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A B S T R A C T 

The afterglow emission from gamma-ray bursts (GRBs) is a valuable source of information to understand the physics of 
these energetic explosions. The fireball model has become the standard to describe the evolution of the afterglow emission 

o v er time and frequency. Because of recent developments in the theory of afterglows and numerical simulations of relativistic 
outflows, we are able to model the afterglow emission with realistic dynamics and radiative processes. Although the models 
agree with observations remarkably well, the afterglow emission still contains additional physics, instrumental systematics, and 

propagation effects that make the modelling of these events challenging. In this work, we present a new approach to modelling 

GRB afterglows, using Gaussian processes (GPs) to take into account systematics in the afterglow data. We show that, using 

this new approach, it is possible to obtain more reliable estimates of the explosion and microphysical parameters of GRBs. We 
present fit results for five long GRBs and find a preliminary correlation between the isotropic energetics and opening angles of 
GRBs, which confirms the idea of a common energy reservoir for the kinetic energy of long GRBs. 

Key words: methods: statistical – gamma-ray bursts: general – gamma-ray burst: individual: GRB 970508, 980703, 990510, 
991208, 991216. 
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 I N T RO D U C T I O N  

amma-ray bursts (GRBs) are the most energetic explosions in
he Univ erse. The y are either the result of the collapse of massive
tars (long GRBs; Woosley 1993 ), or of compact object mergers
here at least one of the objects is a neutron star (short GRBs)

Eichler et al. 1989 ); for a re vie w see e.g. Piran ( 2004 ). During
hese catastrophic e vents, an ultrarelati vistic, collimated outflo w is
enerated by a compact central engine (Rees & Meszaros 1992 ).
nitially, GRBs are detected as prompt gamma-ray flashes. The exact
mission mechanism that produces these gamma-rays is still debated;
or a re vie w see e.g. Kumar & Zhang ( 2015 ). As the outflow starts to
nteract with the CBM, it starts to decelerate and forms a relativistic,
ollisonless shock where charged particles are accelerated in tangled
agnetic fields and emit synchrotron emission across the whole

lectromagnetic spectrum (Rees & Meszaros 1992 ). This emission
s called the afterglow of the GRB. It is possible to understand more
bout the physics of GRBs by modelling the afterglow. The afterglow
mission re veals ho w the dynamics of such relati vistic shocks e volve
 v er time as well as the microphysical properties in such extreme
cceleration regions (Wijers, Rees & Meszaros 1997 ; Sari, Piran &
arayan 1998 ; Wijers & Galama 1999 ; Panaitescu & Kumar 2002 ;
ost et al. 2003 ). 
 E-mail: m.d.aksulu@uva.nl 
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With the launch of the Neil Gehrels Swift Observatory (Gehrels
t al. 2004 ), the detection rate of GRB afterglows has significantly
ncreased. Together with multiwavelength ground and space-based
ollow-up, and the start of the multimessenger era, we now have
 wealth of data on GRB afterglows (Abbott et al. 2017 ; MAGIC
ollaboration 2019 ). Moreo v er, recent adv ancements in afterglo w

heory and numerical hydrodynamics allow us to model the dynamics
nd emission mechanism of GRB afterglows much more reliably (van
erten 2018 ). Although the models agree with the general trends of

he afterglow data, it is still challenging to get reliable estimates of
RB parameters because of additional physics that is not included in

he models (e.g. self-synchrotron Compton scattering ef fects, re verse
hock emission), instrumental systematics, and propagation effects
e.g. scintillation in radio, absorption by the host galaxy gas and dust
n the optical and X-ray regimes). All these effects introduce sys-
ematic deviations to the afterglow observations, and result in a more
omplex flux evolution over time and frequency than predicted by the
odels. Gompertz, Fruchter & Pe’er ( 2018 ) have shown that there
ust be intrinsic errors involved when modelling GRB afterglows,

sing closure relations to show that the data exhibit inconsistencies
hat cannot be explained by the measurement errors. In this work, we
how that systematic deviations put unrealistically tight constraints
n the model parameters when performing parameter estimation
here the likelihood function is only proportional to the χ2 value. 
In this paper, we introduce a new approach to fitting GRB afterglow

ata, by modelling the systematics using Gaussian processes (GPs).
his way, the model parameters are not bound by artefacts of
© 2020 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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ystematic deviations, and Bayesian parameter estimation gives more 
eliable parameter uncertainties. In Section 2 , we explain the method 
n detail, in Section 3 we present test results with synthetic data
ets, and compare to results obtained by conventional modelling. 
oreo v er, in Section 4 we apply this method to five long GRB

fterglow data sets and present the results. In Section 5 , we further
laborate on the modelling of GRB afterglows, and we conclude in 
ection 6 . 

 M E T H O D  

Ps are a generalization of the Gaussian probability distribution, in 
he sense that, GPs enable us to define a probability distribution o v er
unctions instead of variables or vectors (Rasmussen & Williams 
006 ). GPs are non-parametric, stochastic processes, and are there- 
ore a useful tool in regression problems where the underlying model 
f the data is unknown, as is the case for the systematic differences
etween GRB afterglow models and observations. 

In this section, we describe a GP framework for modelling the 
ystematics in the GRB afterglow data sets. We follow the same 
ethodology described in Gibson et al. ( 2012 ), where they used the

ame approach to model transit light curves of exoplanets, which are 
ffected by significant systematics. 

.1 GRB after glo w data 

o solve for the many GRB afterglow model parameters, a well- 
ampled multiwavelength data set is required. The data set consists 
f N flux measurements, y = ( f ν1 , . . . , f νN ) 

T , measured at times
nd frequencies X = ( x 1 , . . . , x N ) T = (( t 1 , ν1 ) T , . . . , ( t N , νN ) T ) T ,
here X is an N × 2 matrix. The reported uncertainties of the flux
easurements are expressed as σ = ( σ1 , . . . , σN ) T . 

.2 Gaussian process framework 

n this work, we use a GP model to take into account any possible
ystematics in the GRB afterglow data in a non-parametric fashion, 
here the systematics are described as 

 ( t, ν) ∼ GP ( μ( t, ν, φ) , � ( t, ν, θ ) ) , (1) 

here μ is the mean function of the GP (i.e. the afterglow model), � 

s the covariance matrix of the GP model, φ and θ represent the GRB
arameters and the, so-called, hyperparameters of the GP model, 
espectively. 

The log likelihood of the GP model is described as 

log L ( r | X , θ , φ) = −1 

2 
r T � 

−1 r − 1 

2 
log | � | − N 

2 
log (2 π ) , (2) 

here r is the residual of the afterglow model with respect to the
bserved flux density values. We define the residual as 

r = log y − log μ, (3) 

ue to the fact that the measured flux densities vary o v er orders of
agnitudes with time and frequency. In such cases, it is common to
odel the logarithm of the measured values (Snelson, Ghahramani 
 Rasmussen 2004 ). Therefore, we e xclude an y ne gativ e flux
easurements from the data sets when modelling. 
The covariance matrix, � , defines how correlated the data points 

re o v er observ er time and frequenc y. To construct the co variance
atrix, a squared-exponential kernel is chosen, o v er the 2D input
pace (time and frequency): 

 ij = k( X i , X j ) = A exp 

[ 

−1 

2 

2 ∑ 

k= 1 

( X ik − X jk ) 2 

l 2 k 

] 

+ δij σ
2 
w , (4) 

here A represents the amplitude of the correlations, l 1 and l 2 deter-
ine the length-scales of the correlations o v er time and frequency,

espectively, and σw represents the amount of white noise in the data
et. These parameters are called the hyperparameters of the GP and
eed to be marginalized together with the model parameters. The 
hite noise parameter is formulated as σw = σlog f ν σh , where σlog f ν

s the uncertainty in the logarithm of the flux measurements and σ h 

s the hyperparameter that scales the reported uncertainties. Thus, 
he hyperparameters can be expressed as 

= ( A, l 1 , l 2 , σh ) 
T . (5) 

In this work, we use the george PYTHON package (Ambikasaran 
t al. 2015 ) as the GP framework. george enables us to calculate
fficiently the covariance matrix and the GP likelihood even for 
elatively large data sets, and it is designed to be used with any
xternal optimization/sampling algorithm. 

.3 Model 

e assume a relati vistic, collimated, outflo w interacting with the
ircumburst medium (CBM), forming a pair of shocks propagating 
nto the ejecta (short-lived reverse shock) and into the CBM (long-
ived forward shock) where charged particles are accelerated and 
mit synchrotron radiation (Sari et al. 1998 ; Wijers & Galama 1999 ;
ranot & Sari 2002 ). In this work, we only consider the emission
riginating from the forward shock. The forward shock model has 
een able to successfully describe the spectral and temporal evolution 
f GRB afterglows. 
In this work, we incorporate scalefit (Ryan et al. 2015 ;

yan et al. in preparation), as the mean function of the GP model.
calefit is an afterglow model, which uses pre-calculated tables 
f spectral features (i.e self-absorption break νa , injection break νm 

, 
ooling break νc , and peak flux density of the spectrum f ν,peak ) o v er
ecades in time and for different observing angles. scalefit takes 
dvantage of scale invariance to calculate the observed flux density 
or giv en e xplosion and microphysical parameters, observ er times,
nd frequencies. The model parameters are described as 

= ( θ0 , E K, iso , n 0 , θobs , p, εB , ̄εe , ξN ) 
T , (6) 

here θ0 is the opening angle of the jet, E K ,iso is the isotropic-
qui v alent kinetic energy of the explosion, n 0 is the circumburst
umber density, θobs is the observing angle, p is the power-law index
f the accelerated electron population, εB is the fraction of thermal 
nergy in the magnetic fields, ε̄e ≡ p−2 

p−1 εe , where εe is the fraction of
hermal energy in the accelerated electrons, and ξN is the fraction of
lectrons being accelerated. 
boxfit (v an Eerten, v an der Horst & MacFadyen 2012 ) is used

o produce the tables containing the spectral features. boxfit 
s a GRB afterglow modelling tool, which uses pre-calculated 
ydrodynamics data and solves radiative transfer equations dur- 
ng runtime. Since it relies on hydrodynamics data, it is able to
odel the dynamics of the blast wave reliably. boxfit has been

sed to successfully model the broad-band emission from various 
fterglows (see e.g. Guidorzi et al. 2014 ; Higgins et al. 2019 ;
angas et al. 2020 ), but its computationally e xpensiv e repeated

adiative transfer calculations are a drawback when implementing 
oxfit in a sampling algorithm. scalefit instead draws from 
MNRAS 497, 4672–4683 (2020) 
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Figure 1. Example regression result from modelling GRB 970508 using the 
GP model. The radio light curve at 8.46 GHz is shown, where the solid line is 
the scalefit light curve, the dashed line is the mean predicted by the GP 
model, and the shaded area represents the 1 σ uncertainty of the GP model. It 
can be seen that at early times the data are heavily affected by scintillation, 
and the systematics are modelled by the GP. The variability in the model (the 
solid line) is due to numerical noise. 

Table 1. Assumed priors for modelling syn- 
thetic data sets. 

Parameter range Prior distribution 

0.01 < θ0 < 1.6 Log-uniform 

10 50 < E K ,iso < 10 55 Log-uniform 

10 −4 < n 0 < 1000 Log-uniform 

0 < θobs / θ0 < 2 Uniform 

1.5 < p < 3.0 Uniform 

10 −7 < εB < 0.50 Log-uniform 

10 −4 < ε̄e < 10 Log-uniform 
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 table that reproduces the spectral breaks and peak fluxes from
oxfit exactly, but approximates the spectral curvature across breaks
hen reconstructing spectra. Through its approximation of spectral

urvature, scalefit a v oids the need for repeated radiative transfer
alculations and allows for fast computation (for applications, see e.g.
yan et al. 2015 ; Zhang et al. 2015 ). This offers a good compromise
etween speed and accuracy. In this work, aimed at GPs, we use the
act that due to the slight differences in their approach the different
odelling tools produce afterglow light curves with different relative

ystematics, leaving a detailed comparison of the relative merit
etween the methods for afterglow modelling in general for future
ork. 

.4 Regression 

o marginalize o v er the model parameters and the hyperparameters
f the GP, we use pymultinest (Buchner et al. 2014 ), which
s the PYTHON implementation of the MultiNest nested sampling
lgorithm (Feroz, Hobson & Bridges 2009 ). Sampling from complex
bjective functions can be challenging as algorithms can get stuck
n local maxima. The main advantage of using pymultinest
s that it is able to converge on the global maximum with high
f ficiency (i.e. relati vely small number of function e v aluations). For
ll the presented results, pymultinest is used in the importance
ampling mode (Feroz et al. 2019 ) with mode separation disabled.
e use 1000 initial live points and use an evidence tolerance of 0.5

s our convergence criterion. These values are adapted from Feroz
t al. ( 2009 ). 

The fraction of accelerated electrons, ξN , is degenerate with respect
o ( E K, iso , n 0 , εB , ̄εe ), where ( E K ,iso , n 0 ) are proportional to 1/ ξN , and
 εB , ̄εe ) are proportional to ξN (Eichler & Waxman 2005 ). Because of
his de generac y , we fix ξN to be 0.10. Canonically , ξN is set to unity
hen modelling GRB afterglo ws, ho we ver, for our sample we find

hat a smaller value for ξN gives more physical results for εB and ε̄e ,
ince accepting the canonical value results in non-physical parameter
alues (e.g. εB + εe > 1). Moreo v er, particle-in-cell simulations
ave shown that ξN can be as low as 0.01, depending on the shock
onditions (Sironi & Spitko vsk y 2011 ). 

Regression is performed by marginalizing o v er both the hyper-
arameters and model parameters (see equations 5 and 6 ). In all of
he fits presented in this work, we assume that the systematics are
ncorrelated o v er the frequenc y domain by fixing the hyperparameter
 2 to a very small number. We recognize that this assumption
ay not hold for regions of the spectrum where the frequency

omain is sampled closely (e.g. radio or optical observations at
imilar frequencies). Also, dust extinction may lead to correlated
oise in the frequency space over se veral decades. Ho we ver, af-
er correcting for dust extinction, when the data set spans o v er

ultiple decades in frequency, the emission in radio, optical and
-rays will not be correlated. In Fig. 1 , we present an example

egression result for the radio light curve of GRB 970508, which
ontains significant variability in radio bands at early times due
o interstellar scintillation. It can be seen that o v er time, as the
hock front expands and the source size increases, the variability
ecreases. 

 APPLICATION  TO  SYNTHETIC  DATA  

o test the ef fecti veness of the proposed method, we generate
ynthetic data sets and try to reco v er the true parameters by modelling
he synthetic data using both the conventional method of sampling
NRAS 497, 4672–4683 (2020) 
he χ2 likelihood and the proposed method of sampling the GP log
ikelihood function (equation 2 ). 

Two sets of synthetic data are generated using scalefit (Model
 from now on) and boxfit (Model 2 from now on) as the
nderlying model. The synthetic data sets are generated in radio,
ptical, and X-ray bands and across 10 time epochs, which are
og-uniformly separated. The uncertainty fractions are chosen to be
0 per cent, 2 per cent, and 10 per cent, for radio, optical, and X-ray
ands, respectively. The data points are generated by drawing from
 Gaussian distribution with the model value (either Models 1 or
) as the mean and the corresponding uncertainty as the standard
eviation. 
In this work, we model any type of data set using Model 1 (see

ection 2.3 ). Therefore, the synthetic data set generated with Model
 contains only white noise, whereas the synthetic data set generated
ith Model 2 also contains systematics with respect to Model 1.
his allows us to test the performance of the GP model, both in the
bsence and presence of systematic differences. For all the synthetic
ata modelling, we use the same prior for the parameters, which is
resented in Table 1 . We select fiducial GRB parameter values for
ur synthetic data sets; ( θ0 , E K ,iso , n 0 , θobs / θ0 , p , εB , εe ) = (0.10,
0 53 , 1.00, 0.30, 2.4, 10 −2 , 10 −1 ). 
Tables 2 and 3 show fit results for both data sets and modelling

pproaches. As it can be seen in Table 2 , the GP model and χ2 

ampling perform similarly in the absence of systematics. Overall, the
P model results in larger parameter uncertainties. When there are

art/staa2297_f1.eps
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Table 2. Fit results for the synthetic data set generated using Model 1. 
The data set contains only white noise as described in Section 3 . Results 
from both χ2 and GP ( GP ) likelihood sampling are presented. All the 
uncertainties on the parameters represent the 95 per cent credible interval. 
Parameter estimations that include and exclude the true parameter value 
within the 95 per cent credible interval are marked as � and � , respectively. 

Parameter χ2 GP True value 

θ0 0 . 0967 + 0 . 016 
−0 . 0061 � 0 . 098 + 0 . 017 

−0 . 029 � 0 .10 

log 10 ( E K ,iso,53 ) 0 . 01 + 0 . 17 
−0 . 21 � −0 . 04 + 0 . 23 

−0 . 24 � 0 .00 

log 10 ( n 0 ) −0 . 09 + 0 . 18 
−0 . 23 � −0 . 12 + 0 . 26 

−0 . 32 � 0 .00 

θobs / θ0 0 . 29 + 0 . 17 
−0 . 13 � 0 . 27 + 0 . 26 

−0 . 22 � 0 .30 

p 2 . 405 + 0 . 022 
−0 . 018 � 2 . 406 + 0 . 028 

−0 . 042 � 2 .40 

log 10 ( εB ) −1 . 94 + 0 . 27 
−0 . 24 � −1 . 91 + 0 . 37 

−0 . 34 � − 2 .00 

log 10 ( ̄εe ) −1 . 48 + 0 . 15 
−0 . 20 � −1 . 51 + 0 . 16 

−0 . 15 � − 1 .54 

Table 3. Fit results for the synthetic data set generated using Model 2. The 
data set contains both white noise and systematics as described in Section 3 . 
Results from both χ2 and GP ( GP ) likelihood sampling are presented. All 
the uncertainties on the parameters represent the 95 percent credible interval. 
Parameter estimations that include and exclude the true parameter value 
within the 95 percent credible interval are marked as � and � , respectively. 

Parameter χ2 GP True value 

θ0 0 . 03570 + 0 . 00081 
−0 . 00072 � 0 . 071 + 0 . 062 

−0 . 039 � 0 .10 

log 10 ( E K ,iso,53 ) 0 . 519 + 0 . 034 
−0 . 034 � 0 . 57 + 0 . 87 

−1 . 0 � 0 .00 

log 10 ( n 0 ) −2 . 669 + 0 . 044 
−0 . 048 � −0 . 2 + 1 . 2 −1 . 3 � 0 .00 

θobs / θ0 0 . 641 + 0 . 033 
−0 . 038 � 0 . 70 + 0 . 46 

−0 . 58 � 0 .30 

p 2 . 469 + 0 . 014 
−0 . 014 � 2 . 33 + 0 . 11 

−0 . 12 � 2 .40 

log 10 ( εB ) −0 . 538 + 0 . 081 
−0 . 081 � −2 . 0 + 1 . 5 −1 . 6 � − 2 .00 

log 10 ( ̄εe ) −1 . 779 + 0 . 018 
−0 . 017 � −1 . 96 + 0 . 46 

−0 . 52 � − 1 .54 
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Figure 2. Violin plot of the fit results for different synthetic data sets and 
methods. Data sets that are generated by Model 2 (M2) contain systematics 
and white noise. Data sets generated with Model 1 (M1) contain no 
systematics but the same amount of white noise as Model 2. Both data sets are 
fitted using χ2 sampling ( χ2 ) and sampling the GP likelihood in Equation 2 
( GP ). The horizontal dashed lines represent the true parameter values. 
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1 Credible interval is the Bayesian analogue of confidence interval. 
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ystematics involved, the shortcomings of the χ2 sampling approach 
tand out. In Table 3 , we show that the χ2 sampling technique is
nable to reco v er an y of the true parameters, despite inferring small
ncertainties on the parameters. On the other hand, the GP model 
s able to reco v er ev ery parameter within the 95 per cent credible
nterval. 

In Fig. 2 , we show the fit results for all synthetic data sets and
odelling approaches in the form of violin plots. Violin plots are 
 way to visualize the marginalized distributions of parameters in 
 compact way, where the shaded area represents the normalized 
istogram of the posterior samples, and the solid bar shows the 
nterquartile range of the distribution. As it can be seen, the GP model
esults in larger uncertainties, more complex marginal distributions, 
nd more accurate parameter estimations. 

To investigate further whether sampling the GP likelihood results 
n more reliable parameter inferences, regardless of the chosen 
arameters for the synthetic data sets, we generate 100 sets of
ynthetic data both using Models 1 and 2 with randomly chosen 
RB parameters. We fit all of the data sets using both the pro-
osed method of GP likelihood sampling and χ2 sampling. We 
erform co v erage measurements on these fit results to determine 
ow accurate the inferred uncertainties are. Co v erage measurements 
re performed by fitting 100 synthetic data sets and counting how 

any times the true parameter was recovered for a given confidence 
egion. 

In Fig. 3 , we show the co v erage measurement results for each
RB parameter both in the presence and the absence of systematic 
eviations. These plots show the fraction of successfully reco v ered
arameters (vertical axis) for a given credible interval 1 (horizontal 
xis; Sellentin & Starck 2019 ). The black points show the ideally
 xpected co v erage, where the error bars are calculated using the
inomial uncertainty, given by 

= 

√ 

p(1 − p) /N , (7) 

here p is the probability of containing the true parameter (credible
nterval) and N is the number of samples (100 in our case). The
MNRAS 497, 4672–4683 (2020) 
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M

Figure 3. Co v erage measurement results for GRB parameters. The blue and red lines show the co v erage measurement results in the case where the data 
only contains white noise (synthetic data set generated by Model 1) for GP model regression ( GP ) and χ2 sampling, respectively. The magenta and yellow 

lines show the co v erage measurement results in the case where the data contains systematic deviations (synthetic data set generated by Model 2) for GP 
model regression and χ2 sampling, respectively. The black points show the ideally expected coverage, where the error bars are calculated using the binomial 
uncertainty σ = 

√ 

p(1 − p) /N , where p is the probability of containing the true parameter (credible interval) and N is the number of samples (100 in 
our case). 
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o v erage measurements show that the GP model performs better
oth in the presence and the absence of systematic deviations, as the
easured co v erage for the GP model is closer to the ideal case. χ2 

ampling underestimates the errors on the parameters, especially for
arameters that affect the temporal slope of the light curves ( θ0 , θobs ,
nd p ). In the presence of systematic de viations, e ven the GP model
nderestimates the errors on the parameters, ho we ver, less so than
2 sampling. 
NRAS 497, 4672–4683 (2020) 
 APPLI CATI ON  TO  A R C H I VA L  G R B  

FTERGLOW  DATA  

n this section, we present fit results for five long GRB afterglows
or which significant modelling has already been done, namely;
RB 970508, GRB 980703, GRB 990510, GRB 991208, and GRB
91216. We compare our results to previous, multiwavelength,
odelling efforts. In Table 4 , we present the o v erall properties of the
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Table 4. Redshift ( z), Galactic foreground extinction ( A V ,MW 

), rest- 
frame host galaxy extinction ( A V ,host ), and the best-fitting extinction 
model for the host galaxy of the long GRB sample. MW denotes 
Milky Way type host extinction, and SMC denotes Small Magellanic 
Cloud type host extinction (Pei 1992 ). 

GRB name z A V ,MW 

A V ,host Host type 

970508 0 .835 ∼0 ∼0 N/A 

980703 0 .966 0 .1891 0 .90 MW 

990510 1 .619 ∼0 0 .22 SMC 

991208 0 .706 0 .0512 0 .80 MW 

991216 1 .02 2 .016 ∼0 N/A 

Table 5. Assumed priors for modelling the long 
GRB sample. 

Parameter range Prior distribution 

0.01 < θ0 < 1.6 Log-uniform 

10 48 < E K ,iso < 10 55 Log-uniform 

10 −4 < n 0 < 1000 Log-uniform 

0 < θobs / θ0 < 2 Uniform 

1.0 < p < 3.0 Uniform 

10 −7 < εB < 0.50 Log-uniform 

10 −5 < ε̄e < 10 Log-uniform 
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RB sample. For this work, we were able to generate scalefit
ables for constant density CBM only. Therefore, constant density 
BM is assumed when fitting the afterglow data. We use the prior
istributions presented in Table 5 in our modelling efforts. The 
nferred parameter distributions for the long GRB sample can be 
een in Fig. 4 in the form of a violin plot. 

.1 GRB 970508 

RB 970508 exhibits an increase in optical flux at around ∼1 d after
he burst, and starts to decline as a power law with time. Panaitescu
 Kumar ( 2002 ; PK02 from now on) explain the rise in the optical
ux by assuming that the jet is viewed off-axis with θobs ∼ 4/3 θ0 .
hey find that a wind-like CBM ( n ∝ r −2 ) suits the observations
est. On the other hand, Yost et al. ( 2003 ; Y03 from now on) fa v our
 constant density CBM in their analysis. 

In our analysis, we exclude the data points before the peak of
he rise in optical wavelengths, and fit the data points which obey
he power-law behaviour. We take the observing angle as a free 
arameter, allo wing vie wing angles both larger and smaller than the
pening angle. 
Fig. A1 shows the light curves for the inferred parameter dis-

ribution for the afterglow of GRB 970508 using GP regression. 
able 6 shows the inferred parameter values. Assuming that the 
e-brightening in optical bands is due to late-time energy injec- 
ion from the central engine, the energetics inferred from our 
odelling will o v erestimate the initial explosion energy. We find 
 wide opening angle, 0 . 74 + 0 . 52 

−0 . 28 rad, which is consistent with
03, who find an opening angle of 0 . 84 + 0 . 03 

−0 . 03 rad. The inferred
sotropic kinetic energy by the GP model is consistent with both 
K02 and Y03, whereas the χ2 sampling infers a lower E K ,iso 

ith small uncertainty. Both GP likelihood and χ2 sampling infer 
imilar p values of ∼2.4, which is larger than what PK02 and
03 found. 
a

.2 GRB 980703 

 anaitescu & K umar ( 2001 ; PK01 from now on) fa v our a constant
ensity CBM for GRB 980703. Following Vreeswijk et al. ( 1999 ),
K01 take the host extinction to be A V = 1.45 ± 0.13, and find that
 = 3.08. Y03 also fa v our a constant density CBM, and find a value
f A V = 1.15 for the host extinction and infer p = 2 . 54 + 0 . 04 

−0 . 1 . In this
 ork, we tak e the host extinction to be A V = 0.9 (Bloom et al. 1998 )

nd find that p = 2 . 05 + 0 . 10 
−0 . 095 . 

The host galaxy of GRB 980703 has a significant contribution to
he observed radio and optical emission. We assume that the host
alaxy contribution is constant o v er time and leave the host galaxy
ux in radio and optical wavelengths as free parameters. 
Fig. A2 shows the light curves for the inferred parameter dis-

ribution for the afterglow of GRB 980703 using GP regression. 
able 7 shows the inferred parameter values. The GP model infers
n opening angle that is consistent with Y03, whereas χ2 likelihood 
ampling infers a smaller opening angle. Inferred n 0 and E K ,iso values
re significantly smaller than Y03. 

.3 GRB 990510 

K01 fa v our a constant density CBM for the case of GRB 990510.
he optical afterglow of GRB 990510 exhibits a break in its temporal
volution at around 1.5 d. This break is interpreted as a jet-break.
K01 find p = 2.09 ± 0.03 using closure relations, which is also
onsistent with the inferred value from the GP model. 

Fig. A3 shows the light curves for the inferred parameter distribu-
ion for the afterglow of GRB 990510 using GP regression. Table 8
hows the inferred parameter values. The inferred opening angle 
s consistent with van Eerten et al. ( 2012 ), where they performed
 detailed fit using boxfit (vE12) model and found an opening
ngle 0 . 075 + 0 . 002 

−0 . 004 rad assuming an on-axis observer. On the other
and PK02 find a smaller opening angle 0 . 054 + 0 . 001 

−0 . 006 rad. The GP
odel predicts a larger εB value when compared to χ2 sampling and 

revious studies. 

.4 GRB 991208 

ig. A4 shows the light curves for the inferred parameter distribution
or the afterglow of GRB 991208 using GP regression. Table 9 shows
he inferred parameter values. The inferred p value by the GP model
grees with the results presented in PK02, whereas χ2 sampling 
esults in a smaller p value. 

In our analysis, we find a smaller opening angle than PK02
ith an extremely off-axis observer angle. The GP regression and 
2 sampling give significantly different results for microphysical 
arameters and observer angle. 

.5 GRB 991216 

ig. A5 shows the light curves for the inferred parameter distribution
or the afterglow of GRB 991216 using GP regression. Table 10
hows the inferred parameter values. PK02 find a hard electron 
istribution with p = 1.36 ± 0.03, which is consistent with the
esults we get from GP modelling. 

GP regression and χ2 sampling result in very different parameter 
alues for GRB 991216. This is mainly because the optical data
ontribute to the χ2 value the most, whereas the radio data has a
mall contribution to the χ2 . The best fit obtained from χ2 sampling,
espite the fact that it has a smaller χ2 value than the best fit of the
P model, completely misses the radio data points and therefore is

n inadequate representation of the observed emission. 
MNRAS 497, 4672–4683 (2020) 
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Figure 4. Violin plot showing the inferred marginalized distributions of the GRB parameters for the long GRB sample. The panel on the left shows the results 
for χ2 sampling, whereas the panel on the right shows the results from GP likelihood sampling. 
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 DISCUSSION  

RBs are thought to be collimated outflows therefore the isotropic
qui v alent energies of these events are an o v erestimation of the true
nergetics. The true, beaming corrected, energies of these events
ignificantly depend on the geometry of the outflow (i.e. the opening
ngle): 

 K 

= E K, iso (1 − cos θ0 ) . (8) 

revious studies have shown that there is observational evidence
hat there exists a standard energy reservoir for GRBs. Frail et al.
 2001 ) have measured the opening angle of a sample of GRBs based
n achromatic breaks in the afterglow light curve. They have shown
hat the beaming corrected energy release in gamma-rays is narrowly
NRAS 497, 4672–4683 (2020) 
lustered around 5 × 10 50 erg. Moreo v er, P anaitescu & K umar
 2002 ) have shown, using multiwavelength afterglow modelling,
hat the beaming corrected kinetic energy of GRBs are narrowly
istributed and vary between 10 50 to 5 × 10 50 er g. Similarly, Ber ger,
ulkarni & Frail ( 2003 ) have analysed the X-ray afterglow data

or a large sample of GRBs with known jet breaks, and have found
vidence that the beaming corrected kinetic energy of these events
re approximately constant. Note that, these studies are based on
re- Swift afterglow observations and therefore might be biased
owards more energetic GRBs. After the launch of Swift , because of
mpro v ed localization, the number of redshift measurements have
ncreased and other classes of GRBs have been discovered, such
s low-luminosity GRBs (ll-GRBs) that exhibit significantly less

art/staa2297_f4.eps
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Table 6. Fit results for GRB 970508. Results from both χ2 sampling and GP 
likelihood sampling ( GP ) are presented. The uncertainties on the parameters 
represent the 95 per cent credible interval for columns χ2 and GP . Columns 
PK02 and Y03 show results from Panaitescu & Kumar ( 2002 ) and Yost et al. 
( 2003 ), respectively. PK02 did not provide uncertainties on the parameters 
for this burst. The uncertainties for the Y03 results represent the 68.3 per cent 
credible interval. All the values taken from previous studies have been 
converted to the same units. The values have been corrected for our choice of 
ξN = 0.1 by multiplying ( E K ,iso , n 0 ) by 10 and dividing ( εB , ε̄e ) by 10 (see 
Section 2.4 ). 

GRB 970508 
Parameter χ2 GP PK02 Y03 

θ0 0 . 5007 + 0 . 0063 
−0 . 0055 0 . 74 + 0 . 52 

−0 . 28 0 .32 0 . 84 + 0 . 030 
−0 . 030 

log 10 ( E K ,iso, 53 ) 0 . 370 + 0 . 027 
−0 . 026 0 . 53 + 0 . 28 

−0 . 28 0 .597 0 . 56 + 0 . 011 
−0 . 011 

log 10 ( n 0 ) 0 . 407 + 0 . 028 
−0 . 027 0 . 80 + 0 . 90 

−0 . 69 0 .87 0 . 30 + 0 . 021 
−0 . 045 

θobs / θ0 0 . 6977 + 0 . 0055 
−0 . 0074 0 . 750 + 0 . 093 

−0 . 096 1 .33 0 

p 2 . 404 + 0 . 013 
−0 . 013 2 . 39 + 0 . 10 

−0 . 12 2 .18 2 . 12 + 0 . 03 
−0 . 008 

log 10 ( εB ) −2 . 729 + 0 . 075 
−0 . 077 −3 . 5 + 1 . 2 −1 . 4 − 2 .34 −1 . 60 + 0 . 010 

−0 . 036 

log 10 ( ̄εe ) −2 . 078 + 0 . 011 
−0 . 011 −1 . 97 + 0 . 30 

−0 . 25 − 2 .77 −2 . 43 + 0 . 02 
−0 . 015 

Table 7. Fit results for GRB 980703. Results from both χ2 sampling and GP 
likelihood sampling ( GP ) are presented. See Table 6 for detailed explanation. 

GRB 980703 
Parameter χ2 GP Y03 

θ0 0 . 14990 + 0 . 00093 
−0 . 0011 0 . 199 + 0 . 043 

−0 . 042 0 . 234 + 0 . 02 
−0 . 007 

log 10 ( E K ,iso,53 ) 0 . 139 + 0 . 016 
−0 . 015 −0 . 02 + 0 . 19 

−0 . 17 1 . 07 + 0 . 028 
−0 . 080 

log 10 ( n 0 ) 0 . 156 + 0 . 026 
−0 . 025 0 . 58 + 0 . 33 

−0 . 34 2 . 44 + 0 . 057 
−0 . 049 

θobs / θ0 0 . 313 + 0 . 023 
−0 . 018 0 . 31 + 0 . 28 

−0 . 29 0 

p 2 . 202 + 0 . 026 
−0 . 026 2 . 049 + 0 . 092 

−0 . 094 2 . 54 + 0 . 04 
−0 . 1 

log 10 ( εB ) −0 . 588 + 0 . 048 
−0 . 049 −0 . 87 + 0 . 28 

−0 . 31 −3 . 74 + 0 . 087 
−0 . 079 

log 10 ( ̄εe ) −2 . 520 + 0 . 015 
−0 . 015 −2 . 36 + 0 . 13 

−0 . 13 −2 . 02 + 0 . 065 
−0 . 110 

Table 8. Fit results for GRB 990510. Results from both χ2 sampling and GP 
likelihood sampling ( GP ) are presented. The uncertainties on the parameters 
represent the 95 per cent credible interval for columns χ2 and GP . Columns 
PK02 and vE12 show results from Panaitescu & Kumar ( 2002 ) and van Eerten 
et al. ( 2012 ). The uncertainties for the PK02 and vE12 results represent the 
90 per cent and 68 per cent credible interv als, respecti vely. All the v alues taken 
from previous studies have been converted to the same units. The values have 
been corrected for our choice of ξN = 0.1 by multiplying ( E K ,iso , n 0 ) by 10 
and dividing ( εB , ε̄e ) by 10 (see Section 2.4 ). Since PK02 find p < 2, the 
conversion from εe to the equi v alent ̄εe results in a negative value. Therefore, 
we denote log 10 ( ̄εe ) as N/A. 

GRB 990510 
Parameter χ2 GP PK02 vE12 

θ0 0 . 06423 + 0 . 00078 
−0 . 00077 0 . 0671 + 0 . 0062 

−0 . 0042 0 . 054 + 0 . 0017 
−0 . 0087 0 . 075 + 0 . 002 

−0 . 004 

log 10 ( E K ,iso,53 ) 1 . 125 + 0 . 026 
−0 . 024 0 . 870 + 0 . 18 

−0 . 089 0 . 98 + 0 . 80 
−0 . 21 1 . 25 + 0 . 06 

−0 . 02 

log 10 ( n 0 ) 0 . 293 + 0 . 049 
−0 . 042 −0 . 01 + 0 . 15 

−0 . 13 0 . 46 + 0 . 139 
−0 . 316 −0 . 52 + 0 . 054 

−0 . 221 

θobs / θ0 0 . 705 + 0 . 014 
−0 . 0093 0 . 297 + 0 . 057 

−0 . 074 0 0 

p 2 . 230 + 0 . 028 
−0 . 027 1 . 91 + 0 . 12 

−0 . 089 1 . 83 + 0 . 18 
−0 . 01 2 . 28 + 0 . 06 

−0 . 01 

log 10 ( εB ) −3 . 620 + 0 . 086 
−0 . 089 −1 . 72 + 0 . 42 

−1 . 0 −3 . 28 + 0 . 95 
−1 . 01 −3 . 33 + 0 . 07 

−0 . 08 

log 10 ( ̄εe ) −1 . 803 + 0 . 026 
−0 . 026 −2 . 49 + 0 . 11 

−0 . 12 N/A −2 . 08 + 0 . 13 
−0 . 02 

Table 9. Fit results for GRB 991208. Results from both χ2 sampling and 
GP likelihood sampling ( GP ) are presented together with literature values. 
See Table 8 for detailed explanation. 

GRB 991208 
Parameter χ2 GP PK02 

θ0 0 . 02261 + 0 . 00059 
−0 . 00059 0 . 0350 + 0 . 0072 

−0 . 0088 0 . 22 + 0 . 026 
−0 . 038 

log 10 ( E K ,iso,53 ) 1 . 951 + 0 . 024 
−0 . 024 1 . 58 + 0 . 30 

−0 . 23 −0 . 015 + 0 . 49 
−0 . 27 

log 10 ( n 0 ) −0 . 1410 + 0 . 0073 
−0 . 0077 0 . 14 + 0 . 36 

−0 . 32 2 . 25 + 0 . 34 
−0 . 17 

θobs / θ0 0 . 0079 + 0 . 017 
−0 . 0083 1 . 58 + 0 . 38 

−0 . 34 0 

p 1 . 1964 + 0 . 0077 
−0 . 0074 1 . 55 + 0 . 13 

−0 . 12 1 . 53 + 0 . 03 
−0 . 03 

log 10 ( εB ) −0 . 30186 + 0 . 00086 
−0 . 0018 −0 . 86 + 0 . 35 

−0 . 38 −2 . 45 + 0 . 43 
−0 . 39 

log 10 ( ̄εe ) −3 . 241 + 0 . 017 
−0 . 016 −2 . 57 + 0 . 23 

−0 . 21 N/A 

Table 10. Fit results for GRB 991216. Results from both χ2 sampling and 
GP likelihood sampling ( GP ) are presented together with literature values. 
See Table 8 for detailed explanation. 

GRB 991216 
Parameter χ2 GP PK02 

θ0 0 . 1268 + 0 . 0031 
−0 . 0095 0 . 033 + 0 . 028 

−0 . 012 0 . 047 + 0 . 006 
−0 . 017 

log 10 ( E K ,iso,53 ) 1 . 9961 + 0 . 0041 
−0 . 0082 1 . 34 + 0 . 36 

−0 . 51 0 . 99 + 0 . 68 
−0 . 31 

log 10 ( n 0 ) −0 . 6833 + 0 . 0094 
−0 . 010 −0 . 60 + 1 . 0 −0 . 64 1 . 67 + 0 . 38 

−0 . 20 

θobs / θ0 0 . 7979 + 0 . 0071 
−0 . 0095 0 . 43 + 0 . 54 

−0 . 33 0 

p 2 . 536 + 0 . 016 
−0 . 017 1 . 49 + 0 . 18 

−0 . 16 1 . 36 + 0 . 03 
−0 . 03 

log 10 ( εB ) −5 . 041 + 0 . 044 
−0 . 036 −0 . 76 + 0 . 46 

−0 . 70 −2 . 74 + 0 . 46 
−0 . 21 

log 10 ( ̄εe ) −1 . 601 + 0 . 025 
−0 . 028 −2 . 77 + 0 . 42 

−0 . 36 N/A 

Figure 5. Isotropic equi v alent kinetic energy ( E K iso ) dependence on the 
opening angle ( θ0 ) inferred from our modelling. The red measurements ( χ2 ) 
are obtained by χ2 sampling and the blue measurements ( GP ) are obtained 
by sampling the GP log likelihood function. The dashed black line represents 
the E K ,iso (1 − cos θ0 ) = 1.7 × 10 51 relation. The error bars represent the 
95 per cent credible interval. 
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uminous prompt emission. ll-GRBs might constitute outliers in the 
 v erall GRB population and might not conform with the idea of a
onstant energy reservoir (Liang et al. 2007 ). 

Our analysis also shows a strong correlation between θ0 and 
 K ,iso . In Fig. 5 , we show the measured opening angles and isotropic
nergies of our GRB sample. It can be seen that, when the GP model
s used for inferring parameters, the measured values suggest that 
he beaming corrected kinetic energies are approximately the same 
MNRAS 497, 4672–4683 (2020) 
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Figure 6. Beaming corrected kinetic energies of the long GRB sample. 
The red measurements ( χ2 ) are obtained by χ2 sampling and the blue 
measurements ( GP ) are obtained by sampling the GP log likelihood function. 
The dashed line is the log-average of GRBs 980703, 990510, 991208, 991216, 
which is equal to 1.7 × 10 51 erg. The error bars represent the 95 per cent 
credible interval. 
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or long GRBs. GRB 970508 is a clear outlier, which is consistent
ith the findings of Panaitescu & Kumar ( 2002 ). As discussed

n Section 4.1 , GRB 970508 exhibits a re-brightening in optical
avelengths, which could be due to late-time energy injection.
his energy injection could account for the o v erestimation of the

sotropic-equi v alent kinetic energy of this source, which might
mply that the standard energy reservoir applies more strongly to
he initial ejecta formation of a GRB than to any later activity of
he central engine. Note that the correlation is not apparent when χ2 

ampling is used for parameter estimation. 
In Fig. 6 , we show the inferred beaming corrected kinetic energies

ith 95 per cent credible intervals for the sample GRBs. The inferred
 K in our analysis is ∼1.7 × 10 51 erg, which is about an order
f magnitude larger than what previous studies have found. This
iscrepancy with previous studies is expected as we fix ξN to be 0.1
nstead of the canonical value of 1.0. We also recognize that it is
oo early to judge whether these few very well studied, well-sampled
RB afterglows are representative of the whole population. 

 C O N C L U S I O N S  

n this work, we have introduced a no v el method for modelling GRB
fterglows, where GPs are used to take into account any systematics
etween the model and observations in a non-parametric fashion.
sing synthetic data sets, we have shown that the GP approach results

n more accurate posterior distributions with respect to sampling the
2 likelihood. 
We model a sample of five well-known long GRBs with mul-

iwav elength co v erage (GRBs 970508, 980703, 990510, 991208,
91216), using the scalefit code together with the GP frame-
ork. We compare the inferred parameters for each GRB with the

iterature values and comment upon the parameter distributions of the
 v erall sample. We find a correlation between the isotropic-kinetic
nergy and opening angle, with GRB 970508 being the only outlier.
his correlation, which is consistent with previous studies, suggests

hat there is a common energy reservoir that drives the dynamics of
RBs. 
NRAS 497, 4672–4683 (2020) 
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Figure A2. Fit result for GRB 980703 by sampling the GP likelihood. 
Observed flux density values are presented in radio, optical, and X-ray bands 
(upper, middle, and lower panel, respectively) together with the posterior 
predictiv e light curv es. The triangles represent 3 σ upper limits. A sample of 
100 parameter sets are randomly drawn from the inferred joint probability 
distribution of the parameters, and scalefit light curves are drawn for 
each parameter set. The host galaxy contribution in radio and optical is not 
subtracted. 
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igure A1. Fit result for GRB 970508 by sampling the GP likelihood.
bserved flux density values are presented in radio, optical, and X-ray bands

upper, middle, and lower panel, respectively) together with the posterior 
redictiv e light curv es. The triangles represent 3 σ upper limits. A sample of
00 parameter sets are randomly drawn from the inferred joint probability
istribution of the parameters, and scalefit light curves are drawn for
ach parameter set. 
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Figure A3. Fit result for GRB 990510 by sampling the GP likelihood. 
Observed flux density values are presented in radio, optical, and X-ray bands 
(upper, middle, and lower panel, respectively) together with the posterior 
predictiv e light curv es. A sample of 100 parameter sets are randomly 
drawn from the inferred joint probability distribution of the parameters, and 
scalefit light curves are drawn for each parameter set. 

Figure A4. Fit result for GRB 991208 by sampling the GP likelihood. 
Observed flux density values are presented in radio and optical bands (upper 
and lower panel, respectively) together with the posterior predictive light 
curves. Triangles represent 3 σ upper limits. A sample of 100 parameter sets 
are randomly drawn from the inferred joint probability distribution of the 
parameters, and scalefit light curves are drawn for each parameter set. 
The host galaxy contribution in optical is not subtracted. 
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Figure A5. Fit result for GRB 991216 by sampling the GP likelihood. 
Observed flux density values are presented in radio, optical, and X-ray bands 
(upper, middle, and lower panel, respectively) together with the posterior 
predictiv e light curv es. The triangles represent 3 σ upper limits. A sample of 
100 parameter sets are randomly drawn from the inferred joint probability 
distribution of the parameters, and scalefit light curves are drawn for 
each parameter set. The host galaxy contribution in optical is not subtracted. 
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