ2) = 1

φff tff,0

∫ t2

t1

ξq dt =
∫ τ2

τ1

ξq dτ, (B13)

Iq (ξ1, ξ2)

= 2

3π

∫ ξ2

ξ1

ξq−(3/2) dξ(
1 − (1/ξ 1/3)

)1/2 [
1 + (fdb/ξ 1/3)

(
1 + (1/ξ 1/3)

)]1/2 ,

(B14)

where we used dt = r0 dy/v, y = ξ−1/3, and r0/vgφfftff,0 = 2/π . This
expression is exact; it is not based on the approximate result for r(t)
given above. For q = 0, this gives

t(ξ ) = φff tff,0I0(1, ξ ) (B15)

and therefore t(r) since r = r0ξ
−1/3. Note that the effect of dark

matter, which is parametrized by the factor fdb, becomes negligible
at small radii (large ξ ). Note also that for large ξ , Iq is proportional
to ξ q − 1/2: the range of time integration scales as the free-fall time,
tff ∝ ξ−1/2.

It is now possible to determine the collapse time of the gas in the
presence of static dark matter, tcoll. For q < 1/2, define Iq,∞ = Iq(1,

∞). For q = 0, numerical evaluation of the integral in equation (B14)
gives the collapse time based on the total amount of matter, tcoll:

I0,∞ =
∫ tcoll

0

dt

φff tff,0
= tcoll

φff tff,0
= 0.46 (B16)

for fdb = 3.25. In the absence of dark matter, one can show that I0,∞ =
1 as it should: for fdb = 0, the collapse time is tcoll = φfftff,0, as noted
earlier.

We now consider the particular case in which the integration
extends from the initial density (ξ 1 = 1) to a large density (ξ 2 � 1)
for fdb = 3.25. For q < 1/2, we have

Iq (1, ξ2) � Iq,∞ − 2

3π ((1/2) − q)
ξ

−((1/2)−q)
2

(
ξ

1/3
2 � 1

)
,

(B17)

where Iq,∞ must be evaluated numerically. For example, for q =
−1/2, Iq,∞ = 0.278; for q = 1/6, Iq,∞ = 0.639; and for q = 5/12,
Iq,∞ = 2.43. The approximation

Iq (1, ∞) = Iq,∞ � 0.47

(1 − 2q)0.87
(B18)

is accurate to within 10 per cent for the range −1/2 < q < 5/12. For
q ≥ 1/2, Iq(1, ξ ) diverges at large ξ .

For q = 1/2, an approximation for I1/2(1, ξ 2) that is accurate to
within about 1 per cent is

2

π
ln

⎧⎪⎨
⎪⎩1 +

2
(
ξ

1/3
2 − 1

)1/2

1 + f ′
db

[(
ξ

1/3
2 + f ′

db

)1/2
+

(
ξ

1/3
2 − 1

)1/2
]⎫⎪⎬
⎪⎭

(B19)

with f ′
db = fdb[2(1 + ξ

−1/3
2 )]1/2. For ξ

1/3
2 � 1, I1/2 → (2/3π )ln ξ 2.

For q > 1/2, we have

Iq (1, ξ2) � 2

3π (q − (1/2))

(
ξ

q−(1/2)
2 − 1

) (
ξ

1/3
2 � 1

)
. (B20)

Finally, in order to treat small-scale dynamos in collapsing gas clouds
with no dark matter, one needs to know the values of Iq in this case
as well. For q = 1/2, the value of Iq is given by equation (B19) with
f ′

db = 0; for q > 1/2, equation (B20) applies as is. For q < 1/2,
equation (B17) applies with

Iq,∞ = 2

3
√

π ((1/2) − q)

� ((5/2) − 3q)

�(2 − 3q)
. (B21)

APPENDI X C : NUMERI CAL VI SCOSI TY AND
RESISTIVITY

Here, we estimate the numerical viscosity in both grid-based and SPH
codes. We begin by presenting a method of determining the numerical
viscosity for subsonic turbulence based on the fact that viscosity
suppresses the k−5/3 energy spectrum of Kolmogorov turbulence by
a factor (Pope 2000)

f (k�ν) � exp
(
−5.2

{[
(k�ν)4 + 0.44

]1/4 − 0.4
})

, (C1)

where k is the wavenumber, �ν = (ν3/ε)1/4 is the viscous scale
(equation 3), and ε = v3

�/� is the constant energy flux in the
turbulence. Pope (2000) showed that this is in good agreement with
experimental data and Bauer & Springel (2012) have shown that it
accurately describes the turbulent energy spectrum calculated with
the AREPO code (with the exception of the bottleneck effect, which
is absent from the result of Pope 2000), in both its fixed grid and
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moving mesh versions. Numerical viscosity is not exactly equivalent
to a physical viscosity. One manifestation of this is that turbulence
simulations without a physical viscosity show a larger bottleneck
effect than those that solve the Navier–Stokes equations and resolve
the dissipation range (Springel, private communication). Another
is that the effective Reynolds number in simulations of turbulent
mixing is problem dependent (Lecoanet et al. 2016). Nonetheless, as
shown by the excellent agreement Bauer & Springel (2012) found
between their turbulence simulations and equation (C1), that equation
provides a reasonable basis for estimating the effective numerical
viscosity.

Equation (C1) predicts that viscosity has a substantial effect on
the turbulence when f = 1/2, which occurs at k1/2�ν = 0.485 � 0.5.
Since the viscosity is ν = �4/3

ν ε1/3, it follows that

ν = 0.40

(
ε

k4
1/2

)1/3

= 0.034

(
εL4

k′
1/2

4

)1/3

, (C2)

where we have also expressed the viscosity in terms of the normalized
wavenumber, k

′ = kL/2π , which ranges from 1 to Ng in grid-based
simulations and which is often used in reporting the results of
simulations. Since Pope’s (2000) expression does not include the
bottleneck effect, that effect must be eliminated in evaluating k1/2.

We validate this approach by comparing with the results of Bauer &
Springel (2012). They carried out a simulation with the AREPO

code with a sound speed cs = 1, Mach number M = 0.3, and a
box size L = 1, so that ε = v3

L/L = 0.33 = 0.027. The simulation
corresponded to Ng = 256 cells in each direction, and the total
(physical plus numerical) viscosity was ν = 1.5 × 10−4. After
removing the bottleneck effect apparent in their results, we estimate
k1/2 � 140 from their plot of the velocity power spectrum – i.e. the
normalized power spectrum at k = 140 is half the value it has at
k = 2π . (In terms of k

′
, their results show that the normalized power

spectrum at k
′ = 22 is half the value it has at k

′ = 1.) According to
equation (C2), this corresponds to a viscosity ν = 1.65 × 10−4, in
excellent agreement with their value in view of the uncertainty in the
estimate of k1/2.

C1 Grid-based codes

First consider grid-based codes, which have cells of size �x =
L/Ng. The numerical viscosity in the grid-based FLASH code has
been evaluated by Benzi et al. (2008) through analysis of the
longitudinal structure function, and was found to correspond to �ν �
0.6�x. It follows that the numerical viscosity for grid-based codes is

νg = �4/3
ν ε1/3 = �4/3

ν vL

L1/3
� 0.5vL�x

(
�x

L

)1/3

, (C3)

νg = 0.5

(
vL�x

N 1/3
g

)
, (C4)

where vL is the velocity on the scale L. More precisely, vL = (εL)1/3,
where ε is the specific energy dissipation rate (equation 2); while it is
comparable to the rms turbulent velocity, vt, in a simulation, there is
no assurance that the two velocities are equal. Nonetheless, since vt

is generally the only global velocity quoted in simulations, we shall
use it in estimating the numerical viscosity.

Although equation (C1) was obtained for incompressible hydro-
dynamic turbulence, it works for supersonic turbulence and MHD
turbulence as well. (However, the results for the viscosity are valid
only for subsonic turbulence since they are based on Kolmogorov

scaling.) Noting that �x = L/Ng, we have

�ν

�x
= k1/2�ν

k1/2�x
� 0.5

2πk′
1/2�x/L

= Ng

4πk′
1/2

(C5)

for k1/2 � 0.5/�ν . We estimate k′
1/2 = 150 for the Mach 5.5 simulation

on a 10243 grid by Federrath et al. (2010), which gives �ν = 0.54�x.
For the MHD simulation with a sonic Mach number of 10 and an
Alfvén Mach number of

√
5 on a 5123 grid by Li et al. (2012), we

estimate k′
1/2 = 62, corresponding to �ν = 0.66�x. In both cases,

these results are quite close to the value found by Benzi et al. (2008).
The corresponding result for AREPO is �ν = 0.9�x, which is larger
than the other values because it included a physical viscosity. For
the value we adopt, �ν = 0.6�x (Benzi et al. 2008), we have k′

1/2 =
Ng/(2.4π ) = Ng/7.5.

The Reynolds number based on equation (C4) is

Re = LvL

νg
= LvL

0.5vL�x/N 1/3
g

= 2N 4/3
g . (C6)

This result can also be derived directly from equation (4):

Re =
(

L

�ν

)4/3

=
( Ng

�ν/�x

)4/3

, (C7)

which is 1.98N 4/3
g for �ν = 0.6�x. By contrast, Federrath et al.

(2011b) suggested �ν = 2�x, which leads to Re = 0.4N 4/3
g . We

note that their value for �ν is much larger than the value we inferred
from Federrath et al. (2010), which is in good agreement with the
value obtained by Benzi et al. (2008).

As a further comparison with results in the literature, we evaluate
the wavenumber at which numerical dissipation begins to affect the
results. To make this quantitative, let k1−δ be the wavenumber at
which f = 1 − δ. Equation (C1) implies that

k1−δ�ν � 0.47δ1/4 (C8)

to within about 3 per cent for δ < 0.1. Noting that k�ν =
(2πk

′
/L)0.6�x, we find k′

1−δ = 0.125δ1/4Ng. Federrath et al. (2010)
concluded that numerical dissipation begins to affect their results
at k

′ � 40 in their 10243 simulations. Inspection of their results
shows that δ is much less than 0.1 at k

′ = 40. Equation (C8) implies
k′

1−δ = 40 for δ = 0.01, with only a weak dependence on the value
of δ, consistent with their result.

Finally, we note that for an AMR code like ORION, the cell size for
problems involving self-gravity is generally set by the requirement
that the Jeans length, λJ = (πc2

s /Gρ)1/2, be well resolved (Truelove
et al. 1997). Cells are refined to higher levels if their density exceeds
the Truelove–Jeans density, ρTJ, which is set by the condition

�x = JmaxλJ(ρTJ), (C9)

where Jmax ≤ 1/4 is provided by the user, so that

ρTJ = πJ 2
maxc

2
s

G�x2
. (C10)

For cases in which the outer scale of the turbulence is set by self-
gravity and the Mach number is of order unity, Federrath et al.
(2011b) found that a resolution of 32 zones per Jeans length, Jmax =
1/32, is sufficient to see amplification by a turbulent dynamo, whereas
a resolution of 16 cells per Jeans length is not. Using a somewhat
more dissipative code, Turk et al. (2012) found that a resolution of 64
cells per Jeans length was required. In order to express �x in terms
of the local density, we have

�x = JmaxλJ(ρ)

(
ρ

ρTJ

)1/2

. (C11)
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At a given level of refinement, the density will range up to ρTJ.
The maximum value of �x(ρ), which corresponds to a conservative
estimate for the viscosity, occurs for ρ = ρTJ. Normalizing Jmax to
1/64 then gives

νg = 1.69 × 1024

(
Jmax

1/64

)4/3
vt,5

L
1/3
pc

(
T3

nH

)2/3

cm2 s−1, (C12)

where vt,5 is the turbulent velocity in km s−1. This is much larger than
the atomic viscosity in equation (A2). For AMR codes, this equation
should be used only if there is at least one level of refinement, so
that equation (C11) with ρ = ρTJ can be used to set �x; otherwise,
equation (C4) should be used.

If the outer scale of the turbulence is set by the Jeans length (L =
λJ), as argued by Federrath et al. (2011b) for the case of gravitational
collapse, the Reynolds number is

Re = 2

(
λJ

�x

)4/3

= 512

(
1/64

Jmax

)4/3

(C13)

from equation (C6), and the viscosity is given by

νg = 2.32 × 1023vt,5

(
Jmax

1/64

)4/3 (
T3

nH

)1/2

cm2 s−1 (C14)

from equation (C12). If the parameters on the right-hand side of this
equation are of order unity, this is more than 1000 times larger than
the atomic viscosity; the discrepancy between simulation and reality
grows as the density increases.

C2 SPH codes

We now turn our attention to SPH codes. In SPH codes, the viscosity
is determined by the artificial viscosity that is added to the code. The
standard SPH artificial viscosity corresponds to a Navier–Stokes
viscosity (Price 2012a, b)

νsph = 0.1 αsph cshsm (C15)

for subsonic flows, where αsph is the SPH artificial viscosity param-
eter and the smoothing length is given in terms of the particle mass,
msph, as

hsm = hf (msph/ρ)1/3. (C16)

Here, hf depends on the number of neighbour particles in a kernel,
Nngb,

hf =
(

3Nngb

4π

)1/3 1

Rkernel
, (C17)

where the kernel truncation radius is Rkernelhsm. Price (2012b) adopted
Rkernel = 2 and Nngb � 58 so that hf = 1.2, whereas Stacy et al. (in
preparation) adopted Rkernel = 1 and Nngb = 200 so that hf = 3.63.
The parameter αsph can be variable and is often set equal to 0.1 far
from shocks, giving νsph = 0.01cshsm. However, Bauer & Springel
(2012) have argued that this value of νsph is too low by a factor of
6. We can resolve this issue by obtaining the value of αsph from
equation (C2),

αsph = 4.0

(
ε1/3

cshsmk
4/3
1/2

)
. (C18)

We estimate k1/2 � 75 for Price’s (2012b) 2563 simulation of M =
0.3 turbulence. He adopted L = cs = 1 so that ε1/3 = M = 0.3,
and the average smoothing length was hsm = 1.2/256. Altogether,
this gives αsph = 0.8, slightly larger than the value 0.6 favoured by

Bauer & Springel (2012), but considerably larger than 0.1. Since
our estimate is approximate, we shall adopt the value of Bauer &
Springel (2012),

νsph = 0.06 cshsm. (C19)

Note that equation (C19) for the SPH viscosity varies linearly with
the smoothing length, whereas equation (C6) shows that the grid
viscosity varies as �x4/3. Equation (C16) then gives

νsph = 1.50 × 1023

(
hfm

′1/3
sph T

1/2
3

n
1/3
H

)
cm2 s−1, (C20)

where m′
sph = msph/(1 M�). Just as in the case of grid-based viscos-

ity, the numerical viscosity for SPH exceeds the atomic viscosity by
more than a factor of 1000 if the parameters on the right-hand side
are of order unity, and the discrepancy grows as the density increases.
The adiabatic index of the gas varies from γ � 5/3 for gas in the
Hubble flow and gas falling into a dark matter potential well to γ

� 1 for gas in the protostellar core; here, we have set γ = 1 in our
estimate of the SPH viscosity.

For constant density, equation (C19) gives the Reynolds number
for SPH,

Re = 17M
(

L

hsm

)
= 17M

(Ng,sph

hf

)
, (C21)

where Ng,sph = (ρL3/msph)1/3 is the SPH equivalent to the number
of grid cells. The scaling of Re with M for SPH codes gives them
an advantage at high Mach numbers (Price 2012b). The fact that
Re scales as N 4/3

g for grid-based codes but only as Ng,sph for SPH
codes means that grid-based codes become superior to SPH codes at
high resolution (Springel 2019, private communication). For the case
in which Ng = Ng,sph, the resolution of the grid code must exceed
600M3 in order for this advantage to kick in, however.

C3 Numerical resistivity

The numerical resistivity can be inferred from the values of the
numerical viscosity above and of the numerical Prandtl number,
Pm = ν/η. Lesaffre & Balbus (2007) found that the numerical
Prandtl number for grid-based codes was between 1 and 2, depending
on wavenumber. In their simulations of turbulent amplification of
magnetic fields, Federrath et al. (2011a) inferred that their results
were consistent with this conclusion. Subsequently, Federrath et al.
(2011b) studied magnetic field amplification in a gravitationally
collapsing cloud. They showed that the Jeans length corresponds
to the effective outer scale of the turbulence in such a cloud and that
the critical magnetic Reynolds number for dynamo action, Rm,cr, oc-
curred between 16 and 32 cells per Jeans length. More generally, Hau-
gen et al. (2004) found Rm,cr = 2π × 35P −1/2

m for 0.1 � Pm � 3.
(They defined the magnetic Reynolds number as Rm,H = v/(kfη) =
vL/(2πη), where kf is the wavenumber at which the turbulence is
forced; this is smaller than the value adopted here by a factor of 2π .)
Since Re = Rm/Pm, we have Recr = 2N 4/3

g,cr = 220/P 3/2
m . For Ng,cr

between 16 and 32, this implies that Pm is between 1 and 2, just as
Lesaffre & Balbus (2007) found. We shall therefore adopt Pm � 1.4
for grid-based codes. Tricco et al. (2016) found the magnetic Prandtl
number in SPH codes is about 1.2 in the dynamo amplification phase
and somewhat less than unity in equipartition; Pm also decreases
somewhat with resolution. For simplicity, in our analysis we shall
adopt Pm = 1.4 for SPH codes as well as for grid-based codes.
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