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Complex variability of Kepler AGN revealed by recurrence analysis
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ABSTRACT
The advent of new time domain surveys and the imminent increase in astronomical data expose the shortcomings of traditional
time series analysis (such as power spectra analysis) in characterizing the abundantly varied, complex, and stochastic light curves
of Active Galactic Nuclei (AGNs). Recent applications of novel methods from non-linear dynamics have shown promise in
characterizing higher modes of variability and time-scales in AGN. Recurrence analysis in particular can provide complementary
information about characteristic time-scales revealed by other methods, as well as probe the nature of the underlying physics in
these objects. Recurrence analysis was developed to study dynamical trajectories in phase space, which can be constructed from
1D time series such as light curves. We apply the methods of recurrence analysis to two optical light curves of Kepler-monitored
AGN. We confirm the detection and period of an optical quasi-periodic oscillation in one AGN, and confirm multiple other
time-scales recovered from other methods ranging from 5 to 60 d in both objects. We detect regions in the light curves that
deviate from regularity, provide evidence of determinism and non-linearity in the mechanisms underlying one light curve (KIC
9650712), and determine realizations of a linear stochastic process describe the dominant variability in the other light curve
(Zwicky 229–015). We discuss possible underlying processes driving the dynamics of the light curves and their diverse classes
of variability.
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1 IN T RO D U C T I O N

Most of the extreme radiation output of Active Galactic Nuclei
(AGN) originates from the accretion discs surrounding the super-
massive black holes at their centres, where gravitational potential
energy is converted into heat and viscous dissipation. The disc must
transport angular momentum outwards, allowing matter to accrete
inwards. The radiative flux emitted by the innermost regions of
the accretion disc is highly variable across many decades of time,
from hours up to months and years (Pica & Smith 1983; Krolik &
Begelman 1988). The flux is often assumed to be thermal emission
from a geometrically thin disc (Pringle 1981; Abramowicz & Fragile
2013), although a variety of possible accretion disc geometries have
been proposed (e.g. slim discs, advective-dominated accretion flows,
thick discs; Abramowicz & Fragile 2013). The non-periodic and
stochastic variability of the radiation emitted from AGN promises to
contain a wealth of information regarding the nature of the accretion
flow, from the viscous mechanisms generating dissipation (Balbus &
Hawley 1991) to the global geometry of the disc (Shakura & Sunyaev
1973).

Changes in the structure of the accretion flow can result in
changes in the bulk variability properties that can be observed with
photometric monitoring. A typical AGN accretion disc extends to
roughly a few tenths of a parsec from the central supermassive
black hole (Goodman 2003). Especially at extragalactic distances,
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direct imaging of such objects is a highly arduous and difficult task
(Akiyama et al. 2019), infeasible for the study of temporal changes.
With the onset of upcoming sophisticated transient-hunting surveys
such as the Large Synoptic Sky Telescope (LSST), the imaging
of many thousands of objects observed every night, averaging an
estimated 20 TB per 24 h period,1 will surpass a combined decade
of imaging data achieved by the Sloan Digital Sky Survey (SDSS)2

(Ivezić et al. 2019). Acquiring corresponding spectroscopic data on
the same scale therefore becomes a near impossibility. Astronomers
have therefore invested in time series analysis of light curves as the
leading probe of dynamical information across the electromagnetic
spectrum of accreting, time-varying objects.

There are multiple theoretical processes that have been proposed
that potentially explain the rapid and long-term optical variability of
AGN. For example, it is theorized that reprocessing of the central X-
ray radiation closest to the black hole (Krolik et al. 1991; Collier et al.
1998; Collier & Peterson 2001), and turbulent or limit cycle thermal
processes (Shakura & Sunyaev 1973; Kato 1998) can manifest in
oscillations and variability on the short and long term.

There are several methods to empirically translate the theoretical
models of the variability into measurable, time-based quantities. For
example, the propagating fluctuations model – where the fluctuations

1https://www.lsst.org/scientists/keynumbers
2The volume of all imaging data collected over a decade by the SDSS-I/II
projects published in SDSS DR 7 (Abazajian et al. 2009) is approximately
16 TB.
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in local viscosity have been shown to be driven by the magnetoro-
tational instability (Hogg & Reynolds 2016) – predicts a lognormal
distribution of the flux in a light curve and a power spectral density
of fluctuations characterized by flicker noise (Lyubarskii 1997).

There are also statistical explanations for the variability. For
example, the observed rms–flux relationship (McHardy et al. 2004),
which correlates an increase in luminosity with an increase in
variability, led to the relationship between the characteristic time-
scale of X-ray variability and black hole mass across many decades
of mass (Scaringi et al. 2015). The rms–flux relationship is proposed
as a consequence of the multiplicative nature of the propagating
fluctuations model (Balbus & Hawley 1998), however a clear
physical interpretation of the rms–flux relationship is still needed.
The statistical damped random walk model (DRW; Kelly, Bechtold &
Siemiginowska 2009) predicts a power spectral distribution (PSD)
with a power-law slope of −2 (MacLeod et al. 2010) in which some
(unknown) mechanism drives random fluctuations and thus injects
stochasticity about the mean flux value into the light curve. The
physical source of the random fluctuations and stochasticity is also
not well understood.

Lognormal flux distributions, rms–flux relationships, and high-
frequency PSD slopes of −2 have been consistently recovered in
the X-ray for AGN and X-ray Binaries (XRBs; galactic, stellar-mass
black holes) alike (e.g. Uttley & McHardy 2001; Edelson et al. 2013).
Similarly, in the X-ray bandwidth, a broken power-law model best
fits the power spectrum of many XRBs and some AGN, in which the
break frequency between the two power-law slopes scales with mass
of the object (e.g. Uttley, M C Hardy & Papadakis 2002; Markowitz
et al. 2003; McHardy et al. 2006). However, analyses of optical AGN
light curves reveal more complex behaviour. Indeed, the rms–flux
relationship found in the X-ray and the DRW model does not hold
for many of the AGN observed in the optical by Kepler (Kasliwal,
Vogeley & Richards 2015a; Smith et al. 2018a). Similarly, Moreno,
Vogeley, and Richards (in preparation) finds an array of luminosity
and rms–variability relationships for AGN observed by both the
Sloan Digital Sky Survey (SDSS) and Catalina Real-Time Transient
Survey (CRTS) in addition to a variety of PSD slopes (also uncovered
by Smith et al. 2018a), which in general are more complex in the
optical than in the X-ray. The relationship between the optical and
X-ray variability thus remains an open question but could potentially
constrain models for the accretion flow.

Commonly used methods for statistical characterization of light
curves, such as the autocorrelation function or PSD, measure only the
second-order moments of a distribution. By definition, such methods
do not capture the higher-order moments, or traces of non-linearity,
non-stationarity and direct probes of the nature of the underlying
dynamics (Zbilut & Marwan 2008; Moreno et al. 2019). Although,
for example, Fourier-based techniques have been the bread and butter
of time-domain astronomers and remain some of the most powerful
and sophisticated means of characterizing dynamical information
from light curves, the abundance of discrepancies in empirical
PSD-based measures across bandwidths of light (e.g. the rms–flux
relationship) and decades of mass (e.g. the presence of a break
frequency, and slopes of the PSD) for accreting systems prompts
the pursuit of alternative and complementary analyses. Indeed, there
has been success in extracting other types of information about
the accretion flow by studying the variability of XRBs and AGN
using other methods. For example, recurrence analysis (the study
of recurrent, non-periodic information in non-linear dynamics) has
been used to distinguish between stochastic, periodic, and chaotic
structures underlying the light curves of six microquasars (XRBs
exhibiting some of the properties of a quasar) observed in the X-ray

(Suková, Grzedzielski & Janiuk 2016). Topological methods derived
from group theory (Gilmore 1998) related to recurrence analysis
were used to positively correlate the non-linear light curve of an
X-ray binary with the chaotic Duffing oscillator (Phillipson, Boyd &
Smale 2018). Statistical analyses using CARMA (Continuous-time
Auto-Regressive Moving-Average) applied to large AGN surveys
have extracted multiple characteristic time-scales in the optical light
curves describing the rate at which flux perturbations grow and decay
(Kasliwal et al. 2015b; Kasliwal, Vogeley & Richards 2017; Moreno
et al. 2019).

The importance of applying alternative methods, which are well
established in other non-astrophysical fields such as statistics,
economics, or geology, is two-fold. First, we desire a means to
more directly probe the source of the time-scales over which
various variability properties dominate and identify the mathematical
structure of the equations that describe the underlying physics of the
variability. For example, we would expect that random flaring in the
accretion disc, local fluctuations in the viscosity or accretion rate, or
other inherently random-driven processes that do not result in global,
coherent structural changes in the accretion disc would lead to a light
curve that is well-modelled by a linear, stochastic system. In contrast,
the presence of non-linearity in a light curve identified by techniques
from non-linear dynamics would provide evidence for a process that
is a global instability (e.g. thermal-viscous instabilities or spiral wave
modes; Shakura & Sunyaev 1973; Lightman & Eardley 1974; Wiita
1996), rather than due solely to local fluctuations (e.g. Mchardy 1988;
Abramowicz et al. 1992; Edelson & Goddard 1999; Poutanen &
Fabian 1999). Although time-scales are important for identifying the
possible mechanisms that can exist, correlating specific variability
features, such as quasi-periodicity, to a narrower mathematical model
(such as non-linearity, or mere determinism), constrains the physical
models we construct for accretion disc systems.

Our secondary motive for employing novel time series analysis
techniques is to better prepare for the onset of large data sets from
upcoming missions such as LSST. Many efforts are already underway
classifying variability features (e.g. based on variability statistics or
energy spectra) using automated and fast machine learning methods,
such as principal component analysis (PCA) or self-organizing maps
(Boroson & Green 1992; Francis et al. 1992; Faisst et al. 2019). We
aim to add recurrence properties to the list of variability features that
can be classified using machine learning techniques. Additionally,
an alternative method to PSD modelling for probing universal
variability characteristics will provide complementary constraints
on current classification models and enable improved predictions for
time sampling and baseline requirements for future surveys of active
galaxies and other transients.

In this study we will combine the methods of recurrence anal-
ysis and topological non-linear analysis to establish a data-driven
approach independent of an assumed model or PSD to extract
multiple time-scales of interest and evidence for their underlying
mechanisms from the well-sampled, multi-year optical light curves
of two canonical AGN monitored by Kepler. The recurrence plot
is the graphical representation of a 2D matrix which contains
information about the recurrences (repetitive but not periodic fea-
tures) present throughout the light curve, after an embedding into a
higher-order space representative of the underlying dynamics. The
embedding into a higher-order space, called the phase space, is akin to
the transformation performed during singular value decomposition
(SVD) or PCA, where the flux information from the light curve
is recast into a mathematically convenient unit-less matrix, while
simultaneously maintaining the same topological information that
generated the original light curve. The transformation into phase
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Figure 1. The Kepler light curves of (a) KIC 9650712 and (b) Zwicky 229–015, processed by the specialized AGN pipeline by Smith et al. (2018a). The 30 min
cadence data points are shown in each light curve, with the typical error on each data point approximately 4 flux counts.

space and the resulting recurrences populate the entries in a matrix,
which can be easily plotted into an image called the recurrence plot.
The structures in the recurrence plot provide us with topological
(dynamical) information about the physical processes that produce
the light curve, rather than a merely statistical description.

In Section 2 we describe the Kepler satellite and the resulting data
it obtained to construct the two AGN light curves. In Section 3 we in-
troduce recurrence analysis and use it to identify three characteristic
time-scales, all of which were recovered by multiple authors utilizing
different methods for Zwicky 229–015 (Edelson et al. 2014; Kasliwal
et al. 2015a,b; Smith et al. 2018a) and one of which was recovered as
a low-frequency quasi-periodic oscillation (QPO) for KIC 9650712
(Smith et al. 2018b). We conclude our results with computing
a dynamical invariant, the K2 entropy related to the correlation
dimension, as it compares to a series of statistical surrogates using
the surrogate data method. The surrogate comparison enables us
to possibly distinguish the presence of stochastic and deterministic
underlying dynamics in the light curve, which we determine both
exist at different horizons and give rise to different time-scales. In
Section 4 we explore possible physical mechanisms responsible for
the different driving mechanisms that exist in the light curves. We in-
clude an appendix with a more detailed overview of recurrence plots
and their quantification, collectively called ‘recurrence analysis,’ as
well as the Surrogate Data method used for establishing significance
for our results.

2 TH E KEPLER AG N SA MPLE

Kepler was launched in 2009 and operated for nine years with
the scientific objective of exploring the structure and diversity of
planetary systems (Borucki et al. 2010). This objective was achieved
by searching for repetitive transits in the light curves of extrasolar
planetary systems. All stars in the Kepler field of view (FOV) were
monitored continuously in order to accumulate enough observation
time of the transits which only last a fraction of a day. Kepler observed
∼160 000 exoplanet search target stars with 30 min sampling for
approximately 4 yr in the dense target FOV in the region of the
sky in the constellations Cygnus and Lyra. Several dozen AGNs
were discovered within the Kepler FOV (e.g. Mushotzky et al. 2011;
Carini & Ryle 2012). The resulting Kepler AGN light curves remain
the most well-sampled in the optical bandwidth to date.

A specialized pipeline to construct light curves of a sample
of Kepler-monitored AGN, selected using infrared photometric
selection (Edelson & Malkan 2012), X-ray selection from KSWAGS
(Kepler-Swift Active Galaxies and Stars survey; Smith et al. 2015),

and optical spectroscopy, was developed by Smith et al. (2018a). The
Smith et al. sample contains 21 confirmed AGN light curves with a
wide range of accretion rates and black hole masses. We have chosen
two long-baseline examples (Fig. 1) for which to perform recurrence
analysis: the canonical Zwicky 229-015, the longest light curve of
an AGN obtained from Kepler, and the optical QPO candidate, KIC
9650712. A summary of the physical properties of these two AGN,
including masses, luminosities, and accretion rates, are listed in
Table 1. We note that the statistical analyses of Kepler AGN light
curves may be affected by systematics in the Kepler data (see e.g.
Kasliwal et al. 2015b), which affect the slope of the PSD. Special
treatment of the Kepler light curves is therefore required (Smith et al.
2018a provides an extended discussion on the various systematics
and solutions), particularly when considering periodic or quasi-
periodic behaviour. When comparing a re-processed light curve
of Zw 229–015, calibrated against ground-based observatories to
remove systematics introduced particularly at quarterly intervals, to
a systematically contaminated light curve, the time-scale associated
with a DRW at approximately 26 d remains unchanged (Kasliwal
et al. 2015b). This indicates the presence of intrinsic, non-systematic,
variability.3

2.1 Zwicky 229–015

There were seven AGNs known to lie in the Kepler FOV prior to
the satellite’s launch in 2009 (Barth et al. 2011; Mushotzky et al.
2011), one of which has been well-studied: KIC 6932990. Otherwise
known as Zw 229–015 (and identified this way throughout the
remainder of this paper), this AGN is a radio-quiet Type 1 Seyfert at a
redshift of 0.0275 (Véron-Cetty & Véron 2003, or VCV catalogue).
Edelson et al. (2014) initially found a 5 d characteristic period via
power spectrum analysis using the Kepler light curve. The Kasliwal
et al. (2015a) study recovered a de-correlation time-scale of ∼27.5 d
extracted from structure function analysis of the Kepler light curve
and comparison to a DRW model. Using CARMA analysis, the
same group (Kasliwal et al. 2017) extracted the previously noted
time-scale of 5.6 d (Edelson et al. 2014) and an additional long-
term 67 d time-scale; the CARMA model used was the higher-order
damped-harmonic oscillator (DHO) perturbed by a coloured noise

3The analyses in this paper were performed on both the Kasliwal et al. (2015b)
and Smith et al. (2018a) Zw 229–015 Kepler light curve and the time-scales
recovered using recurrence analysis was the same for both, indicating a non-
systematic origin to the variability that is characterized in this study.
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Table 1. Table adapted from Smith et al. (2018a).

Physical properties of the Kepler AGN
Object R.A. Decl. za Kep. Mag.b V Mag.a log MBH log LBol

c L/LEdd
d

(M�) (erg s−1)

KIC 9650712 19 29 50.490 +46 22 23.59 0.128 16.64 −21.8 8.17d 45.62 0.226
KIC 6932990 19 05 25.969 +42 27 40.07 0.025 11.13 −19.9 6.91d, 7.0+0.19

−0.24
e 44.11 0.125

(Zw229–015) – – – – – – – –

Notes.aRedshift and V-band absolute magnitudes from the VCV Catalogue (Véron-Cetty & Véron 2003)
bGeneric optical ‘Kepler magnitude’ used in the KIC and calculated in Brown et al. (2011).
cBolometric luminosities calculated by Runnoe, Brotherton & Shang (2012).
dMass and Eddington ratio calculations from Smith et al. (2018a).
eMass based on H β reverberation mapping by Barth et al. (2011).

process. Finally, Smith et al. (2018a) fit a broken power law to the
power spectrum of Zw 229–015 and extracted a characteristic 16.0 d
break time-scale which, if we take a note from X-ray studies, should
theoretically correlate with the black hole mass. In the same study, the
best-fitting broken power law extracted a high-frequency PSD slope
of −3.4, inconsistent with a DRW model (also found by Kasliwal
et al. 2015a), affirming the need for higher-order statistical models
such as the CARMA DHO model (which can accommodate a variety
of fixed or bending PSD slopes; e.g. Moreno et al. 2019).

The multiple studies of Zw 229–015 and resulting characteristic
time-scales, each by contrasting methods and differing calibration
techniques, have consequently confused any singular explanation
for the physical phenomena driving the intrinsic variability in this
and, by extrapolation, other similar systems. We therefore seek
to apply recurrence analysis to the Kepler light curve in order
to determine whether we extract the same time-scales as previous
studies using different methods, facilitating a more cohesive picture
for the accretion process. Furthermore, we seek to develop a method
that can add supporting evidence to the relationship between charac-
teristic time-scales and variability features and the intrinsic physical
characteristics of the systems (e.g. mass, luminosity, or accretion
rate).

2.2 KIC 9650712

The other object in this study, KIC 9650712, was chosen not for its
extensive research history but for the recent discovery of an optical
QPO at approximately 44 d (Smith et al. 2018b) and its ‘interesting’
flux distribution, which is neither lognormal nor singularly Gaussian.
The origin of QPOs in X-ray binaries remains largely unknown,
but it is believed they are associated with the X-rays emitted near
the inner edge of the accretion disc. Low-frequency QPOs (on
the order of 0.1 to 10 Hz frequencies) have been associated with
different spectral states in black hole XRBs (Stiele et al. 2013),
an indication that changes in the accretion flow are connected to
the manifestation of QPOs. Possible models that could lead to low-
frequency QPOs and changing spectral states in XRBs include Lense-
Thirring (Stella & Vietri 1998; Ingram & Done 2010) or orbital
(Stella, Vietri & Morsink 1999; Ingram & Done 2012) precession of
the accretion disc, spiral structures in the accretion disc (Tagger &
Pellat 1999), radiation pressure instability (Janiuk & Czerny 2011),
or viscous magneto-acoustic oscillations (Titarchuk & Fiorito 2004).
QPOs have primarily been detected in X-rays, with the first X-ray
QPO detected in an AGN in 2008 (Gierliński et al. 2008). While
low-frequency QPOs are observed in nearly all transient black hole
XRBs, there is only one low-frequency QPO AGN detection in the
X-ray (Lin et al. 2013). KIC 9650712 marks the first detection of

a low-frequency QPO in an AGN in the optical bandwidth (Smith
et al. 2018b). Non-linearity has been confirmed in the X-ray light
curves of GRS 1915+105 (Misra et al. 2004) and GX 339–4 (Arur &
Maccarone 2019), both XRBs, when a QPO was present. We seek
to determine whether the same is true of the low-frequency QPO
present in the optical light curve of KIC 9650712.

KIC 9650712 is more massive than Zw 229–015 and, notably,
intrinsically brighter with a higher Eddington ratio, as detailed in
Table 1. The Kasliwal et al. (2015a) study did perform the same
structure function analysis and comparison to a DRW model as with
Zw 229–015 and extracted a de-correlation time-scale of ∼48 d.
Though the Kepler light curve used was only 4 quarters of data
(compared to the 14 quarters of Zw 229–015 and the 12 used in
this study), Kasliwal et al. (2015a) still noted weak indications of
oscillatory behaviour of the shortened light curve. As with Zw 229–
015, Smith et al. (2018a) found a broken power-law as the best-
fitting model for the PSD of KIC 9650712 and extracted a 53 d
break time-scale and a high-frequency PSD slope of −2.9. The
method of close returns (Lathrop & Kostelich 1989; Mindlin &
Gilmore 1992; Gilmore 1993), a subset of recurrence analysis, is
capable of extracting unstable periodic orbits in addition to general
recurrent behaviour, appropriate for the detection of quasi-periodic
signals, which we will utilize to confirm a QPO in KIC 9650712 in
Section 3.2.

3 R ESULTS: C HARACTERI STI C TI ME-S CALES
A N D DY NA M I C A L I N VA R I A N T S

Many traditional time series analysis methods deal with 1D time
series and a statistical description of the variability features. In
contrast, methods from non-linear dynamics are critically based
on the phase space embedding of a time series – a higher-order
space containing the topological information of the time series. The
topological structures present in phase space, which most explicitly
manifest as recurrences, contain information with direct relationships
to the mathematical underpinnings and thus dynamics that generate
the time series.

Recurrences that appear in phase space contain all the information
about the dynamics of a system and constitute an alternative, and
complete, description of a dynamical system (Robinson & Thiel
2009). Recurrence Plots (hereafter RPs) were introduced by Eck-
mann, Oliffson Kamphorst & Ruelle (1987) as a more general means
to visualize the recurrences of trajectories embedded in phase space
within dynamical systems. RPs are dynamic graphs which provide
qualitative and quantitative information about the behaviour of the
system of study, particularly indications of stochastic, periodic, or
chaotic behaviour. Several of the quantitative measures, particularly
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those based on diagonal-line features, are mathematically equivalent
to a variety of dynamical invariants underlying the observed time
series (Webber & Zbilut 1994). For an extensive overview of the
history of RPs and their applications, see the seminal review by
Marwan et al. (2007), from which we also draw many of the
definitions in this study. Appendix A contains a more detailed
discussion of recurrence plots, phase space, and their quantification
specific to our analysis.

Following the notation of Marwan et al. (2007), suppose we have
a dynamical system represented by the trajectory xi for i = 1, ..., N in
a d-dimensional phase space. Then the recurrence matrix is defined
as

Ri,j (ε) = �(ε − ||�xi − �xj ||) for i, j = 1, ..., N, (1)

where N is the number of time-ordered, measured points (�xi), ε is
a threshold distance, and �(·) is the Heaviside function. For states
that persist in an ε-neighbourhood, i.e. return to within a threshold
distance of a previous state in phase space, the following condition
holds:

�xi ≈ �xj ⇔ Ri,j = 1. (2)

RPs are thus the graphical representation of the binary recurrence
matrix, equation (1), where a colour represents each entry of the
matrix (e.g. a black dot for unity and empty or white for zero). By
convention, the axes increase in time rightwards and upwards. The
RP is also symmetric about the main diagonal, called the ‘line of
identity’ (LOI).

The distances between two positions in a time series are computed
after the time series is embedded in phase space. The phase space
is a higher-order space that properly resembles the same topological
information as the mechanisms generating the time series (rather than
merely the statistical information like the mean or standard deviation
of the flux). For theoretical systems in which we know the equations
of motion, we can directly embed the time series into a phase space
constructed from the derivatives of the system. For experimental data
in which we perhaps only have a single observable and no immediate
knowledge of the equations of motion, we must construct the phase
space. Construction of phase space from experimental data is similar
to transforming a data set via PCA whereby each component of the
new vector retains special information about the time series distinct
from its scalar form (but does not necessarily retain the units, for
example, of the original time series).

Given that we are dealing with a single observable, the flux, we
must construct the multidimensional phase space from the 1D light
curve. A commonly used method for construction is via the time
delay method (Whitney 1935; Takens 1981), which is an embedding
that is a one-to-one mapping to the original attractor that generates
the 1D time series without loss of dynamical information (Sauer,
Yorke & Casdagli 1991). Other approaches for constructing the
higher-order phase space include independent component analysis
(Hyvärinen, Hoyer & Inki 2001), singular value decomposition
(Broomhead & King 1986), generalized mutual information (Fraser
1989), or numerical derivatives in a differential embedding (if the
system is known to be low-dimensional; Gilmore 1998). We use the
time delay method for phase space reconstruction in our analysis of
KIC 9650712 and Zw 229–015, which uses flux values drawn from
the light curve separated by the ‘time delay’ to construct the higher-
order vector. The optimal parameters for the time delay embedding
are an embedding dimension of 5 for both objects, and a time delay
of 27 and 22 d for KIC 9650712 and Zw 229–015, respectively.
For further details of our approach for constructing a phase space
embedding based on the time delay method, see Appendix A1.

3.1 The recurrence plot: visualizing structure in the light curves

An example of the recurrence plots of KIC 9650712 and Zw 229–
015 for a threshold corresponding to a recurrence rate of 30 per cent
is shown in Fig. 2. This means that the threshold (ε) is set so that
30 per cent of the state vectors are within ε of another, thus 30 per cent
of the RP is coloured black. This choice of threshold falls within a
range of appropriate values for which the recurrence analysis will
probe the same dynamical behaviour (see Appendix A1). The light
curve of each object is embedded in a higher-order phase space using
the time delay method (see Appendix A1 for details). The distances
between every pair of time positions in phase space are computed
and if the distance is less than the threshold, then a black dot is
plotted (i.e. an entry of one is entered at that matrix position, and
zero otherwise). The Euclidean distance metric is used to compute
the distance, though any similarity metric could be appropriate.
For an in depth discussion of the variety of qualitative features
seen for a specific threshold recurrence plot, see Appendix A1. For
observational data, and for the computation of invariant measures, it
is useful to consider the recurrence plot as a function of threshold. We
therefore introduce a colour bar representing a range of thresholds
for both KIC 950712 and Zw 229–015 displayed in the upper left-
hand panel of Figs 3 and 4, respectively (Zbilut & Webber 1992;
Webber & Zbilut 1994). The colour bar in these figures indicates
a range in threshold corresponding to a recurrence point density of
∼1 per cent (purple) up to ∼99 per cent (orange), which allows for
the inspection of the texture of the less recurrent regions of the RP.

There are multiple features of interest that can provide some insight
into the types of behaviour present in the light curves of both objects
through a qualitative, visual inspection of the RPs. Both objects have
RPs (Fig. 2) that display repetitive features vertically (or horizontally,
above the LOI) and diagonally (parallel to the LOI) and large white
bands and patches (represented by orange in the colour bars of Figs 3
and 4). Marwan et al. (2007) notes that periodic and quasi-periodic
systems have RPs with diagonally oriented, periodic, or quasi-
periodic recurrent structures, e.g. diagonal lines and ‘checkerboard
structures’, the latter of which is most obvious in the KIC 9650712
recurrence plot. In contrast, vertical structures mark time intervals
in which the state of the system evolves slowly (or not at all) and is
consequently ‘trapped’ (Marwan, Thiel & Nowaczyk 2002a); these
features are more obvious in the Zw 229–015 light curve.

Single, isolated recurrence points reflect both the observational
noise and randomness in the light curve while features that fade
with increasing distance from the LOI indicate non-stationarity, and
large white (orange) bands or patches indicate abrupt changes in
the dynamics of the system (e.g. state changes; Eckmann et al.
1987). By ‘non-stationarity’ we mean that the underlying dynamics
that produces the light curve are experiencing fluctuations or time-
invariance in the state parameters of the equations of motion,
detectable over the length of the light curve. In Fig. 2, we observe
large ‘white’ patches (regions that are only considered close for a
large threshold; or orange in the colourbars of Fig. 3 or Fig. 4),
indicating possible non-stationarity or dynamical changes in both
light curves. We also note, by comparison, the size of recurrent
structures (also called ‘texture’) in the RPs are different for these two
systems, which may indicate stronger higher frequency recurrences
or fluctuations in the Zw 229–015 light curve versus KIC 9650712.

The regions that are globally less recurrent in the un-thresholded
RP still contain similar local texture to other regions of the RP (Figs 3
and 4), though less distinct. This may indicate that though the light
curve is experiencing a variation in the parameters of the underlying
system, the nature of the dynamics driving the variability in the light
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Recurrence analysis of AGN variability 3423

Figure 2. Recurrence plots of KIC9650712 (left-hand panel) and Zwicky 229-015 (right-hand panel) at a recurrence rate (see definition in Section A2) of
30 per cent; axes are on the same time-scale for comparison (though note that the full length of the Zw 229–015 is 200 d longer). A black dot is plotted where
the difference in flux at the x and y time positions in the light curve (after embedding in phase space) is less than ε. This choice of threshold falls within a range
of appropriate values for which the recurrence analysis will probe the same dynamical behaviour (see Appendix A1).

curve do not cease. We will explore the change in recurrence statistics
in the KIC 9650712 recurrence plot in Section 3.3.3, where we find
the light curve becomes more stochastically driven in the middle of
the light curve.

Given the texture of the RPs of both objects, we expect that the
light curves contain simultaneous stochastic (or chaotic) and quasi-
periodic mechanisms, with the possibility of a dynamics transition
particularly notable in the KIC 9650712 RP. The existence of
simultaneous periodic and random components has been noted in
X-ray binaries (Voges, Atmanspacher & Scheingraber 1987; Boyd &
Smale 2004) and the preponderance of one or the other could
correlate with intrinsic black hole properties, or specific dominant
mechanisms such as a magnetic field (e.g. Suková et al. 2016; Ross,
Latter & Tehranchi 2017).

3.2 Line features: quantifying structure in the light curves

3.2.1 Diagonal lines and close returns: recovering an optical
quasi-periodic oscillation

The structures in the recurrence plot can be quantified using methods
collectively referred to as recurrence quantification analysis, or
RQA (see Appendix A2 for a discussion of the variety of RQA
measures in more detail; Webber & Zbilut 1994). A variety of
RQA measures correlate with specific dynamical invariants, such
as Lyapunov exponents (which describe the topological structure of
an attractor), dimension, determinism (regions of the time series with
high predictability), and laminarity (tendency for regions of a time
series to be time-invariant).

RQA measures can also be computed for each diagonal parallel
to the LOI of an RP, thus describing recurrences as a function of
time lag in the time series (note that this ‘time lag’ is not the same
quantity as the ‘time delay’ used in creating an embedding). We
define the ‘recurrence rate’ of an RP as the percentage of recurrent
points with respect to the total size of the recurrence matrix, which is

of particular interest when studied as a function of time delay in the
time series. That is, for those diagonal lines with distance τ (number
of time-steps or observations) from the LOI, the τ -recurrence rate is
defined as

RRτ = 1

N − τ

N−τ∑
i=1

Ri,i+τ = 1

N − τ

N−τ∑
l=1

lPτ (l), (3)

where Pτ (l) is the number of diagonal lines of length l (in time-
steps or observations) on each diagonal parallel to the LOI, offset
by a distance τ (which, when multiplied by the cadence of the light
curve, �t can be represented in units of time). Here, we do not use a
minimum line length to compute RRτ ; all recurrence points and lines
are included in the τ -based recurrence rate.

The RRτ measure can be represented by the so-called ‘close re-
turns’ histogram, H(RRτ ), which we abbreviate to H(τ ) for simplicity.
The close returns histogram was introduced in non-linear dynamics
outside the context of recurrence plots (Lathrop & Kostelich 1989;
Mindlin & Gilmore 1992; Gilmore 1993). The name comes from
the concept of trajectories in phase space returning ‘closely’ to a
previously visited region in phase space, thus representing unstable
periodic orbits (UPOs). These UPOs typically characterize the
skeleton of a chaotic attractor and are important for understanding
the predictability and periodic phases of a non-linear system (e.g.
Boyd et al. 1994; Phillipson et al. 2018). Traditionally, close returns
plots and histograms do not necessarily use an embedding, or they
use a differential embedding (derived from the numerical derivatives
of the time series). The RRτ measure refers to the recurrence rate at a
specific time delay, whereas H(RRτ ) refers to the full histogram of all
recurrence rates as a function of time delay. Thus, the close returns
histogram, H(τ ), is identical to a histogram of RRτ for every time
delay, but in this context we use a time delay embedding method for
constructing the phase space, rather than the differential embedding.
In the view of the close returns histogram, we can observe modalities
of specific periods.
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3424 R. A. Phillipson et al.

Figure 3. Top left-hand panel: The un-thresholded recurrence plot of KIC 9650712. The colour bar represents the threshold, ε, ranging from a corresponding
recurrence rate of 1 per cent to 99 per cent, represented in colour by purple (dark) to orange (light). Top right-hand panel: The close returns histogram, H(τ ) of
the RP of KIC 9650712 for a threshold corresponding to RR = 30 per cent (marked by the open black rectangle in the colourbar, corresponding to dark purple).
This threshold falls within a range of appropriate values as determined by a scaling region that exists between the recurrence rate and threshold when cast in
logarithmic space (see Appendix A1). The dashed diagonal line from the RP (left) indicates, as an example, the diagonal that was used to compute the first peak
in the close returns histogram aligned with the horizontal dashed line (right), at a time delay of τ�t = 52 ± 2 d; this period persists with a standard deviation of
9 d for the full histogram. The solid purple (dark) line represents the raw close returns histogram. The regions marked by the purple patches represent the spread
in close returns of 100 surrogates with an identical autocorrelation function (ACF) to the data – the dark (light) purple indicates more (less) than two standard
deviations away from the ensemble of ACF surrogates, identifying regions of significance in the data’s close returns. Bottom left-hand panel: The histogram of
vertical lines (each column of the RP) at a threshold corresponding to RR = 30 per cent. The peaks in the vertical lines histogram are spaced on average by 26 d,
with a standard deviation of 4 d, which is approximately the average length of a white patch or line in the standard thresholded RP (represented by the orange
patches in the un-thresholded recurrence plot above). Bottom right-hand panel: The kernel-density estimation (KDE) of the intervals between successive peaks
in the vertical lines histogram (orange), with a peak at 26 d marked by an upward triangle, and close returns histogram (purple), with a peak at 50 d marked by
an upward triangle, calculated with the PANDAS package in Python. The first and most significant time delay of τ�t = 52 d found in the close returns histogram
is also marked by an upward triangle, which we note is well aligned with the KDE.

The close returns histogram is conceptually similar to a gener-
alized autocorrelation function (ACF) but describes higher-order
correlations between the points of the trajectory in phase space as a
function of time delay, τ (Marwan et al. 2007). A critical difference

between H(τ ) and the ACF is the fact that the close returns is drawn
from the recurrence plot after embedding in a higher-order space has
occurred – that is, the recurrence peaks in H(τ ) trace the recurrences
in the topology of the underlying system, between pairs of values of
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Recurrence analysis of AGN variability 3425

Figure 4. The same as Fig. 3 but for Zw 229–015. The close returns and vertical line histograms are both computed for a threshold corresponding to 30 per cent,
marked by the open black rectangle on the colourbar of the un-thresholded recurrence plot. The average interval between peaks in the vertical lines histogram
(bottom left) is 22 d (standard deviation: 3 d). The KDE of the intervals between successive peaks in the vertical lines histogram (orange, bottom right) also has
a peak at 22 d marked by an upward triangle, and close returns histogram (purple), with a peak at 45 d marked by an upward triangle, calculated with the PANDAS

package in Python. The first and most significant time delay of τ�t = 58 ± 2 d found in the close returns histogram (upper right) is also marked by an upward
triangle; the peak separations in the close returns histogram produce a standard deviation of 17 d, indicating the instability of the long-term periods, also evident
by the deviation in the KDE.

the time series as a function of time delay. A further advantage of a
close returns representation of the data over the (linear) ACF is that
it is not an average over an entire sample or single observable but is
instead constructed to identify specific, highly correlated segments
of data within the time series (Gilmore 1993). This can also be
interpreted as the probability that a state recurs to its ε-neighbourhood
after τ steps. Indeed, any τ -based RQA measure is capable of finding
non-linear similarities in short and non-stationary time series with
high noise levels, appropriate for astronomical time series, which
surpasses the capabilities of standard ACF techniques (Webber et al.
2009).

We plot the close returns histogram against the un-thresholded RP
for KIC 9650712 and Zw 229–015 in Figs 3 and 4, respectively.
We also construct the close returns of 100 stochastic surrogates
(generated as phase-randomized samples from the light curves them-
selves) that have an identical standard ACF to the original light curve.
The stochastic-generated close returns histograms are represented by
the spread in light purple. The dark purple patches represent more
than two standard deviations away from the ensemble of the ACF
surrogates, which we can interpret as regions of significant structure
present in the light curves which is not statistically recovered in
the ACF. In other words, the fact that there are significant peaks of
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3426 R. A. Phillipson et al.

the close returns histogram for the data with respect to stochastic
surrogates which have an identical ACF demonstrates the additional
structure that the close returns histogram uncovers versus a standard
autocorrelation function.

The first peak in the close returns histogram represents the
strongest recurrent period in the light curve, derived from the
diagonal lines in the RP. The first peak is also significant, as it rises
above the ensemble of surrogate close returns above the 95 per cent
confidence level. We note that the diagonal lines are responsible
for periodic and deterministic structure in the time series. For KIC
9650712 (Fig. 3), the first peak in H(τ ) corresponds to a period of
τ�t = 52 ± 2 d, apparently consistent with the QPO detected by
Smith et al. (2018b). If we then compute the distance between each
successive peak in the close returns histogram, we find the 52 d period
persists throughout the entirety of the light curve up to many times
this fundamental time delay, with a standard deviation of 9 d. We
therefore confirm the Smith et al. (2018b) finding that KIC 9650712
contains a QPO, persisting for long-memory times in the light curve.

In contrast, the Zw 229–015 recurrence plot also contains a long-
term period of 58 ± 2 d, extracted from the first peak of the close
returns histogram (Fig. 4), but which varies broadly throughout the
light curve for large time delays, as can be seen by the flat and wide
spread and deviating peak in the kernel density estimation, or KDE,
in purple (Fig. 4, bottom right-hand panel) of the close returns peak
separations. In contrast, the KDE of KIC 9650712 close returns peak
separations in Fig. 3 is aligned with the QPO detection. We therefore
conclude that though a long-term period exists in the Zw 229–015
light curve, its period does not remain stable for multiples of this
fundamental period (i.e. for long time delays, the memory in the
time series decays rapidly, varying with a standard deviation of 17 d)
and the underlying mechanism driving the long-term quasi-periodic
fluctuations likely does not dominate the light curve or may not be
associated with a deterministic mechanism.

3.2.2 Vertical lines and recurrence periods

The vertical line structures within the RP result from the intermittent
and laminar states of the time series (Marwan et al. 2002b; Marwan
et al. 2007). The average length of a vertical line segment in an
RP quantifies the amount of time that the trajectory in a particular
state in the underlying system persists, called the ‘trapping time,’
TT (Marwan et al. 2002a). We can also interpret the trapping time
as the length of time that fluctuations in an impulse-response system
on average persist. For an accretion disc, these fluctuations originate
in the accretion flow on a local scale. Similarly, the time that the
trajectory needs to recur to the neighbourhood of a previously visited
state, or the time between successive fluctuations, corresponds to
a white vertical line in an RP (e.g. the gap between successive
states; Zou et al. 2007). For example, for periodic motion of period
T (perhaps embedded in a noisy signal), we expect a series of
uninterrupted diagonal lines separated by a distance T. The vertical
distance between successive line segments in the RP, called a ‘white’
vertical line, will have a length corresponding to T. The period T is
often referred to as the recurrence period, Trec (Gao 1999; Gao & Cai
2000), and is distinct from the dominant phase period, Tph, which
corresponds to the dominant frequency in the power spectrum of a
(possibly noisy, observational) time series (Thiel, Romano & Kurths
2003; Marwan et al. 2007).

We estimate Trec through the average white patch length of an
RP. The lower left-hand panel in Figs 3 and 4 is the sum of all
vertical line segments in the RP in each column (for a specific

threshold), including isolated recurrence points (e.g. vmin = 1).
Conceptually, this is similar to the close returns histogram, H(τ ),
but the successive peaks in recurrences correspond to trapped, time-
invariant states represented by the vertical structure rather than the
periodic recurrences represented by diagonal lines. That is, the peaks
in the vertical lines histogram directly pinpoint regions in which
we have a high frequency of vertical structure, whereas the distance
between successive peaks corresponds to the time delays between the
laminar states of the system (the average vertical distance between
recurrent patches). The kernel density estimation (KDE) of the peak
separations in both histograms is displayed in the bottom right-hand
panels of Figs 3 and 4, which is much more narrowly isolated for
the vertical structure compared to the periods extracted from the
close returns. For KIC 9650712 we find the recurrence period to
be 26 ± 4 d and for Zw 229–015 we find it to be 22 ± 3 d. We
discuss how this time-scale relates to a de-correlation time-scale
(e.g. the amount of time for two tangential segments to no longer be
correlated), as computed by structure function analysis by Kasliwal
et al. (2015a) and extracted from dynamical invariant calculations
from the RP (Thiel et al. 2003; Marwan et al. 2007) in Appendix C.

3.3 Distinguishing deterministic versus stochastic mechanisms

3.3.1 K2 entropy: a dynamical invariant measuring complexity

The most important tracer of regular behaviour, including periodic,
quasi-periodic, or deterministic behaviour, results from the existence
of long diagonal lines in the RP. The longest diagonal line length
in an RP is related to the largest Lyapunov exponent (Eckmann
et al. 1987); Lmax is in fact a good indicator of the presence of
determinism (Marwan et al. 2007). However, it is the distribution
of diagonal line lengths that is directly related to the correlation
entropy (also called the Rényi entropy of second order, K2; Faure &
Korn 1998; Thiel et al. 2003), which is defined as the lower limit
of the sum of the positive Lyapunov exponents (Ruelle 1978). The
positive Lyapunov exponents dictate the rate at which trajectories on
an attractor diverge for nearby initial conditions, and the negative
Lyapunov exponents determine the boundedness of the attractor
(Ott 2002). Chaotic systems contain a positive and finite maximal
Lyapunov exponent, λ, resulting in a K2 entropy that is finite and
positive. Perfectly periodic systems have λ = 0 (and thus entropy
is also zero), stable fixed points have λ < 0 (and thus entropy is
negative or undefined), and noise has λ = ∞, resulting in an infinite
entropy (Kantz & Schreiber 2004). Thus, the correlation entropy
can be used as a discriminating statistic for probing determinism,
periodicity, stochasticity, and chaos.

For complex systems with possible quasi-periodic signals, we
would expect a small, finite value for the entropy and for deterministic
systems, we expect the entropy to be smaller than its dynamics-free
surrogates (e.g. statistically generated time series with the same first-
and second-order variability features). The more non-linearity, chaos,
or stochasticity present in a system, the larger the value of the entropy.
When we compute the correlation entropy of observational data and
compare against the entropy calculated from the data’s surrogates,
we can identify whether dynamical behaviour exists in the data and
not in its surrogates and, if so, the nature of the dynamics (e.g.
whether it is non-linear or deterministic, or not). In the context of
light curves from AGN, the detection of dynamical behaviour that is
periodic, deterministic, or non-linear present in the light curve but
not in its surrogates, would narrow down the types of mechanisms
that generate such behaviour. For example, detection of non-linearity
underlying the light curves would rule out models that describe the
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source of variability as due to, for example, superimposed linear
processes (plus uncorrelated noise) of independent active regions in
the accretion disc (e.g. Terrell N. James 1972; Gliozzi et al. 2010).

It has been shown that an estimator for the Rényi entropy of the
second order, K2, can be obtained directly from an RP (Thiel et al.
2004) by

K2(ε, l) = 1

l�t
log

(
1

N2

N∑
t,s=1

l−1∏
m=0

Rt+m,s+m

)
, (4)

where the quantity within the natural logarithm is the cumulative
distribution of diagonal line lengths, P c

ε (l), l is the length of a diagonal
line (in number of data points) and �t is the time sampling of the
time series. In our case, hourly binning of the light curves was used.
When we regard P c

ε (l) as the probability of finding a diagonal line
of at least length l in the RP, then the K2 entropy is related by the
approximation

P c
ε (l) ∼ εD2 exp−K2(ε)l�t , (5)

where D2 is the correlation dimension of the system (Thiel et al.
2003). Thus, when we represent P c

ε (l) in a (natural) logarithmic scale
versus line length l we obtain a straight line with slope −K2(ε)�t
for large l’s, which is an estimate for the correlation entropy. The
K2 entropy as a function of thresholds, determined by a RR ranging
from 1 per cent to 99 per cent (see e.g. Asghari et al. 2004) should be
monotonically decreasing and result in a scaling region. The scaling
region over a range of thresholds provides a more rigorous estimate of
the entropy compared to other methods (e.g. Grassberger-Procaccia
method; Grassberger 1983) and also accounts for the dynamical and
observational noise in the light curves of these physical systems
(Thiel et al. 2002, 2004). The plateau (scaling region) in the slope of
the curves for large l in dependence on ε can be found particularly
for chaotic and deterministic systems (Thiel et al. 2003; Marwan
et al. 2007), and is not defined for purely stochastic systems (Thiel
et al. 2004). Thus the presence of a scaling region of the entropy with
respect to viewing size (threshold) is as important as the value of the
entropy for distinguishing between types of dynamical systems (e.g.
by the surrogate data method).

To summarize, the correlation entropy describes the number of
possible trajectories that the system can follow within l time-steps
into the future. That is, the entropy is a proxy for the ‘forecasting’
time or horizon of the time series, or how well we can reasonably
predict the future for l�t amount of time. From this perspective, for
periodic systems, where the largest Lyapunov exponent is zero, the
entropy is thus also zero, indicating only one possibility for a future
trajectory of the system. For increasing entropy, the possible paths
that can be taken into the future increases until, for pure white noise,
there are infinite possibilities due to the inherent randomness.

We note that for well-sampled data, the lines directly above
and below the LOI actually represent tangential motion about the
LOI rather than distinct orbits. It is thus best practice to exclude
this corridor entirely for the determination of dynamical invariants
including the entropy (Gao & Zheng 1994), choosing a width the
size of the Theiler window (Theiler 1986), generally comparable
to the autocorrelation time. In other words, the entropy will be
computed from line lengths that correspond to time-scales longer
than approximately 20 d (beyond the de-correlation time-scale, as
that found from the vertical lines in Figs 3 and 4).

3.3.2 K2 entropy: a comparison to stochastic surrogates

We will use the method of surrogate data (further discussed in
Appendix B; Theiler et al. 1992; Small & Tse 2003), to compare
the computation of the K2 entropy for KIC 9650712 and Zw 229–
015 against three types of surrogate data sets. Each type of surrogate
corresponds to a specific null hypothesis which we compare against
using the computation of the entropy. The rejection of a null
hypothesis indicates that the light curve is not described by that
type of noise process. The three types of surrogates are:

(i) ‘Shuffled’ surrogates, which represent temporally independent
Gaussian noise (e.g. random drawings from the flux distribution).
These surrogates preserve the flux distribution of the original data
but destroy the time ordering information (Theiler et al. 1992), and
thus represent random observations drawn from the same probability
distribution of the data.

(ii) ‘Phase’ surrogates, which represent linearly correlated Gaus-
sian noise, thereby preserving the autocorrelations (and by extension,
the PSD) of the original data, but do not maintain the same flux
distribution (Theiler & Prichard 1996), and thus contain no non-linear
determinism. These can be produced by randomizing the Fourier
phases of the light curve.

(iii) The final surrogates are generated using the ‘IAAFT’ (it-
erative amplitude adjusted Fourier transform) algorithm, which
preserve both the PSD and the flux distribution of the original data
(Schreiber & Schmitz 1996) and represent static monotonic non-
linear transformations of linear noise.

We will follow the same general approach as introduced by
Small & Tse (2003), and brought to astronomical time series by
Suková et al. (2016) and Asghari et al. (2004), to compute the K2

entropy of the data and their surrogates. Comparison to surrogates
that are specifically generated by the light curves themselves means
that systematics and noise in the light curves will also be imposed on
the surrogates. Thus, the stochastic noise in addition to characteristic
features present in the light curves will be replicated in the surrogates
that are generated. Distinguishing between the noise- and feature-
imprinted surrogates and the original light curves will enable us to
determine whether deterministic processes are significant above the
noise.

We utilize three different software packages for a variety of steps in
the analysis. These include the publicly available software package
TISEAN4 (Hegger, Kantz & Schreiber 1999; Schreiber & Schmitz
2000) for the production of surrogates; PYRQA5 (Rawald, Sips &
Marwan 2017) for the production of RPs, cumulative diagonal line
histograms, and other RQA measures; and finally the Python package
PWLF6 (continuous PieceWise Linear Fit) for the linear fitting of the
cumulative histograms. In summary, this approach is as follows:

(i) We use the procedures mutual and false nearest from
TISEAN to determine the proper time delay embedding parameters
for the construction of the recurrence plots of the light curves
(see the Appendix A1 for a discussion on embedding parameter
selection; also used for generating Figs 3–4). We note that though
the embedding parameters (time delay and embedding dimension)
are required for the production of an RP using PYRQA, the results
of the computation of the Rényi entropy are independent of these
parameters (Thiel et al. 2004).

4https://www.pks.mpg.de/∼tisean/
5https://pypi.org/project/PyRQA/
6https://pypi.org/project/pwlf/
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Figure 5. The natural logarithm of the cumulative diagonal line lengths histograms as a function of line length for KIC 9650712 (left-hand panel) and Zw
229–015 (right-hand panel). A histogram is plotted for each of the 100 thresholds with corresponding recurrence rates ranging between 1 per cent and 99 per cent.
The raw cumulative histogram is plotted in light grey data points, and the purple lines are the piece-wise linear fits of the histograms using the Python package,
PWLF. The solid vertical black line is the average position of the break between the two linear scaling regions, at 20 d for KIC 9650712 and 17 d for Zw 229–015.
The slope of each purple line above the break time-scale is used in the computation of the K2 entropy. The histograms are fit out to line lengths corresponding
to approximately 10 per cent the length of the time series (Asghari et al. 2004).

(ii) To do the calculation of the entropy, the phase space recon-
struction needs to be densely sampled in order to recover a scaling
region in the final entropy estimate. This requires a total number of
data points ranging from 10 000 to 30 000 (Eckmann & Ruelle 1992).
As such, we use the hourly sampling rate for both light curves, which
result in light curves of length 23 890 and 27 028 for KIC 9650712
and Zw 229–015, respectively. Though it is possible to compute the
entropy using less data points, the confidence of the results would
decline.

(iii) Using the TISEAN package, we produce 100 surrogates each
of the shuffled, phase and IAAFT types. The surrogate generation
algorithms are summarized in detail by Schreiber & Schmitz (2000).
Shuffled surrogates are generated through a random shuffling of the
original data. The phase surrogates are generated by randomizing the
Fourier phases of the original data, but maintaining the amplitude
of the complex conjugate pairs, and then performing an inverse
Fourier transform. The IAAFT surrogates are generated by iteratively
filtering towards the correct Fourier amplitudes and rank-ordering to
the correct distribution, in an alternating fashion (i.e. an iterated
combination of the first two algorithms).

(iv) For each of the original data of KIC 9650712 and Zw
229–015 and all of their surrogates we produce a recurrence plot
for 100 thresholds ranging from εmin to εmax, corresponding to
RR = 1 per cent to 99 per cent, using the PYRQA package. The
colourbars in Figs 3 and 4 cover the range of all thresholds used.

(v) For each of the three types of surrogates and the original
light curve of each object, we produce a cumulative distribution of
diagonal line lengths, P c

ε (l), for every threshold and use the PWLF

package to fit the linear regions in the log P c
ε (l) versus diagonal

line length l plot. Fig. 5 shows the logarithmic plot of P c
ε (l) and

associated line fits for both objects, KIC 9650712 and Zw 229–015,
for all thresholds.

(vi) With the line fits and resulting slopes of the cumulative
histograms in hand, we compute the K2 entropy as a function of
threshold, ε, for all time series. Asghari et al. (2004) determined that
the K2 entropy should be fit by three ‘clusters’, where the region
with the flattest slope represents the optimal estimate for the entropy

(recall, for deterministic and non-linear systems, there is a plateau in
the entropy for a range of neighbourhood sizes, but a plateau may not
exist if the system is linear stochastic, for example). We use the PWLF

package again to fit three regions of the K2 entropy and choose the
smallest slope region as our best estimate for the entropy for every
object and each of its surrogates. That is, we use the same threshold
range to compute K2 for all surrogates as we do for the original data,
for consistency.

(vii) We compute the significance of the K2 entropy against each
of the surrogate types as a function of ε in the following two ways.

(viii) First, we use the standard rank-order test used for most
statistical tests in the surrogate data method (see Appendix B; Theiler
et al. 1992) to compute the significance of the deviation of the entropy
of the data from each of its surrogates as a function of threshold. We
select a residual probability α of a false rejection, corresponding to
a significance (1 − α) × 100 per cent for a generated M = K/α −
1 surrogates. The probability that the data by coincidence has one
of the smallest values is exactly α. For our given 100 surrogates, a
95 per cent confidence level that the null hypothesis is rejected would
correspond to our data representing one of the five smallest values
of the entropy for a given threshold, as we expect purely stochastic
systems to have higher entropy.

(ix) Secondly, the distribution of the K2 entropy as a function
of threshold is important for distinguishing non-linearity or de-
terminism – that is, we expect the entropy to be invariant for
a range of thresholds resulting in the existence of a plateau in
Fig. 6. We therefore consider the cumulative distribution function
(CDF) of the entropy for all thresholds for the data and each of
the surrogates. The more localized the CDF and offset from the
surrogates, the more likely there is an existence of a plateau and a
distinction from surrogates. Specifically, a plateau in the entropy as
a function of threshold will directly translate to a sharp jump in the
CDF, whereas a monotonically decreasing entropy as a function of
threshold will translate to a smooth increase in the CDF. Thus, the
CDF is an alternative view of the distribution of entropy values for
all thresholds. We use the two-sample Kolmogorov–Smirnov (KS)
test (Smirnov 1939) using SCIPY to compare the CDF of the entropy
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Figure 6. The K2 entropy of KIC 9650712 as a function of threshold, ε, for the original data (larger red-filled circles) and the three surrogate types: shuffled
in orange, which is so different from the data and other surrogates that is out of the field of view of these plots; phase surrogates are in purple; and IAAFT
surrogates are in teal. The mean entropy for KIC 9650712 is 6.849 × 10−4 h−1. The inset in the plot shows the significance of the entropy calculation for the
data as a function of threshold for each of the three surrogate types: for each column (threshold), a rank-order test is computed for the data against the surrogates,
e.g. if the data (red) is one of the five smallest values including surrogates, it is significant against the surrogates at a 95 per cent confidence level. The shuffled
surrogates are highly significant, the phase surrogates peak above a 90 per cent significance for low thresholds, and the IAAFT surrogates peak at 90 per cent
significance. The left-hand panel is the cumulative distribution function (CDF) of the entropy for all thresholds for the data (red) and each of the surrogates
(orange, purple, and teal as in the right-hand panel). The CDF is the cumulative distribution of the K2 entropy for all thresholds, a view which incorporates both
the median entropy value and how localized this value is for a range of thresholds (e.g. a quantifiable indication of a plateau in the entropy, which will translate
to a sharp increase in the CDF, versus a slow increase in the CDF for the absence of a plateau). From the CDF we can determine whether the distribution of K2

entropy for the data is similar or distinct from those of the surrogates using another statistical test. For each surrogate, a two-sample Kolmogorov–Smirnov test
is performed against the data CDF: 12 surrogates total are indistinguishable from the data by the KS test at a 99.9 per cent confidence level – 7 from IAAFT
surrogates, 5 from phase surrogates, and none from the shuffled surrogates.

of the data versus each of its surrogates. The two-sample KS test is a
two-sided test for the null hypothesis that two independent samples
are drawn from the same continuous distribution. The approximate
critical value Dα to determine significance of the two-sample KS test
is given by the equation

Dα = c(α)

√
n1 + n2

n1n2
, (6)

where the coefficient c(α), the inverse of the Kolmogorov distri-
bution (Kolmogorov–Smirnov; Kolmogorov & Kolmogorov 1933),
for 99.9 per cent confidence is c(α) = 1.95 and n1 and n2 are
the respective number of data points (the slopes as a function of
threshold) for the data and each surrogate, which are equal (Smirnov
1939). We expect our data to have a significantly different distribution
from all of its surrogates – i.e. the output of the two-sample KS test
is greater than Dα – if it contains determinism or non-linearity.

The mean K2 entropy in the full threshold range is
6.849 × 10−4 h−1 for KIC 9650712 and 1.035 × 10−3 h−1 for Zw
229–015. We reiterate that the absolute value of the entropy for
each object in and of itself has little meaning without comparison
to surrogates, since we are dealing with observational systems with
inherent noise and systematics (versus theoretical dynamical systems
with well-known dimension). Thus, we can only draw conclusions
from a comparison of the entropy to different types of surrogates.
The significance against the three types of surrogates is higher for

KIC 9650712 than is for Zw 229–015. For KIC 9650712, we see the
rank-order test of the entropy as a function of threshold reveals above
90 per cent confidence level of significance against the phase and
IAAFT surrogate types for small thresholds and above a 99 per cent
confidence level against the shuffled surrogates. When performing
the two-sample KS test of the distribution of entropy against all
of the surrogate types, 12 total surrogates (none from the shuffled
surrogates) were coincidentally similar to the data out of all 300
surrogates – i.e. the difference in distributions constituted a less than
95 per cent level of significance that the null hypothesis is false for
only 12 surrogates. We conclude that the entropy for KIC 9650712
is modestly systematically lower than the surrogates, but strongly
indicates the presence of determinism. For Zw 229–015, only the
shuffled surrogates have a higher than 95 per cent confidence level of
significance for both the rank-order test and the two-sample KS
test; the phase and IAAFT surrogates never reach a 90 per cent
confidence level for low thresholds in the rank-order test, and their
distributions in entropy are not significantly different from the data
when compared via the two-sample KS test.

The results of the K2 entropy analysis include:

(i) KIC 9650712 as compared to Zw 229–015 contains more
regular (or deterministic) behaviour. This is evident in the fact that
there appears to be a plateau in the K2(ε) plot of KIC 9650712
(Fig. 6) but not in that for Zw 229–015 (Fig. 7), which is what we
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Figure 7. The same as Fig. 6. The K2 entropy of Zw 229–015 as a function of threshold, ε, for the original data (larger red-filled circles) and the three surrogate
types: shuffled in orange, which is so different from the data and other surrogates that it is out of the field of view of these plots; phase surrogates in purple; and
IAAFT surrogates in teal. The mean entropy for Zw 229–015 is 1.035 × 10−3 h−1, systematically higher than KIC 9650712. The significance of the entropy
calculation for the data as a function of threshold for each of the three surrogate types is highly significant for the shuffled surrogates, but well below 90 per cent
for both the phase and IAAFT surrogate types. There is no evidence for a plateau in the K2 entropy. When computing the two-sample KS test of the cumulative
histogram of the entropy for the data against each of the surrogates, many are indistinguishable from the data at the 99.9 per cent confidence level.

would expect from deterministic or chaotic systems, but not of linear
stochastic ones.

(ii) The rejection of the null hypothesis from the shuffled sur-
rogates for both objects is highly significant. This means we can,
possibly unsurprisingly, rule out a temporally independent Gaussian
process as a major contributor to the observed variability in both
systems. At a minimum, the variability has significant correlations
in both objects.

(iii) The null hypothesis of a linear correlated stochastic process
(from the phase surrogates) can be likely ruled out for KIC 9650712
– a Gaussian process does not give rise to the variability – but is not
significant enough for Zw 229–015. The same is true for a possibly
non-linearly rescaled linear stochastic process (from the IAAFT
surrogates, where the flux distribution is preserved in addition to
the PSD) – non-linearity in the noise response of the KIC 9650712
light curve also does not dominantly contribute to the variability. This
means KIC 9650712 either contains non-linear structure in one of
the underlying physical mechanisms, or there is significant variation
of the state parameters of the underlying system over the length of
the light curve (e.g. a possible dynamical state change). Our analysis
does not distinguish between non-linearity and non-stationarity of
this kind.

The main results of this analysis are that there appears to be
an underlying deterministic mechanism in the KIC 9650712 light
curve driving variability on time-scales beyond 20 d (based on the
comparison of the entropy to surrogate data; Fig. 6), including the
QPO (Fig. 3), with the presence of possible non-stationarity or non-
linearity in the underlying mechanism. Meanwhile, the variability of
Zw 229–015 is indistinguishable from a linear stochastic process,
when the entropy is compared to surrogate data (Fig. 7). In the
case of Zw 229–015, this means that the light curve can be well

modelled by a typical stochastic process, such as the ARMA or
CARMA(2,1) damped harmonic oscillator (Moreno et al. 2019) or
similar, in which the linear autocorrelations recover a majority of
the observed variability. In contrast, the KIC 9650712 light curve
contains simultaneous stochastic (e.g. on time-scales less than the
de-correlation time) and deterministic periodic components (e.g.
possibly associated with the QPO) and thus we should look towards
alternative models, such as non-linear oscillators, to characterize its
variability.

It must be pointed out that we chose three specific null hypotheses
for which to test the light curves of KIC 9650712 and Zw 229–015.
When we reject a null hypothesis, as we did for all surrogate types for
KIC 9650712 (though, modestly) and for just the shuffled surrogates
of Zw 229–015, we can only state that these particular hypotheses do
not represent the data for the specific discriminating statistic that we
used (the correlation entropy). Similarly, for Zw 229–015, failure to
reject a null hypothesis (e.g. the phase and IAAFT surrogates were
not rejected) does not necessarily mean that the null hypothesis is
true, only that the correlation entropy failed to be a probe of the
differences between the null hypotheses and the data. We also point
out that the usefulness of computing the entropy is reserved for
well-sampled light curves that capture many cycles of a fundamental
period (e.g. about 3 yr light curves for fundamental periods on the
order of 50 d) and densely sample the phase space. We address these
restrictions in the following section.

3.3.3 RQA: Determinism, time-scales, and transitions

We can confirm the presence of determinism by studying the
maximum length of a diagonal line in the RP of each object with
respect to each of its surrogates as a function of threshold. As
referenced in Section 3.3.1, the longest diagonal line that is present

MNRAS 497, 3418–3439 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/497/3/3418/5872495 by guest on 25 April 2024



Recurrence analysis of AGN variability 3431

Figure 8. The length of the longest diagonal line found in the RP of KIC 9650712 (left-hand panel) and Zw 229–015 (right-hand panel) as a function of
threshold, in a solid red line, against the three surrogate types (shuffled surrogates in orange, phase surrogates in purple, and IAAFT surrogates in teal). The
longest diagonal line remains significant against all surrogates for a wide range of thresholds for KIC 9650712, and for only the smallest of thresholds for Zw
229–015. If the longest diagonal line length is significant against various surrogate types, then there is a strong likelihood that the underlying dynamics are
deterministic.

in an RP is an indicator for deterministic structure, a calculation from
the RP that is computationally much faster than the K2 entropy and
thus can be used for larger samples of objects. The entropy calculation
is the most rigorous comparison to surrogates, but does require well-
sampled data (on the order of 10 000 to 30 000 data points, such
as from Kepler) in order to recover a scaling region as a function
of threshold (Eckmann & Ruelle 1992) and can be computationally
expensive.7 The usefulness of computing the entropy is thus reserved
for well-sampled and long light curves. Shorter and noisier light
curves (e.g. less than approximately 1000 observations) would not
be suitable with an entropy calculation. However, the standard
recurrence quantities derived from the recurrence plot, such as the
longest diagonal line, are proxies for the invariants of the light curve
such as the entropy. The recurrence quantities can be computed
with fewer data points, on the order of ∼1000 observations or less
(Marwan et al. 2007). In Fig. 8 we see that Lmax is significant against
all surrogates for a wide range of thresholds for KIC 9650712 (Lmax

is systematically longer), but not for Zw 229–015, when considering
the well-sampled > 20 000 data point light curves. We therefore
confirm the presence of determinism in the KIC 9650712 light curve
using a different discriminating statistic from the entropy, and do not
conclude determinism is evidenced in the Zw 229–015 light curve.
An identical calculation was performed for multiple variability states
of six XRBs by Suková et al. (2016), in which Lmax also distinguished
deterministic structure in certain variability states, and did not for
stochastic variability states.

If we want an idea of how well-sampled a light curve we need,
we can sub-sample the KIC 9650712 light curve at a daily rate,
generate the three types of surrogates, and determine the Lmax

measure again for a range of thresholds. In Fig. 9, we see that the
longest diagonal line in KIC 9650712 remains significant against the
shuffled surrogates, and only marginally significant (just outside one
standard deviation on average, and outside two standard deviations
only for the smallest thresholds) for the phase and IAAFT surrogates,
for a daily sampled light curve (totaling approximately 900 data
points). Comparing against different sampling rates of light curves

7The full process to calculate the K2 entropy and significance outlined in
Section 3.3.2 takes approximately 25 h on an Intel i7-6700K, 4.00 GHz
processor running in serial for a light curve with approximately 24 000 data
points and comparing against three types of surrogates, with 100 each.

Figure 9. The same as Fig. 8 but for daily observations of KIC 9650712
(sub-sampled from the original light curve, resulting in less than 1000 data
points). The Lmax measure remains significant against both the shuffled and
phase surrogates, but less significant against the IAAFT surrogates. We can
conclude that sampling rate of a light curve will have an impact on the
significance of RQA measures.

allows us to determine what sampling rate and signal to noise is
required in order to distinguish the dynamics in a system with
recurrence analysis. Using the surrogate data method, though noise
present in the original light curve will be imprinted on the surrogates
themselves, we may require a high enough sampling rate and time
series length in order for the recurrence properties to uncover the
dynamics (see e.g. Suková & Janiuk 2016, who compare recurrence
properties of various simulated systems with added synthetic noise).
Comparing recurrence properties such as Lmax for an ensemble of
daily-monitored AGN is the subject of a subsequent paper.

We can explore other recurrence statistics from the RPs of KIC
9650712 and Zw 229–015 related to characteristic time-scales and
indications of transitions in the dynamics. We have recovered two
characteristic time-scales from the recurrence plots of KIC 9650712
and Zw 229–015: a quasi-periodic long-term time-scale on the order
of 50 d or more from the close returns (Figs 3 and 4), and a de-
correlation time-scale from the frequency of vertical lines (also
derived from the cumulative distribution of diagonal lines, Fig. 5).
Both these time-scales are related to how often a state will recur and
the probability of the occurrence of a particular state as a function
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of time lag. The third, and shortest, time-scale that can be recovered
from recurrence analysis relates to how long a state will persist,
which can be estimated by the average length of a diagonal line, Lavg,
and the average length of a vertical line, TT, called the trapping time.

KIC 9650712 has a TT = 4.9 d and an average diagonal line
length of Lavg = 2.98 d. Zw 229–015 has a TT = 4.8 d and an
average diagonal line length of Lavg = 2.7 d. These values are for the
recurrence plot in Fig. 2. We must be careful to exclude those points
which are sometimes referred to as ‘sojourn points’ when calculating
measures based on the vertical lines. Sojourn points are those which
form vertical lines in the RP but do not represent tangential motion of
the phase space trajectory and are thus false recurrences. We estimate
the time below which we might have false recurrences in the vertical
lines from the average white vertical line length (Gao 1999), also
called the recurrence time. For both light curves, this recurrence time
is 2 d (corresponding to the recurrence plots in Fig. 2). We can exclude
spurious recurrences by setting a minimum line length (i.e. set vmin >

2 d) when computing TT (or any other vertical line based measure).
Similarly, when computing any recurrence properties based on the
diagonal lines of the recurrence plot, we must exclude recurrence
points that are correlated to one another. Just as we exclude the
corridor immediately about the LOI in the RP for computing the K2

entropy out to a delay corresponding to the de-correlation time, we
must also exclude this same corridor when computing the longest
diagonal line length and other diagonal-line based quantities (Lavg).

We note that a ∼5 d characteristic time-scale was recovered from
the Zw 229–015 Kepler light curve via power spectrum analysis
(Edelson et al. 2014) and from structure function analysis (Kasliwal
et al. 2015a), the latter of which indicates that the time-scales at this
length may be related to the average persistence time of an impulse
fluctuation in an AR-type process. Indeed, if we consider how the
average line lengths evolve over time, where we can compute Lavg

and TT in a sliding window across the entire light curve, both Lavg

and TT vary between 2 and 20 d, with shorter lines in the middle of
the light curve. Similarly, if we divide the KIC 9650712 into three
segments, compute the recurrence plot and from it the K2 entropy for
each segment separately, we find the entropy is highest (e.g. more
noise-like) in the middle of the light curve (K2 = 2.78 × 10−3 h−1)
compared to the beginning and end of the light curve (K2 =
1.56 × 10−3 h−1 and K2 = 1.72 × 10−3 h−1, respectively). The change
in length of the average lines and longest diagonal line may therefore
be quantitative measures for the change in texture in the recurrence
plot and thus an analogue for the more computationally intensive
entropy. An investigation into windowed recurrence analysis of a
set of known state-transitioning X-ray binaries with a comparison to
spectra is the subject of a subsequent paper.

4 C O N C L U S I O N S

The qualitative information that a recurrence plot can provide is in
itself useful for distinguishing a variety of time series. However,
the structure of recurrences, when quantified, not only indicates the
underlying dynamical system but it has been shown that recurrences
also contain all the information about the dynamics of a system and
constitute an alternative, and complete, description of a dynamical
system (Robinson & Thiel 2009). We determine the structure of
recurrences using the Recurrence Plot for two Active Galactic Nuclei
monitored by the Kepler satellite. We first confirm characteristic
time-scales of interest identified by other methods, which verifies the
validity of using RPs for AGN analysis. We secondly find evidence
for low-dimensional determinism in one object (KIC 9650712), and

primarily stochastic realizations of underlying processes in the other
(Zw 229–015).

In summary, we find three characteristic time-scales derived from
the recurrence plot, which we correlate to three different processes:

(i) Both objects contain a long-term time-scale of 52 ± 2 d for KIC
9650712 and 58 ± 2 d for Zwicky 229–015. In the KIC 9650712 light
curve, this period persists for many multiples of the fundamental
period and is consistent with the previously detected optical low-
frequency QPO (Smith et al. 2018b). Furthermore, the organization
of the diagonal lines in the recurrence plot, which give rise to the
∼50 d time-scale, can be quantified by the correlation entropy. When
the entropy is compared to a series of surrogate data, we see evidence
that the long-term behaviour in the KIC 9650712 light curve is
likely driven by a low-dimensional deterministic, possibly non-linear
and/or non-stationary, process. In contrast, in the Zw 229–015 light
curve, the period does not persist, but instead decays rapidly with
time, and the mechanism determining the long-term variability is
likely indistinguishable from a stochastic process.

(ii) A de-correlation time-scale of 26 ± 4 d for KIC 9650712 and
22 ± 3 d for Zw 229–015 was detected from the frequency of vertical
line structures in the RP, which corresponds to the average amount
of time between successive variability states in the light curve and
indicates the amount of time that must pass before two points in the
light curve are no longer correlated (Kasliwal et al. 2015a).

(iii) We determine the average length of a diagonal or vertical line
in the recurrence plot is ∼2–5 d for both KIC 9650712 and Zw 229–
015 and corresponds to the average length of time that a specific,
localized variability state will persist. This can be interpreted as
the average amount of time that a localized fluctuation persists in
a statistical impulse-response model, as described by autoregressive
processes (e.g. Moreno et al. 2019). Furthermore, the lengths of the
average diagonal and vertical lines in the RP as a function of time are
probes of periodic–chaos/chaos–periodic transitions, chaos–chaos
transitions, and changes in laminar states (Marwan et al. 2007).

We conclude that recurrence analysis is capable of recovering
time-scales probed by other methods, such as from the power
spectrum, autocorrelation function, structure function, or stochastic
modelling (Edelson et al. 2014; Kasliwal et al. 2015a; Smith et al.
2018a,b; Moreno et al. 2019).

Furthermore, recurrence analysis is capable of providing evidence
for the nature of the underlying processes that produce the light curve
related to these characteristic time-scales. We compute an estimate
for the dynamical invariant of the Rényi entropy of second order, K2

(also called the correlation entropy), directly from the recurrence plot
of both KIC 9650712 and Zw 229–015 and compare the results to
three types of surrogate data, each representing a different stochastic
null hypothesis, using the surrogate data method of Theiler et al.
(1992). Because the surrogate data are generated from the light curves
themselves, the inherent noise processes are also imprinted on the
surrogates. Similarly, if there are systematics in the light curve due
to the pipeline that produces it or some instrument artefact, these
features will also be imprinted on to the surrogates themselves. In
fact, the surrogate data method is specifically designed for detecting
processes distinct from noise present in the original time series.
We determine that the KIC 9650712 light curve is likely driven by a
deterministic process, with possible non-linearity or non-stationarity,
on the order of many tens of days, while the Zw 229–015 light
curve may be well-modelled by a linear, stochastic process in which
the linear autocorrelations recover the majority of the observed
variability. Though this is a case study of only two objects, we
hypothesize that the determinism in the KIC 9650712 light curve is
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related to the presence of the QPO, previously detected by Smith
et al. (2018b).

Since the development of the surrogate data method, there have
been advancements in more rigorous and sophisticated null hy-
potheses and testing procedures (e.g. as summarized by Lancaster
et al. 2018), which may be more suitable for analysing the full 21
Kepler AGN sample from Smith et al. (2018a). For example, Moreno
et al. (in preparation) finds that AGN observed by SDSS and the
CRTS could be well-modelled by two classes of CARMA processes:
one is the damped random walk, and the other is a stochastic
damped harmonic oscillator. Rejection (or failure to reject) of a
null hypothesis based on autoregressive moving average processes
would corroborate the results from Moreno et al. and possibly further
suggest two classes of the underlying physical process of the light
curve. We also point out here that when we say ‘non-stationarity’,
we refer to the time variance of the parameters of the underlying
system or of dynamical transitions over the course of the light
curve, which can be significant due to size effects. The methods
we have utilized in this paper provide evidence for non-linearity, but
we have not determined whether the source of the non-linearity is
due to non-stationarity of this kind and thus it is possible that a state
transition in the AGN light curve was captured over this time period.
A windowed recurrence plot analysis would help illuminate whether
state transitions have occurred (e.g. as discussed in Section 3.3.3).

QPOs have been uncovered in the X-ray light curves of both XRBs
and AGN; the QPO signal in KIC 9650712 represents the first optical
detection in an AGN, and its connection to X-ray variability remains
unclear. The lack of a confirmation of the rms–flux relationship
in the Kepler AGN light curves (Smith et al. 2018a), an empirical
phenomenon previously detected in the X-ray of AGN, suggests that
the propagating fluctuations model for the accretion disc may not be
a consistent model for these observations in the optical and similarly
the optical variability may not solely be due to reprocessing of the
X-ray light from the innermost accretion disc or hot corona (e.g.
there may be instabilities arising directly in the optical regions of
the accretion disc). Given the deterministic nature of KIC 9650712
and the presence of a QPO, random flaring in the accretion disc
or localized fluctuations in the accretion rate are unlikely to be the
dominant source of the variability on the order of many days in the
KIC 9650712 light curve. Instead, mechanisms capable of producing
limit-cycle behaviour and entering a non-linear regime on a global
scale must be the primary source of variability at these time-scales
for KIC 9650712. Furthermore, that the correlation entropy with
respect to stochastic surrogates is more significant for a QPO source
is consistent with the results found for six microquasars using the
same method (Suková et al. 2016). This suggests that there may be
a common accretion mechanism in both XRBs and AGN that leads
to QPO behaviour.

The detection of non-linearity alongside QPO signals has oc-
curred in XRBs and microquasars at both short-term time-scales
(e.g. seconds and sub-seconds; Suková et al. 2016) and long-term
time-scales (e.g. many days; Phillipson et al. 2018). The apparent
self-similarity across many decades of time, a hallmark of non-
linear and chaotic systems, adds support to the prospect of a non-
linear physical mechanism driving variability associated with quasi-
periodic behaviour. However, some of the processes proposed for
QPOs in XRBs would likely not be detected in AGN on the order
of many days as in this study. For example, the radiation pressure
instability would occur on the order of thousands of years or more
(Janiuk & Czerny 2011), as would precession of the accretion
disc connected to jet precession (Lu 1990) or the radiation-driven
instability (Petterson 1977; Pringle 1996; Armitage & Pringle 1997).

However, the disc precession models are typically based on the
assumption that information is transported through diffusion (Pringle
1997); if instead the propagation of a warp in the accretion disc
was transported via wave-like processes, then the speed at which
they propagate would be closer to the sound speed, corresponding
to variability times much shorter than the viscous diffusion time, a
feasible option for ∼50 d time-scales.

Another possible disc precession model is the magnetically driven
instability (Aly 1980; Lai 2003), originating from the Bardeen-
Petterson effect due to frame-dragging at the innermost edge of
the accretion disc linking the spin of the central black hole to the
magnetic field of the accretion disc (i.e. Lense-Thirring precession,
Bardeen & Petterson 1975). In this case, the optical variability and
QPOs would be intrinsically tied to, and possibly phase-shifted from,
the X-ray QPOs (Veledina, Poutanen & Ingram 2013). A multi-
wavelength study of AGN containing QPOs would be required to
confirm this scenario, especially given the unclear manifestations of
the rms–flux relationship in the optical.

Assuming the source of the QPO signals that arise in XRBs is the
same as that detected in KIC 9650712, we are still left with the puzzle
of why a QPO signal would be detected in the optical regime. Low-
frequency QPOs on the order of 0.1 to 10 Hz translate to 1–1000 d
time-scales for supermassive black holes if the process that produces
these signals scales linearly with mass of the black hole and the
emitting region corresponding the QPOs is the same. However, these
are frequencies detected in the X-ray well within 10 gravitational
radii for XRBs whereas the optical radiation from a thin disc about
an AGN is expected to arise from at least 100 gravitational radii.
Furthermore, the mode by which information is transported from
the X-ray to the optical is unknown, but would likely increase those
physical time-scales originating within 10 gravitational radii as a
function of radius. An outstanding question is therefore whether the
process that produces QPOs in different emitting regions of XRB and
AGN discs is the same and, if so, how such information is translated
between emitting regions.

We reiterate that the two-object sample in this study is clearly
not sufficient to make any claims about which of these processes
gives rise to the QPO signal in KIC 9650712 and further study
of a large sample of AGN light curves, ideally multi-wavelength,
is required. We merely hypothesize that the time-scale of the QPO
and its moderate significance as a deterministic process with possibly
non-linear origin indicates that the mechanisms producing the optical
quasi-periodicity may either be due to an inner accretion disc process
that propagates outwards (possibly distinct from the rms–flux rela-
tionship and propagating fluctuations model), or one that originates
in the optical region of the accretion disc and is transported through
wave-like processes (in order to occur on days-months periods). In
either case the driving mechanism must be capable of operating in
a non-linear regime. A sampling of the parameter space of various
recurrence quantities with respect to physical characteristics of an
ensemble of AGN and XRBs may help illuminate dependencies on
physical characteristics of the systems, such as accretion rate and
luminosity, and is the subject of a subsequent paper.
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Ivezić Ž. et al., 2019, ApJ, 873, 111
Janiuk A., Czerny B., 2011, MNRAS, 414, 2186
Kantz H., Schreiber T., 2004, Nonlinear Time Series Analysis. Cambridge

Univ. Press, Cambridge
Kasliwal V. P., Vogeley M. S., Richards G. T., 2015a, MNRAS, 451, 4328
Kasliwal V. P., Vogeley M. S., Richards G. T., Williams J., Carini M. T.,

2015b, MNRAS, 453, 2075
Kasliwal V. P., Vogeley M. S., Richards G. T., 2017, MNRAS, 470, 3027
Kato S., Fukue J., Mineshige S., ed., 1998, Black-Hole Accretion Disks.

Kyoto Univ. Press, Japan
Kelly B. C., Bechtold J., Siemiginowska A., 2009, ApJ, 698, 895
Kennel M. B., Brown R., Abarbanel H. D. I., 1992, Phys. Rev. A, 45, 3403
Kolmogorov A. N., 1933, Sulla determinazione empirica di una legge di

distribuzione. Gornale dell’ Istituto Italiano degli Attuari, 4, 83
Krolik J. H., Begelman M. C., 1988, ApJ, 329, 702
Krolik J. H., Horne K., Kallman T. R., Malkan M. A., Edelson R. A., Kriss

G. A., 1991, ApJ, 371, 541
Lai D., 2003, ApJL, 591, L119
Lancaster G., Iatsenko D., Pidde A., Ticcinelli V., Stefanovska A., 2018,

Phys. Rep., 748, 1
Lathrop D. P., Kostelich E. J., 1989, Phys. Rev. A, 40, 4028
Lightman A. P., Eardley D. M., 1974, ApJ, 187, 1
Lin D., Irwin J. A., Godet O., Webb N. A., Barret D., 2013, ApJ, 776, L6
Lu J., 1990, A&A, 229, 424
Lyubarskii Y. E., 1997, MNRAS, 292, 679
MacLeod C. L. et al., 2010, ApJ, 721, 1014
Markowitz A. et al., 2003, ApJ, 593, 96
Marwan N., Thiel M., Nowaczyk N. R., 2002a, Nonlinear Process. Geophys.,

9, 325
Marwan N., Wessel N., Meyerfeldt U., Schirdewan A., Kurths J., 2002b,

Phys. Rev. E, 66, 026702
Marwan N., Carmen Romano M., Thiel M., Kurths J., 2007, Phys. Rep., 438,

237
McHardy I., 1988, Mem. Soc. Astron. Ital., 59, 239
McHardy I. M., Papadakis I. E., Uttley P., Page M. J., Mason K. O., 2004,

MNRAS, 348, 783
McHardy I. M., Koerding E., Knigge C., Uttley P., Fender R. P., 2006, Nature,

444, 730
Mindlin G. B., Gilmore R., 1992, Phys. D, 58, 229
Misra R., Harikrishnan K. P., Mukhopadhyay B., Ambika G., Kembhavi A.

K., 2004, ApJ, 609, 313
Moreno J., Vogeley M. S., Richards G. T., Yu W., 2019, PASP, 131, 63001
Mushotzky R. F., Edelson R., Baumgartner W., Gandhi P., 2011, ApJ, 743,

L6

MNRAS 497, 3418–3439 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/497/3/3418/5872495 by guest on 25 April 2024

https://www.pks.mpg.de/~tisean
https://pypi.org/project/PyRQA
https://pypi.org/project/pwlf
http://dx.doi.org/10.1088/0067-0049/182/2/543
http://dx.doi.org/10.1038/356041a0
http://dx.doi.org/10.3847/2041-8213/ab0ec7
http://dx.doi.org/10.1086/310907
http://dx.doi.org/10.1093/mnras/stz1052
http://dx.doi.org/10.1051/0004-6361:20040390
http://dx.doi.org/10.1016/j.physa.2013.10.016
http://dx.doi.org/10.1086/170270
http://dx.doi.org/10.1103/RevModPhys.70.1
http://dx.doi.org/10.1086/181711
http://dx.doi.org/10.1088/0004-637X/732/2/121
http://dx.doi.org/10.1086/191661
http://dx.doi.org/10.1126/science.1185402
http://dx.doi.org/10.1086/421078
http://dx.doi.org/10.1086/174496
http://dx.doi.org/10.1016/0167-2789(86)90031-X
http://dx.doi.org/10.1088/0004-6256/142/4/112
http://dx.doi.org/10.1088/0004-637X/749/1/70
http://dx.doi.org/10.1086/321517
http://dx.doi.org/10.1086/305720
http://dx.doi.org/10.1016/0167-2789(92)90023-G
http://dx.doi.org/10.1209/0295-5075/4/9/004
http://dx.doi.org/10.1086/306980
http://dx.doi.org/10.1088/0004-637X/751/1/52
http://dx.doi.org/10.1088/0004-637X/766/1/16
http://dx.doi.org/10.1088/0004-637X/795/1/2
http://dx.doi.org/10.3847/2041-8213/ab3581
http://dx.doi.org/10.1016/S0167-2789(98)00177-8
http://dx.doi.org/10.1086/171870
http://dx.doi.org/10.1103/PhysRevA.33.1134
http://dx.doi.org/10.1103/PhysRevLett.83.3178
http://dx.doi.org/10.1016/S0375-9601(00)00304-2
http://dx.doi.org/10.1103/PhysRevE.49.3807
http://dx.doi.org/10.1038/nature07277
http://dx.doi.org/10.1016/0167-2681(93)90064-V
http://dx.doi.org/10.1103/RevModPhys.70.1455
http://dx.doi.org/10.1051/0004-6361/200912948
http://dx.doi.org/10.1046/j.1365-8711.2003.06241.x
http://dx.doi.org/10.1016/0375-9601(83)90753-3
http://dx.doi.org/10.1063/1.166424
http://dx.doi.org/10.3847/0004-637X/826/1/40
http://dx.doi.org/10.1162/089976601750264992
http://dx.doi.org/10.1111/j.1365-2966.2010.16614.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21907.x
http://dx.doi.org/10.3847/1538-4357/ab042c
http://dx.doi.org/10.1111/j.1365-2966.2011.18544.x
http://dx.doi.org/10.1093/mnras/stv1230
http://dx.doi.org/10.1093/mnras/stv1797
http://dx.doi.org/10.1093/mnras/stx1420
http://dx.doi.org/10.1088/0004-637X/698/1/895
http://dx.doi.org/10.1088/0004-637X/698/1/895
http://dx.doi.org/10.1086/166414
http://dx.doi.org/10.1086/169918
http://dx.doi.org/10.1086/377163
http://dx.doi.org/10.1086/169918
http://dx.doi.org/10.1086/181377
http://dx.doi.org/10.1088/2041-8205/776/1/L10
http://dx.doi.org/10.1093/mnras/292.3.679
http://dx.doi.org/10.1088/0004-637X/721/2/1014
http://dx.doi.org/10.1086/375330
http://dx.doi.org/10.5194/npg-9-325-2002
http://dx.doi.org/10.1103/PhysRevE.66.026702
http://dx.doi.org/10.1111/j.1365-2966.2004.07376.x
http://dx.doi.org/10.1038/nature05389
http://dx.doi.org/10.1016/0167-2789(92)90111-Y
http://dx.doi.org/10.1086/421005
http://dx.doi.org/10.1088/1538-3873/ab1597
http://dx.doi.org/10.1088/2041-8205/743/1/L12


Recurrence analysis of AGN variability 3435

Ott E., 2002, Chaos in Dynamical Systems, 2nd edn. Cambridge Univ. Press,
Cambridge

Petterson J. A., 1977, ApJ, 216, 827
Phillipson R. A., Boyd P. T., Smale A. P., 2018, MNRAS, 477, 5220
Pica A. J., Smith A. G., 1983, ApJ, 272, 11
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APPENDI X A : R ECURRENCE ANALYSI S: A N
OV ERVIEW

The concept of recurrent behaviour in time series was first introduced
by Poincaré (1890), with visualization of recurrences in the form of
Poincaré plots, and with return maps (Hilborn 2001). Recurrence
Plots (RPs) were introduced by Eckmann et al. (1987) as a more
general means to visualize the recurrences of trajectories embedded
in phase space within dynamical systems. RPs provide qualitative
information about the behaviour of the system of study, particularly
indications of stochastic, periodic, or chaotic behaviour. Measures
that quantify the structures present in RPs were introduced by
Webber & Zbilut (1994) and subsequently applied to various fields
including Mathematics, Geology, and Physiology (Gao & Cai 2000;
Marwan et al. 2002a; Zbilut, Zaldivar-Comenges & Strozzi 2002,
respectively) and others, where several of the quantitative measures,
particularly those based on diagonal-line features, were mathemat-
ically equated to a variety of dynamical invariants underlying the
observed time series. It is also possible to reconstruct a phase space
from 1D observations without loss of dynamical information (Sauer
et al. 1991). Recurrences that appear in phase space also contain
all the information about the dynamics of a system and constitute
an alternative, and complete, description of a dynamical system
(Robinson & Thiel 2009).

Recurrence analysis has recently been brought to astrophysics
where RPs were utilized in the study of the stability of terrestrial
planets (Asghari et al. 2004), in the distinction of chaotic and
stochastic behaviour in the X-ray variability of microquasars (Suková
et al. 2016), and in the identification of non-linearity in the 14-yr X-
ray light curve of an XRB (Phillipson et al. 2018). For an extensive
overview of the history of RPs, RQA, and their applications, see the
seminal review by Marwan et al. (2007). See also the appendices
of Suková et al. (2016) for a very similar and detailed approach to
computing the entropy and determining embedding parameters.

RPs are the graphical representation of the binary recurrence
matrix, equation (1), where a colour represents each entry of the
matrix (e.g. a black dot for unity and empty for zero). By convention,
the axes increase in time rightwards and upwards. The RP is also
symmetric about the main diagonal, called the ‘line of identity’ (LOI).
The recurrence matrix is computed after the time series is embedded
in phase space. In the following sections, we describe phase space
and approaches for determining the embedding parameters, followed
by the quantification of structure that is seen in the recurrence plot.

A1 Phase space

In order to compute the distances (often determined by the Euclidean
metric) between two positions in a time series, which make up
the entries of the recurrence matrix, we must first embed the time
series in phase space. The most commonly employed embedding is a
differential phase space, where the vectors in phase space represent
successive derivates of an observable (e.g. position versus velocity).
This type of embedding is also the most intuitive, because each
component has an obvious relationship to the differential equation
that describes the system in question, while also often having a
physical interpretation. For example, the differential phase space
embedding for a simple pendulum is the angular position versus
angular velocity, which traces out a closed curve (e.g. a circle).

For a damped or driven oscillator, the structure in differential phase
space becomes more complicated. As we increase the damping and
driving parameters, we might see ellipses in phase space that do
not close upon themselves, resulting in recurrent but not periodic
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behaviour, and possibly entering into non-linear regimes with more
complex trajectories. The relative structure of the nearly closed
trajectories in phase space are unique to specific equations of motion
and constitute a ‘topological’ perspective of the dynamics. Topolog-
ical information thus describes how a neighbourhood of points in
phase space evolves in time, and how positions in phase space are
globally organized, relative to each other (Gilmore 1998). In fact, the
way in which a neighbourhood of points is organized topologically
is invariant under transformations – topological information such
as how various trajectories are organized relative to each other
do not change through a variety of different types of embeddings
(differential, or otherwise).

Given that we are dealing with a single observable, the flux, we
must construct the phase space from the 1D light curve. Furthermore,
we do not know, or have an indication of, the dimension of
the underlying attractor that generates the light curve and so a
differential embedding is not possible. A commonly used method for
reconstruction in this scenario is via the time delay method (Whitney
1935; Takens 1981), which reproduces the topological structure
of the attractor from a single observable. The point here is that
the differential information is invariant under transformations into
higher-order spaces, even ones involving a single generic observable
(Sauer et al. 1991).

Following notation from Gilmore (1998) (and Phillipson et al.
2018), for the scalar and discrete time series, x(t), like a light curve,
we construct vectors y(t) with n components. This involves creating
an n vector by the map

x(t) → y(t) = (y1(t), y2(t), . . . , yn(t))

yj (t) = x(t − κj ), j = 1, 2, . . . , n, (A1)

where κ j are called the time delays. The time delays are typically
evenly spaced multiples of the time delay: κ j = (j − 1)κdelay. Note
that this time delay, κdelay, is a distinct quantity from the time lag
introduced in the Close Returns analysis of Section 3.2.

Note that the embedding dimension using the time delay method
does not carry physical units (much like the new vectors under PCA
do not carry the same literal meaning as the original data). We are no
longer dealing with direct differentials of the original time series,
even though the newly constructed vectors, y(t), are constructed
from flux values in the original light curve. The term ‘embedding’
by definition means that the map from the space that contains the
attractor into a reconstructed phase space is one-to-one and preserves
differential information. In particular, Sauer et al. (1991) showed
that an attractor with box-counting dimension d can be reconstructed
into a new space, Rm, via m time-delayed versions of one generic
observation, where m ≥ 2d + 1 is a requirement. For example, for
an attractor that exists in a space with box-counting dimension of
1.4, we would require an embedding dimension of at least 4 in order
to unambiguously reconstruct the topological information in a new
space, where each component of the new embedded vector consists of
values from the original time series spaced by the time delay. We also
point out that the requirement on the dimension is an inequality, and
so an even higher embedding dimension (e.g. 5 or 6) would also be
appropriate and recover the same topological information – indeed,
many dynamical invariants are indifferent towards the embedding
parameters (Thiel et al. 2004).

Recurrence plots, and other phase space based methods, reveal
the dynamical information that generates the time series, but from a
topological perspective. And since a time delay construction of phase
space is an embedding, each of the m components of the embedded
system reflect the global organization in phase space. This concept is

readily evident for a simple pendulum embedded in a differential
phase space: the points are organized in a circle, reflecting the
periodic nature of the system. Recurrences probe this cyclical kind
of global organization. An embedding of a pendulum constructed
from only the positional information will carry the same cyclical
information of the attractor, even with an embedding dimension
greater than 2. The usefulness of recurrence plots comes from this
critical concept, as topological information is a powerful and direct
discriminant of different dynamical systems.

There are a variety of approaches for determining the optimal
embedding parameters. For determining the time delay, one can use
the first minimum in the mutual information function (Fraser &
Swinney 1986; Pompe 1993). Mutual information operates similarly
to an autocorrelation function, where the extrema provide us with
information about correlations. However, mutual information also
contains non-linear correlations, and is thus ideal for determining
appropriate time delays when non-linearity might be a factor. Alter-
natively, one can use the first zero-crossing of the autocorrelation
function – the point is to ensure the values we use to construct a new
m-dimensional embedded vector are not correlated to one another.

For choosing an appropriate embedding dimension, we seek to
reconstruct the attractor such that no two trajectories cross each
other, as self-intersections would violate the rule that there are unique
solutions to the equations of motion. The false nearest-neighbours
algorithm (Kennel, Brown & Abarbanel 1992) is commonly used
to determine the embedding dimension appropriate to avoid self-
intersections. The false nearest-neighbours algorithm determines the
minimal sufficient embedding dimension, m, such that neighbouring
points in an embedded phase space represent neighbours in the fully
reconstructed attractor. In practice, when we increase the embedding
dimension, neighbouring points that then diverge from each other
when you increase the dimension are called ‘false neighbours.’
The algorithm consists of systematically increasing the embedding
dimension until we reach a minimal number of false neighbours
(theoretically when this value becomes zero; conventionally when
less than 10 per cent). The resulting dimension is the minimum
embedding dimension required to recover unambiguous topological
information according to Takens’ theorem (Takens 1981).

Using the mutual information function and the false nearest-
neighbours algorithm from the non-linear dynamics software TISEAN,
we determine a minimum embedding dimension of m = 5 is
appropriate for both objects (resulting in less than 10 per cent false
neighbours, though we could have used an even higher dimension),
and a time delay of 27 and 22 d for KIC 9650712 and Zw 229–
015, respectively (note these time delays are comparable to the de-
correlation times). Both these and other methods of determining the
embedding parameters are reviewed by Marwan et al. (2007). The
Takens’ approach for embedding a scalar time series via the time
delay method is only one approach for embedding. Other embedding
methods include performing singular value decomposition (Broom-
head & King 1986; Sauer et al. 1991), or independent component
analysis (Hyvärinen et al. 2001), which similarly transform time
series into other-dimensional spaces.

Once the embedding parameters are determined, one of the
required parameters for generating RPs is the threshold, ε, which
as a rule of thumb should not exceed the maximum phase space
diameter of the time series embedded in phase space (Zbilut &
Webber 1992), i.e. the threshold should not exceed the maximum
size of the reconstructed space.

In practice, given that the observed light curve of an astronomical
system is a superposition of a real signal and some observational
noise, a method for extracting an optimal threshold to produce a
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Figure A1. The natural logarithm of 100 thresholds corresponding to evenly
spaced recurrence rates ranging from 1 per cent to 99 per cent for the KIC
9650712 light curve. The dotted grey line represents the thresholds. The blue
line represents a piecewise linear fit of the thresholds. The red span highlights
the linear relationship that exists for thresholds corresponding to recurrence
rates between approximately 10 per cent and 70 per cent.

recurrence plot is to exploit the linear scaling relationship that exists
between the threshold value and the corresponding recurrence rate.
That is, if we produce a recurrence plot for every threshold that
corresponds to a range of recurrence rates (called an ‘un-thresholded’
recurrence plot, as in Figs 3 and 4), there will be a range of values
for which there exists a linear relationship between threshold and
recurrence rate, when cast in logarithmic space. Any threshold that
exists in the linear region of a log –log plot of threshold value versus
recurrence rate will equivalently probe the dynamics of the system
(Zbilut et al. 2002) without being dominated by noise (too small a
threshold) or false-positive recurrences (too large a threshold). The
log –log plot of threshold versus recurrence rate for KIC 9650712 is
shown in Fig. A1. A recurrence rate of 30 per cent falls in the middle
of the linear region of the log –log plot and is used for the recurrence
plots of KIC 9650712 and Zw 229–015 shown in Fig. 2. Though
small thresholds (e.g. corresponding to less than about 20 per cent
recurrence rate) are preferred for determining quantitative measures
in the RP, we use the higher recurrence rate in the figures throughout
this paper primarily to aid in pointing out the structure present in
the RP to the viewer. The significance of the Close Returns analysis
in Section 3.2 for both KIC 9650712 and Zwicky 229–015 remains
the same for thresholds sampled within the range of approximately
5 per cent recurrence rate up to 70 per cent recurrence rate. A range
of thresholds is also required for the determination of dynamical
invariants (see entropy calculation in Section 3.3).

A2 Recurrence quantification analysis and dynamical invariants

The structures in RPs have been classified via several measures of
complexity known collectively as ‘recurrence quantification anal-
ysis’, or RQA. These measures are based on the recurrence point
density, or recurrence rate, defined as

RR(ε) = 1

N2

N∑
i,j=1

Ri,j (ε), (A2)

and the diagonal and vertical line structures and their distributions
present in the RP. Here N is the length of the time series and, in

the limit N → ∞, RR(ε) is the probability that a state recurs to its
ε-neighbourhood in phase space (e.g. a time series that is a straight
line, for example, would produce a 100 per cent recurrence rate).

RQA measures link the variety of large-scale patterns to specific
behaviours of a system. For example, a Gaussian noise process
produces an RP that is dominated by uniformly distributed random,
isolated points. As a consequence, there are few uninterrupted
lines throughout the RP and we therefore expect that a distribution
based on diagonal line lengths, for example, would contain almost
exclusively only short or unit-length lines. We can quantify the extent
to which a recurrence plot is dominated by uncorrelated or weakly
correlated behaviour (e.g. none or very short diagonal lines) through
the ratio of recurrence points that form diagonal structures to all
recurrence points, called the ‘determinism’ (DET) of the system (or
predictability):

DET =
∑N

l=lmin
lP (l)∑N

l=1 lP (1)
, (A3)

where the lower limit lmin is the minimum length line to consider,
typically set to 2 (Babaei et al. 2014), and P(l) is the histogram of
diagonal line lengths (for a given threshold).

Another important quantity relates to the lengths of the diagonal
lines in the RP, whereby the longest line found, Lmax, specifically re-
lates to the exponential divergence of the phase space trajectory and,
by consequence, the largest positive Lyapunov exponent (Eckmann
et al. 1987), a quantity that characterizes an attractor in studies of
non-linear dynamics. In fact, the cumulative distribution of diagonal
line lengths present in an RP is directly related to the correlation
entropy (also known as the Rényi entropy of second order, notated
as K2; Grassberger 1983; Thiel et al. 2003), which is a measure of
the complexity and predictability of the system and can be used to
distinguish determinism from randomness (Faure & Korn 1998) and
estimate various dimensions (Grassberger 1983). A computation of
the K2 entropy is therefore useful for identifying non-linearity from
linearity and stochasticity from determinism in a light curve and
provides an estimate for the prediction horizon of the time series.

We have mentioned only a few of the RQA measures – the recur-
rence rate, RR, the determinism, DET, and the longest diagonal line,
Lmax – that are most often used in the recurrence analysis literature
(see the seminal review by Marwan et al. 2007 for detailed definitions
and applications). Diagonal lines trace recurrent behaviour in the time
series whereby a state revisits itself at a later time. There are also
measures based on the vertical lines and structures in an RP, which we
discuss in Sections 3.2.2 and 3.3.3 and apply to the KIC 9650712 and
Zw 229–015 light curves. For purely periodic dynamics we expect
the RQA measures based on vertical structures (such as the longest
vertical line, Vmax) to result in values of zero. In contrast, time series
that instead contain regions with slowly changing, or unchanging,
states will result in measurable vertical line structures in the RP. A
distribution of the vertical line lengths can give indications about
the length of time a particular state in a system will persist, or how
long it will take to revisit a previous state. The vertical lines can
provide information about fluctuations in the light curve, the rate
at which they occur and how long they persist, in addition to state
transitions (e.g. from chaos to periodicity or laminarity). For context,
fluctuations are often related to turbulent mechanisms in the accretion
disc.

Finally, the time dependence of RQA measures can be determined
by computing these measures in small windows of the RP moving
along the LOI. Windowed recurrence plots are particularly useful for
detecting non-stationarity (i.e. fluctuations in the state parameters
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of the underlying system) and state transitions in the time series
(Marwan et al. 2002a). Such transitions could provide hints as to the
dominating physical driving mechanisms underlying the light curve,
or the times of their onset. For example, when RR remains unchanged
whereas DET increases, a reorganization of the recurrent points from
isolated positions to an assembly of diagonal lines occurs, indicating
a transition from noise to periodicity or quasi-periodicity; similarly,
the ratio of laminarity (LAM, ratio of recurrence points that form
vertical structures to all recurrence points) to DET can indicate tran-
sitions between dominant localized fluctuations to global, periodic,
or otherwise regular behaviour.

Other dynamical invariants, such as the K2 entropy, based on either
the diagonal or vertical line structures in an RP include generalized
mutual information (Thiel et al. 2003), the correlation dimension, D2

(Grassberger 1983), and the point-wise dimension (Gao 1999). The
abstract concepts of dimension and entropy (relating to predictability
and complexity of a time series) provide information about the family
of differential equations that govern a particular system and give rise
to the scalar time series of the observables. Translating to astronomy:
entropy, dimension, and other invariant measures provide evidence
for the types of physical mechanisms that produce the different modes
of variability in a light curve beyond merely the time-scales at which
they occur.

A P P E N D I X B: N U M E R I C A L M E T H O D U S I N G
S U R RO G AT E DATA

Recurrence analysis becomes a powerful distinguishing probe of
various stochastic, deterministic, and non-linear features in a time
series when combined with the surrogate data method, introduced
by Theiler et al. (1992) as an alternative, data-driven hypothesis test.
In summary, a set of ‘surrogate’ data are generated that resemble
the original data set. One then tests whether the original data set
is a member of the class of dynamical systems that generate the
surrogates. The mode by which we generate the surrogate data
represents a null hypothesis for the origin of the observed structures
in the time series of interest. Once we have an ensemble of surrogate
data sets, we can then look for additional structure that is present
in the real data and not in the surrogates via a variety of statistical
tests (in our case, using recurrence properties) which will either fail
to rule out our null hypothesis as a good model for our data, or
instead indicate that higher order modes or non-linear mechanisms
are responsible for the features we observe. The number of surrogates
that we generate dictates the level of confidence in our results
(Schreiber & Schmitz 2000).

To employ the surrogate data method, one must choose an
appropriate null hypothesis for surrogate generation and an ap-
propriate test statistic. The three algorithms introduced by Theiler
et al. (1992) for surrogate generation still prominently used in
the literature are based on Monte Carlo Fourier-based re-sampling
techniques and generate surrogates that represent (i) independent and
identically distributed noise (preserving the probability distribution),
(ii) linearly filtered noise (preserving the power spectrum), and (iii)
non-linear transformations of linearly filtered noise (preserving both
the probability distribution and power spectrum). The methods of
surrogate testing were initially introduced as a ‘sanity’ check for
correlation dimension estimation (Small & Judd 1999; Small & Tse
2002; Small & Tse 2003); estimations for correlation entropy and
dimension remain a leading choice for the test statistic to distinguish
noise and determinism with the surrogate data method (Small & Judd
1998; Asghari et al. 2004; Suková et al. 2016). The test statistic must
be independent of the surrogate generation method (thus, computing

the autocorrelation function or its derivatives would not be a good
choice for the test statistic for surrogates generated via Fourier re-
sampling techniques).

In this study, we follow the same procedure introduced by Small &
Tse (2003), where we estimate the correlation entropy (K2 entropy)
directly from the recurrence plot, a computation that is a function of
viewing scale, hence K2(ε). The result is an estimate for the entropy
which is a curve, and not a single number, dependent on threshold.
The test statistic for the comparison to the surrogate data generated
will therefore be the deviation of the entropy computed by the data
with respect to the surrogates, which can be interpreted graphically
as a function of ε. We note here that the full deterministic structure
underlying the data can be seen only on length scales smaller than ε

∼ e−h, where h is the theoretical correlation entropy; above a critical
length scale (i.e. for larger thresholds), the data and surrogates look
equivalent, and if the critical ε is smaller than the noise level (e.g.
approximately 5σ of the photometric noise; Thiel et al. 2002), there
is no way to distinguish signal from noise. Thus, our estimation of
the K2 entropy will be the most valid for the smallest ε values that
rise above the noise (Kantz & Schreiber 2004).

The important distinction between the method of surrogate data
and other statistical approaches is that it follows a ‘constrained
realizations’ approach (Theiler & Prichard 1996) where we produce
simulated time series generated by the original data set itself, impos-
ing the features of interest in addition to observational and dynamical
noise on to the surrogates, rather than by fitting a statistical model
to the data. Furthermore, if we compare our real data to multiple
types of surrogate data representing an array of null hypotheses (e.g.
Small & Tse 2003; Suková et al. 2016), we can narrow down the
nature of the underlying dynamics producing the time series of our
data.

APPENDI X C : R ECOV ERI NG τ corr F RO M T H E
D I AG O NA L L I N E L E N G T H S

A characteristic time-scale can be recovered from the frequency of
vertical lines in the recurrence plot (Figs 3 and 4) that represents
the ‘recurrence period,’ or the average amount of time between
successive states in a time series. It has been shown that the same
time-scale can be recovered from the cumulative diagonal line
histogram in (natural) logarithmic space (e.g. Fig. 5) or from the
autocorrelation function of the time series (Anishchenko et al. 2003;
Thiel et al. 2003). For short line lengths, we observe a turnover of
the slope in the log P c

ε (l) plot (Fig. 5), used for the computation of
the K2 entropy. The cross-over time-scale separating the two scaling
regions within the cumulative diagonal line distributions traces the
de-correlation time-scale extracted from the autocorrelation function
(ACF) (Anishchenko et al. 2003). The rate of the ACF decay
in differential systems depends essentially on the structure of an
attractor (containing the dynamics of the system) and on the influence
of noise (Anishchenko et al. 2003). For certain non-hyperbolic
attractor types, the autocorrelations decay exponentially. From the
ACF, two time-scales can be distinguished, i.e. τ ≤ τ cor and τ >

τ cor. In the first case the exponential decay is defined by fluctuations
of the instantaneous amplitude, and in the second case it depends on
the effective diffusion coefficient of the differential system (e.g. or
for a Wiener process, the diffusion coefficient).

In the cumulative distribution of diagonal line lengths, the steeper
the slope in log P c

ε (l), the shorter the forecasting time (how far into
the future we can reasonably predict the time series), which we would
expect for the short-term fluctuations that occur for times τ ≤ τ cor,
as it is much more difficult to predict behaviour for times less than
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the recurrence period. Meanwhile, for τ > τ cor we obtain time-scales
that trace the long-term, deterministic dynamics (as also represented
by mechanisms driving unstable periodic orbits as probed by the
close returns plot) and result in the flatter slope for long line lengths
in log P c

ε (l) corresponding to the Rényi entropy of the second order,
K2 – in this region, fluctuations in the light curve are no longer
correlated to one another. Though the K2 entropy is specifically
defined in the limit of long line lengths, computing the slope for
the line lengths in the region τ ≤ τ cor can give an estimate for the
forecasting time, or predictability, at smaller horizons (though it is

not clear this region is related to any kind of dynamical invariant). The
de-correlation time separating these two regions can also be related to
the turnover time as described by an AR(1) (or DRW) process (Kasli-
wal et al. 2015a). Indeed, Kasliwal et al. (2017) found a de-correlation
time-scale of 27.5 d for Zw 229–015 (the transition in the cumula-
tive distribution of diagonal line lengths for Zw 229–015 occurs
at 22 ± 3 d).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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