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ABSTRACT
We investigate the possibility to detect primordial non-Gaussianity by analysing the bulk of the probability distribution function
(PDF) of late-time cosmic density fluctuations. For this purpose, we devise a new method to predict the impact of general
non-Gaussian initial conditions on the late-time density PDF. At redshift z = 1 and for a smoothing scale of 30 Mpc h−1

our predictions agree with the high-resolution Quijote N-body simulations to ∼ 0.2 per cent precision. This is within cosmic
variance of a ∼100(Gpc h−1)3 survey volume. When restricting to this 30 Mpc h−1 smoothing scale and to mildly non-linear
densities (δ[30 Mpc h−1] ∈ [−0.3, 0.4]) and also marginalizing over potential ignorance of the amplitude of the non-linear
power spectrum an analysis of the PDF for such a survey volume can still measure the amplitude of different primordial
bispectrum shapes to an accuracy of �f loc

NL = ±7.4 , �f
equi
NL = ±22.0 , �f ortho

NL = ±46.0. When pushing to smaller scales and
assuming a joint analysis of the PDF with smoothing radii of 30 and 15 Mpc h−1 (δ[15 Mpc h−1] ∈ [−0.4, 0.5]) this improves to
�f loc

NL = ±3.3 , �f
equi
NL = ±11.0 , �f ortho

NL = ±17.0 – even when marginalizing over the non-linear variances at both scales as
two free parameters. Especially, such an analysis could simultaneously measure fNL and the amplitude and slope of the non-linear
power spectrum. However, at 15 Mpc h−1 our predictions are only accurate to � 0.8 per cent for the considered density range.
We discuss how this has to be improved in order to push to these small scales and make full use of upcoming surveys with a
PDF-based analysis.
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1 IN T RO D U C T I O N

Data of the large-scale structure of the Universe can be successfully
analysed on the basis of the 1-point probability distribution function
(PDF) of the matter density field – even in the presence of tracer
bias and redshift uncertainties. This has been demonstrated e.g. by
Gruen et al. (2016, 2018), Friedrich et al. (2018), and Brouwer
et al. (2018). In particular, Gruen et al. (2018) and Friedrich
et al. (2018) measured the PDF of galaxy density and then used
measurements of gravitational lensing to relate that to the PDF of the
underlying matter density field quantile-by-quantile. This way they
could simultaneously

(a) test the �CDM prediction for how the variance and skewness
of matter density fluctuations are related on mildly non-linear scales;

� E-mail: of259@ast.cam.ac.uk

(b) constrain a two-parameter galaxy bias model that accounts for
both linear bias and density-dependent shot-noise;

(c) measure the late-time matter density and the amplitude of late-
time density fluctuations as encoded by the parameters �m and σ 8

of the �CDM model.

Given the rich amount of information that can be harvested
from the PDF (see also Uhlemann et al. 2019), it is time to
explore its potential for constraining fundamental physics and to
compare it to other cosmological probes. In this paper we showcase
one specific application: we study how primordial non-Gaussianity
(see e.g. Komatsu & Spergel 2001; Fergusson & Shellard 2009;
Scoccimarro et al. 2012; Biagetti 2019; Meerburg et al. 2019,
and references therein) are imprinted in the late-time density PDF
and how constraints from such an analysis compare to the ones
obtained from direct measurements of moments of the density field.
The impact of primordial non-Gaussianity on the matter density
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PDF has previously been discussed e.g. by Valageas (2002b) and
Uhlemann et al. (2018b). We extend on their results in two ways:
First, we present a new method to model the impact of general
non-Gaussian initial conditions on the PDF of the late-time density
field. This method directly models the cumulant generating function
(CGF) of the late-time density field from the CGF of the early-
time density field. As shown in Section 4 such an approach requires
fewer approximating steps than existing modelling approaches and
is close to what would be called modelling ’from first principles’.
Secondly, we take into account the full covariance matrix of measured
density PDFs across different density contrasts and for two different
smoothing scales to determine how well measurements of the density
PDF can determine the amplitude of different primordial bispectrum
templates. In the context of this task, we also compare the statistical
power of the density PDF to that of direct measurements of the
cumulants of the density field. The latter have recently been pushed
towards applicability in real large-scale structure analyses by Gatti
et al. (2019) and the impact of primordial non-Gaussianity on higher
order weak lensing statistics has e.g. been investigated by Pace et al.
(2011).

In general, scale-dependent tracer bias is believed to be the most
promising signature of local primordial non-Gaussianity in the large-
scale structure (e.g. Dalal et al. 2008; Desjacques, Seljak & Iliev
2009; Jeong & Komatsu 2009; Scoccimarro et al. 2012; Biagetti et al.
2017), especially when combined with cosmic variance cancellation
techniques (Seljak 2009). Recently, it was pointed out that a similar
scale-dependent bias effect from primordial non-Gaussianity can be
observed with voids (Chan, Hamaus & Biagetti 2019), although
massive neutrinos produce a similar effect on scales smaller than
their maximal comoving free streaming scale (Banerjee & Dalal
2016). Detecting primordial non-Gaussianity in scale-dependent
tracer bias requires analyses of clustering power spectra at very
large scales. This poses a challenge in terms of cosmic variance,
systematic effects (Laurent et al. 2017) as well as modelling of
large-scale relativistic effects (Bartolo, Matarrese & Riotto 2011;
Camera, Santos & Maartens 2015; Contreras, Johnson & Mertens
2019). A way to measure primordial non-Gaussianity that does
not suffer from these challenges (but instead from other ones)
is to probe the PDF of densities in spheres and their density-
dependent clustering on intermediate scales (Codis, Bernardeau &
Pichon 2016b). In fact, the density PDF is sensitive to all primordial
bispectrum shapes and can hence probe equilateral or orthogonal
templates for which scale-dependent bias is less pronounced. In
addition, density-dependent clustering allows to disentangle local
fNL (causing primordial skewness) and gNL (generating primordial
kurtosis) by scanning different density environments. Studying the
1-point PDF parallels a number of efforts to understand the cosmic
structures beyond their N-point statistics – both for the purpose
of detecting primordial non-Gaussianity (e.g. Chiang et al. 2015;
Nusser, Biagetti & Desjacques 2018; Karagiannis, Slosar & Liguori
2019; Moradinezhad Dizgah et al. 2019) and to test the theory of
structure formation in general (e.g. Jain & Van Waerbeke 2000;
Simpson, Heavens & Heymans 2013; Codis et al. 2016a; Kacprzak
et al. 2016; Coulton et al. 2019).

Even though there are numerous ways how primordial non-
Gaussianity can emerge from inflation, one can categorize them
according to the primordial bispectrum shape they generate (see e.g.
Babich, Creminelli & Zaldarriaga 2004; Chen et al. 2007; Liguori
et al. 2010, for a discussion of concrete models). As suggested by
its name, the local shape is typically generated by local interactions,
such as in multifield inflation (Bernardeau & Uzan 2002) or curvaton
models (Bartolo, Matarrese & Riotto 2004), with a small amplitude

also being produced in single-field slow-roll inflation (Acquaviva
et al. 2003). The equilateral shape requires an amplification of
non-linear effects around horizon exit and hence modifications to
single-field inflation (Chen et al. 2007). Particular examples are
non-canonical kinetic terms as in the Dirac–Born–Infeld model
(Alishahiha, Silverstein & Tong 2004) or higher derivative terms such
as in K-inflation (Armendáriz-Picón, Damour & Mukhanov 1999),
ghost inflation (Arkani-Hamed et al. 2004), effective field theories
of inflation (Cheung et al. 2008), or Galileon inflation (Burrage et al.
2011). The orthogonal shape (Senatore, Smith & Zaldarriaga 2010)
is able to distinguish between variants of non-canonical kinetic terms
and higher derivative interactions.

The late-time matter density PDF at a given smoothing scale is
mostly sensitive to the skewness of the primordial density field at
that scale and to the running of that skewness around the smoothing
scale. As such – unless the PDF is measured on a wide range of
smoothing scales – it can only poorly distinguish between different
primordial bispectrum shapes. Any model that produces mainly one
of the possible bispectrum template can however be successfully
tested with PDF measurements. In this paper, we consider an analysis
of the PDF at redshift z = 1 in a survey volume of V = 100(Gpc h−1)3,
which is smaller than the effective volume of upcoming surveys
such as Spherex with Veff ≈ 150(Gpc h−1)3 and somewhat larger
than existing surveys such as BOSS with Veff ≈ 55(Gpc h−1)3 (Doré
et al. 2014; Alam et al. 2017). At a smoothing scale of 30 Mpc h−1

we find our PDF model to agree with the high-resolution run of
the Quijote N-body simulations (Villaescusa-Navarro et al. 2019)
to � 0.2 per cent accuracy over a range of δ[30 Mpc h−1] ∈ [−0.3,
0.4]. This is within cosmic variance of the considered volume of
100(Gpc h−1)3 (which is also the combined volume of the Quijote
high-resolution boxes). Restricting to this smoothing scale and to
these mildly non-linear densities we find that a PDF based analysis
can measure the amplitude of different primordial bispectrum shapes
to an accuracy of �f loc

NL = ±7.4 , �f
equi
NL = ±22.0 , �f ortho

NL =
±46.0 – even when marginalizing over the non-linear variance of
the density field as a free parameter. When pushing to smaller scales
and assuming a joint analysis of the PDF with smoothing radii of
30 and 15 Mpc h−1 (δ[15 Mpc h−1] ∈ [−0.4, 0.5]) this improves to
�f loc

NL = ±3.3 , �f
equi
NL = ±11.0 , �f ortho

NL = ±17.0 – even when
marginalizing over the non-linear variances at both scales as two free
parameters. Especially, such an analysis can simultaneously measure
fNL and the amplitude and slope of the non-linear power spectrum.
Note that any dependence of these forecasts on σ 8 is completely
mitigated by this marginalization. We do not consider the impact of
�m on our signals (see Uhlemann et al. 2019, for an investigation
of the general cosmology dependence of the PDF) though Friedrich
et al. (2018) and Gruen et al. (2018) have demonstrated that param-
eters of the �CDM model and higher order moments of the density
field can be measured simultaneously from what they call lensing-
around-cells. Ultimately, we are working towards a combination of
a late-time PDF analysis with the early-universe results of Planck
Collaboration IX (2019). These two analyses have the potential to
complement each other: the CMB providing information about the
background �CDM space–time, the late-time density PDF providing
information about non-linear structure growth and both of them
containing independent information about the imprint of primordial
non-Gaussianities on the large-scale structure.

Our paper is outlined as follows: Section 2 summarizes our
procedure of modelling the matter density PDF and its moments
and compares their statistical power for measuring primordial non-
Gaussianity. Section 3 provides intuitive explanations for the impact
of primordial non-Gaussianity on the density PDF and its moments,
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while Section 4 presents a detailed derivation of our actual modelling
approach. Section 5 describes the different simulations we used and
how we estimate the covariance matrix of the density PDF and
moments at the scales under consideration. We conclude and discuss
our results in Section 6. PYTHON and C++ tools to carry out the
calculations presented in this paper are publicly available.1

2 SU M M A RY O F P RO C E D U R E A N D F O R E C A S T
OF STATISTICAL POWER

2.1 Modelling the matter PDF

We start by summarizing the main technical result of this paper.
Assume that we know the CGF of the linear density contrast

ϕL,R(j ) ≡
∞∑

n=2

〈δn
L,R〉c jn

n!
, (1)

where 〈δn
L,R〉c are the local connected moments (or cumulants) of

the linear density contrast field δL(x) today, averaged over spheres
of radius R

δL,R =
∫

d3x WR(x)δL(x) , WR(x) = 3	(R − |x|)
4π (R)3

. (2)

For Gaussian initial conditions the linear CGF is simply

ϕGauss
L,R (j ) = 〈δ2

L,R〉c
2

j 2 , (3)

while for small primordial non-Gaussianity it can be approximated
as

ϕPNG
L,R (j ) ≈ 〈δ2

L,R〉c
2

j 2 + 〈δ3
L,R〉c
6

j 3 , (4)

where the skewness 〈δ3
L,R〉c of the linear density contrast can be cal-

culated from the primordial bispectrum, as described in Section 4.4
(see also Uhlemann et al. 2018b).

We then derive in this paper that the CGF ϕR(λ, z) of the non-
linear density contrast at redshift z and smoothing scale R can be
approximated as

ϕR(λ, z) ≈ −sλ(δ∗, j ∗) , (5)

where δ∗ and j∗ minimize the function

sλ(δ, j ) = −λF (δ) + jδ − ϕL,R(1+F(δ))1/3 (j ) , (6)

F (δ) = F (δ, z) being the function that describes the spherical
collapse of a density fluctuation that has linear density contrast δL =
δ today (see Appendix A). Hence, we derive an approximation for
computing the CGF of the evolved density field directly from the
CGF of the linear density field.

This result extends the path integral approach of Valageas (2002a)
and Valageas (2002b) for Gaussian initial conditions and limited
types of primordial non-Gaussianity to general non-Gaussian initial
conditions. As for Gaussian initial conditions, the above procedure
yields the CGF at leading order in standard perturbation theory. The
accuracy of equation (5) can be significantly improved with the re-
scaling (Bernardeau, Codis & Pichon 2015; Friedrich et al. 2018;

1https://github.com/OliverFHD/CosMomentum

Uhlemann et al. 2018a,b,c)

ϕR(λ, z) = σ 2
L,R(z)

σ 2
NL,R(z)

ϕl.o.
R

(
λ

σ 2
NL,R(z)

σ 2
L,R(z)

, z

)

= σ 2
L,R(z)

σ 2
NL,R(z)

∞∑
n=2

S l.o.
n (z) σ

2(n−1)
NL,R (z)

λn

n!
. (7)

Here, ϕl.o.
R is the leading order CGF from equation (5), Sn are the

reduced cumulants defined as

Sn ≡ 〈δn
R〉c

σ
2(n−1)
R

, (8)

and σ 2
L,R(z) and σ 2

NL,R(z) are the variances of the linear and non-
linear density field at smoothing radius R. These variances can be
calculated from the linear power spectrum PL and non-linear power
spectrum PNL as

σ 2
L/NL,R(z) =

∫
dk

2π2
PL/NL(k, z) k2 W̃ 2

R(k) , (9)

where W̃R(k) is the Fourier transform of the spherical top-hat kernel
from equation (2), given by (cf. Appendix B)

WR(k) = 3

(
sin(Rk)

(kR)3
− cos(Rk)

(kR)2

)
. (10)

The non-linear power spectrum required for the re-scaling in equa-
tion (7) can be obtained from N-body simulations, from fitting
formulae such as halofit (Smith et al. 2003; Takahashi et al.
2012) or from response-function based approaches (e.g. respresso,
Nishimichi, Bernardeau & Taruya 2017), see Uhlemann et al. (2019)
for a comparison. In this work, we treat the non-linear variance as a
free parameter in order to mitigate potential theoretical uncertainty in
the modelling of late-time structure growth. Note that marginalizing
over the amplitude of non-linear density fluctuations makes our fNL

constraints also independent of σ 8 (the amplitude of the linear density
contrast field on an 8 Mpc h−1 smoothing scale; see also Uhlemann
et al. 2019 for a discussion of the dependence of the density PDF on
�CDM parameters).

Once the CGF ϕR(λ, z) has been calculated, the PDF of δR can be
obtained from an inverse Laplace transform, i.e.

p(δR, z) =
∫ ∞

−∞

dλ

2π
e−iλδR+ϕR (iλ,z) . (11)

A description of how to efficiently solve this integral is provided
in Valageas (2002a), Bernardeau et al. (2015), and Friedrich et al.
(2018).

In Fig. 1, we show a comparison of this model to the density
PDF measured in the Quijote N-body simulations (see Villaescusa-
Navarro et al. 2019, details are also given in our Section 5.1). The
figure shows the PDFs at redshift z = 1 and for a smoothing radius
of R = 15 Mpc h−1. Fig. 2 displays the difference between PDFs
evolved from Gaussian initial conditions and PDFs evolved from
primordial non-Gaussianity with different primordial Bispectrum
shapes. The left-hand panel compares our model to simulations
run by Scoccimarro et al. (2012), while the right-hand panel uses
simulated data based on methods developed in Nishimichi (2012)
and Valageas & Nishimichi (2011) (see also Uhlemann et al. 2018b
or our Section 5.1 for details). It can be seen there that our analytical
model realistically captures the shape of the PDF as found in N-body
simulations. Note that the approximations made in Section 4 become
more precise in the limit of fNL → 0 and that also the finite resolution
of the simulations influences the comparison of Fig. 2, as we discuss
in Section 6.
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Figure 1. Comparing the matter density PDF measured in the Quijote N-body simulations (Villaescusa-Navarro et al. 2019) to our analytic model for Gaussian
initial conditions. In this paper, we compare cosmological information obtained from the bulk of the PDF (grey area, ≈ 87 per cent of probability) to that
obtained from moments of the density field. The latter can strongly depend on the tails of the PDF which are impacted more severely by the non-linear evolution
of the density field or baryonic physics. Furthermore, methods to recover the matter density PDF from the galaxy density field (Friedrich et al. 2018; Gruen
et al. 2018) require modelling of non-linear tracer bias which is also more difficult in the tails of the PDF.

Figure 2. We test the accuracy of our PDF model for exaggerated amplitudes of primordial bispectrum templates at a smoothing scale of R = 15 Mpc h−1 and
redshift z = 1. Left: difference between PDFs obtained from non-Gaussian and Gaussian initial conditions in the Oriana simulations (points with errorbars, see
Scoccimarro et al. 2012; using f loc

NL = 100 f
equi
NL = −400 f ortho

NL = −400). Our model predictions for these differences are displayed by the solid lines. Right:
simulations run by Nishimichi (2012), Valageas & Nishimichi (2011) for local primordial non-Gaussianity with f loc

NL = ±100. Note that in all simulations
the primordial non-Gaussianity also changes the late-time non-linear variance. We absorb this by fitting different values for this variance to each simulation.
The errorbars in each panel are for individual simulations, corresponding to a volume of 14(Gpc h−1)3 for Oriana and 70(Gpc h−1)3 for Nishimichi. This
actually overestimates the uncertainty since Gaussian and pNG versions of each simulation have strongly correlated initial conditions. The remaining mismatch
between model and simulations may seem small, but it is not negligible w.r.t. the precision of future surveys. In Section 6, we discuss possible causes of these
discrepancies and how to address them in the future.

Since our model captures the impact of primordial non-
Gaussianities on the late-time density PDF realistically, we now
discuss the impact of values of fNL that are compatible with current
experimental bounds. In Fig. 3, we show the theoretically predicted
response of the PDF and its 2nd, 3rd and 4th cumulants (the variance,
skewness and kurtosis) to a primordial bispectrum of equilateral
shape and with amplitude f

equi
NL = 47, corresponding to the 1σ

uncertainty of Planck Collaboration IX (2019).2 For these figures, the
non-linear variance of the late-time density field was calculated with

2Note that while Planck can simultaneously constrain equilateral and orthog-
onal type non-Gaussianity, the PDF is only sensitive to their combination, as
we discuss in Appendix D.
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Figure 3. Comparing the predicted response of the PDF (left) and the cumulants (right) of the density field to changes in f
equi
NL (the amplitude of an equilateral

shape of the primordial Bispectrum) and in the late-time non-linear variance. In the left-hand panels we show the absolute difference between modified and
fiducial PDFs, while on the right-hand panels we show relative differences between modified and fiducial cumulants. The value of f

equi
NL = 47 corresponds to the

1σ uncertainty of Planck Collaboration IX (2019) (though the latter simultaneously vary both f ortho
NL and f

equi
NL , see our discussion in Appendix D). Error bars

assume a survey volume of V = 100(Gpc h−1)3. The grey regions indicate the bulk of the PDFs that is used for the forecasts in this work. In total it excludes
about 13 per cent of the probability in the tails for R = 15 Mpc h−1 and about 5 per cent of the probability for R = 30 Mpc h−1.

the halofit power spectrum (Smith et al. 2003; Takahashi et al. 2012)
and the higher order cumulants have been obtained by approximating
the CGF of equation (5) with a polynomial (which is nummerically
highly non-trivial, please see our discussion in Section 4.6). We
also compare this to the response of the PDF when decreasing the
non-linear variance by 2 per-mille (which leads to signatures of a
similar amplitude). As you can see in the figure, changes in the
amplitude of the primordial Bispectrum and changes in the late-
time variance have non-degenerate signatures on the shape of the
PDF. The errorbars shown in the figure represent cosmic variance
for a survey volume of V = 100(Gpc h−1)3 at redshift z = 1.
This corresponds to the combined volume of the high-resolution
runs of Quijote which is smaller than the effective volume of
upcoming surveys such as Spherex with Veff ≈ 150(Gpc h−1)3 but
somewhat larger than existing surveys such as BOSS with Veff ≈
55(Gpc h−1)3 (Doré et al. 2014; Alam et al. 2017). Our error bars
are obtained – as part of the full covariance matrix of PDFs and
moments at the two radii R = 15 Mpc h−1 and R = 30 Mpc h−1

– from the fiducial Quijote runs (see Section 5 for details and
Fig. 4 for a display of the full correlation matrix). An important
point to note here is: While the agreement between our model
and N-body simulations is at the sub-per cent level for the total
PDF (cf. Fig. 8), the enormous statistical power of future surveys
such as Spherex will require per-mille level accuracy. This will

require careful control of both theoretical errors for the predictions
and finite resolution effects in the simulations, as we discuss in
Section 6.

2.2 Constraining fNL with the PDF and cumulants

Based on our theoretical model and the covariance matrix estimated
from the Quijote simulations we investigate how well analyses of
the matter density PDF can measure the amplitude of the different
primordial bispectrum templates as well as the late-time amplitude
of density fluctuations. To do so, we consider the three parameters
θ = [Var15, Var30, fNL], where VarR denotes the non-linear variance
of the density contrast at smoothing scale R and z = 1 and fNL denotes
the amplitude of different primordial bispectrum templates. Given a
model for a data vector, x = x[θ ], and an expected covariance matrix
C for that data vector, one can estimate the covariance matrix Cparam

of the statistical uncertainties in the parameters as (Krause et al.
2017)(

C−1
param

)
ij

= dx
dθi

· C−1 · dx
dθj

. (12)

This assumes that the noise in measurements x̂ of x has a multivariate
Gaussian distribution and that the dependence of x on the parameters
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Figure 4. Correlation matrix of the combined data vector of the PDF and
cumulants measured at two smoothing scales. The first block (1–10) is the
PDF measured on a 15 Mpc h−1 smoothing scale and for density contrasts δ ∈
[−0.4, 0.5]. The second block (11–17) is the PDF measured on a 30 Mpc h−1

smoothing scale and for density contrasts δ ∈ [−0.3, 0.4]. The binning of
the PDF within these ranges was chosen to match the binning of the fiducial
Quijote data products (Villaescusa-Navarro et al. 2019). The last two blocks
(18–20 and 21–23) are the variance, skewness and kurtosis measured on
smoothing scales of 15 and 30 Mpc h−1, respectively. The upper right triangle
uses the Quijote N-body simulations. This is the covariance that we are using
in our forecasts. To investigate a cheap way of producing covariances for
future analyses we also investigate lognormal simulations that are tuned
to produce the correct variance and skewness on a 15 Mpc h−1 scale. The
correlation matrix obtained from these is shown in the lower left triangle (cf.
Section 5.2).

θ is close to linear. In our case, x is either of the following data
vectors:

(i) The PDF measured for δ15 Mpc h−1 ∈ [−0.4, 0.5] (≈ 87 per cent
of probability) or δ30 Mpc h−1 ∈ [−0.3, 0.4] (≈ 95 per cent of proba-
bility), see the blue contours in Fig. 5.

(ii) Measurements of the first two non-vanishing cumulants (vari-
ance and skewness) or the first three non-zero cumulants (variance,
skewness and kurtosis) of the density field at these two smoothing
scales, see the red and green contours in Fig. 5.

(iii) The combined data vector of either the PDF or the cumulants
measured at both smoothing scales, see Fig. 6.

The above cuts in the PDFs where chosen such that they remove
approximately the same amount of probability in both the underdense
and overdense tails. The range δ15 Mpc h−1 ∈ [−0.4, 0.5] is motivated
by demanding that our PDF model be in ∼ 1 per cent agreement with
the high-resolution runs of the Quijote simulations. The motivation
for choosing the range δ30 Mpc h−1 ∈ [−0.3, 0.4] was to cut enough of
the tail probabilities in order to assume multivariate Gaussian noise
on the PDF measurements (see explanations below).

We estimate the covariance of each of these data vectors from the
Quijote simulations and choose our binning of the PDFs to match
that of Villaescusa-Navarro et al. (2019). Using the ensemble of PDF
and cumulant measurements from Quijote we also test that individual
data points have a close to Gaussian distribution. If we were to analyse
the PDFs over the entire range δR ∈ [−1, ∞], then the noise of PDF

Figure 5. Same as the upper panel of Fig. 6 but when analysing the PDF
or cumulants individually at the smoothing scales R = 15 Mpc h−1 (top) and
R = 30 Mpc h−1 (bottom). The smaller scale of R = 15 Mpc h−1 seems to
provide more power to constrain primordial non-Gaussianity. For the larger
smoothing scale of R = 30 Mpc h−1 the information obtained from a moment-
based analysis seems to saturate already at the third-order cumulant (the
skewness) while for R = 15 Mpc h−1 the kurtosis still significantly increases
the information content. The may be expected since the density field becomes
increasingly Gaussian as one moves to larger smoothing scales.

measurements could not have a multivariate Gaussian distribution,
because of the normalization condition

∫
p(δR)dδR = 1. Also, PDF

measurements will always be positive which necessarily skews their
distribution. This is especially noticeable in the tails of the PDF,
where sampling noise is expected to lead to a Poisson-like rather
than a Gaussian noise. Both of these problems are alleviated in our
analysis because we only consider the bulk of the PDF. We investigate
multivariate statistical behaviour of the PDF measurements in the
Quijote simulations in Appendix E and find that it is indeed well
described by a multivariate Gaussian distribution.
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Figure 6. Forecast for measurements of f
equi
NL (the amplitude of a primordial Bispectrum with equilateral shape; Fergusson & Shellard 2009) and the late-time

variance of the density field when analysing PDF or cumulants at both R = 15 Mpc h−1 and R = 30 Mpc h−1. Note that we are able to simultaneously measure
the amplitude of the primordial Bispectrum and both the amplitude and slope of the late-time power spectrum. Marginalization over the late-time variances
also makes our constraints on primordial non-Gaussianity insensitive to σ 8. Ultimately we are preparing a joint analysis of the late-time density PDF and
early-universe constraints from Planck Collaboration IX (2019), which is why we keep all other cosmological parameters fixed in this forecast (see also
Uhlemann et al. 2019, for an investigation of the general cosmology dependence of the PDF).

Fig. 5 shows the constraints on the amplitude of an equilateral
primordial bispectrum, f

equi
NL that can be obtained when analysing

the PDF at either of the smoothing radii R = 15 Mpc h−1 and R =
30 Mpc h−1 – again assuming a survey volume of V = 100(Gpc h−1)3

at z = 1 (blue solid contours). A comparison of the upper and lower
panel of the figure indicates that the smaller scale is more powerful
in constraining fNL. We want to stress again that our model is only
accurate enough to analyse the PDF at the 30 Mpc h−1 smoothing
scale. At R = 15 Mpc h−1 the residual � 0.8 per cent modelling error
is significantly larger than the cosmic variance of the considered
survey volume, cf. the discussion in Section 6.1. As explained in that
section, our remaining inaccuracy likely result from next-to-leading
order corrections derived in Ivanov, Kaurov & Sibiryakov (2019).
These corrections should be included in any real data analysis but
we do not expect them to significantly impact the Fisher analysis
presented here.

In both panels of Fig. 5, we also show the constraints on f
equi
NL

that can be obtained from direct measurements of the variance and
skewness of density fluctuations at these scales (red dash–dotted
contours) and from the variance, skewness and kurtosis combined
(green dashed contours). In can be seen there, that the PDF indeed
contains more information than just the 2nd and 3rd moment of

fluctuations combined. The moment-based analysis only catches up
with the PDF-based one once the kurtosis is also considered. At
the same time, smoothing scale including the kurtosis in the moment
based analysis does not add as much information for R = 30 Mpc h−1

as it does for the 15 Mpc h−1 smoothing scale. This may be expected
because the density field becomes increasingly Gaussian at larger
smoothing scales.

In Fig. 6, we show the statistical power achievable with a joint
analysis of the PDF at smoothing radii R = 15 Mpc h−1 and R =
30 Mpc h−1 – again assuming a survey volume of V = 100(Gpc h−1)3

at z = 1 (blue solid contours). Also, we show the constraints
obtainable from analyses of the variance and skewness (red dash–
dotted contour) and the variance, skewness and kurtosis (green
dashed contour). Note again that in each of these cases we consider
the non-linear variance of density fluctuations at both smoothing
scales as two free parameters. This means that the analyses tested
here can simultaneously measure primordial non-Gaussianity and
the amplitude and slope of the non-linear power spectrum.

In Table 1, we summarize the constraints of the considered
analyses for different bispectrum types (Fergusson & Shellard
2009; Scoccimarro et al. 2012) – the equilateral template (f equi

NL ),
the orthogonal template (f ortho

NL ) and a bispectrum from local
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Table 1. Forecast for measurements of the amplitude of three different types
of primordial bispectra from a PDF-based and moment-based analyses. The
constraints are marginalized over the late-time variances Var15 and Var30

as two independent nuisance parameters. Note however, that we do NOT
simultaneously vary the amplitude of different bispectrum shapes. In circular
apertures, both moments and PDF can hardly distinguish between them (cf.
Appendix D). Note also, that further modelling improvements are needed to
actually make use of the 15 Mpc h−1 scale since on that scale our model only
agrees with N-body results to ∼ 0.8% (cf. the discussion in Section 6.1).

Analysis �f local
NL �f

equi
NL �f ortho

NL

PDF (R = 30 Mpc h−1) ±7.3 ±22 ±46
2 moments (R = 30 Mpc h−1) ±8.5 ±26 ±54
3 moments (R = 30 Mpc h−1) ±8.5 ±26 ±54
PDF (R = 15 Mpc h−1) ±3.4 ±11.2 ±18
2 moments (R = 15 Mpc h−1) ±5.0 ±15.8 ±33
3 moments (R = 15 Mpc h−1) ±3.8 ±12.0 ±24
PDF (joint) ±3.2 ±10.8 ±17
2 moments (joint) ±5.0 ±15.7 ±33
3 moments (joint) ±3.7 ±11.8 ±24

non-Gaussianity (f local
NL ). For the smoothing scale of 30 Mpc h−1

these constraints are compatible with current measurements of
fNL from the CMB Planck Collaboration IX (2019). If our model
accuracy can be improved along the lines of Ivanov et al. (2019) to
also encompass the 15 Mpc h−1 scale then the PDF-based analysis
could even significantly improve over the CMB measurements. (As
could the moment based analysis. However, we have not rigorously
evaluated the accuracy of our moment predictions. Especially, we
expect them to suffer more from modelling uncertainties in the high-
density tail of the PDF.) We want to stress that the PDF alone cannot
distinguish between different bispectrum shapes, as we discuss in
Appendix D. Hence, we have to consider one bispectrum template at
a time in Fig. 6. Eventually, we are working towards combining
an analysis of the late-time PDF with the early-universe results
of Planck Collaboration IX (2019). In such a combined analysis,
the CMB would provide information about the background �CDM
space–time (whose parameters are largely fixed here) while the late-
time density PDF will constrain non-linear structure growth and the
imprint of primordial non-Gaussianity on the late-time large-scale
structure.

We explain the details of these results in Sections 4 and 5.

3 G A I N I N G I N T U I T I O N FO R T H E IM PAC T O F
P R I M O R D I A L N O N - G AU S S I A N I T Y

Before presenting the details of our full modelling approach in Sec-
tion 4 we want to provide approximations that make the imprints of
non-Gaussian initial conditions, encoded in that modelling approach,
more transparent.

3.1 Impact of primordial skewness on cumulants

For Gaussian initial conditions, the reduced cumulants 〈δn〉c/〈δ2〉n−1
c

of the unsmoothed density contrast are given by simple constants and
a smoothing scale R induces only a mild running due to the changing
slope in the linear variance (Peebles 1980; Bernardeau 1994). At
leading order this gives

SG
3 = 34

7
+ γ , γ = d log σ 2

L(R)

d log R
,

SG
4 = 60712

1323
+ 62

3
γ + 7

3
γ 2 (13)

for the third- and fourth-order reduced cumulants. For primordial
non-Gaussianity, analytical predictions for the reduced skewness
without smoothing by Fry & Scherrer (1994) demonstrate that the
Gaussian result is offset by terms depending on the initial 3-point
correlation function (and higher point correlations that we neglect
here). Chodorowski & Bouchet (1996) generalized this result to the
unsmoothed kurtosis, which is also coupled to the initial skewness
by non-linear evolution. Gaztanaga & Fosalba (1998) used spherical
collapse to relate the reduced cumulants SNG

N in the presence of
primordial non-Gaussianity to their Gaussian counterparts from
equation (13). Denoting the 3rd central moment of the linear density
field as κL

3 , they obtain

SNG
3 = SG

3 + 1

σL

κL
3

σ 3
L

− 2

(
SG

3

3
− 1

) (
κL

3

σ 3
L

)2

,

SNG
4 = SG

4 + 4SG
3

σL

κL
3

σ 3
L

+
(

3 + 7SG
3 − 14

3
(SG

3 )2 + 3

2
SG

4

)
κL

3

σ 3
L

. (14)

The most important contribution to S3 is given in terms of the linearly
evolved reduced skewness (induced by primordial non-Gaussianity),
κL

3 /σ 4
L, which decays linearly with the growth function, because

δL(z) ∝ D(z). On the other hand, non-linear evolution leads to
almost constant reduced cumulants SG

N , such that the primordial
skewness offsets the non-linear reduced skewness and kurtosis by
an amount that is inversely proportional to the growth function. Note
that this signature is qualitatively different from the impact of �CDM
parameters, which change the linear variance in equation (13), but
leave the hierarchical ratios SN close to constant in time (for a
discussion, see section 2.1 in Uhlemann et al. 2019). In a multiredshift
analysis, we expect that this property would allow to jointly constrain
fNL as amplitude of the linear skewness, and �CDM parameters
like �m and ns which drive the scale dependence of the linear
variance.

Let us now quantitatively estimate the effect of different primordial
bispectrum shapes discussed in Section 4.4. The amplitudes of the
initial re-scaled skewness for a radius of R = 15 Mpc h−1 for different
templates are

κL
3

σ 3
L

(
15Mpc h−1

) 
 {28f loc
NL , 8.5f

equi
NL , −5f orth

NL } × 10−5. (15)

The predicted ratios of reduced cumulants from equations (13) and
(14) agree well with the measurements in the Oriana simulations
for radii R = 20−40 Mpc h−1 at redshift z = 0.34 (see fig. 1 in
Mao et al. 2014). Since the non-linear variance depends very weakly
on the amplitude of primordial non-Gaussianity fNL (Uhlemann et al.
2018b), the ratio of connected moments is close to the ratio of reduced
cumulants from equation (44). When considering the equilateral
model with f

equi
NL = 47, we obtain a 0.4 per cent increase for the

skewness and a 1 per cent increase in the kurtosis, in good agreement
with the result from the full shape of the matter PDF shown in the
upper right panel of Fig. 3.

3.2 Heuristic approximation for the matter PDF

While we use the recipe described in Section 4.5 to model the density
PDF, one can gain intuition for its sensitivity to primordial non-
Gaussianity from a simplistic saddle point approximation for the
PDF from equation (11) (see Uhlemann et al. 2018b). According
to the large-deviation principle (Bernardeau & Reimberg 2016),
the exponential decay of the late-time density PDF with increasing
density contrast, ψ(δR), can be predicted from the CGF and the
reduced cumulants entering in equation (7) are determined by
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spherical collapse. The matter PDF can then be expressed in terms
of this decay-rate function as

p(δR, z) ∝
√

ψ ′′
R,z(δR) + ψ ′

R,z(δR)

1 + δR

exp
[−ψR,z(δR)

]
,

ψR,z(δR) ∝ δ2
L(δR)

σ 2
L(RL(R, δR), z)

[
1 − κL

3 (RL(R, δR), z)δL(δR)

σ 4
L(RL(R, δR), z)

]
,

(16)

where δL(δR) is the mapping between linear and non-linear density
contrasts, RL(R, δR) = R(1 + δR)1/3 accounts for mass conservation,
and κL

3 /σ 3
L ∝ fNL is the linear re-scaled skewness caused by the

presence of a primordial bispectrum. This approximation reflects that
the leading order corrections to the reduced cumulants are controlled
by the primordial skewness, as we have seen explicitly for the
skewness and kurtosis in equations (14). The exponent dominates the
behaviour in the tails, where a positive primordial skewness leads to
an enhancement of high densities and a suppression of low densities.
Around the peak of the PDF, the prefactor becomes relevant and leads
to an enhancement in the PDF for moderately underdense spheres
and a reduction for moderately overdense spheres, in agreement with
the left-hand panels of Fig. 3.

4 SA D D L E PO I N T M E T H O D F O R G E N E R A L
N O N - G AU S S I A N I N I T I A L C O N D I T I O N S

We now present a derivation of our main technical result – the
approximation in equation (5) for the CGF of the late-time density
contrast δR for arbitrary non-Gaussian initial conditions and our
model for the PDF p(δR) that follows from it.

4.1 Path integral approach for the cumulant generating
function

The CGF ϕR(λ, z) of the non-linear density contrast δR is defined as

eϕR (λ,z) = exp

( ∞∑
n=1

〈δR(x, z)n〉c
n!

λn

)

≡ 〈eλδR 〉 =
∫

dδR p(δR|x, z) eλδR . (17)

Here, 〈δR(x, z)n〉c refers to the nth connected moment (or cumulant)
of the smoothed non-linear density contrast δR(x, z) and the second
line is the cumulant expansion theorem (Bernardeau et al. 2002).
Because of homogeneity and isotropy we will only consider δR(x =
0, z) and hence drop the label x. For simplicity, we will also suppress
the dependence of δR on redshift z.

In a procedure similar to that of Valageas (2002a), we can write
the above expectation value as a functional integral over all possible
configurations of today’s linear density contrast,

eϕR (λ) =
∫

DδL P[δL] eλδR [δL] , (18)

whereP[δL] is the probability density functional of the linear density
contrast field δL and the non-linear density contrast δR has been
expressed as a functional of δL. (Note again that we dropped the
dependence on z from our notation – this dependence is entirely
carried by the functional δR[ · ] = δR[ ·, z] since we always consider
δL at z = 0).

For Gaussian initial conditions δL will be a Gaussian random field
and the probability density functionalP[δL] can be directly expressed
through the linear power spectrum PL(k). This was done by Valageas

(2002a) to derive an approximation for the late-time CGF from non-
Gaussian initial conditions. Valageas (2002b) also studied a limited
set of non-Gaussian initial conditions for which explicit expressions
of P[δL] are available.

Here, we extend these studies to general non-Gaussian initial
conditions. Defining the linear CGF associated with P[δL] as

�[JL] =
∞∑

n=1

1

n!

∫ n∏
i=1

d3xi JL(xi) ξL,n(x1, . . . , xn), (19)

we can express ϕR as

eϕR (λ) = 1

N

∫
DδL DJL eλδR [δL]−iJL·δL+�[iJL] . (20)

The linear cumulant generating functional �[JL] encodes the initial
conditions. For Gaussian initial fluctuations it can be entirely ex-
pressed through the linear 2-point correlation function and our results
would reduce to those of Valageas (2002a). For the primordial non-
Gaussianity models we consider here, it will additionally depend on
the primordial 3-point function ξL,3 or the corresponding bispectrum,
for which we discuss concrete templates in Section 4.4. Comparison
with equation (11) shows that the normalization constant N is
formally given by |2π1| , i.e. the determinant of 2π times the unit
operator in the space of JL’s and hence infinite. But this normalization
will eventually drop in our calculations. Note also that we introduced
the abbreviation

JL · δL ≡
∫

d3x JL(x) δL(x) . (21)

We will calculate the above functional integral with Laplace’s
method, i.e. by approximating the integrand around its maximum
with a Gaussian functional, which is also called steepest descent or
saddle point method (e.g. Valageas 2002a; Bernardeau et al. 2015;
Uhlemann et al. 2018a). This means we define an action Sλ as

Sλ[δL, JL] ≡ −λδR[δL] + iJL · δL − �[iJL] (22)

and find the saddle point configurations δ∗
L and J ∗

L that minimize this
action in order to approximate

eϕR (λ) = 1

N

∫
DδL DJL e−Sλ[δL,JL]

≈ 1

A1/2
e−Sλ[δ∗

L
,J ∗

L
] . (23)

Here, A is the determinant of the Hessian matrix of the functional Sλ

(now considered as a matrix in the combined space of δL’s and JL’s)
evaluated at the saddle point configurations δ∗

L and J ∗
L . The CGF of

the late-time smoothed density contrast is then given by

ϕR(λ) ≈ −Sλ[δ∗
L, J ∗

L] − 1

2
lnA . (24)

The second term in this approximation is a next-to-leading order
correction to the first term (for Gaussian initial conditions it is
equivalent to 1-loop corrections to the CGF, cf. Valageas 2002c;
Ivanov et al. 2019) and will be neglected in this paper. Instead, we
apply a re-scaling of the CGF that accounts for strong late-time non-
linearity by leaving the variance of non-linear density fluctuations
as a free parameter. We describe this re-scaling in Section 4.3 after
deriving an explicit expression for the first, leading order term of
equation (24) in the following section. We would like to stress here:
omitting the second term in equation (24) and using the re-scaling
of Section 4.3 instead is the biggest conceptual weakness of our
analysis. We discuss implications of this for the interpretation of our
results and future work in Section 6.1.
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4.2 Minimizing the action Sλ

In the following, let dF/df (x) denote functional derivation of a
functional F w.r.t. the function f. To calculate the leading order term
in equation (24), we have to find configurations δ∗

L and J ∗
L such that

dSλ

dδL(x)

∣∣∣∣
δ∗
L
,J ∗

L

= 0 = dSλ

dJL(x)

∣∣∣∣
δ∗
L
,J ∗

L

(25)

⇒ iJ ∗
L(x) = λ

dδR

dδL(x)

∣∣∣∣
δ∗
L

(26)

δ∗
L(x) = d�

dJL(x)

∣∣∣∣
iJ ∗

L

. (27)

Because we allow for arbitrary shapes of primordial N-point func-
tions in the definition of �, it is not obvious that these equations
have spherically symmetric solutions. We nevertheless show that a
spherically symmetric ansatz δ∗

L(x) = δ∗
L(x), J ∗

L(x) = J ∗
L(x) solves

equations (26) and (27) and argue in the end that the spherically
symmetric solution is indeed a global minimum of the action – at
least for small deviations from primordial Gaussianity.

With a spherically symmetric ansatz equation (26) can be solved
(along the lines of Valageas 2002a) by noting that

δR[δ∗
L] = F (δ∗

L,RL
) , (28)

where the function F describes spherical collapse of the density
fluctuation (cf. Appendix A) from the initial, linear radius

RL = R (1 + δR[δ∗
L])1/3 (29)

to the final radius R. Hence, one can see that

dδR

dδL(x)

∣∣∣∣
δ∗
L

= F ′(δ∗
L,RL

)
dδL,RL

dδL(x)

∣∣∣∣
δ∗
L

= F ′(δ∗
L,RL

)

(
WRL

(x) + dδ∗
L,R′

dR′

∣∣∣∣
RL

dRL

dδL(x)

∣∣∣∣
δ∗
L

)

= F ′(δ∗
L,RL

)

(
WRL

(x) + dδ∗
L,R′

dR′

∣∣∣∣
RL

R3

3R2
L

dδR

dδL(x)

∣∣∣∣
δ∗
L

)
(30)

⇒ λ
dδR

dδL(x)

∣∣∣∣
δ∗
L

= λ
F ′(δ∗

L,RL
) WRL

(x)

1 − F ′(δ∗
L,RL

)
dδ∗

L,R′
dR′

∣∣∣
RL

R3

3R2
L

= : Aλ[δ∗
L] WRL

(x) (31)

⇒ iJ ∗
L(x) = Aλ[δ∗

L] WRL
(x) . (32)

Inserting equation (32) into (27), we also get a simplified expression
for δ∗

L as

δ∗
L(x) = d�

dJL(x)

∣∣∣∣
iJ ∗

L

=
∞∑

n=2

1

(n − 1)!

∫ n−1∏
i=1

d3xi JL(xi) ξL,n(x1, . . . , xn−1, x)

∣∣∣∣∣
iJ ∗

L

=
∞∑

n=2

An−1
λ

(n − 1)!
〈δn−1

L,RL
δL(x)〉c. (33)

From this we can further deduce the useful relations

δ∗
L,R′ =

∞∑
n=2

An−1
λ

(n − 1)!
〈δn−1

L,RL
δL,R′ 〉c (34)

⇒ δ∗
L,RL

=
∞∑

n=2

An−1
λ

(n − 1)!
〈δn

L,RL
〉c

= dϕL,RL
(j )

dj

∣∣∣∣
j=Aλ

, (35)

⇒ dδ∗
L,R′

dR′

∣∣∣∣
RL

=
∞∑

n=2

An−1
λ

(n − 1)!

〈
δn−1
L,RL

dδL,R′

dR′

∣∣∣∣
RL

〉
c

= 1

Aλ

dϕL,R′ (j )

dR′

∣∣∣∣
R′=RL, j=Aλ

, (36)

where we have defined the CGF of the linear, spherically averaged
density contrast δL,R′ as ϕL,R′ .

Equations (32), (35), and (36) allow us to obtain Sλ[δ∗
L, J ∗

L] by
solving a simple two-dimensional optimization problem. To see this,
we first use (32) in (22) to get

Sλ[δ∗
L, J ∗

L] = −λF (δ∗
L,RL

) + Aλ δ∗
L,RL

− ϕL,RL
(Aλ) . (37)

This is in fact equal to the minimum of the two-dimensional function

sλ(δ, j ) = −λF (δ) + jδ − ϕL,R(1+F(δ))1/3 (j ) , (38)

since solving

∂sλ

∂δ

∣∣∣∣
δ∗,j∗

= 0 = ∂sλ

∂j

∣∣∣∣
δ∗,j∗

(39)

leads to

j ∗ = λF ′(δ∗) + dϕR′ (j ∗)

dR′

∣∣∣∣
R′=RL

R3

3R2
L

F ′(δ∗), (40)

δ∗ = dϕR(1+F(δ))1/3 (j )

dj
,

∣∣∣∣
j=j∗

(41)

which – as can be seen from (35) and (36) – has the solutions

δ∗ = δ∗
L,RL

, j ∗ = Aλ . (42)

We have shown that a spherically symmetric ansatz for the
configurations δ∗

L and J ∗
L can extremize the action Sλ and that

the corresponding extreme values Sλ[δ∗
L, J ∗

L] can be obtained by
a simple two-dimensional optimization problem. We have not yet
shown that these δ∗

L and J ∗
L are indeed global minima of the action.

We, however, note that Valageas (2002a) has shown that for Gaussian
initial conditions there exists a range of values of λ for which the
spherically symmetric saddle point is a global minimum. Especially,
the Hessian of the action Sλ is positive definite for these values of
λ. Small deviations from Gaussian initial conditions will change the
location of this saddle point, but because of continuity there will be a
range of deviations for which the Hessian at this point is still positive
definite, such that it is still a minimum of the action. In fact, because
of continuity this will also stay a global minimum for sufficiently
small deviations from Gaussian initial conditions.

Note that for large enough λ the action Sλ[δL, JL] can indeed have
two extrema – even for Gaussian initial conditions (Valageas 2002a;
Bernardeau, Pichon & Codis 2014). This leads to a 2-branch structure
in the CGF where the second branch governs the extreme rare-events
tail of the PDF. This is an additional reason for why we avoid the
high-density tail here.

4.3 Re-scaling to the non-linear variance

It has been shown (Fosalba & Gaztanaga 1998; Valageas 2002a,c)
that the saddle point approximation gives the cumulants of the non-
linear density contrast at leading order in perturbation theory. This
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especially means that the above approximation for the CGF yields
the wrong variance of density fluctuations even in the mildly non-
linear regime. It is hence much better to consider the re-scaled CGF
(Bernardeau & Reimberg 2016)

ϕ̃R(λ) ≡ σ 2
R ϕR

(
λ

σ 2
R

)
=

∑
n

Sn

λn

n!
, (43)

where σ 2
R is the variance of density fluctuations and

Sn ≡ 〈δn
R〉c

σ
2(n−1)
R

. (44)

The reduced cumulants (or hierarchical coefficients) Sn are signifi-
cantly less sensitive to non-linear evolution than the raw cumulants
(Bernardeau et al. 2002, 2014, 2015). This is because tidal terms
that are not captured by the leading order term in equation (24)
are largely erased by smoothing effects in the reduced cumulants,
both for Gaussian and non-Gaussian initial conditions (Fosalba &
Gaztanaga 1998; Gaztanaga & Fosalba 1998).

Hence, our modelling strategy in this paper is to compute the re-
scaled CGF at leading order in perturbation theory by calculating
the first term in equation (24) and using the linear variance σ 2

L,R

in equation (43) to compute the leading order, re-scaled CGF
ϕ̃l.o.

R (λ). The final non-linear CGF φR(λ) is then obtained by inverting
equation (43) with σ 2

R as a free parameter, i.e.

φR(λ) = 1

σ 2
R

ϕ̃l.o.
R (σ 2

Rλ) . (45)

As can be seen in Fig. 1, this procedure reproduces not only the
variance but the overall shape of the density PDF observed in N-body
simulations. This re-scaling to the non-linear variance has also been
successfully applied to large-scale structure data (Friedrich et al.
2018; Gruen et al. 2018). Recent findings of e.g. Foreman et al.
(2019) suggest that even effects of baryonic physics might propagate
to higher order moments of the density field primarily through their
impact on 2-point statistics. Nevertheless, this re-scaling must be
considered a weak point of our modelling, since it has no justification
from first principles. Fortunately, Ivanov et al. (2019) have shown
that the next-to-leading order term in equation (24) can be calculated
explicitly, which may eliminate the need to re-scale the CGF by the
ratio of linear to non-linear variance (or at least: make the re-scaling
even more accurate).

Note that the non-linear variance itself is also affected by pri-
mordial non-Gaussianity through mode-coupling. In particular, it
generates an additional odd-order term in the 1-loop power spectrum,

P (k, z) = D2(z)PL(k) + P (12)(k, z) + [P (22) + P (13)](k, z),

which is absent for Gaussian initial conditions and reads (Taruya,
Koyama & Matsubara 2008)

P (12)(k, z) = 2D3(z)
∫

d3q

(2π )3
F (2)

sym(q, k − q)B0(−k, q, k − q) , (46)

where F (2)
sym is the symmetrized kernel for the second-order perturba-

tive solution of the fluid equations (see e.g. equation 45 in Bernardeau
et al. 2002). By marginalizing over the non-linear variance we
are hence ignoring part of the information about primordial non-
Gaussianity that is contained in the density PDF. At the smoothing
scales considered here this effect is largest for the orthogonal
bispectrum template.

4.4 Application: primordial bispectrum shapes

If the initial density field was not drawn from a Gaussian distribution,
then the linear density contrast today will have a non-zero 3-point
function

ξ3,L(x1, x2, x3) = 〈δL(x1)δL(x2)δL(x3)〉c . (47)

The bispectrum BL(k1, k2, k3) is defined through the Fourier transform
of ξ 3, L in each of its arguments (see Appendix B for our Fourier
conventions) as

〈δ̃L(k1)δ̃L(k2)δ̃L(k3)〉c
≡ (2π )3δD(k1 + k2 + k3) BL(k1, k2, k3) . (48)

The skewness of the linear density field averaged over a spherical
top-hat filter of radius R is then given in either real space or Fourier
space by

〈δ3
L,R〉c =

〈
3∏

i=1

∫
d3xi WR(xi)δL(xi)

〉
c

=
〈

3∏
i=1

∫
d3ki

(2π )3
W̃R(ki)δ̃L(ki)

〉
c

, (49)

where WR(x) and W̃R(x) are given in equations (2) and (10),
respectively. The Fourier space expression can be simplified to

〈δ3
L,R〉c =

〈
3∏

i=1

∫
d3ki

(2π )3
W̃R(ki)δ̃L(ki)

〉
c

=
∫

d3k1d3k2

(2π )6
W̃R(k1)W̃R(k2)W̃R(k3) BL(k1, k2, k3) , (50)

where in the last line we set

k3 ≡ |k1 + k2| =
√

k2
1 + k2

2 + 2μk1k2 (51)

and k1 · k2 ≡ μk1k2 . The above integrand only depends on the angle
between the two remaining wave vectors. Hence, we can perform the
angular integral for one of these to get

〈δ3
L,R〉c

= 2

(2π )4

∫
d ln k1 k2

1 W̃R(k1)
∫

d ln k2 k2
2 W̃R(k2)

×
∫ (k1+k2)

|k1−k2|
d ln k3 k2

3 W̃R(k3) BL(k1, k2, k3) . (52)

We would now like to express BL(k1, k2, k3) in terms of a Bispectrum
of primordial potential fluctuations, Bφ(k1, k2, k3). The initial poten-
tial fluctuations φ̃i(k) are related to the linear density contrast today
via the Poisson equation

δ̃L(k) = −2T̃ (k)k2

3�mH 2
0

D(zi)

a(zi)
φ̃i(k) , (53)

where T̃ (k) is the transfer function (defined such that T̃ (k → 0) = 1),
D(z) and a(z) are the linear growth factor and scale factor (with D =
1 = a today), and zi is some redshift during matter domination. Now
common templates for Bφ contain terms of the form

Bφ(k1, k2, k3) ⊃ Pφ(k1)α1Pφ(k2)α2Pφ(k3)α3 , (54)

such that α1 +α2 +α3 = 2 (Fergusson & Shellard 2009; Scoccimarro
et al. 2012; Uhlemann et al. 2018c). In terms of the linear matter
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power spectrum today these terms read

Pφ(k1)α1Pφ(k2)α2Pφ(k3)α3

=
(

3�mH 2
0

2

a(zi)

D(zi)

)4

PL(k1)α1PL(k2)α2PL(k3)α3

× T̃ (k1)−2α1 T̃ (k2)−2α2 T̃ (k3)−2α3 k
−4α1
1 k

−4α2
2 k

−4α3
3 . (55)

Hence, the linear density bispectrum will contain terms like

BL(k1, k2, k3) ⊃ −3�mH 2
0 a(zi)

2D(zi)
PL(k1)α1PL(k2)α2PL(k3)α3

× T̃ (k1)1−2α1 T̃ (k2)1−2α2 T̃ (k3)1−2α3

× k
2−4α1
1 k

2−4α2
2 k

2−4α3
3 . (56)

Inserting this into our above equations for the skewness, we arrive
at

〈δ3
L,R〉c ⊃ −3�mH 2

0

(2π )4

a(zi)

D(zi)

×
∫

d ln k1 k
4−4α1
1 T̃ (k1)1−2α1 W̃R(k1) PL(k1)α1

×
∫

d ln k2 k
4−4α2
2 T̃ (k2)1−2α2 W̃R(k2) PL(k2)α2

×
∫ max(k1,k2)

min(k1,k2)
d ln k3 k

4−4α3
3 T (k3)1−2α3 W̃R(k3) PL(k3)α3 .

(57)

In order to calculate the skewness of the linear density field as a
function of R, we now only have to specify what terms of the
form of (54) are present in the primordial bispectrum. Following
e.g. Uhlemann et al. (2018c, see also the other references given in
this section), we consider local, orthogonal, and equilateral shapes
for the bispectrum which are given by

B loc
φ (k1, k2, k3) = −2f loc

NL (Pφ(k1)Pφ(k2) + 2 permutations), (58)

B
equi
φ (k1, k2, k3) = 6f

equi
NL

[
(Pφ(k1)Pφ(k2) + 2 perm.)

+2P
2/3
φ (k1)P 2/3

φ (k2)P 2/3
φ (k3)

−(Pφ(k1)P 2/3
φ (k2)P 1/3

φ (k3) + 5 perm.)
]
, (59)

Bortho
φ (k1, k2, k3) = 6f ortho

NL

[
3(Pφ(k1)Pφ(k2) + 2 perm.)

+8P
2/3
φ (k1)P 2/3

φ (k2)P 2/3
φ (k3)

−3(Pφ(k1)P 2/3
φ (k2)P 1/3

φ (k3) + 5 perm.)
]

. (60)

Note that these expression differ in sign from equations given in other
publications (e.g. Mao et al. 2014; Uhlemann et al. 2018b). This is
because here φ denotes the Newtonian potential and not Bardeen’s
potential (Salopek & Bond 1990).

4.5 Summary of our recipe for the matter PDF

To summarize, the model predictions in Figs 1–3 and the forecasts
presented in Figs 5 and 6 are calculated as follows:

(i) Computing skewness of the linear density contrast 〈δ3
L,R〉c from

equation (52), using either of the primordial bispectrum templates
given in equations (58)–(60).

(ii) Approximating the CGF of the linear density field in terms of
the linear variance and skewness as

ϕL,R(λ) ≈ 〈δ2
L,R〉c λ2

2!
+ 〈δ3

L,R〉c λ3

3!
. (61)

(iii) Using this in equation (38) to calculate the late-time CGF
(applying also the variance re-scaling described in Section 4.3).

(iv) Numerically evaluating the inverse Laplace transform of
equation (11) to obtain the late-time density PDF.

4.6 Numerical calculation of the CGF and extraction of
individual cumulants

In Section 4.2, we demonstrated that the leading order approximation
of the CGF

ϕR(λ) =
∞∑

n=2

〈δn
R〉c λn

n!
(62)

is given by the minimum of the two-dimensional function

sλ(δ, j ) = −λF (δ) + jδ − ϕL,R(1+F(δ))1/3 (j ) . (63)

Minimizing this function amounts to solving the equations

j ∗ = λF ′
(δ∗) + dϕR′ (j∗)

dR′

∣∣∣
R′=RL

R3

3R2
L

F ′
(δ∗), (64)

δ∗ = dϕ
L,R(1+F (δ∗ ))1/3 (j )

dj

∣∣∣
j=j∗

. (65)

However, this is not what we do in practice. Instead, it is much easier
to proceed as follows:

(i) For an array of values for δ∗, calculate the corresponding arrays
F (δ∗) and F ′

(δ∗) using Appendix A. Also compute the variance
and skewness of the linear density field at the radii RL(δ∗) = R(1 +
F (δ∗))1/3 .

(ii) For each value of δ∗ invert equation (65) to obtain j∗ = j∗(δ∗).
Since we approximate ϕL, R(λ) as a cubic function in equation (61),
this just corresponds to solving a quadratic equation.

(iii) Now invert equation (64) to obtain λ = λ(δ∗) .
(iv) Finally, obtain the CGF from ϕR(λ) = sλ(δ∗, j∗) .

This is a constructive procedure to obtain the CGF which does not
actually require one to solve any optimization problem.

The above steps yield the CGF ϕR(λ) on a grid of values of λ.
In order to extract individual cumulants from that (i.e. the Taylor
coefficients in equation 62) one might attempt to simply fit a
polynomial of finite degree in λ to the CGF ϕR(λ). This is however
highly unstable, mainly because positive values of δ∗ are mapped to
a very small interval of λ(δ∗) compared to the interval that negative
values of δ∗ are mapped to (see e.g. fig. 3 of Valageas 2002a). A more
robust way to extract individual moments is to first define the new
variable (Bernardeau & Valageas 2000; Valageas 2002a; Bernardeau
et al. 2015)

τ (δ∗) = δ∗

〈(δL,RL(δ∗))2〉c . (66)

Then one proceeds as follows:

(i) Fit a polynomial of finite order N in τ to both λ(τ ) and ϕR(λ(τ )).
(ii) Determine the N × N Bell–Jabotinsky matrices (Jabotinsky

1963) of λ(τ ) and ϕR(λ(τ )) w.r.t. τ

(
Bλ|τ)

k,�
= 1

k!

dkλ�

dτ k

∣∣∣∣
τ=0

;
(
Bφ|τ)

k,�
= 1

k!

dkφ�

dτ k

∣∣∣∣
τ=0

. (67)

(iii) The Bell–Jabotinsky matrix of φ w.r.t. λ (whose column � =
1 contains the cumulants of order k divided by k!) is then given
by

Bφ|λ = Bφ|τ · (
Bλ|τ)−1

. (68)
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Figure 7. Theoretical predictions for the ratio of the nth connected moments
of the late-time density field from non-Gaussian initial conditions to Gaussian
initial conditions. The individual moments have been obtained from our
numerically calculated CGFs by the polynomial fitting procedure described
in Section 4.6. We again assume f

equi
NL = 47, which corresponds to the 1σ

uncertainty of Planck Collaboration IX (2019).

Table 2. Cosmological parameters of the considered simulations, all run
for a flat �CDM cosmology with �� = 1 − �m. The values quoted for the
amplitude of primordial non-Gaussianity fNL are {f loc

NL , f
equi/ortho
NL }.

Simulation �m h ns σ 8 fNL

Quijote 0.3175 0.6811 0.9624 0.834 –
Nishimichi 0.279 0.701 0.96 0.8157 { ± 100, 0}
Oriana 0.25 0.7 1.0 0.8 {100, −400}

The cumulant ratios shown in Figs 3 and 7 were computed along
these lines. Fig. 7 shows that this procedure converges up to the
seventh cumulant for a polynomial degree of about N = 16. However,
this statement is highly dependent on the redshift and smoothing scale
at which the density field is considered and the above steps should not
be carried out as a black box! Instead, we recommend comparisons
such as Fig. 7 as tests for robustness.

5 SI M U L AT E D DATA A N D C OVA R I A N C E
MAT R IX

5.1 Data from N-body simulations

In the following paragraphs, we summarize the different N-body
simulations used in our work. Their cosmological parameters and
available primordial non-Gaussianty model amplitudes are compared
in Table 2.

5.1.1 Quijote simulations

The Quijote simulations (described in Villaescusa-Navarro et al.
2019) are a large suite of N-body simulations developed for quanti-

fying the cosmological information content of large-scale structure
observables. They contain 43 100 simulations spanning over 7000
cosmological models with variation in ν�CDM parameters. At a
single redshift, the combined number of particles in the simulation
suite is >8.5 Trillion, with a combined volume of 43 100(Gpc h−1)3.
The simulations follow the gravitational evolution of N3 particles
(2 × N3 for simulations that include massive neutrinos) over a co-
moving volume of 1(Gpc h−1)3 starting from z = 127. Here, N takes
the values: N = 256 (low-resolution), N = 512 (fiducial-resolution),
and N = 1024 (high-resolution). Overall, 15 000 simulations are
provided for the fiducial resolution, allowing to accurately estimate
the covariance matrices of cosmological summary statistics. We refer
the reader to Villaescusa-Navarro et al. (2019) for further details. In
this paper, we investigate to the PDF of the cosmic matter density
field. The PDFs have been computed from the Quijote simulations
as follows. First, particle positions and masses are assigned to a
regular grid with 5123 cells using the cloud-in-cell (CIC) mass
assignment scheme (10243 for the high-resolution simulations).
Next, the value of the overdensity field in each grid cell is computed
by dividing the mass of each cell by the average mass. Finally,
the PDF is estimated by calculating the fraction of cells that lie
in a given overdensity bin, over the width of the overdensity bin
itself.

The covariance matrix used for our forecasts is entirely obtained
from the Quijote simulations. We combine simulated measurements
of the PDF and the cumulants at smoothing scales R = 15 and
30 Mpc h−1 into data vectors d i (i = 1, . . . , 15 000) to estimate the
covariance as

Ĉ = 1

Nsim − 1

∑
i

(d i − d̄)(d i − d̄)T , (69)

where d̄ is the mean of all measurements and Nsim = 15000 for
Quijote. In Fig. 4, we show the corresponding correlation matrix
of measured PDF histograms as well as of the measured variance,
skewness and kurtosis. It can be seen there, that at both low and high
densities the PDFs are largely anticorrelated with the height of the
PDF peak. Related to that, also measurements of the variance are
anticorrelated with the peak height of the density PDF. In contrast,
all cumulants are positively correlated to the probabilities of low
and high densities in the PDFs. However, the onset of the positive
correlation moves to higher densities when going to higher cumulant
orders.

5.1.2 Simulations by Nishimichi et al. for local primordial
non-Gaussianity

For Fig. 2, we also investigated a set of simulations that have previ-
ously been studied by Uhlemann et al. (2018b). These simulations
are based in a non-Gaussian initial condition generator developed by
Nishimichi (2012) as well as a parallel code developed by Valageas &
Nishimichi (2011). The simulations contain 20483 particles in a box
of length 4096 Mpc h−1. One such box has been run with Gaussian
initial conditions and two boxes have been run with a local-type
primordial bispectrum of amplitude fNL = ±100, respectively. Such
exaggerated amplitudes are ruled out by Planck Collaboration IX
(2019), but we anyway only use these simulations as a test for
our PDF modelling approach. The cosmological parameters of the
simulations are summarized in Table 2. We use a snapshot of these
simulations at z = 1. The density field in the simulations is evolved
using the Tree-PM code GADGET-2 (Springel, Yoshida & White 2001;
Springel 2005). The results shown here measure the PDF based on a
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CIC mass assignment with 12803 grid points that includes window
and aliasing corrections.

5.1.3 The Oriana simulations for three different primordial
bispectrum shapes

For our comparison in Fig. 2, we also used simulated data
from the large volume ‘Oriana’ realizations of the Large Suite
of Dark Matter Simulations project (LasDamas; McBride et al.
2009). The simulation was run for cosmological parameters sim-
ilar to WMAP year 5 (Komatsu et al. 2009), as summarized in
Table 2. The Oriana simulations evolve 12803 dark matter parti-
cles in a cubic volume of (2.4 Gpc h−1)3, resulting in a particle
mass of 45.7 × 1010 M� h−1. The simulation seeds are generated
from second-order Lagrangian perturbation theory initial conditions
(Scoccimarro et al. 1998; Crocce, Pueblas & Scoccimarro 2006) and
evolved from a starting redshift of zinit = 49 to z = 0 using the
GADGET-2 code (Springel 2005), with a gravitational force softening
of 53 kpc h−1.

Of the Oriana suite we analyse here one box with Gaussian initial
conditions and three realizations initialized with primordial non-
Gaussianity models of either local (f loc

NL = 100), equilateral (f equi
NL =

−400), or orthogonal (f orth
NL = −400) initial bispectra (Scoccimarro

et al. 2012). Such exaggerated amplitudes are ruled out by Planck
Collaboration IX (2019), but we anyway only test our PDF modelling
approach with these simulations.

5.2 Lognormal simulations

We also explore a cheap way of estimating the covariance matrix
(for the purpose of future data analyses) by generating zero-mean
shifted lognormal density fields (Hilbert, Hartlap & Schneider 2011;
Xavier, Abdalla & Joachimi 2016).

As described e.g. in Hilbert et al. (2011) and Xavier et al. (2016),
we consider the density contrast δ(x) to be a zeros-mean shifted
lognormal random field, which is given in terms of a Gaussian
random field g(x) as

δ(x) = δ0

[
eg(x) − 1

]
, (70)

where δ0 is a free parameter that can be used to tune certain higher
order statistical properties of δ. Demanding that 〈δ〉 = 0 fixes the
mean value μg and variance σ 2

g of the Gaussian field to obey the
relation

μg = −σ 2
g

2
. (71)

The 2-point correlation functions of δ(x) and g(x) are then related
through (Hilbert et al. 2011)

ξg(x) = ln

(
1 + ξδ(x)

δ2
0

)
. (72)

For a given choice of δ0 and a desired power spectrum of δ, this
enables us to calculate the corresponding power spectrum of g and
hence to draw it from the appropriate Gaussian distribution.

We follow Friedrich et al. (2018) and Gruen et al. (2018) and
choose δ0 such that the resulting lognormal field δ has the same
skewness as that calculated from our fiducial PDF model on a scale
of R = 15 Mpc h−1 (and at z = 1). In practice, to perform these steps,
we make use of the PYTHON tool NBODYKIT3 and generate the random

3https://nbodykit.readthedocs.io/

fields δ(x) and g(x) on a grid of volume L3 = 1(Gpc h−1)3 and with
a number of 5123 grid points. Note that an important ingredient
in our procedure is a theorem by Szyszkowicz & Yanikomeroglu
(2009). They show that averaging a lognormal random field of
the form given in (70) on a scale R yields a random field that in
certain limits is also well described by a lognormal random field,
and what is more: by a lognormal random field with the same
value of δ0. This allows us to impose our desired value of δ0 on
the grid scale and obtain the same value also on larger smoothing
scales.

The lower left corner of Fig. 4 shows the correlation matrix of
measurements of the PDF and cumulants of the density field obtained
from 400 lognormal simulations generated at the cosmology of the
Quijote simulations. The overall structure of correlations seems to
be well captured with this simplified approach compared to the
correlation matrix obtained from Quijote (upper right corner).

6 C O N C L U S I O N S A N D D I S C U S S I O N

In this study, we have quantified the impact of primordial non-
Gaussianity on the late-time density PDF and extended existing
work (Valageas 2002b; Uhlemann et al. 2018c) in two ways: First,
we presented a new method of modelling the impact of general
non-Gaussian initial conditions on the PDF of the late-time density
field. This method is an extension of the steepest descent approach
by Valageas (2002a) for Gaussian initial conditions and requires
fewer approximations than existing approaches to model the impact
primordial non-Gaussianity on the PDF.

Secondly, we considered the full covariance matrix of measured
density PDFs to forecast the statistical power of such measurements
in determining the amplitude of different primordial bispectrum
shapes. We considered a combined analysis of the PDF on scales
of 15 and 30 Mpc h−1 at redshift z = 1 in a survey volume of
V = 100(Gpc h−1)3. This is smaller than the effective volume of
upcoming surveys such as Spherex with Veff ≈ 150(Gpc h−1)3 and
larger than existing surveys such as BOSS with Veff ≈ 55(Gpc h−1)3

(Doré et al. 2014; Alam et al. 2017). We found that such an
analysis can measure the amplitudes of different primordial bis-
pectrum templates with statistical uncertainties of �f loc

NL = ±3.1,
�f

equi
NL = ±10.0, �f orth

NL = ±17.0, even when treating the non-
linear variance of the density field at both smoothing scales as
two independent, free parameters. This marginalization makes our
results independent of the amplitude of linear density fluctuations
as parametrized by sigma σ 8. Other cosmological parameters such
as �m have been kept fixed in our analysis (see Uhlemann et al.
2019, for an investigation of the general cosmology dependence
of the PDF). But we note that Friedrich et al. (2018) and Gruen
et al. (2018) have demonstrated how lensing-around-cells can be
used to simultaneously obtain information about parameters of a
background �CDM model and higher order moments of the density
field in a PDF-based analysis. Our work was done in preparation
of a combined analysis of the late-time PDF and the early-universe
results of Planck Collaboration IX (2019). These two cosmological
probes have the potential to powerfully complement each other:
the CMB can provide information about the background �CDM
space–time, the late-time density PDF contains information about
non-linear structure growth and both of them contain independent
information about the imprint of primordial non-Gaussianity on the
large-scale structure.

We want to stress again, that observational data of the large-
scale structure have already been successfully analysed based on
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Figure 8. Investigating the impact of simulation resolution (by which we
denote the distance of neighbouring matter particles in the initial conditions
of each simulations) on measurements of the density PDF. Quijote fiducial
resolution is shown in red and Quijote high resolution is shown in blue. We
also consider a set of N-body simulations at an intermediate resolution (green
points, cf. Baldauf, Schaan & Zaldarriaga 2016). Note that these simulations
where run at a slightly different cosmology than Quijote, which is the reason
for the different shapes of the residuals. Error bars denote the errors of the
mean of each set of simulations, i.e. the actual statistical uncertainties of
the points (corresponding to a survey volume of 100(Gpc h−1)3 for high-
resolution Quijote). Upper panel: Relative deviation of the simulations w.r.t.
our analytic prediction of the PDF at R = 30 Mpc h−1 , z = 1. Lower panel:
The same comparison but for R = 15 Mpc h−1. The main cause of our
remaining modelling uncertainty it the inaccuracy of the re-scaling procedure
described in Section 4.3 (see the discussion in Section 6).

a modelling framework that is closely related to the one presented
here (Friedrich et al. 2018; Gruen et al. 2018). Still, to harvest the
statistical power of the density PDF demonstrated here, a number of
problems have to be addressed which we will discuss in the following
sections.

6.1 Precision of our model

An important question is whether the analytic modelling and/or the
simulated data presented here are accurate enough to analyse future
large-scale structure data. In Fig. 8, we show the relative deviation of
PDFs measured in N-body simulations w.r.t. our theoretical model.
The red and blue points use measurements from the fiducial Quijote
run (red, spacing of initial particle grid ≈2 Mpc h−1) and from a high-

resolution version of Quijote (blue, spacing of initial particle grid
≈1 Mpc h−1). The green points use an additional set of simulations
at an intermediate resolution (≈1.5 Mpc h−1, cf. Baldauf et al. 2016
as well as our Appendix C for details). Our model for the Quijote
simulations was computed for a non-linear variance that gives the
best fit to the high-resolution data. For the intermediate-resolution
data we had to fit the non-linear variance separately, since those
simulations were run on a slightly different cosmology.

The upper panel of Fig. 8 shows these residuals for a smoothing
scale of R = 30 Mpc h−1 and the lower panel shows them for a
smoothing scale of R = 15 Mpc h−1. At both scales, going to higher
resolution in the simulations improves the fit between model and
data. At the R = 30 Mpc h−1 scale, our model is consistent with the
high-resolution simulations at about 1σ , with χ2 = 9.9 (expected:
≈6 ± 3.46). Overall we have 100 high-resolution boxes of size
(1 Gpc h−1)3, i.e. the error bars on the blue points in Fig. 8 correspond
to the survey volume of V ≈ 100(Gpc h−1)3 that we considered
throughout this paper. We hence conclude that at R = 30 Mpc h−1

our model captures the non-linear evolution of the PDF accurately
enough for analysis on these kind of volumes.

For R = 15 Mpc h−1 our model agrees with the high-resolution data
within 1 per cent. But this is significantly larger than the statistical
uncertainties expected in future large-scale structure data! We ran
a limited number of simulations with even higher resolution (cf.
Appendix C) to test whether this may be due to inaccuracy of the
simulations. Within the limited statistical power of this comparison
this does not seem to be the case (cf. Fig. C1).

On the modelling side, the most critical approximation we made
is the assumption that the reduced cumulants

Sn = 〈δn
R〉c

〈δ2
R〉n−1

c

(73)

are well modelled by the leading order term of equation (24) (i.e. by
tree level perturbation theory) even in the regime where the cumulants
〈δn

R〉c themselves have significant next-to-leading order contribution.
This assumption allows us to apply the variance re-scaling described
in Section 4.3 and it is justified by the observation that tidal terms
which are not captured by the leading order term are largely erased by
smoothing effects in the reduced cumulants (Fosalba & Gaztanaga
1998; Gaztanaga & Fosalba 1998). A way to improve the accuracy of
our variance re-scaling (and potentially even make it unnecessary) is
to take into account the next-to-leading order term in equation (24).
Ivanov et al. (2019) have demonstrated how to calculate this term for
Gaussian initial conditions.

Finally, Fig. 2 demonstrates that there is also residual disagreement
between how the PDF responds to primordial non-Gaussianity in N-
body simulations and in our model. We note that the simulations
investigated in this figure were only available to us in resolutions
similar to the fiducial Quijote run. And Fig. 8 indicates that at
our smoothing scales this is insufficient to obtain accurate density
PDFs. Also, the simulations considered in Fig. 2 exhibit exaggerated
amounts of primordial non-Gaussianity. This may impact the perfor-
mance of the saddle point approximation derived in Section 4 as well
as the assumption that the primordial CGF is well approximated by
a cubic function (equation 61).

In summary, we conclude the following regarding the precision of
our analytic modelling:

(i) At R = 30 Mpc h−1 and z = 1, our model is consistent with
high-resolution simulated data that corresponds to an overall survey
volume of V ≈ 100(Gpc h−1)3.
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(ii) At R = 15 Mpc h−1, there is a residual disagreement of �
1 per cent between our model and the Quijote high-resolution run.
We will investigate this in future work using even higher resolution
N-body simulations.

(iii) There is also residual disagreement between simulations and
our model regarding the response of the PDF to primordial non-
Gaussianity (Fig. 2). This is likely because of the limited resolution of
the considered simulations as well as their exaggerated values of fNL.

(iv) A promising route to improve our analytic modelling is to
extend the formalism of Ivanov et al. (2019) for non-Gaussian initial
conditions. A major obstacle in applying such an approach in real
data analysis is however that it is computationally very expensive.

6.2 Redshift uncertainties

In this paper, we have only considered the 3D density field at one
redshift. In real situations we cannot access this kind of information
for a number of reasons. First, any cosmological observations take
place along our past light-cone. Secondly, peculiar velocities of trac-
ers introduce distortions in the mapping between observed redshift
and actual radial positions of tracers (redshift-space distortions; see
e.g. Mao et al. 2014 for the impact of this on moments of the density
field and Uhlemann et al. 2018a for the impact in the density PDF).
Finally, both photometric and spectroscopic redshift measurements
will only have a finite precision (see Hoyle et al. 2018, for recent
work on photometric redshift estimation).

A way to circumvent these problems is to consider two-
dimensional projections of the density field instead – e.g. the
convergence of gravitational lensing which is a line-of-sight pro-
jection of the matter density field whose PDF can be modelled with
approaches similar to the one developed here (Bernardeau 1995;
Bernardeau & Valageas 2000; Barthelemy et al. 2019). But even
the PDF of tracer galaxies from photometric galaxy surveys can be
successfully analysed with a formalism related to the one presented
here (Friedrich et al. 2018; Gruen et al. 2018). To modify our 3D
formalism accordingly, one has to consider cylindrical (as opposed
to spherical) collapse in our derivations of Section 4. We defer this
adjustment to future work.

6.3 Baryonic feedback, tracer bias and stochasticity

In this paper we have considered dark-matter-only simulations and
neglected the impact of baryonic effects on the late-time evolution of
structures (see e.g. Schneider et al. 2019). Foreman et al. (2019) find
that baryonic physics leaves the Fourier space kernel that relates the
late-time matter bispectrum and the late-time power spectrum mostly
untouched, suggesting that baryonic feedback can be propagated into
higher order correlators through its impact on the 2-point function.
The latter can e.g. be calibrated with hydrodynamic simulations, see
Eifler et al. (2015), Huang et al. (2019), and references therein. For the
modelling of the density PDF this would mean that baryonic physics
can be largely incorporated through the variance re-scaling described
in Section 4.3. Alternatively, Ivanov et al. (2019) have investigated
effective field theory corrections to their model of the matter density
PDF. This may also be suitable to incorporate baryonic effects (see
e.g. Lewandowski, Perko & Senatore 2015, who investigate this
for the power spectrum). This would again require calibration with
simulations. The safest strategy to avoid the challenges of modelling
baryonic feedback (and in fact any strongly non-linear evolution) is to
analyse the PDF at high redshifts, e.g. with Quasars as tracer samples.

When inferring the matter density PDF from a tracer sample (e.g.
galaxies) another major obstacle is the fact that there is in general

only a biased and stochastic relationship between the tracer density
contrast and the total matter density contrast (tracer bias and tracer
stochasticity; see Friedrich et al. 2018 or Uhlemann et al. 2018a
for their impact of the galaxy density PDF and Mao et al. 2014
for their impact on moments of the galaxy density field as well as
Dekel & Lahav 1999; Desjacques, Jeong & Schmidt 2018 for general
introductions).

This problem can be circumvented entirely by directly studying
the PDF of the convergence of gravitational lensing (Barthelemy
et al. 2019) since it directly measures the matter density field. An
alternative ansatz pursued by Friedrich et al. (2018) and Gruen et al.
(2018) is to jointly study CIC (i.e. the galaxy density PDF) and
lensing-around-cells. In early data of the Dark Energy Survey, they
measured the parameters of a stochastic galaxy bias model and could
still infer information about both variance and skewness of the matter
density field.
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APPENDI X A : SPHERI CAL COLLAPSE IN
�C D M

In the Newtonian approximation and setting G = 1 = c, the evolution
of spherical, cylindrical or planar perturbations δ is described by

δ̈ + Hδ̇ − N + 1

N

δ̇2

1 + δ
= 4πρ̄ma2δ(1 + δ) , (A1)
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where τ is conformal time,H = d ln a/dτ is the conformal expansion
rate, and N = 3 for a spherical perturbation, N = 2 for a cylindrical
perturlation, and N = 1 for a planar perturbation (see Mukhanov
(2005), who demonstrates this for N = 1 and N = 3). To evaluate
equation (28) and related expressions we choose N = 3 and solve
equation (A1) with the initial conditions

δi = δ∗
L,RL

D(zi) , δ̇i = δi H(zi) , (A2)

where zi is a redshift chosen during matter domination. (In fact, in
our calculation of D(z) we set the radiation density �r to zero and
then choose zi = 4000.)

APPEN D IX B: FOURIER SPAC E C ONVENTI ONS

Following Bernardeau et al. (2002), we define the Fourier transfor-
mation of a function f (x) in real space as

f̃ (k) :=
∫

d3x f (x) e−ixk . (B1)

In this convention, the convolution theorem takes the form

˜f ∗ g(k) = f̃ (k)g̃(k) , f̃g(k) = 1

(2π )3
(f̃ ∗ g̃)(k) . (B2)

And the power spectrum of the density contrast field δ̃(k) is given
by

〈δ̃(k)δ̃(q)〉 = (2π )3δD(k + q) P (k) . (B3)

For the 2-point correlation function of the real space density contrast
δ(x) this means that

ξ (r) = 〈δ(x + r)δ(x)〉 =
∫

d3k d3q

(2π )6
〈δ̃(k)δ̃(q)〉 eik(x+r)eiqx

=
∫

d3k

(2π )3
P (k) eikr , (B4)

i.e. it is the Fourier transform of the power spectrum. The variance
of the density field when averaged over a top-hat filter of radius R is
given by

〈δ2
L,R〉 =

∫
d3k1d3k2

(2π )6
〈δ̃(k1)δ̃(k2)〉 W̃R(k1)W̃R(k2)

= 1

2π2

∫
d ln k k3 PL(k) W̃R(k)2 , (B5)

where W̃R(k) is given in equation (10).

APP ENDIX C : TESTING THE MODEL
AC C U R AC Y W I T H S I M U L AT I O N S O F E V E N
H I G H E R R E S O L U T I O N

In Fig. 8, we had complemented the N-body simulations described
in Section 5.1 with a set of simulations run by Baldauf et al. (2016).
These dark-matter-only simulations consist of 14 boxes of volume
V = (1.5 Gpc h−1)3 sampled by 10243 matter particles. The spacing
between particles in the initial density field of these simulations is
hence ≈1.5 Mpc h−1, which places them between the resolutions of
the fiducial Quijote runs and the high-resolution Quijote runs.

To push our test of the impact of simulations resolution to even
higher resolutions we ran another five N-body boxes at the same

Figure C1. Same as the lower panel of Fig. 8 but using only the simulations
run by Baldauf et al. (2016) and a set of simulations with the same cosmology,
but resolution that is even higher than the high-resolution runs of Quijote.
Going to this high resolution does not seem to improve agreement between
model and simulations any further. Though the amount of high-resolution
simulations we were able to run is limited (the errorbars indeed denote
uncertainty on the mean of our 6 runs) and we will investigate this further in
the future.

cosmology and with the same number of particles as in Baldauf
et al. (2016) but with a volume of V = (0.5 Gpc h−1)3 instead. In
Fig. C1, we show the relative deviation between the PDF measured
at R = 15 Mpc h−1 and z = 1 and our analytic prediction – again
computed for the best-fitting non-linear variance. We also show
the lower resolution version of these simulations in the figure. It
seems that going to resolutions that are even higher than that of
the Quijote high-resolution runs (blue points in Fig. 8) does not
further improve the agreement between our model and the PDF
of the simulated density field. However, the statistical uncertainty
in the PDF measurements obtained from these five small boxes is
substantial and we are going to investigate this further with larger
sets of high-resolution simulations in the future.

APPENDI X D : SI MULTA NEOUSLY VARYING
DI FFERENT BI SPECTRUM SHAPES

In general, the primordial bispectrum could be a super position of
different templates. For example, Planck Collaboration IX (2019)
simultaneously varied f

equi
NL and f ortho

NL in their analysis. In Fig. D1,
we forecast the same measurements as displayed in Fig. 6 but this
time simultaneously vary f

equi
NL and f ortho

NL . The strong degeneracy
between these two parameters in a PDF analysis demonstrates that
circular apertures are not well suited to distinguish between different
primordial Bispectrum shapes. However, note that the analysis of
Planck Collaboration IX (2019) finds very little degeneracy between
orthogonal and equilateral bispectrum shapes. Hence, an analysis of
late-time density PDFs would still provide complementary informa-
tion, even when trying to measure f

equi
NL and f ortho

NL simultaneously.
Also, an analysis of the PDF at a wider range of scales would be
more sensitive to the scale dependence of the primordial skewness
and hence help to further disentangle between different bispectrum
shapes.
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482 O. Friedrich et al.

Figure D1. Same as figure Fig. 6 but simultaneously varying f
equi
NL and f ortho

NL . The strong degeneracy between these two parameters for both the moment and
PDF analysis demonstrates that circular apertures are not well suited to distinguish between different primordial Bispectrum shapes.

APPENDIX E: A SSUMPTION O F G AU SSIAN
L I K E L I H O O D O F P D F ME A S U R E M E N T S

Throughout this paper we employed the assumption that statistical
uncertainties in PDF measurements follow a multivariate Gaussian
distribution. This cannot be completely true for two reasons: First,
PDF measurements will always be positive which necessarily skews
their distribution. This is especially noticeable in the tails of the
PDF, where sampling noise is expected to lead to a Poisson-like
rather than a Gaussian distribution. Secondly, histograms of density
fluctuations that measure the density PDF are normalized such that
integration over these histograms gives 1. This means that the bins in
which the PDF has been measured cannot be perfectly independent
of each other, which seems to further exclude a multivariate Gaussian
distribution.

However, in our analysis have cut the tails of the density PDF
which reduces both of these problems. We demonstrate this in
Fig. E1 where we show histograms of PDF measurements in the
Quijote simulations for the lowest density bins that went into our

analysis of either the R = 30 Mpc h−1 and R = 15 Mpc h−1 smoothing
scale. The figure also shows analytic Gaussian distributions with
the same mean and variance. There is a close agreement of these
analytic distributions with the actual distributions in Quijote. This
indicates that even for the bins in our analysis that reach farthest into
the tails, the measurement uncertainties are close to Gaussian. We
have checked that this also holds for all other density bins in our
analysis.

To test for the assumption of multivariate Gaussianity we also
look at the χ2 of our entire PDF measurements. To do so we use
10.000 of the Quijote simulations to estimate the covariance of the
PDF measurements and then use that covariance to compute the χ2

of the remaining 5.000 Quijote PDF measurements w.r.t. their mean
measurement. The histograms of these 5.000 χ2 values is shown
in Fig. E2 and again there is a good agreement with the analytic
expectation of a (multivariate) Gaussian distribution. Note that with
10.000 simulations any noise in the covariance estimate (and its
inverse) will be negligible in this test (Taylor, Joachimi & Kitching
2013; Friedrich & Eifler 2018).
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Measuring fNL with the bulk of the density PDF 483

Figure E1. The blue histograms show the distribution of individual PDF measurements in the Quijote simulations at smoothing scales of R = 30 Mpc h−1

(left-hand panel) and R = 15 Mpc h−1 (right-hand panel) and at the lowest densities that went into our analyses. These density bins are the ones that show the
strongest deviation from a Gaussian distribution. The orange lines display analytic Gaussian distributions with the same mean and variance.

Figure E2. The orange histograms show the distribution of χ2 between the mean PDF measured in 5000 Quijote simulations and the individual PDF
measurements in these simulations at smoothing scales of R = 30 Mpc h−1 (left-hand panel) and R = 15 Mpc h−1 (right-hand panel). The blue lines display the
analytic χ2 distributions that would be expected if statistical uncertainties in the PDF measurements were drawn from a multivariate Gaussian distribution.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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