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ABSTRACT
We present the GEOMAX algorithm and its PYTHON implementation for a two-step compression of bispectrum measurements.
The first step groups bispectra by the geometric properties of their arguments; the second step then maximizes the Fisher
information with respect to a chosen set of model parameters in each group. The algorithm only requires the derivatives of the
data vector with respect to the parameters and a small number of mock data, producing an effective, non-linear compression.
By applying GEOMAX to bispectrum monopole measurements from BOSS DR12 CMASS redshift-space galaxy clustering
data, we reduce the 68 per cent credible intervals for the inferred parameters (b1, b2, f, σ 8) by 50.4, 56.1, 33.2, and 38.3 per cent
with respect to standard MCMC on the full data vector. We run the analysis and comparison between compression methods
over 100 galaxy mocks to test the statistical significance of the improvements. On average, GEOMAX performs ∼15 per cent
better than geometrical or maximal linear compression alone and is consistent with being lossless. Given its flexibility, the
GEOMAX approach has the potential to optimally exploit three-point statistics of various cosmological probes like weak lensing
or line-intensity maps from current and future cosmological data sets such as DESI, Euclid, PFS, and SKA.

Key words: methods: analytical – cosmological parameters – large-scale structure of Universe.

1 IN T RO D U C T I O N

Recent applications of three-point (3pt) statistics to cosmological
data sets, such as the one provided by the Sloan Digital Sky Survey1

(Eisenstein et al. 2011), have shown their potential in improving
the current constraints on cosmological parameters (Gil-Marı́n et al.
2017; Slepian et al. 2017a). For example, the physics of baryonic
acoustic oscillations has been investigated via 3pt statistics (Slepian
et al. 2017b; Pearson & Samushia 2018) and new methods have
been developed to better capture it (Child et al. 2018), improving the
results obtained via standard 2pt methods.

In preparation for future game-changing data sets like DESI2

(Levi et al. 2013), Euclid3 (Laureijs et al. 2011), PFS4 (Ellis et al.
2014), SKA5 (Bacon et al. 2018), and LSST6 (Abell et al. 2009), the
scientific community has been working on improving the modelling
of 3pt statistics and extending their applications.

Bertacca et al. (2018), Clarkson et al. (2019), and Di Dio et al.
(2019) studied the full-sky angular galaxy bispectrum beyond the

� E-mail: dgualdi@icc.ub.edu
1http://www.sdss3.org/surveys/boss.php.
2http://desi.lbl.gov.
3http://sci.esa.int/euclid/.
4http://pfs.ipmu.jp.
5https://www.skatelescope.org.
6https://www.lsst.org/.

flat-sky approximation including relativistic effects and corrections,
Yamamoto, Nan & Hikage (2017), Nan, Yamamoto & Hikage (2018),
and Sugiyama et al. (2019) proposed a complete multipole decom-
position for the galaxy bispectrum. Sabiu et al. (2019) proposed
a technique to speed up the computation of 3pt and higher order
statistics, while D’Amico et al. (2020) applied the effective field
theory formalism for the galaxy bispectrum on data.

In the weak lensing field, progress has been made since the first
seminal works (Takada & Jain 2004; Kilbinger & Schneider 2005),
Rizzato et al. (2019) investigated the information content of the
bispectrum, while Kayo, Takada & Jain (2013) forecasted parameters
constraints using a covariance matrix with terms beyond the Gaussian
approximation. 3pt statistic have also been applied to line intensity
map probes (Beane & Lidz 2018; Hoffmann et al. 2019; Schmit,
Heavens & Pritchard 2019; Watkinson et al. 2019).

Studies on the bispectrum covariance and the bispectrum infor-
mation content have also been realized in the recent past (Barreira
2019; Colavincenzo et al. 2019; Yankelevich & Porciani 2019; Oddo
et al. 2020), while Ruggeri et al. (2018), Hahn et al. (2020), and
Coulton et al. (2019) proved that the bispectrum can also help
with improving the sum of the neutrino masses constraints. The
accuracy of the bispectrum modelling was extended towards non-
linear scales by including loop corrections (Hashimoto, Rasera &
Taruya 2017; Desjacques, Jeong & Schmidt 2018; Castiblanco
et al. 2019; Eggemeier, Scoccimarro & Smith 2019). Loop cor-
rections for the bispectrum (Sefusatti 2009; Sefusatti, Crocce &
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Desjacques 2012) must indeed be included if one wants to study
primordial non-Gaussianity using mildly non-linear scales to lift the
degeneracy with the other cosmological parameters (Scoccimarro,
Sefusatti & Zaldarriaga 2004; Bose & Taruya 2018; Karagiannis
et al. 2018).

Compression plays an essential role in the analysis of 3pt
statistics. Indeed, the difficulties to perform these analyses include
the dimension of the associated data vectors due to the limited
number of simulations available to estimate the covariance matrix
(Hartlap, Simon & Schneider 2007; Taylor & Joachimi 2014) and
the computational challenge linked with the handling of large data
vectors. In particular, when the estimators of these data vectors
are expressed in terms of multipole expansion, even including the
quadrupole term becomes prohibitive. An alternative approach to
compression would be to accurately model the analytic covariance
matrix as done by Sugiyama et al. (2020), which helps with cross-
validating the obtained results.

In a previous paper, we introduced two methods achieving ‘max-
imal’ compression for the redshift space galaxy bispectrum (Gualdi
et al. 2018), and tested them on bispectrum monopole measurements
from Baryon Oscillation Spectroscopic Survey (BOSS) DR12 data
(Gualdi et al. 2019b). These maximal compression methods trans-
form the original data vector into a new one with dimension equal
to the number of parameters considered in the analysis. In order
to work, they require an approximate analytical expression of the
original data vector covariance matrix.

More recently, in a second paper, we presented the geometrical
compression algorithm (Gualdi et al. 2019a), which is based on av-
eraging the bispectra of wavenumber triangle configurations having
similar geometrical properties. Geometrical compression does not
require an analytical expression for the covariance matrix but also
does not take into account correlation between different triangle
configurations.

In this work, we present an algorithm along with its PYTHON

implementation7 that combines maximal and geometrical com-
pression, accounting for the correlation between bispectra without
needing an analytical expression for the covariance matrix. This
is achieved in two steps. First, we define triangle sets using the
geometrical criteria. Secondly, we apply the maximal compression
separately to each of the triangles sets. A limited number of simu-
lations for the maximal compression step is still needed. However,
by maximally compressing each triangle set, the required number is
much lower than what usually required to estimate the covariance
matrix for the full data vector.

We perform our analysis on measurements from both BOSS DR12
CMASS data (Dawson et al. 2013) and on 100 realizations of the
relative set of mock data (Kitaura et al. 2016).

In the main analysis, we sample the joint posterior distribution for
four model parameters: matter-galaxy bias parameters b1 and b2, the
growth rate f , and the amplitude of dark matter oscillations σ 8. The
main result of this work is a further improvement for the 68 per cent
credible intervals of the inferred parameters when using the joint
data vector including power spectrum (monopole and quadrupole)
together with the bispectrum (monopole).

We run a series of tests to verify the added value of GEOMAX with
respect to the previous methods. First, we consider alternative ways to
first regroup triangles before applying the maximal compression step.
Secondly, we run the analysis for alternative parameter sets. In one
case, we only add the local primordial non-Gaussianity parameter

7https://github.com/davidegua/max geo compression.git.

fNL. The bispectrum has indeed, especially for future data set, the
potential to produce constraints on fNL of similar order (Verde et al.
2000; Jeong & Komatsu 2009; Sefusatti 2009) to the ones obtained
by Planck (Akrami et al. 2019).

In the second set, we use As, the amplitude of scalar perturbations,
and the matter density parameter, �m. These are of interest in order
to obtain complementary late-time estimates on quantities very well
constrained by cosmic microwave background (CMB) experiments
(Aghanim et al. 2018).

This paper is organized as follows: In Section 2, we briefly
recap the maximal and geometrical compression methods. Section 3
explains how to optimally combine maximal and geometrical com-
pression methods, together with presenting the code structure. The
analysis results for the main four parameters case are reported
in Section 4 for both galaxy mocks and data. In Section 5, we
consider two alternatives to the geometrical compression step, while
in Section 6, we repeat the analysis for two larger parameter sets. We
conclude in Section 7. In Appendix A, the analytical expression
for the used data vectors are reported, while in Appendix B,
we re-derive the primordial non-Gaussianity leading correction
terms for the power spectrum and bispectrum. Before starting with
the main part of this paper, we summarize below the analysis
setup.

1.1 Analysis setup

For a fair comparison with our previous papers, we once more
apply the compression to the measurements of the galaxy bispectrum
monopole from the DR12 CMASS sample (0.43 ≤ z ≤ 0.70) of the
BOSS (Dawson et al. 2013), which is part of the Sloan Digital Sky
Survey III (Eisenstein et al. 2011).

We use 1400 realizations of the MultiDark Patchy galaxy cata-
logues for the BOSS DR12 data set by Kitaura et al. (2016). These
mocks were realized having a fiducial cosmology with parameters
��(z = 0) = 0.693, �m(z = 0) = 0.307, �b(z = 0) = 0.048, σ 8 =
0.829, ns = 0.96, and h0 = 0.678.

The data vector used for the parameter constraints analysis is
given by joining the galaxy tree-level power spectrum monopole
and quadrupole measurements to the bispectrum monopole ones.
The analytical expressions are given in Appendix A. For the power
spectrum part, we use a bin size of �k = 0.01 h Mpc−1, while for
the bispectrum, we use two different sizes proportional to the fun-
damental frequency kf = (2π)3

Vs
. Vs = (3500 Mpc h−1)3 is the survey

volume for the cubic box used to generate the mock catalogues. For
the bispectrum, we then consider the two cases �k6, 2 = 6, 2 × kf

corresponding to 116 and 2734 triangle configurations, respectively.
As done in the previous works (Gualdi et al. 2019a, b), we use

0.03 ≤ k ≤ 0.09 h Mpc−1 for the power spectrum terms and 0.02 ≤
k ≤ 0.12 h Mpc−1 for the bispectrum monopole. The bispectrum has
a larger k-range because we adopted the effective kernel calibrated on
simulations used also for the BOSS DR11 and DR12 analysis (Gil-
Marı́n et al. 2015, 2017), which allows to safely extend the analysis
to mildly non-linear scales (Gil-Marin et al. 2012).

All the MCMC samplings (both on original and compressed data
vectors) have been run with the same settings as in previous works
(Gualdi et al. 2019a,b).

Finally we use a flat Lambda cold dark matter cosmology to
compute the linear matter power spectrum, with parameters close
to the results from the Planck analysis (Akrami et al. 2019), in
particular �m(z = 0) = 0.31, �b(z = 0) = 0.049, As = 2.21 × 10−9,
ns = 0.9624, h0 = 0.6711, and

∑
mν = 0.06 eV.
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2 PR E V I O U S C O M P R E S S I N G M E T H O D S

2.1 Maximal compression

Maximal linear compression derives from the MOPED method
(Heavens, Jimenez & Lahav 2000), which compresses the original
data vector by extending to the multiple parameters case in the
algorithm introduced by Tegmark, Taylor & Heavens (1997). As a
result, an originally arbitrarily large data vector x can be transformed
into a much shorter one y having a dimension equal to the number
of model parameters considered in the analysis. This is achieved by
taking the scalar product of x with a set of weights bi for each of the
model parameters θ i:

yi = 〈x〉ᵀi · Cov−1
x · x ≡ bᵀ

i · x, (1)

where Cov is the covariance matrix for the original data vector x,
while 〈x〉,i are the derivatives of the mean of the modelled data vector
with respect to the model parameters θ i. The maximal compression
method presented in Gualdi et al. (2018) that we consider in this
paper consists in running an MCMC sampling on the compressed
bispectrum data vector.

2.2 Geometrical compression

The main idea in Gualdi et al. (2019a) is to group together into new
bins the triangles with similar geometrical properties. Each of these
bins will correspond to an element of the compressed data vector.
The value of the data vector’s element is then given by the average
bispectra of the triangle configurations belonging to the same bin.

The standard parametrization of each triangle configuration is
given in terms of the three sides (k1, k2, k3). The new parameters
are chosen using the physical intuition regarding which quantities
most influence the bispectrum value. These are as follows:

(i) the square root of the triangle’s area: ℵ (‘aleph’);
(ii) the cosine of the largest internal angle,�= cos ψmax (‘daleth’);
(iii) the ratio between the cosines of the intermediate and smallest

angles, ג = cos ψ int/cos ψmin (‘gimel’).

We rewrite the galaxy bispectrum monopole data vector as a
function of the three new variables (ℵ, �, :(ג

B(0)
g (k1, k2, k3) =⇒ B(0)

g (ℵ,�, (ג . (2)

By choosing large enough bins for the new variables, triangles with
similar (ℵ, �, (ג coordinates will be grouped together.

The new data vector g is then obtained by averaging over all the
bispectra in the new bins defined by different sets of the coordinates
(ℵ, �, :(ג

gk(ℵ,�, k(ג = 1

N tr.
k

N tr.
k∑

j : (k1,k2,k3)j ∈(ℵ,�,ג)k

B(0)
g (k1, k2, k3)j . (3)

Each new data vector element has been normalized dividing by N tr.
k ,

the number of triangles belonging to the same bin obtained from a
particular choice of (ℵ, �, .k(ג

3 EN H A N C E D G E O M E T R I C A L C O M P R E S S I O N

We combine geometrical and maximal compression, labelling this
new method GEOMAX, in the following way. First, we regroup
triangles as described in Section 2.2. Secondly, instead of averaging
over all the bispectra of the triangle configurations belonging to
each bin, we separately apply the maximal compression to each bin.

Therefore, for every bin defined by a set of new coordinates (ℵ, �,
,k(ג we will obtain, for each of the model parameters θ i, a compressed
data vector element g

opt.
ik defined by

g
opt.
ik (ℵ,�, k(ג = bik · B(0)

g,k . (4)

B(0)
g,k is the reduced data vector formed by the bispectra

B(0)
g (k1, k2, k3)j of the triangles belonging to the bin defined by (ℵ, �,

,k(ג such that j : (k1, k2, k3)j ∈ (ℵ,�, k(ג . The weight vector bik for
the k-bin, according to the definition given in equation (1), is given
by

bik =
(
∂〈B(0)

g,k〉
∂θi

)ᵀ

· Cov−1
B(0)

g,k

, (5)

where Cov−1
B(0)

g,k

is the covariance matrix for the reduced data vector

B(0)
g,k of the bin k computed using the available simulations or galaxy

mock catalogues. In our case, we used 1400 realizations of the
MultiDark Patchy BOSS DR12 mocks. We adopt the conservative
approach of ensuring that the number of triangle configurations
belonging to each new bin is less than half the number of available
mocks. This is to reduce to a reasonable level the bias induced by
estimating the covariance matrix from a limited number of realiza-
tions (Hartlap et al. 2007). In any case, this bias would be a constant
factor and therefore not affecting the compression weights. We can
then assume that Cov−1

B(0)
g,k

is a good approximation of the covariance

matrix of the reduced data vector bin B(0)
g,k . Therefore, in order to

estimate the covariance matrix needed to maximally compress the
largest bin (which includes ∼500 triangle configurations), we need
at least ∼1000 mock catalagoues. This requirement is more than
five times lower than the number of mocks needed when the full
data vector (2734 triangle configurations) is considered (� 5500
simulations).

In the algorithm selecting the best bin number settings, it is
possible to impose a maximum number of triangle configurations per
bin. In this way, one can arbitrarily reduce the number of simulations
required to estimate the covariance matrix for each bin. However,
excessively reducing the number of maximum triangles per bin would
also decrease the performance of the compression. In the same way,
increasing the maximum number of triangle configurations per bin
up to the number of simulations available would decrease the overall
performance. This is because the covariance matrices used for the
maximal compression step would no longer be accurate enough,
hence reducing the efficacy of the compression weights.

3.1 Updated optimal binning choice selection criteria

In order to choose the number of bins for the new data vector, or in
other words, the triplets of (ℵ, �, k(ג defining the elements of the new
data vector, in Gualdi et al. (2019a), we estimated the sensitivity of
the potential compressed data vector with respect to the considered
cosmological parameters. This was done by computing a summary
statistic for each possible choice of bins numbers. This number is
obtained by averaging together the derivatives of the compressed
data vector g. For the geometrical compression, it was fundamental
to divide each compressed data vector element’s derivative by the
number of triangle configurations corresponding to the bin k before
averaging

Sij ≡
Ng (nℵ,n�,nג)j∑

k=1

1

N tr.
k

∣∣∣∣∂gk

∂θi

∣∣∣∣ , (6)
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Figure 1. Joint data vector
[

P(0)
g , P(2)

g , B(0)
g

]
posteriors: four parameters case. Panel (a): The above boxplot summarizes the statistical distribution of the

parameter constraints improvements for the new geometric-maximal method (GEOMAX) and the two individual maximal (MAX) and geometrical (GEO)
ones. The coloured boxes show the central quartiles of each distribution while the individual dots are automatically considered outliers by the plotting routine.
Each boxplot is obtained comparing the different methods (compressing 2734 triangles, �k2 case) with the MCMC on the full data vector (116 triangles,
�k6 case) for 100 realizations of the Patchy Mocks (Kitaura et al. 2016). The last column showing the average improvement has the purpose to explain the
reason for which certain mocks have some of the parameters with negative improvements (in particular for the GEO compression). The always positive average
improvement (beside for two mocks out of 100) shows that the individual negative ones are a statistical fluctuation due the above average improvements for the
other parameters. Panel (b): compression performance; 2D 68 per cent and 95 per cent credible regions are shown for the standard MCMC sampling on the full
data vector using the triangles from the �k6 case (116 triangles, MCMC). For the �k2 case (2734 triangles) are shown the contours obtained by compressing
the bispectrum part of the data vector using maximal (Gualdi et al. 2018, 2019b, MAX), geometrical (Gualdi et al. 2019a, GEO), and enhanced geometrical
compression methods (GEOMAX). The combination of geometrical and maximal compressing methods (GEOMAX) further improves the parameter constraints
as quantitatively described in Table 1. These marginalized posterior distributions have been derived using measurements from BOSS DR12 CMASS data. We
subtracted to all the distributions the central value obtained for the �k6 standard MCMC case. This because our goal is to test whether we would observe on
data, which usually include unknown systematics, the same improvements statistically observed on galaxy mock catalogues.

where Sij is an estimator of the sensitivity of g when varying the
model parameter θ i, defined for a particular choice of number of
bins (nℵ, n�, nג)j.

For GEOMAX, this no longer works since the new data vector
elements are derived from a linear combination of the original
bispectra, where the weights are given by the maximal compression
applied to each bin as shown in equation (5). Therefore, we need
to define a new summary statistic that normalizes each compressed
data vector’s element derivative dividing by the sum of the weights
used to compute it:

Sgm
ij ≡

Ng (nℵ,n�,nג)j∑
k=1

Npar∑

=1

⎛
⎝ N tr.

k∑
m=1

bm

k

⎞
⎠

−1

∂g
k

∂θi

=
Ng (nℵ,n�,nג)j∑

k=1

Npar∑

=1

⎛
⎝ N tr.

k∑
m=1

bm

k

⎞
⎠

−1

b
k · ∂B(0)
k

∂θi

, (7)

where the sum over k accounts for all the elements of the compressed
data vector. The sum over 
 covers the number of linear combinations
(equal to the number of model parameters) obtained from each
triangle configurations group defined by a set (ℵ, �, .k(ג The
self-contained sum over m inside the curved brackets acts as a

normalization factor specific for each of the compressed data vector
derivative’s elements.

We can then proceed as in the case of the geometrical compression
where a single number can be obtained by

s̄gm
j ≡

Nθ∑
i=1

sgm
ij =

Nθ∑
i=1

Sgm
ij

max
[
Sgm

ij

]
∀j

, (8)

Again, we choose the set of (nℵ, n�, nג)j that maximizes s̄
gm
j .

3.2 Code structure

In order to derive the compressing function, three ingredients are
required:

(i) the triangle configurations in terms of the sides length (k1, k2,
k3);

(ii) the derivatives of the 3pt data vector with respect to the model
parameters;

(iii) measurements of the 3pt data vector from the available
simulations.

Moreover, one can set the maximum number of triangles per
bin and the range to check for the number of bins for each of the
geometrical parameters.
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The code8 consists of creating an object with several functions
needed to find the optimal compression as well as to convert the
analytical model and measurements of the data vector into their
compressed form. First of all, the code computes the optimal binning
in terms of geometrical compression, using the updated selection
criteria presented in the previous section. Afterwards, bins with
less triangles than the number of model parameters are merged
together into a single bin. Finally, the weights to maximally compress
each group of triangles are obtained using equation (1) where the
covariance matrix is estimated using the available simulations (whose
number has to be larger than the number of triangles in each group).

The created object contains all the information required to convert
the data vectors and the measurements into their compressed form.
This can be done by using the object’s methods. For example, in our
analysis pipeline, this is done at every step of MCMC sampling: We
first compute the full data vector that is subsequently compressed
(together with the covariance matrix) before the likelihood evalua-
tion.

4 R ESU LT A NA LY SIS

We compare the enhanced geometrical compression (GEOMAX)
with the previous works including the MCMC on the full data
vector obtained by considering the same k-bin size (�k6), as in
the BOSS analysis (Gil-Marı́n et al. 2015, 2017), which, for our
k-range choice, corresponds to 116 triangle configurations. For
all the compression methods, we use 2734 triangle configurations
obtained by choosing a three times smaller k-bin size (�k2). We
cannot use the full data vector with 2734 triangle configurations
since there are not enough galaxy mock catalogues available to
numerically estimate an invertible covariance matrix (Hartlap et al.
2007). Maximal compression (MAX) returns a compressed data
vector with a number of elements equal to the number of model
parameters. For the geometrical (GEO) and enhanced geometrical
(GEOMAX) compression methods we impose, for a fair comparison
with standard MCMC, a maximum number of bins equal to the
dimension of the full data vector (116 triangles) plus one. The two
algorithms return a compressed data vector with a dimension equal
to 116 (GEO) and 115 (GEOMAX), respectively .

4.1 Statistical significance from galaxy mocks

We validate our method by studying the distribution of the improve-
ments, over the 1D 68 per cent credible regions on the parameter
constraints, by both running MCMC samplings on the full data vector
(�k6) and on the compressed one for MAX, GEO, and GEOMAX
methods (�k2) on 100 realizations of the Patchy Mocks.

In the left-hand panel of Fig. 1, we can appreciate how GEO-
MAX outperforms, considering the means of the distributions, the
MAX and GEO methods by obtaining approximately, on average,
15 per cent tighter constraints. With respect to the standard MCMC,
the 1D 68 per cent credible regions are 40–60 per cent tighter when
using GEOMAX. Moreover, the improvement value scatter for
GEOMAX is, on average, smaller than the ones for both MAX and
GEO methods.

The column showing the average in the left-hand panel of Fig. 1
explains why for certain mocks some parameters have negative
improvements. Since the average is always positive, we can explain
the individual negative improvements as a statistical fluctuation due

8https://github.com/davidegua/max geo compression.git.

Figure 2. Loss of information test: Using the bispectra values of the
116 triangle configurations corresponding to the �k6 binning case, we
check whether the compressed data vectors retain the same information of
the original full one. We show for the three different methods, enhanced
geometrical c. (GEOMAX), maximal c. (MAX), and geometrical c. (GEO),
the ratio between the width of the 1D 68 per cent credible regions with
the ones obtained running an MCMC sampling on the full data vector. The
distributions for the different parameters are obtained by computing the ratio
for 100 galaxy catalogue measurements. From the above boxplots, we see
that only GEOMAX is statistically consistent with zero loss of information.

to the other parameters above average improvements. In Appendix C,
we test for one of these mocks that the negative improvements for
some parameters are not due to the choice of fiducial cosmology
used to derive the compression.

For the different methods, we also test the loss of information
associated with the compression of the data vector. In Fig. 2, we show
once more the ratio of the 1D per cent credible regions; however,
in this case, we compress the same 116 triangle configurations long
data vector used for the standard MCMC (�k6). For GEOMAX
and GEO methods, we set a maximum number of elements for the
compressed data vector equal to 60. We chose this threshold since for
the GEOMAX method, it corresponds (in the case of four parameters)
to a maximum number of bins for the geometrical step equal to 15.
Fig. 2 highlights that, even in this ‘few-bins’ possible scenario for the
geometrical step, GEOMAX compression is statistically consistent
with zero loss of information with respect to the MCMC on the full
data vector. The geometrical compression suffers more from the few
bins available, since, in each bin, the bispectra values are averaged,
whilst in GEOMAX, they are weighted by the coefficients given by
the maximal compression step given by equation (5).

4.2 Test on BOSS DR12 CMASS data

We apply our method on data to test whether we find a performance
similar to what statistically observed using the measurements from
the galaxy mocks. Qualitative results for the data can be observed in
the right-hand panel of Fig. 1. Since we are mainly interested in the
improvements on the parameters constraints, we present our results
with the central value of each parameter obtained through standard
MCMC sampling subtracted. We will perform a full parameter
constraints analysis, including also Finger of God and Alcock–
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Table 1. The improvements in parameter constraints shown are the relative
change of the 68 per cent credible intervals for the �k2 k-binning case with
respect to the �k6.

�θmc
�k6

�θmc
�k6

− �θ
comp.

�k2

�θmc
�k6

[%]

MCMC MAX GEO GEOMAX
Ntr = 116 Nel. = 4 Ng = 116 Ng = 116

�b1 0.22 36.1 28.6 50.4
�b2 0.40 45.5 36.5 56.1
�f 0.08 23.9 18.5 33.2
�σ 8 0.04 21.6 15.1 38.3

〈�θmc
�k6

− �θ
comp.

�k2

�θmc
�k6

[%]
〉 31.8 24.7 44.5

Note. While maximal and geometrical methods achieve similar results, their
combination, GEOMAX, on average performs better by ∼15 per cent when
applied to BOSS DR12 CMASS data.

Paczynski effects, in a following paper, extending the modelling
in order to include smaller scales.

In Table 1, we can see the improvements obtained by the
compression methods for each of the parameter constraints derived
using the MCMC on the full data vector, maximal compression
(MAX), geometrical compression (GEO), and enhanced geometrical
compression (GEOMAX).

For what concerns the model parameter 1D 68 per cent credible in-
tervals, GEOMAX performs on data, on average, 45.5 per cent better
than standard MCMC and improves the results obtained by maximal
and geometrical compression by approximately ∼15 per cent. This
shows very good agreement with the improvements observed in the
case of the galaxy catalogues shown in the left-hand panel of Fig. 1.

We find that maximal compression is suboptimal compared to
the enhanced geometrical one. We speculate that the main reason
behind this limitation is the linear limit implicit in the compression
scheme we developed in Gualdi et al. (2018, 2019a). With a non-
linearly degenerate parameter space, even if these linear compression
techniques achieve an improvement of the parameter constraints by
allowing the employment of larger data vectors, they still miss part of
the available information. That could be the reason why combining
the maximal compression with a complementary approach, such as
the geometrical one, produces an effective non-linear compression
that returns tighter parameters constraints once applied to an origi-
nally longer (but not redundant) data vector.

This effective non-linearity feature is achieved by adopting a
motivated criteria that defines which triangles are linearly combined
together. The non-linearity indeed lies in the method (equation 8),
used to define the triangle bins. In other words, grouping the bispectra
is a non-linear operation in the cosmological parameters.

With respect to the original data vector, GEOMAX achieves a
similar compression factor to the geometrical compression ∼23,
but a much lower one than the maximal one (∼683). From the
results displayed in Fig. 1, we conclude that the reduction of the
compressing factor is a fair price for the increased constraining
power obtained by exploiting the physical insight granted by the
geometrical compression step.

5 A LTER NATIV ES TO THE G EOMETRICAL
COMPRESSION STEP

We show in Fig. 3 two different ways to define the triangles sets,
before applying the maximal compression in order to obtain the final

data vector. Since the full bispectrum for the standard MCMC �k6

case has 116 triangles, we group the 2734 triangles of the �k2 case
into 29 sets. Maximal compression is then applied on each of these
29 groups. In this way, since we consider four parameters, the final
data vector will also have 116 elements.

This is the largest allowed dimension in order to fairly compare
the compressed data vector (given by the �k2 triangles) with the
original full one (given by the �k6 triangles).

5.1 Random regrouping

The most naive way to group together the triangles before the
maximal compression step is to randomly distribute them into N-
groups (as equally populated as possible). This immediately raises
the concern that different random allocations of the triangles into
N-groups can, in principle, produce wider/tighter posterior distribu-
tions.

The performance cannot be predicted in advance unless it is
applied an a priori criteria to choose whether a random allocation is
optimal or not. Even if such a criteria could be devised, the random
choice factor would make its application very inefficient. In contrast,
the geometrical step possesses a precise criteria to define the optimal
way to group triangles together and also in how many bins.

From the marginalized contours in Fig. 3, we can immediately
deduce that the geometrical compression algorithm outperforms this
alternative.

5.2 Reference triangles

A more sophisticated approach consists of defining ‘reference’
triangles and to assign each of the �k2 case 2734 triangles to the
bin defined by the most similar ‘reference’ triangle. We then assign
a triangle a characterized by the sides (ka

1 , ka
2 , ka

3 ) to the bin j having
as reference triangle the configuration (pb

1, p
b
2, p

b
3), such that

∑
i=1,2,3

∣∣ka
i − pb

i

∣∣
ka

i

<
∑

i=1,2,3

∣∣ka
i − p


i

∣∣
ka

i

∀ 
 
= b . (9)

The similarity criteria is then simply the minimal sum of the normal-
ized absolute difference between the triangles sides. The reference
triangles are chosen among the original 2734 ones. Considering the
algorithm that generated them, the selection is done by taking, in
terms of the position in the array, equidistant configurations in the
data vector (one every 95 configurations in this particular case).

Fig. 3 shows that also this slightly more sophisticated criteria does
not reach the improvements achieved by the enhanced geometrical
compression. As in the case of the ‘random regrouping’ approach,
the marginalized posterior distributions are not significantly tighter
than the one given by just using maximal compression.

6 A LTERNATI VE PARAMETER SETS

In order to check that the improvement achieved by the enhanced
geometrical compression is not dependent on the chosen parameter
set, we use GEOMAX to derive the constraints for two additional
parameter sets from the same galaxy catalogues and data.

6.1 Local primordial non-Gaussianity

In order to distinguish between different models of inflation, one of
the key observables is the deviation from a Gaussian distribution of
the primordial density fluctuations (Bartolo et al. 2004). In the case of
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782 D. Gualdi et al.

Figure 3. Compression performance of the alternatives to the geometrical compression step: 2D 68 and 95 per cent credible regions are shown for data vectors
obtained by grouping together the 2734 �k2 triangles in the two alternative ways described in Section 5. RND-MAX corresponds to the random assignation
(triangles equally distributed) to 29 bins before the maximal compression. For REF-MAX, the triangles are associated with the bin whose ‘reference’ triangle is
closer in terms of perimeter. Comparing the contours of RND-MAX and REF-MAX with the ones for GEOMAX, we can see the importance of the geometrical
compression step. Without it, there is no significant improvement with respect maximal compression (MAX) alone. The different 1D marginalized posterior
distributions shifts with respect to the central values obtained by the MCMC sampling are due to the different reduction of the parameter space degeneracy
achieved by the methods shown. The smaller is the improvement with respect to the MCMC constraints, the smaller is the shift. This was previously discussed
in Gualdi et al. (2019a,b).

local primordial non-Gaussianity, this deviation can be parametrized
through an expansion of the Bardeen’s gravitational potential �

(Bardeen 1980) in terms of a Gaussian field φ and a costant fNL

acting as the amplitude of the deviation from linearity at first order:

� = φ + f 2
NL

c2

[
φ2 − 〈φ2〉] + ... (10)

In our analysis, we only consider a local type of primordial non-
Gaussianity (see Byrnes & Choi 2010 for a review). There are also
other types of primordial non-Gaussianities (for simulations on these,
see Scoccimarro et al. 2012).

Late-time large-scale-structure analyses have the potential of
reaching, with the next generation of surveys, constraints on fNL

of similar order to the ones obtained by Planck (Akrami et al. 2019).
The modelling and constraints forecasts for the matter and galaxy
bispectrum have already been widely studied in the literature (Verde
et al. 2000; Jeong & Komatsu 2009; Sefusatti 2009). We proceed as

in Scoccimarro et al. (2004) to derive the correction for the galaxy
power spectrum for a local primordial non-Gaussianity:

Pg
NG(k) = P11 + P12 ≈ P12

= 4fNL

c2
F

(1)
k β2k4T2

k

∫
d p3

a

(2π)3
F

(2)
a|k+ pa |P

φ

|k+ pa |
[
Pφ

a + 2Pφ
k

]
.

(11)

We only use P12 (∝fNL/c2) since P11 is expected to be negligible
given that is proportional to f 2

NL/c4. In the above expression, F
(1)
k

and F
(2)
a|k+ pa | are the standard first- and second-order perturbation

theory kernels in redshift space (known also as Z in the literature).
Tk is the matter transfer function normalized to one for k → 0.
Pφ is the primordial power spectrum for the Gaussian part of the
Bardeen’s potential φ. β = 3

5 D1(z)/ (�mH0), where D1 is the linear
growth factor at redshift z, while �m and H0 are the matter density
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Figure 4. Joint data vector
[

P(0)
g , P(2)

g , B(0)
g

]
posteriors: five-parameter case including local primordial non-Gaussianity. Same as Fig. 1 when considering the

additional parameter fNL.

Table 2. Same as Table 1 for the first additional parameter set test case.

�θmc
�k6

�θmc
�k6

− �θ
comp.

�k2

�θmc
�k6

[%]

MCMC MAX GEO GEOMAX
Ntr = 116 Nel. = 4 Ng = 116 Ng = 115

�b1 0.22 36.1 28.6 50.4
�b2 0.40 45.5 36.5 56.1
�f 0.08 23.9 18.5 33.2
�σ 8 0.04 21.6 15.1 38.3
�fNL 171.5 − 5.8 − 6.1 6.8

〈�θmc
�k6

− �θ
comp.

�k2

�θmc
�k6

[%]
〉 21.1 19.9 38.8

parameter and the Hubble constant, respectively. We fixed H0 to the
fiducial value used to compute the linear matter power spectrum.

For the bispectrum, we have the additional term

Bg
NG(k1, k2, k3) = Bg

111

= F
(1)
k1

F
(1)
k2

F
(1)
k3

β−1k2
1k

−2
2 k−2

3

Tk1

Tk2 Tk3

2fNL

c2
Pm

k2
Pm

k3
+ cyc. ,

(12)

where Pm is the linear matter power spectrum. The derivation of
both power spectrum and bispectrum primordial non-Gaussianity
corrections is described in Appendix B. The relevance of the
primordial non-Gaussianity terms with respect to the gravitational
ones is shown in Fig. B1 for the power spectrum and Fig. B2 for the
bispectrum.

Fig. 4 displays the results relative to the addition of the fNL param-
eter to the analysis for both mocks and data measurements. While
MAX and GEO compression return larger posterior distributions
for fNL than the standard MCMC on the full data vector with less
triangles, GEOMAX returns 1D 68 per cent credible regions tighter

Figure 5. Same as the right-hand panel of Fig. 1 for the six parameters case.
Also, in this case, the improvement of GEOMAX with respect to MAX and
GEO compression methods is statistically significant.

than the MCMC ones by ∼10 per cent, on average, on mocks (left-
hand panel Fig. 4) and 6.8 per cent for data (right-hand panel of Fig. 4
and Table 2), respectively.

6.2 Cosmological parameters

In the second alternative parameter set, we substitute σ 8 with
the amplitude of scalar perturbations, As , and the matter density
parameter, �m. The results for this case are displayed in Figs 5
and 6.

MNRAS 497, 776–792 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/497/1/776/5867797 by guest on 10 April 2024



784 D. Gualdi et al.

Figure 6. Same as the left-hand panel of Fig. 1 for the six parameters case. The enhanced geometrical compression still outperforms the individual maximal
and geometrical ones. In particular, it also improves the constraints for those parameters where the other methods performs as well as the MCMC on the full
data vector with less triangles.

Table 3. Same as Table 1 for the second additional parameter set test case.

�θmc
�k6

�θmc
�k6

− �θ
comp.

�k2

�θmc
�k6

[%]

MCMC MAX GEO GEOMAX
Ntr = 116 Nel. = 4 Ng = 116 Ng = 114

�b1 0.25 30.2 36.8 47.8
�b2 0.33 36.0 44.7 50.9
�f 0.11 27.0 35.9 37.7
109�As 0.27 15.0 4.7 32.0
��m 0.01 − 0.8 3.6 8.8
�fNL 183 − 4.8 − 6.8 7.9

〈�θmc
�k6

− �θ
comp.

�k2

�θmc
�k6

[%]
〉 17.1 19.8 30.8

Once more, GEOMAX outperforms both MAX and GEO methods
over all the parameters, improving, on average, by ∼30 per cent the
constraints given by standard MCMC on the full data vector (Table 3).
In particular, this case again shows that the enhanced compression

is able to obtain noticeable improvements for those parameters (�m,
fNL) where maximal and geometrical compression do not surpass the
results of standard MCMC sampling.

7 C O N C L U S I O N S

We introduced an optimized compression method for the galaxy
bispectrum and made the code publicly available.9 This enhanced
geometrical compression (GEOMAX) can, in principle, be easily
applied to any 3pt statistics in cosmology.

The first requirement is a sufficient large number of simulations.
These however are normally far fewer than the ones that would be
needed to estimate the covariance matrix for a 3pt statistics data
vector without compression. The second input are the derivatives of
the data vector model with respect to the model parameters that one
wishes to constrain.

9https://github.com/davidegua/max geo compression.git.
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The geometrical compression (GEO; Gualdi et al. 2019a) splits
the triangles into groups based on similarity of their geometrical
properties. This allows us to use the available simulations to estimate
the covariance matrix for each of these groups, which can then be
used to maximally compress (MAX, Gualdi et al. 2018, 2019b) the
bispectrum in each of them.

We tested the GEOMAX algorithm on both a set of galaxy bispec-
trum monopole measurements from 100 Patchy mocks (Kitaura et al.
2016) and the measurement from BOSS DR12 CMASS sample (Gil-
Marı́n et al. 2017). Through the galaxy catalogues, we studied the
statistical significance of the improvements on parameter constraints
(left-hand panel in Figs 1, 4, and 5). In Fig. 2, we also show that GE-
OMAX is statistically consistent with being ‘information-lossless’
with respect to the MCMC on the full data vector (while GEO and
MAX methods are not). It would be interesting to compare this
method’s performance with other information lossless compression
algorithms (Alsing & Wandelt 2018; Charnock, Lavaux & Wandelt
2018), which are usually directly applied to data through likelihood-
free inference analyses (Alsing, Wandelt & Feeney 2018; Alsing
et al. 2019).

We used the DR12 CMASS data measurements to check that
known systematics (for example the choice of a fiducial cosmology
for the analysis) and unknown ones did not affect the compression re-
sults. With respect to the standard MCMC on the full data vector, the
enhanced geometrical compression returns 1D 68 per cent credible
regions tighter by a factor of 50.4, 56.1, 33.2, and 38.3 per cent for the
parameters (b1, b2, f, σ 8). With respect to the individual maximal and
geometrical compression methods, the constraints are ∼15 per cent
smaller (see Fig. 1 and Table 1 for details).

Two alternative pre-maximal compression steps have been con-
sidered in order to test the importance of the geometrical method.
These alternatives do not produce the same improvements as the
geometrical method when combined with the maximal compression
(Fig. 3). Moreover, they do not show significant differences from
maximal compression alone.

To strengthen our case, we also run the analysis for two larger
parameter sets, proving that the benefits of this new method are not
parameter-set dependent (Figs 4–6 and Tables 2 and 3). In particular,
GEOMAX improves the MCMC 1D 68 per cent credible regions
also for those parameters where, instead, MAX and GEO methods
return larger marginalized 1D posterior distribution. For these two
additional parameter sets, the average improvement observed on data
of GEOMAX with respect to MAX and GEO methods varies between
10 and 20 per cent.

In order to maximize the extraction of cosmological information
from 3pt statistics, we conclude with the expectation that this
flexible method will be employed for the analysis of the forthcoming
cosmological data sets such as DESI, Euclid, PFS, and SKA.
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Forcadell Gabriel for the help in using the ICCC-UB computer
cluster. DG acknowledges support from European Union’s Horizon
2020 research and innovation programme ERC (BePreSySe, grant
agreement 725327). HGM acknowledges the support from la Caixa
Foundation (ID 100010434) with code LCF/BQ/PI18/11630024.
MM acknowledges support from the European Union’s Horizon

2020 research and innovation program under Marie Sklodowska-
Curie grant agreement No. 6655919y.

The linear matter power spectrum has been computed using the
CLASS code (Lesgourgues 2011). C (Kernighan 1988) and PYTHON

2.7 (Rossum 1995) have been used together with many packages like
IPYTHONS (Perez & Granger 2007), NUMPY (van der Walt, Colbert &
Varoquaux 2011), SCIPY (Jones, Oliphant & Peterson 2001), and
MATPLOTLIB (Hunter 2007). The corner plots have been realized
using PYGTC developed by Bocquet & Carter (2016). We used EMCEE

(Foreman-Mackey et al. 2013) as MCMC sampler.
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APPEN D IX A : DATA V ECTO R MODELS

In this section, we list the analytical expressions we used for computing the various terms of the data vector. The monopole and quadrupole of
the galaxy power spectrum are given by

P(
)
g (k) = 2
 + 1

2

∫ +1

−1
dμ P(s)

g (k, μ) L
 (μ) , (A1)

where L
(μ) is the 
-order Legendre polynomial and P(s)
g (k, μ) is the redshift space galaxy power spectrum at tree level (Gualdi et al. 2019b).

For the bispectrum monopole, we adopt the effective formula given by Gil-Marin et al. (2012), which was calibrated on simulations

B(0)
g (k1, k2, k3) = 1

4

∫ 1

−1
dμ1

∫ 1

−1
dμ2 B(s)

g (k1, k2, k3)

= 1

4π

∫ 1

−1
dμ1

∫ 2π

0
dφ B(s)

g (k1, k2, k3) , (A2)

where μi is the angle between the ki vector and the line of sight. The angle φ is defined as μ2 ≡ μ1x12 −
√

1 − μ2
1

√
1 − x2

12 cos φ, where x12

is the cosine of the angle between k1 and k2.

APP ENDIX B: PRIMORDIAL NON-GAUSSI ANI TY EXPA NSI ON

Following what was done in Scoccimarro et al. (2004), we can compute for the power spectrum and the bispectrum, the contribution due to
the presence of a primordial non-Gaussian component in the potential field. In order to do so, we assume a local type of non-Gaussianity that,
in terms of the primordial potential, can be parametrized as

�p(x) = φp(x) + fNL

c2

[
φ2

p (x) − 〈φ2
p (x)〉

]
+ gNL

c4

[
φ3

p (x) − 3φp(x)〈φ2
p (x)〉

]
+ . . ., (B1)

where φp represents a Gaussian field, while fNL and gNL are the constant parameters of the expansion up to third order in φp. In Fourier space,
it translates into (dropping the ‘p’ index for φ)

�p(k) = φk + fNL

c2

[
I k
abφaφb − δD(k)〈φ2〉] + gNL

c4

[
I k
abcφaφbφc − 3

(2π)3
φk〈φ2〉

]
, (B2)

where, in Fourier space, 〈φ2〉 = ∫
dq3Pφ(q) = (2π)3σ 2

φ and δD(k) is the Dirac’s delta function. We introduced the short notation for the integral
over the wavevectors:

I k
ab =

∫
dq3

adq3
b

(2π)3
δD(k − qa − qb)

I k
abc =

∫
dq3

adq3
bdq3

c

(2π)6
δD(k − qa − qb − qc) . (B3)

The primordial potential is related to the late-time one by

�l.t.(a) = 9

10

D+
a

T(k)�p , (B4)

where D+(a) is the growth factor from the linear perturbation theory as a function of the scale factor a. T(k) is the transfer function normalized
to unity for k → 0. At late times, the potential field is related to the density perturbation variable by the Poisson equation:

∇2�l.t.(x, a) = 3

2

�mH 2
0

a
δ(x, a) . (B5)

This allows to link the primordial potential with the late-time matter density perturbation:

δk = 3

5

D+
�mH 2

0

k2Tk�p = βk2Tk�p . (B6)

B1 Power spectrum

Let us start with the two-point correlation function in Fourier space. We will consider all the terms up to order φ4:

〈δsδs〉 = 〈(δ(1)
m + δ(2)

m + δ(3)
m + O(δ(4)

m ))(δ(1)
m + δ(2)

m + δ(3)
m + O(δ(4)

m ))〉 , (B7)

where the upper index represents the order in terms of δm given by the expansion done in the previous section. Up to the considered order, we
then have

〈δsδs〉 = 〈δ(1)
m δ(1)

m 〉 + 2〈δ(1)
m δ(2)

m 〉 + 〈δ(2)
m δ(2)

m 〉 + 2〈δ(1)
m δ(3)

m 〉
= P11 + P12 + P22 + P13 . (B8)
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B1.1 P11

Expanding in term of the primordial Gaussian potential φ:

〈δ(1)
m (k)δ(1)

m (q)〉 =
〈

F
(1)
k F (1)

q β2k2q2TkTq

×
{

φk + fNL

c2

[
I k
abφaφb − δD(k)〈φ2〉] + gNL

c4

[
I k
def φdφeφf − 3

(2π)3
φk〈φ2〉

]}

×
{

φq + fNL

c2

[
I

q

ghφgφh − δD(q)〈φ2〉] + gNL

c4

[
I

q

ilmφiφlφm − 3

(2π)3
φq〈φ2〉

]}〉
. (B9)

Recalling that all odd moments of a Gaussian variable (φ) are equal to zero and ignoring all higher order terms (>φ4), we obtain

〈δ(1)
m (k)δ(1)

m (q)〉 =
〈

F
(1)
k F (1)

q β2k2q2TkTq

×
{

φkφq + f 2
NL

c4

[
I k
abφaφb − δD(k)〈φ2〉] × [

I
q

ghφgφh − δD(q)〈φ2〉] + 2φk

gNL

c4

[
I

q

ilmφiφlφm − 3

(2π)3
φq〈φ2〉

]}〉

= F
(1)
k F (1)

q β2k2q2TkTq ×
{

(2π)3δ
kq

D Pφ
k + f 2

NL

c4

[
I k
abI

q

gh〈φaφbφgφh〉 − 2I k
ab〈φaφb〉δq

D〈φ2〉 + δk
Dδ

q

D〈φ2〉2
]

+ gNL

c4

[
I

q

ilm〈φiφlφmφk〉 − 3

(2π)3
〈φkφq〉〈φ2〉

]}

= F
(1)
k F (1)

q β2k2q2TkTq

×
{

(2π)3δ
kq

D Pφ
k + f 2

NL

c4

[
2I k

ab(2π)3δ
abq

D Pφ
a Pφ

b + δk
Dδ

q

D〈φ2〉2 − 2δk
Dδ

q

D〈φ2〉2 + δk
Dδ

q

D〈φ2〉2
]

+ gNL

c4

[
I

q

ilm3〈φiφl〉〈φmφk〉 − 3δ
kq

D Pφ
k 〈φ2〉

]}

= F
(1)
k F (1)

q β2k2q2TkTq (2π)3δ
kq

D

×
{

Pφ
k + 2f 2

NL

c4

∫
d p3

a

(2π)3
Pφ

a Pφ

|k− pa | +
gNL

c4(2π)3

[
3Pφ

k

∫
d p3

l Pφ
l − 3Pφ

k 〈φ2〉
]}

= F
(1)
k F (1)

q β2k2q2TkTq (2π)3δ
kq

D

{
Pφ

k + 2f 2
NL

c4

∫
d p3

a

(2π)3
Pφ

a Pφ

|k− pa |

}
, (B10)

where δ
kq

D = δD(k + q).

B1.2 P12

2〈δ(1)
m (k)δ(2)

m (q)〉 =
〈

2F
(1)
k I

q

abF
(2)
ab δ


kδ


aδ



b

〉
=

〈
2F

(1)
k β3k2TkI

q

abq
2
a Taq

2
b TbF

(2)
ab

×
{

φk + fNL

c2

[
I k
cdφcφd − δD(k)〈φ2〉] + gNL

c4

[
I k
def φeφf φg − 3

(2π)3
φk〈φ2〉

]}

×
{

φa + fNL

c2

[
I a
hiφhφi − δD( pa)〈φ2〉] + gNL

c4

[
I a
lmnφlφmφn − 3

(2π)3
φa〈φ2〉

]}

×
{

φb + fNL

c2

[
I b
orφoφr − δD( pb)〈φ2〉] + gNL

c4

[
I b
stvφsφtφv − 3

(2π)3
φb〈φ2〉

]}〉
. (B11)

This at maximum order φ4 returns only one term proportional to fNL:

2〈δ(1)
m (k)δ(2)

m (q)〉 = 2F
(1)
k β3k2TkI

q

abq
2
a Taq

2
b TbF

(2)
ab

fNL

c2

× {
I k
cd〈φcφdφaφb〉 − 〈φcφd〉δD(k)〈φ2〉 + 2I a

hi〈φkφbφhφi〉 − 2〈φhφi〉δD( pa)〈φ2〉}
= (2π)6 4fNL

c2
F

(1)
k β3k2TkI

q

abq
2
a Taq

2
b TbF

(2)
ab ×

{
I k
cdδ

ac
D δbd

D Pφ
a Pφ

b + 2I a
hiδ

ki
D δbh

D Pφ
k Pφ

b

}

= (2π)3δ
kq

D

4fNL

c2
F

(1)
k β3k2Tk

∫
d p3

a

(2π)3
p2

aTa | − k − pa |2T|−k− pa |F
(2)
a,−k− pa

Pφ

|−k− pa |
[
Pφ

a + 2Pφ
k

]
. (B12)
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Figure B1. P(0,2)
g : primordial non-Gaussianity contribution. In the first row, the power spectrum monopole and quadrupole model is shown for different values

of local primordial non-Gaussianity, fNL = 0, 1, 5. The shaded area corresponds to the error bars derived from the 1400 galaxy mocks measurements (Kitaura
et al. 2016). The second row shows only the power spectrum terms linearly proportional to fNL. The third row shows the ratio between the primordial term and
the data-point error bar width, defined as �P(0,2)

g (ki ) = √
Covii . The fourth row shows the ratio between the primordial term and the gravitational collapse one

for the power spectrum. In the last row, we show the primordial part cumulative signal to noise as a function of the number of k-bins included in the analysis.

This is defined as (S/N)
[

P(0,2)
g,12

]
i
=

√
P(0,2),ᵀ

g,12,i · Cov−1 · P(0,2)
g,12,i , where P(0,2)

g,12,i is power spectrum monopole/quadrupole data vector up to the k-bin ki. Cov−1 is

the covariance matrix for the reduced data vector P(0,2)
g,12,i .

The other terms in the power spectrum expansion, P22 and P13, are at first order already proportional to φ4 and, therefore, in our case, they
just return the standard loop correction terms for the Gaussian initial conditions. In Fig. B1, the overall and relative effect of primordial
non-Gaussianity can be observed for fNL = 0, 1, 5 in comparison to the current error bars.

B2 Bispectrum

Also for the bispectrum, we limit the expansion to the terms proportional to φ4 so that we do not need to use fourth-order perturbation theory.
However, for clarity, we will list all terms up to order φ6 even if we are not going to compute them explicitly.

〈δsδsδs〉 = 〈(δ(1)
m + δ(2)

m + δ(3)
m + O(δ(4)

m ))(δ(1)
m + δ(2)

m + δ(3)
m + O(δ(4)

m ))(δ(1)
m + δ(2)

m + δ(3)
m + O(δ(4)

m ))〉
= 〈δ(1)

m δ(1)
m δ(1)

m 〉 + 3〈δ(1)
m δ(1)

m δ(2)
m 〉

+ 3〈δ(2)
m δ(2)

m δ(1)
m 〉 + 3〈δ(1)

m δ(1)
m δ(3)

m 〉
+ 3〈δ(1)

m δ(1)
m δ(4)

m 〉 + 6〈δ(1)
m δ(2)

m δ(3)
m 〉 + 〈δ(2)

m δ(2)
m δ(2)

m 〉
= B111 + B112 + B122 + B113 + B114 + B123 + B222 . (B13)
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Figure B2. B(0)
g : primordial non-Gaussianity contribution. Same as Fig. B1 for the galaxy bispectrum monopole.

From the expansion above, we can see that if we would only consider terms up to order φ6, then B114, B123, and B222 would just result into
loop corrections without primordial non-Gaussianity contributions. From B122 and B113, we would have only terms proportional to fNL since
the ones given by Gaussian initial conditions are all equal to zero (odd moments).

For B111, we would need to consider an additional parameter for the primordial non-Gaussianity contribution, in particular one proportional
to φ4. The other terms up to order φ6 originating from B111 would be either proportional to f 3

NL or to the product fNLgNL. Limiting ourselves
only at order φ4, from B111, we will obtain only one term proportional to fNL.

Finally, B112 would return in the case of Gaussian initial conditions the standard tree level expression for the bispectrum. When PNG are
considered up to order φ6, B112 contains also terms proportional to both f 2

NL and gNL.

B2.1 B111

We proceed then with the only term containing primordial non-Gaussianity contributions up to order φ4:

〈δ(1)
m δ(1)

m δ(1)
m 〉 =

〈
F

(1)
k1

F
(1)
k2

F
(1)
k3

β3k2
1k

2
2k

2
3Tk1 Tk2 Tk3

×
{

φk1 + fNL

c2

[
I

k1
abφaφb − δD(k1)〈φ2〉

]
+ gNL

c4

[
I

k1
cdeφcφdφe − 3

(2π)3
φk1 〈φ2〉

]}

×
{

φk2 + fNL

c2

[
I

k2
fgφf φg − δD(k2)〈φ2〉

]
+ gNL

c4

[
I

k2
hilφhφiφl − 3

(2π)3
φk2 〈φ2〉

]}

×
{

φk3 + fNL

c2

[
I k3
mnφmφn − δD(k3)〈φ2〉] + gNL

c4

[
I k3
oqrφoφqφr − 3

(2π)3
φk3 〈φ2〉

]}〉
. (B14)
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The resulting three terms proportional to fNL are equivalent, different only by the permutation between k1, k2, and k3:

〈δ(1)
m δ(1)

m δ(1)
m 〉 = F

(1)
k1

F
(1)
k2

F
(1)
k3

β3k2
1k

2
2k

2
3Tk1 Tk2 Tk3

fNL

c2

×
{

I
k1
ab 〈φk2φk3φaφb〉 − δD(k1)〈φk2φk3 〉〈φ2〉

}
+ cyc.

= F
(1)
k1

F
(1)
k2

F
(1)
k3

β3k2
1k

2
2k

2
3Tk1 Tk2 Tk3

fNL

c2
I

k1
ab2(2π)6δ

k2a
D δ

k3b
D Pφ

k2
Pφ

k3
+ cyc.

= (2π)3F
(1)
k1

F
(1)
k2

F
(1)
k3

β3k2
1k

2
2k

2
3Tk1 Tk2 Tk3

2fNL

c2
δD(k1 + k2 + k3)Pφ

k2
Pφ

k3
+ cyc.

= (2π)3δD(k1 + k2 + k3)F (1)
k1

F
(1)
k2

F
(1)
k3

β−1k2
1k

−2
2 k−2

3

Tk1

Tk2 Tk3

2fNL

c2
P m

k2
P m

k3
+ cyc. , (B15)

where, in the last line, the primordial power spectrum was converted into the late-time matter power spectrum. The primordial non-Gaussianity
contribution to the galaxy bispectrum monopole is shown in Fig. B2.

APPENDIX C : O UTLIERS A NA LY SIS

In the left-hand panels of Figs 1, 4 and 5, we can observe that for few galaxy catalogues, the relative parameter constraints improvements are
negative. In the same figures, we also check that the overall average improvement on the parameters constraints is always positive.

We show in Fig. C1 the 1–2D marginalized posterior distribution for one of the galaxy catalogues showing this negative improvement
for some of the constrained parameters. In particular, we show the posterior for the MCMC on the full data vector (including 116 triangle
configurations) and two different runs of the GEOMAX algorithm applied to the larger set of triangles (2734). The first run is relative to the
compression being computed using the same fiducial cosmology used throughout this paper. For the second run, we computed the compression
using the best-fitting parameters set obtained from the first run.

Indeed, we wanted to check whether the observed negative improvement for certain parameters was due to the difference between the
assumed fiducial cosmology and the best-fitting one. This is not the case. None the less, in this way, we verified on this single case that the
GEOMAX compression performance is not sensitive to the fiducial cosmology used to derive the compression weights.

We then conclude that the negative improvement observed for certain parameters is a statistical effect counterbalancing the above average
improvement for the rest of the parameters. This second hypothesis is supported by the average column in the left-hand panels of Figs 1, 4,
and 5.
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Figure C1. Posterior for the galaxy catalogue 37: Beside the contours relative to the MCMC on the full data vector containing 116 triangle configurations,
we show the result of GEOMAX compression applied to 2734 triangles’ bispectra. In the first case (‘FID’), we used the fiducial cosmology to compute the
derivatives needed for the compression. The second set of contours (‘BEST FIT’) where instead derived by using the best-fitting parameters obtained through the
first run (‘FID’) to compute the derivatives needed in the geometrical step. Even if these two sets have differences larger than 1σ intervals for certain parameters,
the 1–2D posterior contours given by GEOMAX do not significantly differ.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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