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ABSTRACT
Leo T is a gas-rich dwarf located at 414 kpc (1.4Rvir) distance from the Milky Way (MW) and it is currently assumed to be on its
first approach. Here, we present an analysis of orbits calculated backwards in time for the dwarf with our new code DELOREAN,
exploring a range of systematic uncertainties, e.g. MW virial mass and accretion, M31 potential, and cosmic expansion.
We discover that orbits with tangential velocities in the Galactic standard-of-rest frame lower than |�uGSR

t | ≤ 63+47
−39 km s−1

result in backsplash solutions, i.e. orbits that entered and left the MW dark matter halo in the past, and that velocities above
|�uGSR

t | ≥ 21+33
−21 km s−1 result in wide-orbit backsplash solutions with a minimum pericentre range of Dmin ≥ 38+26

−16 kpc, which
would allow this satellite to survive gas stripping and tidal disruption. Moreover, new proper motion estimates overlap with
our orbital solution regions. We applied our method to other distant MW satellites, finding a range of gas stripped backsplash
solutions for the gasless Cetus and Eridanus II, providing a possible explanation for their lack of cold gas, while only first infall
solutions are found for the H I-rich Phoenix I. We also find that the cosmic expansion can delay their first pericentre passage when
compared to the non-expanding scenario. This study explores the provenance of these distant dwarfs and provides constraints
on the environmental and internal processes that shaped their evolution and current properties.
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1 IN T RO D U C T I O N

The transient H I gas-rich dwarf galaxy Leo T, discovered by Irwin
et al. (2007), is currently in the outskirts of the Milky Way (MW),
at D� = 409+29

−27 kpc from the Sun (Clementini et al. 2012) with a
Galactic standard-of-rest (GSR) line-of-sight (LOS) stellar velocity
of vGSR

los,� = − 65.9 ± 2.0 km s−1 [Simon & Geha 2007; recalculated
for the MW Galactocentric coordinates (GCs) adopted in this work].
Adams & Oosterloo (2018) (hereafter AO18) performed deep H I

observations of Leo T that show with exquisite detail its gas density
and kinematic properties (see Fig. 1), which present features that
suggest an ongoing interaction with the MW gaseous halo through
ram-pressure stripping. This makes Leo T not only an ideal laboratory
to study the formation and evolution of dwarfs (Read, Agertz &
Collins 2016), but also a probe to study the properties of the hot
halo of the MW, which is the environment where these dwarfs live
(Grcevich & Putman 2009; Gatto et al. 2013; Belokurov et al. 2017).

An observed property of dwarfs in the MW and M31 is that,
excluding the Magellanic Cloud satellites, most satellites located
within the MW’s virial radius (Rvir = 282 ± 30 kpc for a virial mass
of Mvir = 1.3 ± 0.3 × 1012 M�; Bland-Hawthorn & Gerhard 2016,
hereafter BG16) show very little or no neutral gas, while most of the
dwarfs located beyond the host’s virial radius show gas-to-stellar-
light ratios larger than 1 (Blitz & Robishaw 2000; McConnachie

� E-mail: mblana@mpe.mpg.de

2012; Spekkens et al. 2014), with some interesting exceptions such as
Cetus I and Tucana. The gas loss in dwarfs would be a natural result
of environmental interactions with the host galaxy through ram-
pressure stripping, tidal disruption, and ultraviolet (UV) background
gas evaporation (Mori & Burkert 2000; Sawala, Scannapieco &
White 2012; Simpson et al. 2018; Buck et al. 2019; Hausammann,
Revaz & Jablonka 2019), as well as internal effects, such as stellar
feedback (Read et al. 2016).

An important prediction from cosmological galaxy simulations is
the existence of two types of populations of satellites located near
the virial radius of a host galaxy at redshift zero: field satellites that
are currently falling for the first time into the halo of the host, and
another population of satellites that are currently on their second
infall, called ‘backsplash’ or ‘fly-by’ satellites, which are found in
a Local Group (LG) context (Teyssier, Johnston & Kuhlen 2012;
Garrison-Kimmel et al. 2017) and in galaxy groups and clusters
(Gill et al. 2005; Lotz et al. 2019; Haggar et al. 2020; Diemer
2020). The backsplash population can represent an important fraction
between 30 and 50 per cent of the satellites located between one and
two times the virial radius at redshift zero (Rodriguez Wimberly
et al. 2018; Simpson et al. 2018; Buck et al. 2019). Among the
backsplash population, they find gas-rich satellites, as well as gas-
poor satellites, which would depend on internal processes and also
on the amount of gas stripping that the satellite endured during
its orbital path. And, more importantly, Buck et al. (2019) show
that the backsplash population and the first infall population can
have similar gas fractions; however, their baryon-to-dark matter
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Figure 1. H I observations from AO18 performed with the Westerbork
Synthesis Radio Telescope. The optical or stellar centre is at the origin of the
axes in pc units and is marked in both the panels by a large cross. Top panel:
column density map and iso-contours between 1019 and 4.2 × 1020 cm−3

logarithmically spaced every 0.1 dex. The small cross marks the H I density
peak location. The beaming size is marked with the white ellipse (bottom
left). Bottom panel: column density iso-contours and H I LOS velocity map
where we subtracted the stellar systemic velocity v�

los,�.

fractions can be quite different, as the former could have lost up
to 50 per cent of their initial dark matter masses due to tidal stripping
(see also van den Bosch et al. 2018). This makes determining the
orbital history of the satellites extremely important to understand the
main drivers of their evolution (Hausammann et al. 2019; Tonnesen

2019), and to use them as probes of the gaseous halo of the MW.
Furthermore, from cosmological MW-type simulations presented in
Teyssier et al. (2012), Simpson et al. (2018), and Buck et al. (2019)
are predicted the likelihoods of MW satellites being a backsplash
system depending on their distances and LOS velocities with respect
to the host galaxy, finding, for example, for Leo T a likelihood of 50–
70 per cent. Interesting as well is that Leo T is located near the first
caustic or splashback radius of MW-type cosmological simulated
galaxies (Deason et al. 2020), (see also Diemer et al 2017a,b).
However, cosmological galaxy simulations provide only statistical
comparisons of properties and evolution histories of dwarfs and their
hosts, while here we use observations of dwarfs to calculate different
orbits, exploring the parameter space of several uncertainties, such
as the MW virial mass and more.

In this paper, we investigate the possible origin of Leo T by
studying backsplash orbital solutions as well as the first infall
solutions. For this, we develop a new method and a software called
DELOREAN to calculate orbits backwards in time considering a range
of scenarios. We also apply our new code to study the orbits of the
dwarfs Cetus, Phoenix I, and Eridanus II. The paper is ordered as
follows: In Section 2, we detail the main properties and observations
of Leo T. In Section 3, we explain our new software to set up and
calculate the orbits, and the method to analyse them. The results are
presented and discussed in Section 4, and concluded in Section 5.

2 LEO T O BSERVATI ONS AND PROPERTIES

We present the main properties of Leo T in Table 1. Leo T is a
gas-rich dwarf located at 1.45Rvir distance from the Galactic Centre,
located at D� = 409 kpc (Clementini et al. 2012). de Jong et al.
(2008) estimate that Leo T possesses an old stellar population with a
V-band luminosity of LV = 8.9 × 104 L� within five half-light radii
and also a younger population of stars (between ∼200 Myr and
1 Gyr in age) with LV = 5.1 × 104 L�. They estimate a combined
luminosity of LV = 1.4 × 105 L�, with the younger stars contributing
approximately 10 per cent of the total stellar mass. Weisz et al.
(2012) find a stellar mass of 105 M� within one half-light radius.
The younger population is evidence that Leo T can still form
stars, although there is no strong evidence of molecular gas so far
(AO18). This is consistent with star formation history studies that
show a small and fluctuating star formation rate with an average of
∼10−5 M� yr−1, with two peaks of high rates at 1–2 and 7–9 Gyr ago
(Clementini et al. 2012; Weisz et al. 2012).

The systemic GSR stellar velocity of Leo T is v�
los,� = − 65.9 ±

2.0 km s−1. The stellar proper motion μα∗ , μδ of this dwarf is
unknown. Taking a zero tangential velocity in the GSR frame
(�uGSR

t = 0 km s−1) transforms into the proper motion values of
μ◦

α∗ = − 0.0150 mas yr−1 and μ◦
δ = − 0.1153 mas yr−1, which is

just the proper motion in the direction of Leo T due to the motion of
the Sun relative to the Galactic Centre. The stellar and gas kinematics
indicate that this dwarf is dark matter dominated, as determined by
LOS velocity dispersions between 7 and 8 km s−1 (Table 1), implying
a dynamical mass within 400 pc of 106–107 M� (Simon & Geha
2007; Ryan-Weber et al. 2008; Faerman, Sternberg & McKee 2013;
Adams & Oosterloo 2018; Patra 2018), with a circular velocity Vc be-
tween 7 and 14 km s−1, similar to other dwarfs (McConnachie 2012).

Leo T has a relatively massive H I reservoir (Ryan-Weber et al.
2008; Grcevich & Putman 2009; Faerman et al. 2013; AO18) with
an estimated H I mass of 3.8 × 105 M�, which is 5 per cent lower
than the original value reported in AO18 (4.1 × 105 M�), because
we have re-scaled the observations to the latest distance estimate
of 409 kpc, instead of the 420 kpc used in the original publication.
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Table 1. Main properties of Leo T.

RA 09h34m53s.4 a

Dec. +17o03
′
05

′′ a

D� 409+29
−27 kpc b

DGC 414+29
−27 kpc c

v�
los,� 38.1 ± 2.0 km s−1 d

vGSR
los,� −65.9 ± 2.0 km s−1 e, c, d

μ◦
α∗

(�uGSR
t = 0 km s−1

) −0.0150 mas yr−1 e, c

μ◦
δ

(�uGSR
t = 0 km s−1

) −0.1153 mas yr−1 e, c

XGC, YGC, ZGC (−250,−169, 283) kpc c

V GC
X , V GC

Y , V GC
Z (39.1, 27.2,−45.5) km s−1 e, c

MV −8.0 mag f

LV 1.41 ± ×105 L� f

RV
h 73 ± 8 arcsec (145 ± 15 pc) f

M�
half 1.05+0.27

−0.23 × 105 M� g

σ los, � 7.5 ± 1.6 km s−1 d

M
dyn
half 7.6 ± 3.3 × 106 M� c, d

MH I 3.8 ± 0.4 × 105 M� h, c

RH I 106 ± 10 arcsec (210 ± 20 pc) c

MH I
Pl 4.1 ± 0.4 × 105 M� c

�H I
Pl 3.48 ± 0.33 × 106 M� kpc−2 c

NH I
Pl 4.34 ± 0.45 × 1020 cm−2 c

ρH I
Pl 1.35 ± 0.13 × 107 M� kpc−3 c

nH I
Pl 0.54 ± 0.05 cm−3 c

Mgas 5.2 ± 0.5 × 105 M� h, c

M
gas
Pl 5.5 ± 0.5 × 105 M� c

�
gas
Pl 4.64 ± 0.45 × 106 M� kpc−2 c

ρ
gas
Pl 1.79 ± 0.17 × 107 M� kpc−3 c

R
gas
Pl 97.81 ± 0.03 arcsec (193.94 ± 0.06 pc) c

r
gas
3D-half, Pl 130.41 ± 0.04 arcsec (258.59 ± 0.08 pc) c

v�
los,gas 39.6 ± 0.1 km s−1 h

vGSR
los,gas −64.4 ± 0.1 km s−1 h, c

Variables and symbols are explained in the main text. aIrwin et al. (2007).
bClementini et al. (2012). ccalculated in this publication or re-calculated from
estimations in the literature that are re-scaled to a heliocentric distance of Leo T
of 409 kpc, using a conversion from heliocentric to GC or GSR coordinates with
the solar values presented in Section 3.1. dSimon & Geha (2007). eValues when
the GSR tangential velocity is assumed to be zero (|�uGSR

t | = 0 km s−1). fde Jong
et al. (2008). gWeisz et al. (2012). hAdams & Oosterloo (2018).

Taking a helium-to-hydrogen gas mass ratio of 0.33, we obtain a
gas mass of Mgas = 5.2 ± 0.5 × 105 M�, which does not include
the ionized gas that could be surrounding the dwarf. This results
in an H I-mass-to-stellar-light ratio of MH I/LV = 2.7 M� L−1

� and a
gas-mass-to-stellar-light ratio of Mgas/LV = 3.6 M� L−1

� . Assuming
a stellar-mass-to-light ratio of 2 M� L−1

� would give us a gas-mass-
to-stellar-mass ratio of MH I/M� ∼ 1.3.

To estimate the central density and surface density, we calculate
the surface density profile fitting the H I map of AO18 with ELLIPSE

(Jedrzejewski 1987), shown in Fig. 2, and fitted a Plummer function
to obtain the central gas density and the Plummer radius of the
gas (Table 1), which we use in Section 3.3 to calculate the thermal
pressure. We also interpolate the H I profile of the observations to
calculate RH I, the radius where �H I (RH I) = 1 M� pc−2 = 1.248 ×
1020 cm−2 (Broeils & Rhee 1997; Wang et al. 2016), with errors
estimated from the 10 per cent uncertainties in the H I mass.

The H I distribution in Leo T also reveals a very interesting
morphology. The observations of AO18 in Fig. 1, performed with
the Westerbork Synthesis Radio Telescope (WSRT), reveal exquisite

Figure 2. Azimuthally averaged H I surface mass profile as a function of the
ellipse major axis of ellipses fitted to the H I observations (AO18) (green dots)
and the Plummer fit (red curve), with the fit parameters shown in Table 1.

details in the H I density and kinematics. We list some features
reported by AO18 below:

(i) The central gas iso-contours are systematically more com-
pressed towards the southern side, with a compressed edge to the
west as well, showing a trapezoidal flattened shape. This could be
produced by a bow shock as the dwarf moves through the MW
hot halo, producing the observed flattening that would be then
perpendicular to the direction of motion of the dwarf. Under this
assumption, we measure the orientation of this flattening by fitting
ellipses and finding the position angle of the minor axis of the ellipse
at PAflat =−21◦, which we can use later to constrain the orientation
of the orbits on the sky.

(ii) The H I velocity map shows a gradient from south to north
of about ∼16 km s−1 kpc−1, reaching up to +5 km s−1 from the
systemic velocity in the northern part, which would be then lag-
ging behind. This is comparable to the circular velocity value
Vc (0.25 kpc) ≈ 13 km s−1.

(iii) The high H I surface density peak is shifted in projection
83 pc (42 arcsec) south from the optical centre, at RA = 143.722◦

and Dec = 17.0394◦. Ryan-Weber et al. (2008) report a similar
offset of 40 arcsec with the Giant Meterwave Radio Telescope and
also previous WSRT measurements. Furthermore, the deeper WSRT
observations of AO18 report that the global H I distribution is indeed
centred near the stellar centre and that only the inner region is shifted
south. A similar offset has been observed in the dwarf Phoenix I as
well. If this offset is related to the interaction between this dwarf and
the MW corona, we could use its orientation to constrain its motion
on the sky. We find that the line connecting the optical centre with
the H I density peak is at a position angle of PAoffset =3◦.

(iv) Finally, there is an unreported faint tail of H I material
collected in clumps of different sizes extending to the north from
the optical centre, at approximately PAtail =−10◦ ± 10◦. While the
tail substructure is at the limit of detection, considering the additional
H I features that have a similar alignment in PA builds a convincing
scenario of a hydrodynamical interaction between Leo T and the
MW corona, where the origin of the tail could be the dwarf’s gas
being stripped and that is trailing the dwarf. We will further explore
this with full hydrodynamical simulations in a future publication.

We decide to use the stellar (optical) centre and the stellar systemic
LOS velocity of Leo T (v�

los,�) as our orbital initial conditions,
given that the kinematics of the gas shows perturbations, such as
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an H I velocity gradient and the offset between the stars and the gas.
Furthermore, given that Leo T is dark matter dominated, the stellar
kinematics should remain almost unaffected by the gravitational
force of the perturbed gas density arising from the ram pressure.
Moreover, we note that the H I systemic velocity is only 1.5 km s−1

slower than the stellar one.

3 ME T H O D

In this paper, we want to find constraints for the current tangential
velocity of Leo T by calculating different orbits backwards in time
and estimating for what values of the tangential velocity the orbit
would have experienced a gas stripping from the MW weak enough
to allow the satellite to keep its gas, and for which velocities the
gas would have been completely removed. We also estimate for
what values of the tangential velocity we can find orbits that would
have entered the dark halo of the MW in the past. In the following
section, we explain our new orbital integrator code, and the set-up to
explore the space of free parameters such as tangential velocities
with different directions and magnitudes, and the scenarios that
explore different gravitational potentials, dynamical friction effects,
and effects due to the cosmic expansion.

3.1 Orbit integrator code

To perform the orbital exploration forward or backwards in time
for the dwarfs or objects, we developed an orbit integrator code in
PYTHON called Dwarfs and clustErs orbitaL integratOR codE and
ANalysis or more simply DELOREAN,1 which has three modules.

The first module converts the Heliocentric coordinates of the
dwarfs (or object) to GSR coordinates and Cartesian GCs using
ASTROPY routines (The Astropy Collaboration 2013, 2018), where
we use a solar distance to the Galactic Centre of R0 = 8.2 kpc, a solar
height above the galactic disc of z0 = 25 pc, and a GC solar motion
of �vGC

� = (11 ± 1, 248 ± 3, 7.3 ± 0.5) km s−1 (BG16). The code has
the option to explore heliocentric proper motion values pre-defined
by the user, or it can construct the vector �uGSR

t , which is the velocity
vector in the GSR frame at the current position of the object that is
tangential to the LOS velocity, following a prescription explained in
Appendix A. We explore different directions of �uGSR

t and magnitudes
|�uGSR

t |. For Leo T, we explore 36 different directions of the tangential
velocity �uGSR

t (every �PA = 10◦) and we add two more directions in
the grid (see Section 4.1.4). We sample the magnitude (|�uGSR

t |) from
0 to 10 km s−1 every 0.5 km s−1, then from 12 to 180 km s−1 every
2 km s−1, from 180 to 300 km s−1 every 10 km s−1, and finally from
300 to 350 km s−1 every 50 km s−1, exploring then in total a grid with
4218 values of �uGSR

t .
In the second module, the code uses a leap-frog scheme to integrate

the orbits backward or forward in time, with an option for variable
time-step (�t), where we use this to calculate the orbits 12 Gyr
backwards in time. For efficiency, we use as default in our set-
up a time-step of �t = 1 Myr, testing the accuracy of the orbit
calculation with �t = 0.1 Myr and with a variable time-step scheme.
It has options to use a drift-kick-drift or kick-drift-kick scheme. The
orbits are calculated as test particles moving within a set-up of a
combination of gravitational potentials that are available in the code.
Each set-up or scenario of potentials is defined here as a case, which
is specified in Section 3.2. For the cases that simultaneously include
the potentials of the MW and M31, the code pre-computes M31 and

1Soon available at http://matiasblana.github.io.

Table 2. Set-up of main parameters for all cases.

MW Mvir(×1012 M�) Rvir (kpc) c

cases 1.3 288 8.6
subcases a 1.0 264 8.4
subcases b 1.6 308 8.8

cases MW potential M31? Cosmo?

1 static no no
2 evolving no no
3 static yes no
4 evolving yes no
5 static no no
cos3 static yes yes
cos4 evolving yes yes

Notes. By static or evolving MW potential, we mean that the MW parameters
Mvir, Rvir, and c are constant in time (static) or evolve with redshift. M31?:
informs if the orbits of M31 and the MW were pre-computed and their orbits
and potentials included in the orbital calculation of the satellite. Cosmo?:
informs if the orbits were calculated using the cosmological equations of
motion (Section 3.1).

MW orbiting each other in a two-body scheme, to then compute
the orbits of the dwarfs as test particles moving in the also moving
and joint potentials of MW and M31 (see case 3 in Section 3.2).
Furthermore, our code DELOREAN can also integrate orbits backward
or forward in time in an expanding Universe (or contracting if it is
time reversed), which is further explained in Appendix A.

In the third module, the code has routines to calculate dynamical
and hydrodynamical quantities analytically after the orbit calcula-
tions are finished. We determine the tidal radius as a function of time
as

Rtidal(D, t) = D(t)

(
mSat

3Mhost(D, t)

)1/3

, (1)

where mSat is the satellite’s virial mass, D(t) is the distance between
the host galaxy (MW) and the satellite as a function of time during
the orbit (comoving coordinates in case a cosmological scheme is
chosen), and Mhost(D, t) is the mass of the host (MW) enclosed
within D(t). This module also calculates the analytical ram-pressure-
stripping force and other hydrodynamical quantities measured for
each orbit, which are explained in Section 3.3.

3.2 Set-ups for the gravitational potentials

In order to quantify the orbital variations due to uncertainties in the
gravitational potential, we consider in total 13 cases or set-ups for
our modelling. These cases consider extreme scenarios, including,
for example, a constant virial mass that implies an instantaneous
mass accretion at high redshift, and other scenarios with a redshift-
dependent MW mass accretion rate according to extended Press–
Schechter models. We included more variations by changing the final
MW virial mass and concentration, the influence of the Andromeda
galaxy, the dynamical friction, and the cosmic expansion. We
summarize the main properties of these cases in Table 2. The details
of each case are the following:

(i) Cases 1, 1a, and 1b: Here we consider a static MW potential
with a Navarro-Frenk-White (NFW) dark matter halo with a virial
mass of Mvir = 1.3 ± 0.3 × 1012 M� (BG16). We note that this virial
mass estimation includes the mass contribution from all the satellites
living within the halo. We use a constant virial radius of Rvir =
288 kpc estimated from Mvir for redshift zero (z = 0), calculated as in
Mo, van den Bosch & White (2010) with the virial radius in physical
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units defined as

rvir =
(

Mvir(z)

4/3 πρcrit(z) 
m(z) �vir(z)

)1/3

, (2)

where the cosmological parameters ρcrit, 
m, and �vir are, respec-
tively, the critical density, the matter-to-critical density ratio, and
the spherical collapse overdensity criterion �vir ≈ (8π2 + 82ε −
39ε2)(ε + 1)−1 with ε = 
m − 1. The comoving virial radius is
then Rvir = rvir/a(z). The concentration parameter is c = 8.6, which
is obtained from the halo concentration–mass relation from Correa
et al. (2015a). We include a Plummer potential for the inner spheroid
component with a mass of Ms = 5 × 109 M� (Bovy 2015) and a
scale length of 0.3 kpc, and a Miyamoto–Nagai disc potential with
a mass of Mdisc = 5.5 × 1010 M� that encompasses the stellar and
gaseous disc masses (BG16), with a scale length of 2.5 kpc and a
scale height of 0.3 kpc. In cases 1a and 1b (and in all the following
cases with subcases a and b), we explore the uncertainties in Mvir, c,
and Rvir, using 1.0 × 1012 M�, 8.8, and 264 kpc for subcases (a), and
1.6 × 1012 M�, 8.4, and 308 kpc for subcases (b).

(ii) Cases 2, 2a, and 2b: We explore a time-varying MW potential,
where the halo is accreting mass as a function of redshift. For this,
we use the software COMMAH that provides solutions to the semi-
analytical extended Press–Schechter formalism (Press & Schechter
1974; Bond et al. 1991) and the halo mass accretion history models
fitted to cosmological simulations to estimate evolution of the halo
properties as a function of redshift (z) (Correa et al. 2015a, b, c).
We use the values of the set-up of case 1 for the current (z = 0)
virial mass, radius, and concentration parameter to calculate the
variation of these parameters as a function of redshift (z): c(z),
Mvir(z), and Rvir(z), as shown in Fig. A1. For the disc and spheroid
components, we assume that their masses (Mcomp) change with
redshift (or lookback time) in the same proportion as the halo, i.e.
Mcomp(z) = Mcomp(0) Mhalo(z)/Mhalo(0).

(iii) Cases 3, 3a, and 3b: We explore the influence of the gravita-
tional potential of Andromeda (M31) on the orbits of the satellite,
as it orbits the MW. For this, we set up the MW as in case 1 and
we set a NFW potential for M31 and pre-compute the orbits 12 Gyr
backwards in time for MW and M31 orbiting each other. The virial
mass of M31 is usually assumed to be larger than that of the MW;
however, the low abundance of tracers at large radii of up to 500 kpc
results in substantial uncertainties in the measurement of Mvir, with
values in the literature of Mvir = 1.6 ± 0.6 × 1012 M� (Watkins,
Evans & An 2010) or Mvir = (0.8–1.1) × 1012 M� (Tamm et al.
2012). Here we use the upper value of Tamm et al. (2012), choosing
Mvir = 1.1 × 1012 M� and Rvir = 266.3 kpc, which still remains
within other estimates in the literature. We show in Section 4.1
that, while the potential of M31 has an impact on the MW satellite
orbits, the virial mass of the MW is what more strongly dominates
the orbital properties at first order. For the pre-computation of
the orbits of the MW and M31, we use constant virial masses
and radii, as M31 and the MW are far enough that both systems
are attracted by the whole regions that later assemble each in the
MW and M31. For the orbit of M31, we use the heliocentric LOS
velocity of v

M31,�
los = −301 ± 1 km s−1 (Courteau & van den Bergh

1999) and the proper motions μM31
α∗ = 64 ± 18 × 10−3 mas yr−1 and

μM31
δ = −57 ± 15 × 10−3 mas yr−1 (van der Marel et al. 2018).

Then, we calculate the orbits of the satellite in the moving potentials
of the MW and M31. We also test MW–M31 orbits with different
tangential velocities for M31 (including zero tangential velocity),
finding small differences in the orbits of Leo T.

(iv) Case 4, 4a, and 4b: We compute the orbits of the satellite
in the MW–M31 moving potentials, but where the MW potential is

also changing with redshift due to the mass accretion as case 2. As
with the previous case, for the pre-computation of the orbits of the
MW and M31, we use a constant MW virial mass, as M31 is far
enough that it is attracted by the whole region that later assembles
the MW. Case 4 corresponds to our fiducial scenario, as this includes
the effects of the most relevant quantities.

(v) Case 5: We set up a scenario as case 1, but where we
include a deceleration term due to the dynamical friction, using the
Chandrasekhar approximation (equation 8.6 in Binney & Tremaine
2008). We note that this term accelerates an object if the orbit is
calculated backwards in time. Case 5c: As in case 5, but we set up a
scenario with an accreting MW as in case 2. We also test the friction
effect using full N-body simulations (see Section 4.3).

(vi) Cases cos3 and cos4: We explore the effects of the cosmic
expansion in the calculation of the orbits of the dwarfs for cases 3
and 4 (see Section 4.2).

While currently we do not include major merger events in the
modelling, we expect that our wide range of MW mass models
and their time dependence can reflect the impact of these merger
events. The satellite orbits that we explore here go to large distances,
spending most of their time near their apocentres, at around 1Rvir

and 2.6Rvir, and therefore their orbits are mostly affected by the
MW total mass. Accretion events such as Sagittarius (Fellhauer
et al. 2006; Niederste-Ostholt et al. 2010; Ruiz-Lara et al. 2020)
and Sausage/Enceladus (Belokurov et al. 2018; Deason et al. 2018;
Haywood et al. 2018; Helmi et al. 2018) have progenitors with
estimated masses between 0.1 and 10 per cent of the MW virial
mass, and we explored variations of radial mass profiles larger
than this. For example, for the extreme cases, case 1b has a static
MW mass model with a constant dynamical mass within 20 kpc of
M(R < 20 kpc) = 15.3 × 1010 M�, while the mass accreting MW
case 2a has a lower mass of 7.0 × 1010 M� at T = −8 Gyr, at the
time of the closest pericentre passages of radial satellite orbits (see
4.1), and even lower at −10 Gyr with 4.7 × 1010 M�.

Despite the large mass variations in the centre, we find that the
main orbital constraints do not have extreme changes depending on
the case (4.1). Therefore, we expect that merger events in the MW
centre will vary the main orbital constraints within our range of result.
There is, however, a probability that these satellites might have had
a close interaction with a merger event at early times, but it would
be unlikely given that these long distance orbits have fast pericentre
passages, spending there only ∼ 400 Myr. Moreover, despite all
of this, even if such a close interaction actually occurred, it would
have likely transpired in the central region of the MW, and given
the advantage in our method where the orbits of the satellites are
calculated backwards in time, they would still be correct until this
event in the past.

3.3 Gas stripping estimation

We estimate the ram pressure experienced by the satellite for each
orbit using the analytical estimators from Mori & Burkert (2000).
They find that a gas-rich satellite galaxy that moves through the
medium of its host galaxy will lose its gas if the ram pressure (PR)
that the satellite experiences by the environment of the host becomes
larger than the thermal pressure that allows the dwarf to retain its gas
(PT); i.e. if the satellite is ram-pressure stripped by the host, we will
have PR/PT > 1. The ram pressure is then given by

PR = ρmedium
gas V 2, (3)
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3606 M. Blaña et al.

Figure 3. Analytical MW gas mass density and hydrogen number density
profiles. The hot gas halo density models are marked with dashed curves, and
the gaseous disc density models in the plane (z = 0 kpc) with solid curves.
We show the set-up (i) with yellow curves, i.e. the MW hot halo beta model
(Salem et al. 2015) and the gaseous disc (Kalberla & Kerp 2009), and the
set-up (ii) (time-varying hot halo density and cold gas disc) at two times:
−7.5 Gyr (dark violet) and −10 Gyr (light violet). For comparison, we show
a hot halo model from Miller & Bregman (2015) in green. The vertical dotted
line marks the current distance of Leo T.

where ρmedium
gas is the gas density of the interstellar or intergalactic

medium of the host galaxy (MW), through which the satellite moves
with a velocity V. We consider the following two scenarios for the
gas density of the MW (see Fig. 3):

(i) Set-up (i): In this set-up, we use the MW H I disc model from
Kalberla & Kerp (2009; see their fig. 4). This is an exponential disc
with a shift of 9.8 kpc, a scale of 3.15 kpc, and a central density
of nH I

o = 0.9 cm−3. It has a flaring vertical exponential profile with
a scale of ho = 0.15 kpc that fits well the radial and vertical H I

distribution between 5 and 35 kpc, beyond which the H I disc becomes
faint. We assign a rotational velocity to the gaseous disc assuming
that it rotates with the same speed as the circular velocity derived
from the total gravitational MW potential. The direction of rotation
is the same as in the MW, a clockwise rotation in the Galactocentric
frame. For the corona or hot halo gas density profile, we use the
fiducial beta model from Salem et al. (2015). We note that the hot
halo density is carved out where the gaseous disc density is larger,
and vice versa. We use then this medium to calculate the ram-pressure
variable PR, 1 along each orbit.

(ii) Set-up (ii): We consider a time-varying gas density medium
with parameters motivated by the NIHAO simulations (Wang et al.
2016). Here we set a hot gas halo density profile that follows the
dark matter distribution in the outer parts with a hot gas-to-dark
matter mass ratio of 0.16.2 For the cold gaseous disc, we use a
Miyamoto–Nagai gas disc with a scale length and height of 2.5
and 0.1 kpc, respectively, but we set up an extreme scenario where
the gaseous disc also contains the mass of the stellar disc (5.5 ×
1010 M�). The assumption here is that at a high redshift, most of
the baryons were in the form of gas. Given that the MW H I disc

2Private communication.

beyond 35 kpc becomes very shallow and that the Miyamoto–Nagai
density profile in the plane is still large at large radii (100 kpc,) we
reduce the disc density multiplying by a factor [e(−R/Ro)3

] with a
scale of Ro = 40 kpc, resulting in a disc density that equals the hot
halo at 70 kpc (see Fig. 3). Additionally, for the cases with MW
mass accretion, we vary the gas mass of the gaseous disc and hot
halo as a function of redshift, as explained in cases 2 and 4. We use
this medium to calculate the ram-pressure variable PR, 2. The main
differences between both gas model set-ups are that the set-up (i)
is constant in time and that it reaches slightly lower densities in the
disc, while set-up (ii) evolves with time and in the outer part the hot
halo density profile drops faster than the beta model of set-up (i). We
note that the density profiles extend beyond the virial radius, and that
we adopt a helium-to-hydrogen gas mass ratio of 0.25.

We also tested different MW gas medium models finding results
similar for our velocity constraints, considering, for example, for set-
up (i) a Miyamoto–Nagai for the H I disc with a mass of 5 × 109 M�
(BG16) (see also Bovy & Rix 2013) and a scale length of 2.5 kpc and
a height of 0.1 kpc, which has an H I density in the centre of the disc
5 times smaller than the adopted exponential disc. We also tested
the MW hot halo model from Miller & Bregman (2015) where we
take the parameters of the most massive hot halo (see Fig. 3). The
models explored here have a range of coronal densities similar to
other estimations: nH ≈ 3 × 10−4 cm−3 at 60 kpc (Belokurov et al.
2017), 1 × 10−4 cm−3 at 70–120 kpc (Grcevich & Putman 2009), and
(1.3–3.6) × 10−4 cm−3 at 50–90 kpc (Gatto et al. 2013).

Now we need to calculate the thermal pressure that allows the
satellite to retain its gas. For this, we use the estimate of Mori &
Burkert (2000), where the thermal pressure is

PT = G Moρ
sat
core

3rcore
(4)

with G being the gravitational constant and ρsat
core is the central gas

density of the satellite, where we use the value from our Plummer
fit ρ

gas
Pl . The scale of the dwarf’s dark matter core is rcore, which

we approximate by using the de-projected stellar half-light radius
rh = 4/3RV

h . This is motivated by dwarf galaxy formation simulations
that show that a bursty star formation can generate a dark matter cored
with a similar size to the stellar distribution (Ogiya et al. 2014; Read
et al. 2016). Mo is the dynamical mass within rcore, where we use the
virial relation (Wolf et al. 2009)

M
dyn
half = 3G−1 (4/3)RV

h σ 2
los,� (5)

and the stellar dispersion σ � (Simon & Geha 2007), finding with the
latest distance estimate a dynamical mass within the half-light radius
of M

dyn
half = 7.6 ± 3.3 × 106 M�. This gives us a thermal pressure of

PT = 1.0 × 109 M� kpc−3 km2 s−2.
Additionally, Mori & Burkert (2000) analyse the Kelvin–

Helmholtz (KH) instability gas stripping process of a satellite that
moves in the host’s medium. This mechanism is not instantaneous;
it operates cumulatively with time, stripping the gas of the satellite
within a given time-scale. Nulsen (1982) finds that the gas mass-loss
rate of a satellite through the KH instability is

dMgas

dt
= πr2

core ρmedium
gas V . (6)

Therefore, as an additional parameter to estimate the gas stripping
for each orbit we re-formulate the previous equation as

MOrbit
gas =

∫
dMgas =

∫
πr2

core ρmedium
gas V dt, (7)
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Figure 4. The main parameters taking the median of the parameter for
different directions of �uGSR

t and for different cases (see Table 2) as a function
of |�uGSR

t |. See the main text in Section 4.1 for the definitions of the parameters.
Each coloured line corresponds to a case labelled in the second top panel,
where we note that our fiducial case 4 (accreting MW and M31 potential) is
shown in black. From this figure, we identify three main regions in �uGSR

t : (i)
the region RPS where the MW ram pressure is larger than the thermal pressure
of the satellite. Each direction and case have a slightly different value of
|�uGSR

t RPS|. We mark the median of PR of our fiducial case 4 taking all directions
of the tangential velocities, finding |�uGSR

t | = 14+26
−14 km s−1 for PR, 1 (top

panel) and 21+33
−21 km s−1 for PR, 2 (second panel) (dashed green vertical

lines). The error range considers the maximum and minimum threshold
velocity values found among different directions of �uGSR

t and different cases.
(ii) The backsplash region with orbits that passed through the MW dark
matter halo, which we mark for case 4 at the median value and range of
|�uGSR

t | = 63+47
−39 km s−1 (dashed black vertical line); and (iii) the first infall

region where orbits never entered the halo. We present the complete results
for different directions of �uGSR

t in Fig. A3.

where, in practice, we just compute the amount of MW gas collected
along the orbit within a tube with a radius of rcore = 300 pc, which
represents roughly the radius of the Leo T H I distribution: MOrbit

gas .
Surviving gas-rich satellites have orbits where MOrbit

gas /MSat
gas < 1. Of

course, this would be an upper limit, under the assumption that the
satellite’s gas has not changed much. If we include the gas that
formed the stars in the past, we would have MOrbit

gas /(MSat
gas + M�

sat) <

MOrbit
gas /MSat

gas < 1. Note that the comparison between the gas mass of
the satellite and the mass collected along the orbits is approximately

equivalent to a comparison between the gas column density of the
satellite and the ambient gas column density along the orbit within
the area π r2

core.

4 R ESULTS

We present our main results in Section 4.1, with a further analysis
of the backsplash orbital solutions in Section 4.1.1 and the gas
stripped solutions in Section 4.1.2, including examples of orbits.
This is followed by Section 4.2, where we explore in more detail
the effects of the cosmic expansion in the orbital calculation. In
Section 4.3, we explore the effects of dynamical friction and tidal
disruption in the orbital calculation with N-body simulations. Finally,
we apply our method to other distant dwarfs, presenting these results
in Section 4.4.

4.1 Three main orbital solutions

We analyse a total of 4218 orbits for Leo T, which includes all
set-up cases for the gravitational potential and different directions
and magnitudes of the tangential velocity �uGSR

t . For each orbit, we
measure the following seven variables as a function of |�uGSR

t |:
(1) (D/Rvir)min: the minimum of the ratio of the distance between

the satellite and the MW centre and the MW virial radius.
(2) P max

R,1 /PT: the maximum of the ratio of the ram pressure for
each orbit considering the set-up (i) for MW gas model and the
thermal pressure of the satellite.

(3) P max
R,2 /PT: same ram-pressure parameter but for the set-up (ii)

MW gas model.
(4) MOrbit

gas /MSat
gas : the ratio of the total gas mass collected along

each orbit and the satellite’s gas mass.
(5) Rtidal

min : the minimum tidal radius of the satellite.
(6) Dmin: the minimum distance of the satellite’s orbit to the MW

centre.
(7) PA (�R = 0.1◦): measures the position angle at a point in the

trajectory of the orbit on the sky at �R = 0.1◦ from the current sky
position of Leo T.

The main trend of each variable as a function of |�uGSR
t | is shown

in Fig. 4 with the median of the distributions taken for different
directions of �uGSR

t . The values for each direction of �uGSR
t are shown

in Fig. A3. Using now these parameters, we can determine if each
orbit is a first infall orbital solution, a backsplash orbital solution, or
a gas stripped backsplash orbital solution.

4.1.1 Backsplash and first infall orbital solutions

We can classify each orbit as backsplash if the satellite entered the
MW dark matter halo in the past and (D/Rvir)min ≤ 1 or as a first infall
orbit if (D/Rvir)min > 1. In Fig. 5, we present as an example a set of
orbits in a direction of �uGSR

t for our fiducial case 4, i.e. the set-up that
includes the potentials of an accreting MW and the M31 potential.
It shows that there is a range of orbits with |�uGSR

t | < 65 km s−1

where the satellite entered the (time-varying) virial radius of the
MW between −8 and −12 Gyr ago, while for larger velocities there
are found only first infall solutions. Therefore, for each direction of
�uGSR

t , there is a particular value of |�uGSR
t |, a threshold |�uGSR

t BAS|, below
which all orbits are backsplash solutions and (D/Rvir)min ≤ 1, finding
a similar threshold value when we examine different directions and
different cases (see case 1 in Fig. A2).

We can more easily see the main trend of (D/Rvir)min as a function of
|�uGSR

t | for different cases with the median of (D/Rvir)min for different
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Figure 5. Galactocentric distance (top panel) and velocity (bottom panel)
as a function of lookback time for case 4. Colours indicate the value of
|�uGSR

t |, showing only orbits pointing in the direction of PA = 3◦ to avoid
an overcrowding of lines. In the top panel, we show Rvir as a function of
time (curved dashed line). All orbits that go within Rvir are by definition
backsplash orbits, while the ones that remain outside are first infall orbits.

directions of �uGSR
t , which is shown in Fig. 4. In the figure, we can

identify the threshold value for the median 〈|�uGSR
t BAS|〉 below which

we find the backsplash solutions. The values for each direction are
shown in Fig. A3, where we find values of |�uGSR

t BAS| that can be larger
and smaller than the medians.

In Table 3, we summarize our main results, showing the median
threshold values for different cases, as well as the maximum and
minimum values found among different directions of �uGSR

t . From our
fiducial case 4, we obtain that orbits with tangential velocities lower
than 〈|�uGSR

t BAS|〉 ≤ 62+49
−38 km s−1 result in backsplash solutions, where

the error range corresponds to the maximum and minimum values
found for different cases and directions. The minimum distance is
at the backsplash orbital threshold that occurred at t

(
DBAS

min

) = −
11.9+0.3

−0.1 Gyr. We discuss how this changes when we include the
cosmic expansion in Section 4.2. We also provide the values of
|�uGSR

t BAS| when we choose the PA directions that better align with the
H I morphology, as explained in Section 4.1.4. In Table 3, we find
that the largest variations in the exact value of |�uGSR

t BAS| are due to the
variations of the virial mass of the MW. When we compare subcases
(a) and (b), we can see that the threshold increases and decreases
by a factor of 2. This is simply because the potential of a more (or
less) massive halo will require larger (or smaller) velocities to obtain

orbits that do not enter the virial radius, and also because the virial
radius of a more (or less) massive halo is larger (or smaller).

The second important effect comes from the MW accretion history,
followed by the M31 potential. For example, in Table 3, the largest
value of |�uGSR

t BAS| is for case 3b with a constant and large value of
Mvir = 1.6 × 1012 M�, needing then a larger velocity to obtain first
infall solutions. The smallest |�uGSR

t BAS| is for case 2a, where Mvir is
the lowest, and furthermore, it decreases with redshift. The effects of
M31 are noticeable when comparing the tangential velocity threshold
between cases 1 and 3, where the velocity thresholds are larger for
case 3 due to the contribution of the M31’s potential. However, the
MW virial mass still plays the major role. This provides our first
constraint for the tangential velocity. We see in Figs 4 and A3 that
the curves of (D/Rvir)min become almost flat for |�uGSR

t | > |�uGSR
t BAS|.

This is simply because we enter the region of first infall solutions,
and the minimum values correspond to the current position of Leo T.

It is also possible to see in Fig. 5 that the maximum distance
of the backsplash orbits is between D = 1Rvir and D ∼ 4 × Rvir

at a lookback time of −12 Gyr (or z = 3.51). This value could be
even larger in units of the virial radius if we integrate to higher
redshifts, given that Rvir decreases as well, because the halo mass
decreases with redshift, as described by equation (2). This range of
distances of backsplash orbits is similar to the satellites in the NIHAO
cosmological MW-type simulations (see fig. 7 in Buck et al. 2019).
In Section 4.2, we will also show backsplash orbits when we include
the cosmic expansion.

4.1.2 Gas stripped orbital solutions

In Fig. 6, we show the ram pressure for different orbits of case
4 as a function of time and |�uGSR

t | for a particular direction. In
general, we find that for different cases and different directions of
�uGSR

t , the ram pressure of the orbits is quantitatively and qualitatively
similar. As expected, the largest ram-pressure values happen for the
most radial orbits of the backsplash solutions, with a maximum of
(PR/PT)max ∼ 104 larger than the thermal pressure of the satellite.
We also compare both MW gas model set-ups, where we see that
the ram pressure of the set-up (ii) MW gas model (PR, 2/PT) reaches
slightly larger values in the centre than with the set-up (i) (PR, 1/PT).
The first infall solutions experience the largest ram pressure at the
current position of Leo T or in some solutions at the apocentres of
orbits that passed near but outside of the virial radius.

Similarly to our backsplash analysis, we can classify an orbit as
gas stripped if the instantaneous ram pressure overcomes the thermal
pressure of the satellite, i.e. (PR/PT)max ≥ 1, or as unstripped if
(PR/PT)max < 1. We note that in our set-ups, because the largest
MW gas density is in the centre, all the ram-pressure-stripped orbital
solutions are also backsplash solutions. The only non-backsplash
ram-pressure-stripped solutions would be first infall orbits with
extremely large tangential velocities (|�uGSR

t | > 3000 km s−1).
In Fig. 4, we show the median of (PR/PT)max for different cases as a

function of |�uGSR
t |, showing the values for different directions of �uGSR

t

in Fig. A3. We can also find a tangential velocity threshold, below
which we find only ram-pressure-stripped orbital solutions (RPS),
providing a second criterion to constrain the tangential velocity,
namely |�uGSR

t RPS|. Interestingly, we find that this threshold does not
change much depending on the MW gas model. In fact, our tests with
other MW gas distributions (Section 3.3) result in similar threshold
values. This results from the ram pressure depending linearly with
the density medium and quadratically with the velocity. When the
satellite reaches the central regions (R < 40 kpc) and hits the MW
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Table 3. Orbital constraints for Leo T.

1 2 3 4 5 6 7 8 9 10 11 12 13

〈|�uGSR
t BAS|〉 〈DBAS

min 〉 |�uGSR
t BAS| DBAS

min μBAS
α∗ μBAS

δ 〈|�uGSR
t RPS|〉 〈DRPS

min 〉 |�uGSR
t RPS| DRPS

min μRPS
α∗

μRPS
δ

Case km s−1 kpc km s−1 kpc mas yr−1 mas yr−1 km s−1 kpc km s−1 kpc mas yr−1 mas yr−1

1 83+2
−2 288 84 (83) 287 (287) −0.0164 (−0.0017) −0.1587 (−0.1561) 33+13

−19 43+16
−20 41 (33) 52 (43) −0.0157 (−0.0096) −0.1365 (−0.1319)

1a 56+2
−3 264 56 (55) 263 (263) −0.016 (−0.006) −0.1446 (−0.1428) 27+14

−16 39+18
−17 35 (27) 49 (39) −0.0156 (−0.0106) −0.1336 (−0.129)

1b 104+2
−2 308 104 (103) 308 (308) −0.0168 (0.0016) −0.1693 (−0.1662) 38+12

−20 46+15
−22 45 (38) 55 (46) −0.0158 (−0.0088) −0.1389 (−0.1342)

2 60+2
−2 197+2

−5 60 (59) 194 (195) −0.016 (−0.0054) −0.1467 (−0.1447) 25+8
−14 44+11

−20 31 (26) 52 (44) −0.0155 (−0.0108) −0.1314 (−0.1281)

2a 29+2
−3 164+2

−2 29 (28) 164 (164) −0.0155 (−0.0104) −0.1306 (−0.1295) 15+4
−9 38+6

−13 18 (15) 44 (38) −0.0153 (−0.0125) −0.1251 (−0.1229)

2b 80+2
−2 244+2

−7 81 (80) 242 (242) −0.0164 (−0.0022) −0.1571 (−0.1547) 31+8
−17 46+11

−22 37 (31) 55 (47) −0.0157 (−0.0099) −0.1346 (−0.131)

3 87+4
−12 288 91 (91) 287 (287) −0.0166 (−0.0004) −0.1624 (−0.16) 29+21

−16 38+21
−15 48 (41) 54 (43) −0.0158 (−0.0083) −0.1403 (−0.1358)

3a 60+7
−11 264 67 (67) 263 (263) −0.0162 (−0.0042) −0.15 (−0.1483) 22+24

−14 34+24
−11 43 (36) 52 (40) −0.0158 (−0.0091) −0.138 (−0.1334)

3b 107+3
−12 308 109 (109) 308 (308) −0.0169 (0.0025) −0.1716 (−0.169) 34+19

−19 41+19
−17 52 (45) 56 (46) −0.0159 (−0.0077) −0.1423 (−0.1378)

4 63+6
−11 201+15

−2 69 (69) 209 (209) −0.0162 (−0.0039) −0.151 (−0.1492) 21+18
−12 38+17

−13 39 (34) 54 (45) −0.0157 (−0.0094) −0.1357 (−0.1324)

4a 33+9
−10 164+2

−2 43 (43) 164 (164) −0.0158 (−0.0081) −0.1376 (−0.1364) 8+22
−8 34+16

−9 30 (26) 49 (39) −0.0155 (−0.0107) −0.1313 (−0.1286)

4b 83+4
−12 245+13

−3 87 (87) 257 (256) −0.0165 (−0.001) −0.1603 (−0.158) 26+18
−14 39+18

−14 44 (39) 56 (47) −0.0158 (−0.0086) −0.1383 (−0.1348)

cos3 81+4
−11 288 81 (81) 287 (287) −0.0164 (−0.0019) −0.1573 (−0.1555) 31+11

−21 51+13
−22 41 (38) 59 (54) −0.0157 (−0.0089) −0.1366 (−0.1341)

cos4 69+4
−12 284+2

−2 73 (73) 287 (286) −0.0163 (−0.0032) −0.1532 (−0.1513) 21+17
−12 42+21

−14 38 (33) 59 (49) −0.0157 (−0.0097) −0.135 (−0.1317)

B.V. 63 201 69 (69) 209 (209) −0.0162 (−0.0039) −0.151 (−0.1492) 21 38 39 (34) 54 (45) −0.0157 (−0.0094) −0.1357 (−0.1324)

±� +47
−39

+107
−36

+39
−39

(+40
−40

) +98
−44

(+99
−44

) +0.0007
−0.0007

(+0.0065
−0.0065

) +0.0204
−0.0206

(+0.0197
−0.0198

) +33
−21

+26
−16

+12
−20

(+10
−19

) +5
−9

(+9
−6

) +0.0003
−0.0002

(+0.0017
−0.0031

) +0.0106
−0.0066

(+0.0095
−0.0053

)

Notes. The zero tangential GSR velocity for Leo T (|�uGSR
t | = 0 km s−1) corresponds to μ◦

α∗ = − 0.0150 mas yr−1 and μ◦
δ = − 0.1153 mas yr−1. Column 1 corresponds to the case scenario. Columns

2 and 3 list the value of |�uGSR
t | BAS for the median of (D/Rvir)min for different directions of �uGSR

t , and the minimum distance, below which the orbits are backsplash solutions, with the error range taken
from the threshold values for different directions of �uGSR

t or from the grid resolution. Columns 4–7 correspond to the backsplash solutions of our grid that are close to the direction of PAoffset =3◦ ,
where we show the velocity, the minimum distance, and the proper motion. In brackets we show the solutions close to the direction of PAflat =−21◦ . Columns 8 and 9 are the value of |�uGSR

t | RPS

and the minimum distance when we take the median of PR, 2/PT for different directions of �uGSR
t . Below this value, the orbits are ram-pressure-stripped solutions, with the error range taken from the

different directions of �uGSR
t or from the grid resolution. Columns 10–13 correspond to the RPS solutions of �uGSR

t closest to the direction PAoffset , showing the values |�uGSR
t |, minimum distance, and

the proper motions. In brackets we include the values for the direction of PAflat. The last two rows: B.V. are the best values selected from our fiducial scenario case 4 with errors taken from the range
of maximum and minimum values from different cases, including the range for different directions of �uGSR

t .

Figure 6. Ram pressure-to-thermal pressure ratio as a function of time for case 4, calculated for the set-up (i) of the MW gas medium PR, 1 (left-hand panel)
and the set-up (ii) PR, 2 (right-hand panel). Colours indicate the value of |�uGSR

t |, showing here only orbits pointing in the direction of PA = 3◦ to avoid an
overcrowding of lines. A ratio of PR/PT = 1 is marked with a vertical dashed line. Ratios larger than one denote the region where the gas of the satellite would
be stripped by the MW.

gaseous disc, it already has a large velocity, between 200 and
400 km s−1 (see Fig. 5; or up to 500 km s−1 in case 1; Fig. A2),
which increases the ram pressure quadratically.

In Table 3, we present the median threshold values for different
cases, finding, for example, for our fiducial case 4 that backsplash
solutions with 〈|�uGSR

t RPS|〉 > 21+33
−21 km s−1 would allow Leo T to survive

the ram-pressure stripping of the MW, with wide orbits that have a
minimum distance of Dmin ≥ 38+26

−16 kpc. The error range considers
different directions of �uGSR

t and different cases. We note that in
Table 3 we show the threshold values obtained from the MW gas set-
up (ii), because the threshold value is slightly larger than that with
the set-up (i). The minimum distance is at the ram-pressure threshold
that occurred at t

(
DRPS,2

min

) = − 8.4+0.2
−0.4 Gyr. We discuss how this

changes when we include the cosmic expansion in Section 4.2. We

also show in the table the threshold |�uGSR
t RPS| for directions that better

align with different features in the H I morphology, as explained in
Section 4.1.4.

Similarly to the backsplash analysis, in the table we also find that
the largest variations of |�uGSR

t RPS| arise from differences in the total
mass of the MW, and from the MW accretion history. Particularly,
the latter determines the potential in the MW centre, which can bring
the orbits of the satellites closer to the MW centre where the gas
is denser, which then pushes region of the ram-pressure solution
to larger values of |�uGSR

t RPS|. However, even when comparing extreme
cases, such as case 1 with the static MW potential and case 2 with the
accreting MW, we see that |�uGSR

t RPS| values agree within their ranges.
And finally, we also find that the cumulative gas stripping through

the KH instability could strip very radial orbits, but it is subdominant
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when compared to the ram pressure (see Section 3.3). In Figs 4
and A3, we show that the amount of gas collected along each orbit
is larger than the gas in Leo T only for very radial orbits, which
are already within the ram-pressure-stripped region. This implies
that, in this particular scenarios, the KH instability, parametrized
as in equation (7), would be less efficient than the instantaneous
ram-pressure stripping to remove the gas of the dwarf.

4.1.3 Tidally disrupted orbits

We calculate this quantity according to equation (1), and assuming
a total virial mass for the satellite of 108 M�, based on dwarf galaxy
formation models in isolation (Read et al. 2016). Changing this to 107

or 109 M� would imply a change of the tidal radius only by a factor
of ∼2 smaller or larger, respectively. As shown in Figs 4 and A3,
the value is large enough (Rtidal

min > 1 kpc) to avoid the complete
disruption of the satellite in the region of |�uGSR

t | > 20 km s−1. This is
corroborated with our N-body simulations in Section 4.3, where only
the outer layers of the dark matter distribution of the dwarf could be
stripped, leaving a core that can keep the stellar component of the
dwarf bound.

4.1.4 The trajectory of Leo T on the sky and proper motion
constraints

In the previous sections, we determined constraints for the magnitude
of the tangential velocity considering several directions of �uGSR

t .
Here, we constrain the direction of �uGSR

t by comparing the orientation
of the orbits of Leo T projected on the sky with several gas features
in Leo T (Fig. 1) that we discuss in Section 2.

Particularly, we search for orbits that are aligned with the H I-
stellar offset at PAoffset =3◦, the H I tail at PAtail =−10◦, and the H I

flattening at PAflat =−21◦. We argue in Section 2 that these features
could be produced by the ram pressure from the MW gas halo, which
would generate the tail and the offset that would be aligned with the
projected orbit of Leo T, and the flattening of the H I isophotes to the
South of Leo T, which would be perpendicular to the projected orbit.

Under this assumption, we vary the direction of the tangential
velocity �uGSR

t to find the best alignment of the projected orbit with
this offset axis. In Fig. 7, we show some orbits of our fiducial case,
case 4, which are projected on the sky together with the H I map of Leo
T, where we show a range of directions and magnitudes for �uGSR

t . The
figure shows how the orbits start bending in the direction of the most
radial orbits when the values of |�uGSR

t | decrease below 10 km s−1.
Above this value, the orbits align well with the given direction of
�uGSR

t . We also include in Fig. 7 some orbits for a case that does not
include the potential of M31 in the calculation (case 2), to illustrate an
interesting difference with the cases that do account for M31: Given
that the MW and Leo T have different accelerations towards M31,
the resulting orbits are slightly different to that of the cases without
M31. This effect is mostly noticeable for the most radial orbits with
|�uGSR

t | < 1.5 km s−1, where for case 4 the radial orbits approach from
the MW from PA = − 45◦ to Leo T’s current position, while in the
isolated case 2 the orbits come from PA = − 100◦. We note that in
Fig. 7 we have plotted the orbits on the sky from an inertial frame.

To constrain the direction of �uGSR
t , we project all the orbits

on the sky as shown in Fig. 7, and then measure the position
angle of each orbit where the orbit intersects a ring on the sky
with a radius �R = 0.1◦ (713 pc) centred on the position of Leo
T determining PA (�R = 0.1◦). The result of this measurement is
shown in Fig. 8 for case 4. In the plot, we mark all the orbits with

Figure 7. We show orbits of case 4 (top panel) and case 2 (bottom panel)
projected on the sky, showing different directions of �uGSR

t and magnitudes
(coloured curves). We also plot the H I column density map and contours
of AO18. The optical centre is marked with the large cross, the H I density
peak with small cross, and the north–south axis is shown with a white solid
vertical line. We plot a circle with �R = 0.1◦ (713 pc) where we measure
the PA of the orbits. Given that we use a logarithmic velocity colour bar, we
tag the zero velocity curve (|�uGSR

t | = 0 km s−1) as the minimum value in the
bar (0.3 km s−1) (grey curve). Note the way the orbits bend towards the most
radial orbits when |�uGSR

t | decrease to zero. For case 4, the most radial orbits
approach from north-west due to the acceleration towards M31, while in case
2 they approach from south-west.
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First infall or backsplash MW satellites? 3611

Figure 8. Top panel: direction of the tangential velocity �uGSR
t as a function

of its magnitude |�uGSR
t | for case 4. Given that the velocity colour bar

scale is logarithmic, we have tagged the zero velocity (|�uGSR
t | = 0 km s−1)

as 0.4 km s−1 in the plot. The colours show the position angle of each
orbit where it intersects a circle on the sky with a radius of �R = 0.1◦
centred on the optical centre of Leo T. The triangle symbols mark the PA
values that fall within the position angle of the H I-stellar offset and the
H I flattening, with a few degrees of error range, i.e. between PAoffset =3◦
and PAflat =−21◦. Bottom panel: proper motions explored for Leo T’s
current position for case 4 as a function of |�uGSR

t | (colour bar). The proper
motion when |�uGSR

t | = 0 km s−1 corresponds to μα∗ = −0.0150 mas yr−1,
μδ = −0.1153 mas yr−1 due to the solar motion around the MW (grey
region). Each radial set of points corresponds to different directions of �uGSR

t .
The values that better align with the H I-stellar offset at PAoffset and the H I

flattening located at PAflat are located within the black lines shaping a triangle.
The black small circles surrounding the centre mark the ram-pressure-stripped
region due to PR, 2, and the magenta circles mark the backsplash solution
region.

values of PA (�R = 0.1◦) that fall within the PAoffset and PAflat. Some
solutions are found for larger values of PA (∼50–120◦) and very
small tangential velocities of|�uGSR

t | ≤ 1.5 km s−1, but larger than
0.5 km s−1, because those are very radial orbits, which in projection
rapidly bend and turn back in direction to the Galaxy. In Fig. 8, we
present the explored proper motions for Leo T as a function of |�uGSR

t |
for case 4. We mark the regions where we obtain backsplash orbital
solutions and gas stripped solutions, determined as in Sections 4.1.1
and 4.1.2. The proper motions of the grid that generate orbits that
best align with the direction of the H I-stellar offset and the H I

flattening are enclosed by the two lines shaping a wedge. We note
in the figure that the ram-pressure region is not centred exactly
around |�uGSR

t | = 0 km s−1. This is because there is some angular
momentum, given that �vGSR

los is not exactly equal to the radial velocity
in GCs, also due to the potential of M31, which perturbs the orbit,
and also to the fact that the satellite ‘hits’ the gaseous disc on
different regions with different densities and at slightly different
times.

In Table 3, we provide for different cases the tangential velocity
threshold values |�uGSR

t RPS| and |�uGSR
t BAS| for both the directions, the H I-

stellar offset and the H I flattening, providing this value as proper
motions as well, with the proper motion errors in the table estimated
from the different cases. In addition, we take the direction along the
H I tail PAtail =−10◦ that lays between the PA of the H I offset and the
flattening, and obtain the proper motion ranges for different orbital
solutions. Given that this selection of orbits is almost aligned with
the north axis, the proper motion in DEC is what mostly determines
the region where the solution is:

(i) first infall solutions for μδ < −0.1507[ mas yr−1];
(ii) unstripped gas backsplash orbital solutions (BAS) are within

the range of −0.1507 ≤ μδ/[ mas yr−1] ≤ −0.1347;
(iii) backsplash ram-pressure-stripped solutions (RPS) are within

the range of −0.1347 ≤ μδ/[ mas yr−1] ≤ −0.1153.

Furthermore, if the restriction on the direction of the velocity is
not imposed, Fig. 8 can provide constraint on the magnitude of the
proper motion for case 4.

We note that new proper motion estimates for Leo T were
published by McConnachie & Venn ( 2020). We find that these these
values and the observational error region overlaps with our the region
of backsplash solutions as well as with the first in-fall solution region,
given that the observational errors are large due to the large distance
to Leo T. Moreover, we note that our proper motion values estimated
from the HI morphology lay within this observational region.

4.2 Effects of the cosmic expansion on the orbits

In this section, we show our orbits calculated backwards in time for
Leo T, solving the equations of motion of an expanding Universe, as
is explained in Section 3.1.

Karachentsev et al. (2009) show how the kinematics of the galaxies
in the LG transitions into the Hubble flow at a distance of ∼1 Mpc
from the LG centre, denoted as the zero velocity radius (see their
fig. 1). They show how at those distances the LG gravitational poten-
tial perturbs the kinematics of the galaxies moving in the Hubble flow
and, more relevant for this work, it is shown how the Hubble flow
perturbs the dynamics of the LG and the distribution of its satellites in
the outer regions of the LG. The Peñarrubia et al. (2014) analysis also
shows with test particles that the cosmic expansion indeed affects
the spatial and kinematical distribution of the satellites located at
distances of about the separation between M31 and MW (currently
0.78 Mpc) and larger, dominating the Keplerian potential. At smaller
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3612 M. Blaña et al.

Figure 9. We show for the case cos4 (case 4 in an expanding space) the comoving Galactocentric distance and velocity (left-hand panels) and the physical
coordinate distance and peculiar velocity (right-hand panels) as a function of the lookback time (see Section A2 and equation A7). Colours indicate the value
of |�uGSR

t |, showing here only a selection of orbits coming from the direction of PA = 3◦ to avoid overcrowding. In the top panels is shown the virial radius as a
function of time in comoving coordinates (Rvir) and physical coordinates (rvir) (curved dashed line).

distances, the quadrupole modes of the potentials contribute in
addition to the monopole terms. Hence, the total mass of the LG
determines the extension of the influence on the satellites that
transition into the Hubble flow. Current LG mass estimates come
from the timing argument, where most of the mass is from M31 and
the MW. The third most massive galaxy in the LG is the Triangulum
galaxy (M33), with an estimated dynamical mass within its H I

distribution of 8 × 1010 M� (Kam et al. 2017). The LG mass ranges
in the literature mostly depend on the relative velocity between the
M31 and MW systems (BG16). van der Marel et al. (2012) determine
a (virial) timing LG mass by selecting galaxy pairs in the Millennium
simulations (Li & White 2008) finding 4.9 ± 1.6 × 1012 M�. After
considering the orbit of M33 about M31, they estimate a timing mass
of 3.2 ± 0.6 × 1012 M�. Peñarrubia et al. (2014) estimate a timing
LG mass of 2.3 ± 0.7 × 1012 M�, similar to the values used in our
models that include the MW and M31 (cases 3, 4, cos3, and cos4)
with a total mass of Mtot = (1.1 + 1.3) × 1012 M� = 2.4 × 1012 M�
or in subcases (b) Mtot = 2.7 × 1012 M�, which would then be within
that range.

Therefore, dwarfs orbiting at large distances from the LG, such as
Leo T or Cetus, located between ∼400 and ∼700 kpc, can experience
deviations on their orbits by the cosmic expansion. We observe this
deviation in our orbital calculations, which is better revealed when
we compare the distance and velocity of the orbits of our fiducial case
4 in Fig. 5 with the cosmological orbits of case cos4 in Fig. 9, which
is case 4 (MW accreting with M31 potentials), but in an expanding
space time. In Fig. 9, we show the distance and velocity both in
comoving coordinates ( �X, �V ) and the physical position coordinate �r
and the peculiar velocity is �Vpec, which are related by equation (A7),
and the parameter a(t) is shown in Fig. A1.

Similarly to other cases, we find that, qualitatively, the properties
of the orbits are similar to that of the non-expanding cases, with the
most noticeable differences listed here:

(i) We find in Fig. 9 for case cos4 that the distances reached by
the backsplash and first infall orbits at –12 Gyr (z = 3.5) are larger
than those in the non-expanding case, reaching distances between 1
and 5 Mpc in comoving coordinates or 0.4 and 1.5 Mpc in physical
coordinates. In units of virial radius, this is roughly D ∼ 10Rvir at
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First infall or backsplash MW satellites? 3613

that redshift, which is similar to the most distant backsplash orbits
found in the NIHAO cosmological MW-type simulations (see fig. 7
in Buck et al. 2019).

(ii) Shift of first pericentre passage: The first pericentre pas-
sage in case cos4 for the most radial backsplash orbits coming
from large distances is reached at t = − 5.7 Gyr, resulting in a
time delay with a shift of �t ≈ 2 Gyr later than in the non-
expanding fiducial case 4, where the first pericentre passage is
at t = − 8.1 Gyr. We also determined the median and maximum
and minimum times for the backsplash threshold orbits for case
4, which is t

(
DBAS

min

) = − 11.9+0.3
−0.1 Gyr, and for the ram-pressure

threshold is t
(
DRPS,2

min

) = − 8.4+0.2
−0.4 Gyr. However, including the

cosmic expansion delays these to t
(
DBAS

min

) = − 7.5+0.2
−0.6 Gyr and

t
(
DRPS,2

min

) = − 5.7+0.1
−0.2 Gyr, i.e. a similar delay shift ranging from

�t ≈ 3 to 5 Gyr.
This results from the cosmic expansion at z > 1, where the backsplash
orbital solutions for this dwarf predict larger distances from the MW
at early times, which then take longer to fall to the centre, and also due
to the Hubble flow that decelerates the infalling satellite orbits when
H(z) is large. Then at closer distances (D < 2Rvir) and lower redshift
(z < 1), the mass accretion of the MW contributes in bringing the first
infalling satellites closer to the MW centre after their first infall. We
test the effects of the cosmic expansion without the effects of the MW
mass accretion or the dark halo extension. For this, we calculate the
orbits of Leo T backwards in time considering a Keplerian potential
with a constant total mass of Mvir = 1.3 × 1012 M� with and without
the cosmic expansion, also finding for the latter a time delay of
∼2 Gyr.
Also, in Section 4.3 we show our analysis of the effects of dynamical
friction on our backsplash orbits with the analytical Chandrasekhar
approximation and full N-body simulations, which reveal that this
mechanism is ineffective in bringing the satellite on backsplash
orbits closer to the MW centre when the pericentre distance and
the maximum velocity are large.

(iii) The maximum velocity for the most radial orbits is
∼970 km s−1 in comoving velocity V, or ∼600 km s−1 in peculiar
velocity, larger than that in the non-expanding space case 4, which
reaches ∼400 km s−1. This results from a combined effect of the
dwarf falling from a much larger distance, as well as the first infall
time delay that sets the pericentre passage 2 Gyr later, when the
MW has accreted more mass, assembling already 90 per cent of its
present mass. The latter effect can be seen by comparing with case 1
in Fig. A2, where the MW mass is constant, reaching the satellite at
a velocity of up to 500 km s−1.

4.3 Dynamical friction and tidal effects

We test the effects of dynamical friction including the Chandrasekhar
approximation on the orbit calculation. We find that cases 5 and 5c
behave similarly to the cases without the friction term, with the
largest effects for radial orbits that reach the centre where the MW
has the highest density. To better estimate the effects of the dynamical
friction on our orbits, we set up particle models for Leo T and the
MW to run full N-body simulations to explore orbits with different
tangential velocities.

4.3.1 Initial conditions and set-up

We generate initial conditions for our N-body models with the open-
source program DICE (Perret et al. 2014; Perret 2016). For the MW, we
set up three components with masses and scale parameters according

to case 1 in Section 3.2. For the halo, disc, and spheroid, we use
3 × 106, 1.3 × 105, and 1.2 × 104 particles, respectively. Most orbits
studied here have pericentres outside or in the outskirts of the disc
and the inner spheroid, making a high number density unnecessary,
while the potentials of these components are included.

For Leo T, we model the stellar component with a Plummer profile
with a mass of 2 × 105 M� and a de-projected scale of 250 pc. To
consider Leo T’s gas potential, we also include a particle component
for the gas that is modelled only as a collisionless component. We use
the parameters of our fitted Plummer to the gas, i.e. a Plummer mass
of 5.2 × 105 M� and a de-projected scale of 260 pc. For the dark
matter halo, we choose the cored Burkert (1995) and Burkert (2015)
profile, which is motivated by dwarf galaxy formation simulations
that show that a bursty star formation can generate a cored dark
matter profile (Ogiya et al. 2014; Read et al. 2016) with a core the
size of the de-projected stellar half-mass radius; here we choose
260 pc. For the dark matter mass, we use the Leo T lowest estimate
of Patra (2018) of M

0.3 kpc
DM = 2.7 × 106 M�. Mo = 3.4 × 106 M� is

the dynamical mass within a 300 pc radius that includes the gaseous,
stellar, and dark matter masses. We use 5 × 105 particles for the dark
matter and 2 × 105 for the gaseous and stellar components, which
is enough to prevent an artificial tidal disruption (van den Bosch &
Ogiya 2018). Our N-body models are not an exact match to Leo T,
but sufficient as a metric to estimate the effects of dynamical friction
and tidal disruption on our analytical orbits for a Leo T-type galaxy.

We also set up a NFW dark matter halo for Leo T to explore the
effects of tidal disruption in a more concentrated profile. Following
the main initial condition parameters of Read et al. (2016) for a
Leo T-type dwarf, we set up a dwarf galaxy with a virial mass,
concentration, and particle number of 5 × 108 M�, 24.93, and 106,
respectively, where the baryonic component parameters are the same
as in the cored Leo T model. This model has a dynamical mass
within 300 pc of ∼107 M� (Fig. A4), as high as estimates from the
H I kinematics (Faerman et al. 2013; AO18).

To virialize and relax the initial N-body models in isolation, we
use the one core tree-code GYRFALCON (Dehnen 2000) from NEMO

(Teuben 1995). We relax the N-body models for 12 Gyr, where the
edges of the dark haloes spread, and in the case of the MW model,
the disc develops a bar. For these calculations, the bar orientation
and pattern speed are left free, given that the studied orbits are far
enough that the quadrupole potential of the bar is weak.

4.3.2 Orbits in frozen and live MW potentials

Our experiments consist of two steps. In the first step, we coupled
DELOREAN with GYRFALCON to use the relaxed MW particle model
to calculate several orbits for Leo T 12 Gyr backwards in time in
a frozen potential as test particles, where the particles of the MW
are not allowed to move in time. We explored the values: |�uGSR

t | =
(10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 km s−1),
with a fixed direction of PA = −5◦ (see Section 4.1.4). In the second
step, we use the coordinates and velocities found at −12 Gyr as
initial positions and velocities to locate our relaxed N-body models
of Leo T. Then we proceed to run it forward in time for 12 Gyr until
the present (t = 0 Gyr), but this time we evolve in time the MW and
Leo T particles and potential.

In Fig. 10 are shown the distance and velocity of the orbits for
the frozen and live potentials. To calculate the orbits and the relative
separation and velocity of Leo T and the MW in the live potentials,
we keep track of the centre of mass of the stellar component of Leo
T and the MW. In Table 4, we present the difference in position
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Figure 10. Relative distance and velocity of Leo T relative to the MW as a
function of lookback time for the full live N-body MW and Leo T simulation
shown with solid curves, and for the frozen N-body MW potential, shown with
dotted curves, almost always overlaying the solid curves. We show results for
|�uGSR

t | = (30, 50, 100, 150, 200, 250 km s−1) (colours).

Table 4. Orbits in frozen and living N-body potentials.

|�uGSR
t |[ km s−1] 30 50 100 150 200 30a 50a

DL/DF 1.01 1.11 0.98 1.0 1.0 0.98 0.99
‖ �DF − �DL‖ kpc 18 52 8 1 0.4 6 4
‖ �VF − �VL‖ km s−1 2.3 15 2.9 0.4 0.6 2.1 1.4

Notes. �VF and DF = 414 kpc are the relative velocity and distance between
the satellite and the MW at t = 0 Gyr for the frozen (F) N-body potential. �VF

and DL are the same quantities calculated for the living (L) potential.
aValues calculated from orbits integrated from an initial condition at −7 Gyr
instead of −12 Gyr.

and velocity between the orbits in a frozen potential and in a living
potential for a selection of tangential velocities. We find that at t =
0 Gyr, even though the deviation between the frozen potential and the
living potential orbits can be large for the backsplash solutions, e.g.
52 kpc for a tangential velocity of 50 km s−1, the distances between
the satellite and the MW deviate only by 10 per cent or less, and
the velocity deviates only by 15 km s−1 or lower. This means that,
for the range of explored backsplash orbits, the dynamical friction
can change the direction of the velocity and the direction of the
orbit, but the magnitude of the velocity, reaching then similar large
apocentre distances. We also tested how well approximated would

be the analytical orbits between the moment after the satellite passed
through the MW centre and its current position. For this, we repeat
the previous simulations, but now we position the N-body model of
Leo T at −7 Gyr instead of −12 Gyr, finding a deviation in distance
for backsplash orbits of 2 per cent (Table 4).

How is the satellite affected by the tidal forces of the MW for the
different orbits? As expected, the first infall orbits, with |�uGSR

t | >

90 km s−1, do not experience strong tidal effects. The backsplash
solutions with wide orbits and velocities between |�uGSR

t | > 50 and
80 km s−1 decrease the central stellar and dark matter densities,
as shown in Fig. A4. Backsplash orbits with |�uGSR

t | < 50 km s−1

produce a decrease of the central density of one to two orders of
magnitude below the initial profiles. We note that even though the
stellar density profile becomes shallower, the stars are still bound
to the satellite, as the cumulative mass profile reveals in Fig. A4.
However, an important fraction of dark matter (up to 50 per cent) can
be stripped for extremely radial orbits.

None the less, if we take a more concentrated and more massive
dark matter halo model for Leo T, we find that it could survive to
radial orbits with tangential velocities as low as 20 km s−1. In Fig. A4,
we show the density profiles of a dwarf model with the NFW dark
matter profile. As this profile has a cuspy density and a more massive
dark matter halo, the tidal disruption is much weaker and the density
in the central few hundred parsec is only perturbed for more radial
orbits with |�uGSR

t | < 20 km s−1. This is not surprising as known from
several studies (Penarrubia, Navarro & McConnachie 2008; van den
Bosch et al. 2017). Furthermore, we note here that, while a progenitor
for this dwarf galaxy could be found, using methods developed in
Fellhauer et al. (2008), Blana et al. (2015), and Matus Carillo et al.
(2019) (see also Dominguez et al. 2016), this is beyond the scope
of this study. The purpose of our numerical experiment here is to
show that a satellite on such backsplash orbits could survive a tidal
disruption by the MW, and even provide a mechanism to generate a
core in the central dark matter distribution.

4.4 Satellites in the outer rim of the MW halo

We also applied our method to find first infall and backsplash orbits
to a selection of distant dwarfs located beyond the virial radius of
the MW (288 kpc): Cetus, Eridanus II, and Phoenix I. We explored
eight different directions of the tangential velocity �uGSR

t (every
�PA = 45◦), and 70 values of |�uGSR

t |, between 0 and 350 km s−1 (with
a higher sampling within 30 km s−1), exploring in total a velocity grid
with 560 values.

Cetus and Eridanus II have no cold gas (only an upper limit H I

detectable threshold). In the scenario that these satellites lost their gas
due to ram-pressure stripping, how could we estimate the satellite’s
pre-existing cold gas, its density, and its thermal pressure before it
lost its gas? We can use the H I size–mass relation (Begum et al.
2008; Wang et al. 2016), which is observed for galaxies covering
a wide range of H I masses, from Leo T, to the Magellanic Clouds,
the MW, M31, and more massive galaxies (see fig. 1 in Wang et al.
2016), with their parameters for the relation:

log

(
2 RH I

[ kpc]

)
= (0.506 ± 0.003) log

(
MH I

[ M�]

)
− (3.293 ± 0.009) .

(8)

The H I-size relation implies a roughly constant surface gas density
(or column density) �HI ≈ �o. If we take a constant density core, it
would relate the central gas density and its scale length in the form:
�o ∝ MHIr

−2
HI ∝ ρHI × rHI. Furthermore, Stevens et al. (2019) find

that the H I-size relation would be robust to ram-pressure stripping
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Table 5. Orbital constraints for Cetus.

Threshold: 〈|�uGSR
t BAS|〉 〈DBAS

min 〉 〈|�uGSR
t RPS|〉 〈DRPS

min 〉
Case km s−1 kpc km s−1 kpc

3 54+2
−5 287 22+1

−8 55+1
−12

3a 39+2
−3 263 19+1

−7 54+1
−12

3b 66+2
−7 308 24+1

−8 56+1
−12

4 31+1
−3 184+5

−3 13+1
−5 50+0

−7

4a 11+1
−1 164+2

−2 (a) (a)

4b 43+2
−4 229+9

−4 16+1
−6 53+1

−9

cos4 42+2
−5 290+2

−2 16+2
−7 64+2

−15

B.V.(±�) 31+37
−21 184+124

−19 13+13
−13 50+71

−9

Note. (a) There are no values for case 4a for Cetus that can produce ram-
pressure-stripped orbits, as can be seen in Fig. A5.

Table 6. Orbital constraints for Eridanus II.

Threshold: 〈|�uGSR
t BAS|〉 〈DBAS

min 〉 〈|�uGSR
t RPS|〉 〈DRPS

min 〉
Case km s−1 kpc km s−1 kpc

3 94+6
−11 287 31+27

−17 38+20
−10

3a 64+9
−10 263 23+32

−15 35+21
−7

3b 117+5
−10 308 37+24

−18 40+19
−12

4 70+9
−10 211+3

−12 24+23
−14 40+17

−9

4a 39+11
−10 166+1

−3 9+27
−9 36+14

−6

4b 93+6
−11 257+6

−16 31+21
−16 41+16

−11

cos4 76+7
−10 284+1

−2 23+20
−13 42+18

−9

B.V.(±�) 70+51
−41 211+97

−48 24+37
−24 40+20

−12

Notes. B.V. are the best values selected from case 4 with the errors estimated
as in Table 3.

as well. As we find that in Leo T the H I radius (RH I) is similar to
the stellar half-light radius RV

Pl to within 4 per cent difference, we
use the stellar half-light radius of these satellites as a proxy for their
RH I values to estimate the H I mass that they would have contained.
Then, assuming a Plummer profile, we estimate a central density and
an H I-mass-to-stellar light ratio for Cetus and Eridanus II of 1.5 and
17 M� L�−1, respectively. These assumptions, while arbitrary, would
locate these pairs on the gas-rich side of what is observed for other
distant gas-rich dwarfs of the LG (McConnachie 2012; Spekkens
et al. 2014). We test these results using the values of the central
gas density and H I mass of Leo T for these dwarfs, also finding
ram-pressure-stripped orbits with similar values for the tangential
velocities.

We present our findings below, and the main properties of the
explored orbits in Tables 5 and 6 and in Fig. A5:

(i) Cetus: This dwarf is located at D� = 755 ± 24 kpc or ∼2.6Rvir

from the MW (McConnachie & Irwin 2006), with an LOS GSR
stellar velocity of vGSR

los,� = − 14.85 ± 1.7 km s−1 (Taibi et al. 2018).
Its absolute magnitude is MV = − 11.3 ± 0.3 mag (McConnachie &
Irwin 2006), and its stellar mass is 5.9 × 106 M�, which is ∼30
times larger than that in Leo T. Its stellar velocity dispersion
implies a dynamical mass of Mdyn

r3Dh
= 67+19

−16 × 106 M� (Taibi et al.
2018) within its 3D-half-light radius (r3Dh ≈ 4/3RPl = 791 ± 29 pc)
(McConnachie & Irwin 2006).
Taibi et al. (2018) hypothesize that, given that Cetus has no detectable
H I (Spekkens et al. 2014), it could be a backsplash system that lost
all its gas during a passage through the MW. In Fig. A5, we show that
surprisingly there is indeed a range of tangential velocities that result

in backsplash solutions for Cetus, when |�uGSR
t BAS| ≤ 31+37

−21 km s−1 (or
see as proper motions in Fig. 11), which for case 4 happened at a range
of t

(
DBAS

min

) = − 11.9 ± 0.1 Gyr while with the cosmic expansion
for case cos4 was at t

(
DBAS

min

) = − 7.4 ± 0.1 Gyr.
While several mechanisms to remove the cold gas in field dwarfs
are possible, such as UV background evaporation as shown in the
NIHAO simulations (Buck et al. 2019), it is very interesting that
we indeed find a range of ram-pressure-stripped backsplash orbits
for |�uGSR

t RPS| ≤ 13+12
−13 km s−1 (Fig. 11), which for case 4 happened at

a range of t
(
DRPS,2

min

) = − 11.1+0.2
−0.1 Gyr while for case cos4 was at

t
(
DRPS,2

min

) = − 6.6+0.1
−0.1 Gyr, and for case 3 we find t

(
DRPS,2

min

) = −
10.2+0.3

−0.1 Gyr. The exception where we find no ram-pressure solutions
is the extreme case 4a, where Cetus is too far and the time-depending
MW virial mass is too small at high redshift to have brought the dwarf
close enough to strip its gas (see Table 5). Of course, given that Cetus
is far, we would expect the whole MW region attracting the satellite,
a scenario better represented by case 1 or 3. The maximum and
minimum limits of the velocity thresholds are given by largest and
smallest variations between cases, which are driven mostly by virial
mass of the MW, of case 3b and case 4a, respectively.
We note that no GSR tangential velocity (|�uGSR

t | = 0 km s−1) would
result in the proper motions of μ◦

α∗ = 0.037 mas yr−1 and μ◦
δ = −

0.056 mas yr−1.
Given that Cetus currently is closer to M31 than to the MW, and that it
presents no evidence for a stellar truncation radius, McConnachie &
Irwin (2006) argue that this dwarf might have always been in isolation
in the past. Here we report that we find no orbits passing near M31
in the past for this dwarf within the considered range of parameters.

(ii) Eridanus II: It is located at D� = 366 ± 17 kpc from the
MW ∼1.27Rvir (Crnojević et al. 2016; Li et al. 2017), with an
LOS GSR stellar velocity of vGSR

los,� = − 76.8 ± 2.0 km s−1 (Li et al.
2017).3 It has a luminosity of LV = 5.9+1.9

−1.4 × 104 L� with a 3D
half-light radius of r3D-half = 369 ± 18 pc and a dynamical mass
within this of Mdyn

r3Dh
= 12+4

−3 × 106 M� (Li et al. 2017). We also

find a range of backsplash solutions for |�uGSR
t | ≤ 68+53

−39 km s−1 (see
Fig. A5 and Table 6), which for case 4 happened at a range of
t
(
DBAS

min

) = − 11.7 ± 0.3 Gyr, while including the cosmic expan-
sion was at t

(
DBAS

min

) = − 6.8+1.2
−2.3 Gyr. We also find a range of ram-

pressure-stripped backsplash solutions for |�uGSR
t | ≤ 16+38

−16 km s−1.
Particularly, for case 4 the treshold for ram pressure stripped orbits
happened at t

(
DRPS,2

min

) = − 7.7+0.2
−0.6 Gyr while for case cos4 was at

t
(
DRPS,2

min

) = − 5.4+0.1
−0.3 Gyr, and for case 3 we find t

(
DRPS,2

min

) = −
7.2+0.3

−0.8 Gyr.
Fritz et al. ( 2018) estimate proper motions for several
Milky Way satellites from Gaia DR2, finding for Eridanus II
μα∗ = 0.159 ± 0.292 ± 0.053 mas yr−1 and μδ = 0.372 ± 0.340 ±
0.053 mas yr−1(statistical and systematic errors). Recent estimates
from McConnachie & Venn ( 2020)4 find similar proper motion
values. We find that these values and their error range overlap with our
region of first in-fall solutions, as well as with our backsplash region
(Fig. 11). However, the gas stripped backsplash region does not
overlap with the observations under the assumed gas density core. We
note that a |�uGSR

t | = 0 km s−1 translates into μ◦
α∗ = 0.094 mas yr−1

and μ◦
δ = −0.062 mas yr−1 for this satellite.

(iii) Phoenix I: This dwarf is similar to Leo T in terms of mass and
distance. It is located at D� = 409 ± 23 kpc (∼1.4Rvir) from the MW

3Recomputed for the Galactic frame used here.
4We note that the authors have updated their values.
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Figure 11. Proper motions explored for Cetus (left-hand panel) and Eridanus II (right-hand panel) at their current positions for case 4 as a function of |�uGSR
t |

(colour bar). Each radial set of points corresponds to different directions of �uGSR
t . The black small circles surrounding the centre mark the ram-pressure-stripped

region due to PR, 2, and the magenta circles mark the backsplash solution region.

(Battaglia et al. 2012) [previous estimates are D� = 415 ± 19 kpc
(McConnachie et al. 2005) and 420 ± 10 kpc (Young et al. 2007)].
Its projected half-light radius is RV

h = 2.3 ± 0.07 arcmin (274 ± 8 pc)
(Battaglia et al. 2012) and luminosity is LV = 7.6 × 105 L� (re-
scaled to a distance of 409 kpc). Kacharov et al. (2017) report a
stellar velocity dispersion of σlos,� = 9.2 ± 0.7 km s−1. We assume a
constant dispersion profile, and we use the virial relation (5) to find a
dynamical mass of M

dyn
half = 2.1 ± 0.3 × 107 M� within the half-light

radius and a mass-to-light ratio of M/LV = 56 M� L�−1.
Intriguingly, Phoenix also has an H I cloud that is offset from the
stellar centre, with larger separation, however, of about 300 arcsec
(595 pc), with the H I distribution not only showing a different
systemic velocity from the stellar one, but it also shows a velocity
gradient (St-Germain et al. 1999). Young et al. (2007) determine
an H I mass of 1.1 × 105 M� and a central surface density of
0.512 × 1020 cm−2 (or 0.55 M� kpc−2, including He), where we
have re-scaled it to a distance of 409 kpc. Assuming that the central
density follows a Plummer profile, we find a gas core density and
scale of ρ

gas
Pl = 1.4 × 106 M� kpc−3 and R

gas
Pl = 150 arcsec (297 pc),

respectively.
To calculate the orbits, we use the stellar LOS systemic velocity de-
termined in Kacharov et al. (2017) with v�

los,� = − 21.2 ± 1.0 km s−1

that transforms to vGSR
los,� = − 116.8 km s−1, almost doubling the

stellar LOS velocity of Leo T. Exploring different magnitudes and
directions of tangential velocities (�uGSR

t ), we find almost exclusively
first infall solutions. Only in cases 3b and in case cos4, we find
some backsplash solutions when the tangential velocity is lower
than 30 ± 10 km s−1. This occurs because these cases are extreme
scenarios with the most massive MW haloes. Even for those cases,
the minimum distance that these orbits reach is half or 30 per cent
of the virial radius of the MW. Furthermore, only in case cos4 we
find some ram-pressure-stripped orbits for tangential velocities of
15 ± 5 km s−1. Therefore, we exclude backsplash orbits for Phoenix
I, making this dwarf a first infall satellite candidate.
Fritz et al. (2018) also estimate the proper motion for Phoenix I,
finding μα∗ = 0.079 ± 0.099 ± 0.04 mas yr−1 and μδ = − 0.049 ±

0.12 ± 0.04 mas yr−1, which when converted to the GSR frame
is |�uGSR

t | = 68+406
−66 km s−1. We note here that |�uGSR

t | = 0 km s−1 is
equivalent to μ◦

α∗ = 0.083 mas yr−1 and μ◦
δ = − 0.084 mas yr−1. We

calculate the maximum ram pressure that the measured proper motion
would imply. The thermal pressure is 7.0 × 108 M� kpc−3 km2 s−2,
while the ram pressure is 1.6+19.1

−0.4 × 106 M� kpc−3 km2 s−2 where the
upper and lower errors come from the velocity error range. Therefore,
as the ratio is always lower than one, the ram pressure would be too
weak to remove its gas at its current position. McConnachie & Venn
(2020) estimate new proper motions for Phoenix obtaining similar
values to Fritz et al. ( 2018), from which we reach the same conclusion
for Phoenix, that this is a field dwarf on its first in-fall.

5 SU M M A RY A N D C O N C L U S I O N

Leo T’s interesting properties, such as a recent star formation episode,
its location at a large distance from the MW, its gas, and dark matter
content, make it an excellent laboratory to study the formation and
evolution of galaxies in the most idealized scenario. In this paper,
we present a method to explore a wide range of orbits for the dwarf
Leo T to determine if this dwarf could be a backsplash satellite, i.e.
a dwarf that already passed through the MW in the past, or if it is
approaching the MW for the first time.

For this purpose, we developed the code DELOREAN to explore a
large number of proper motions and to calculate semi-analytical
orbits backwards in time considering a number of scenarios for
the gravitational potentials that include an accreting MW halo, the
potential of M31, dynamical friction, and the cosmic expansion of
the Universe.

Our main results are the following:

(1) We find backsplash orbital solutions for Leo T when the
tangential velocity in the GSR is lower than |�uGSR

t | ≤ 63+47
−39 km s−1.

We find that backsplash solutions with |�uGSR
t | > 21+33

−21 km s−1 would
allow the satellite to survive the ram-pressure stripping of the
MW. This suggests that Leo T could be on a backsplash orbit,
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but in a wide orbit that could have reached a minimum distance
of Dmin ≥ 38+26

−16 kpc in the past that allowed it to keep its gas.
Therefore, Leo T could be first infall satellite or also a wide-orbit
backsplash dwarf with a moderate interaction with the MW in the
past. The velocity uncertainty range is dominated at first order by
the uncertainty in the virial mass of the MW, where we explored a
20 per cent virial mass variations, followed by the uncertainties in
the MW mass accretion history.

(2) When comparing with the H I morphology of Leo T (Adams &
Oosterloo 2018), we can select the orbits that better align with the
observed H I-stellar offset, the H I inner flattening, or the H I tail, ob-
taining a backsplash velocity threshold of |�uGSR

t | ≤ 69 ± 39 km s−1.
This corresponds to a range of proper motions for different orbital
solutions:

(a) first infall: μδ < −0.1507[ mas yr−1];
(b) unstripped gas backsplash: −0.1507 ≤ μδ/[ mas yr−1] ≤

−0.1318;
(c) gas stripped backsplash: −0.1318 ≤ μδ/[ mas yr−1] ≤

−0.1153.

In Fig. 8, we provide proper motion constraints for all directions, and
in Table 3 we include error ranges for different cases. A comparison
with full hydrodynamical simulations that reproduce the H I features
will better constrain the proper motion and evolution of Leo T (future
publication). We note that new proper motion estimates for Leo T
were recently published by McConnachie & Venn (2020)5. We find
that within the observational errors both orbital solutions can be
considered.

(3) We also calculate orbits backwards in time with a cosmological
scheme where space changes according to a cosmology with param-
eters from the Planck Collaboration XIII (2015). We find that the
backsplash orbital solutions explored for Leo T experience a delay
on their first infall of ∼2 Gyr later than those in the non-expanding
fiducial case. This results from the cosmic expansion at z > 1, where
backsplash orbital solutions are found at larger distances from the
MW at early times, which then take longer to fall, with Hubble
flow contributes iingthe delay of the first infall by decelerating the
infalling satellites when H(z) was large.

(4) We applied our method to the distant dwarfs Cetus, Eridanus II,
and Phoenix I. We find a range of backsplash solutions for Cetus
where the gas ram pressure of the MW could have been large enough
to strip its gas, providing an explanation for its current absence of
cold gas. For Eridanus II we also find backsplash solutions that
lay within the range of proper motion observational estimations
(Fritz et al. 2018; McConnachie & Venn 2020) however, under our
assumed gas density core, the they lay near but outside the ram
pressure stripped orbital solutions. For Phoenix I, we find neither
ram-pressure-stripped nor backsplash solutions. This is due to the
large LOS velocity, suggesting that this dwarf is a pristine dwarf on its
first infall. Finally, we also use our cosmological orbital calculation
for these dwarfs, where we also find a time delay of the first pericentre
passage in the backsplash solutions of �t ≈ 2 Gyr for Eridanus II
and of �t ≈ 5 Gyr for Cetus.

We conclude that, while the H I-rich dwarf Leo T could be a
backsplash system with some mild interaction with the MW in the
past, Phoenix I is likely a pristine system, and therefore, both the
systems are interesting laboratories to test formation and evolution
models of dwarf galaxies in isolation or interaction regimes. Cer-
tainly, cosmological galaxy simulations predict that 30–50 per cent

5We note that the authors have updated their values.

of the satellites between one and two times the virial radius of host
galaxies like the MW or Andromeda are a backsplash population,
while the remaining are first infall dwarfs. This raises up great
expectations that, with the upcoming telescopes, such as the Vera
C. Rubin Observatory,6 we will discover many more distant dwarf
satellites, including backsplash population members.
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A P P E N D I X A : TO O L S O F DELOREAN

A1 Proper motion exploration

Our code DELOREAN has the option to calculate orbits providing
directly heliocentric proper motion values pre-defined by the user.
The code can also construct the vector �uGSR

t that is tangential to the
LOS velocity in the GSR frame at the current position of the object,
which is basically derived from the plane of angular momentum.
It starts by converting �vGSR

los to GC coordinates �vGC
los . Then, it builds

two orthonormal vector bases of �uGSR
t in the GC frame, which are

perpendicular to the LOS velocities �vGC
los . For this, it uses the angular
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Figure A1. In the top to third panel, are shown as a function of lookback
time (redshift): scale factor, expansion factor, matter density (ρm = ρcrit
m)
(solid curve), and dark energy density (dotted line). The values are calculated
from cosmological parameters according to the Planck Collaboration XIII
(2015) (Paper XIII) taken from ASTROPY (Planck15). Third to bottom panels:
halo concentration, virial mass, and comoving virial radius (equation 2) as a
function of redshift according to the software COMMAH (Correa et al. 2015a,
b, c), which come from semi-analytical extended Press–Schechter and halo
mass accretion models fitted to cosmological simulations. The values used at
redshift zero for the concentration, the virial mass, and radius are 8.6, 1.3 ×
1012 M�, and 288 kpc (solid curve), and the upper and lower dashed curves
correspond to 8.8, 1.6 × 1012 M�, and 308 kpc and 8.4, 1.0 × 1012 M�, and
264 kpc, respectively.

momentum from the known LOS velocity in the GC frame:

�uGC
t = λ1 l̂los + λ2

l̂los × v̂GC
los

|l̂los × v̂GC
los | , (A1)

where l̂los is the unitarian vector of �llos = �D × �vGC
los , which is a

component of the total specific orbital angular momentum: �l = �D ×
(�vGC

los + �uGC
t ), with �D being the object’s GC distance. The lambda

parameters define the magnitude of �uGSR
t : |�uGSR

t | =
√

λ2
1 + λ2

2, and
its direction is given by the angle θ = arctan(λ2/λ1), which is
measured on the plane of the sky, and can be converted to the position

Figure A2. Orbits integrated 12 Gyr backwards in time for case 1 (constant
MW Mvir), showing a range of values of |�uGSR

t | with selection of orbits in
the direction of PAoffset =3◦ to avoid overcrowding. Top panel: distance as a
function of time showing the constant virial radius (288 kpc) (black dashed
line). Bottom panel: velocity as a function of time.

angle after conversion to equatorial coordinates (PA = θ − θo). Once
a value of �uGSR

t is defined, it can be converted into proper motions.

A2 Orbital integration with cosmic expansion

DELOREAN can also integrate orbits in a cosmological framework.
For this, we pre-compute the factors in the drift (D) and kick (K)
operators that depend on the cosmological parameters, using here the
values from the Planck Collaboration XIII (2015) (Paper XIII) from
ASTROPY (Planck15) to obtain the cosmological variables z, a(z),
H(z), ρcrit(z), ρ�(z), ρm(z), and 
m(z), corresponding to the redshift,
scale factor, expansion factor, critical density, matter density, dark
energy density, and matter-to-critical density ratio, respectively, as
functions of the lookback time (t), i.e. z = z(t). We tabulate them to
interpolate the values when needed (Fig. A1). These tables can be
recomputed for any cosmology. To calculate the orbits, we use the
symplectic form (ergo time reversible) of the equations of motion in
a Hamiltonian formalism given by Quinn et al. (1997) (as applied in
GADGET-2; Springel, Di Matteo & Hernquist 2005), which uses the
leap-frog method, which is time reversible, to calculate the orbits in
comoving coordinates ( �X, �V ) as
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Figure A3. The main parameters for different directions of �uGSR
t and different cases (Table 2) as a function of |�uGSR

t |. See the main text in Section 4.1 for
the parameters’ definitions. Each coloured line corresponds to a case labelled in the second top panel, where we note that our fiducial case 4 (MW accreting
and M31 potential) is shown in black. From this figure, we identify three main regions in �uGSR

t : (i) the region RPS where the MW ram pressure is larger than
the thermal pressure of the satellite. Each direction and case have a slightly different value of |�uGSR

t RPS|. We mark the median of PR of our fiducial case 4 taking
all directions of the tangential velocities, finding |�uGSR

t | = 14+26
−14 km s−1 for PR, 1 (top panel) and 21+33

−21 km s−1 for PR, 2 (second panel) (dashed green vertical
lines). The error range considers the maximum and minimum threshold velocity values found among different directions of �uGSR

t and different cases. (ii) The
backsplash region with orbits that passed through the MW dark matter halo, which we mark for case 4 at the median value and range of |�uGSR

t | = 63+47
−39 km s−1

(dashed black vertical line); and (iii) the first infall region where orbits never entered the halo.
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Figure A4. Left-hand panels: density profiles for model 1 showing the stellar mass profile (top subpanel) and dark matter profile (bottom subpanel) for N-body
simulations of Leo T for different orbits. Middle panels: cumulative mass profiles of model 1 showing the stellar (top subpanel) and dark matter components
(bottom subpanel) for the N-body models of Leo T at different snapshots. Right-hand panels: same as the middle panels but for model 2 (dwarf with a NFW dark
halo). The initial profiles after the relaxation are shown with dotted curves. The coloured solid curves show the density and mass profiles of eight simulations at
the final snapshot after a 12 Gyr orbit, showing the orbits with |�uGSR

t | = 30 km s−1 up to 100 km s−1.

Figure A5. Main parameters explored for Cetus (left-hand panel) and Eridanus II (right-hand panel) for different directions of �uGSR
t orbit and different cases

as a function of |�uGSR
t |. See the main text in Section 4.1 for the parameters’ definitions.
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D (�t) = �Xt+�t = �Xt + �P
∫ t+�t

t

dt

a2
(A2)

K (�t) = �Pt+�t = �Pt −
∫ t+�t

t

dt
�∇ψ

a (t)
, (A3)

where �P = a2 �V is the specific canonical momentum and �∇ψ is the
gradient of the peculiar potential in comoving coordinates for the
periodic boundary solution given as

�∇ψ/a = �∇�/a − ä

a
a2 �X, (A4)

with �∇� being the Newtonian gravitational potential gradient in
comoving coordinates, where we used analytical potentials (i.e.
disc, bulge, and dark halo), and where we use the second Friedman
equation in the matter-dominated epoch to calculate the term with

the second time derivative of the scale factor:

ä

a
= −4πG

3
(ρm − 2ρ�) . (A5)

The relation between comoving ( �X, �V ) and physical coordinates
(�r, �v) is given by

�r = a (t) �X (A6)

�v = H (t) �r + a (t) �V . (A7)

The peculiar velocity is then �Vpec = a �V . In cases where the potential
of M31 is included, the orbits of MW and M31 are pre-computed
with the cosmological scheme.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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