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ABSTRACT

The afterglow emission from gamma-ray bursts (GRBs) is a valuable source of information to understand the physics of
these energetic explosions. The fireball model has become the standard to describe the evolution of the afterglow emission
over time and frequency. Because of recent developments in the theory of afterglows and numerical simulations of relativistic
outflows, we are able to model the afterglow emission with realistic dynamics and radiative processes. Although the models
agree with observations remarkably well, the afterglow emission still contains additional physics, instrumental systematics, and
propagation effects that make the modelling of these events challenging. In this work, we present a new approach to modelling
GRB afterglows, using Gaussian processes (GPs) to take into account systematics in the afterglow data. We show that, using
this new approach, it is possible to obtain more reliable estimates of the explosion and microphysical parameters of GRBs. We
present fit results for five long GRBs and find a preliminary correlation between the isotropic energetics and opening angles of
GRBs, which confirms the idea of a common energy reservoir for the kinetic energy of long GRBs.

Key words: methods: statistical — gamma-ray bursts: general —gamma-ray burst: individual: GRB 970508, 980703, 990510,

991208, 991216.

1 INTRODUCTION

Gamma-ray bursts (GRBs) are the most energetic explosions in
the Universe. They are either the result of the collapse of massive
stars (long GRBs; Woosley 1993), or of compact object mergers
where at least one of the objects is a neutron star (short GRBs)
(Eichler et al. 1989); for a review see e.g. Piran (2004). During
these catastrophic events, an ultrarelativistic, collimated outflow is
generated by a compact central engine (Rees & Meszaros 1992).
Initially, GRBs are detected as prompt gamma-ray flashes. The exact
emission mechanism that produces these gamma-rays is still debated;
for a review see e.g. Kumar & Zhang (2015). As the outflow starts to
interact with the CBM, it starts to decelerate and forms a relativistic,
collisonless shock where charged particles are accelerated in tangled
magnetic fields and emit synchrotron emission across the whole
electromagnetic spectrum (Rees & Meszaros 1992). This emission
is called the afterglow of the GRB. It is possible to understand more
about the physics of GRBs by modelling the afterglow. The afterglow
emission reveals how the dynamics of such relativistic shocks evolve
over time as well as the microphysical properties in such extreme
acceleration regions (Wijers, Rees & Meszaros 1997; Sari, Piran &
Narayan 1998; Wijers & Galama 1999; Panaitescu & Kumar 2002;
Yost et al. 2003).
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With the launch of the Neil Gehrels Swift Observatory (Gehrels
et al. 2004), the detection rate of GRB afterglows has significantly
increased. Together with multiwavelength ground and space-based
follow-up, and the start of the multimessenger era, we now have
a wealth of data on GRB afterglows (Abbott et al. 2017; MAGIC
Collaboration 2019). Moreover, recent advancements in afterglow
theory and numerical hydrodynamics allow us to model the dynamics
and emission mechanism of GRB afterglows much more reliably (van
Eerten 2018). Although the models agree with the general trends of
the afterglow data, it is still challenging to get reliable estimates of
GRB parameters because of additional physics that is not included in
the models (e.g. self-synchrotron Compton scattering effects, reverse
shock emission), instrumental systematics, and propagation effects
(e.g. scintillation in radio, absorption by the host galaxy gas and dust
in the optical and X-ray regimes). All these effects introduce sys-
tematic deviations to the afterglow observations, and result in a more
complex flux evolution over time and frequency than predicted by the
models. Gompertz, Fruchter & Pe’er (2018) have shown that there
must be intrinsic errors involved when modelling GRB afterglows,
using closure relations to show that the data exhibit inconsistencies
that cannot be explained by the measurement errors. In this work, we
show that systematic deviations put unrealistically tight constraints
on the model parameters when performing parameter estimation
where the likelihood function is only proportional to the x? value.

In this paper, we introduce a new approach to fitting GRB afterglow
data, by modelling the systematics using Gaussian processes (GPs).
This way, the model parameters are not bound by artefacts of
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systematic deviations, and Bayesian parameter estimation gives more
reliable parameter uncertainties. In Section 2, we explain the method
in detail, in Section 3 we present test results with synthetic data
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space (time and frequency):
2 X2
T, = k(X;, X)) = Aexp [—; > w +8;0%, @
k=1 k

sets, and compare to results obtained by conventional modelling.
Moreover, in Section 4 we apply this method to five long GRB
afterglow data sets and present the results. In Section 5, we further
elaborate on the modelling of GRB afterglows, and we conclude in
Section 6.

2 METHOD

GPs are a generalization of the Gaussian probability distribution, in
the sense that, GPs enable us to define a probability distribution over
functions instead of variables or vectors (Rasmussen & Williams
2006). GPs are non-parametric, stochastic processes, and are there-
fore a useful tool in regression problems where the underlying model
of the data is unknown, as is the case for the systematic differences
between GRB afterglow models and observations.

In this section, we describe a GP framework for modelling the
systematics in the GRB afterglow data sets. We follow the same
methodology described in Gibson et al. (2012), where they used the
same approach to model transit light curves of exoplanets, which are
affected by significant systematics.

2.1 GRB afterglow data

To solve for the many GRB afterglow model parameters, a well-
sampled multiwavelength data set is required. The data set consists
of N flux measurements, y = (fy,,..., fy N)T, measured at times
and frequencies X = (x1,...,xy) = ((t;,v)7, ..., (tn, va))T,
where X is an N x 2 matrix. The reported uncertainties of the flux
measurements are expressed as ¢ = (o7, .. ., on)T.

2.2 Gaussian process framework

In this work, we use a GP model to take into account any possible
systematics in the GRB afterglow data in a non-parametric fashion,
where the systematics are described as

@, v) ~GP(u, v, ¢), L(1,v,0)), (€]

where p is the mean function of the GP (i.e. the afterglow model), X
is the covariance matrix of the GP model, ¢ and @ represent the GRB
parameters and the, so-called, hyperparameters of the GP model,
respectively.

The log likelihood of the GP model is described as

1 1 N
log L(r|X, 0, ¢) = —ErT):"r -5 log|X| — E1og(2n), 2)

where r is the residual of the afterglow model with respect to the
observed flux density values. We define the residual as

r=logy—logpu, (3)

due to the fact that the measured flux densities vary over orders of
magnitudes with time and frequency. In such cases, it is common to
model the logarithm of the measured values (Snelson, Ghahramani
& Rasmussen 2004). Therefore, we exclude any negative flux
measurements from the data sets when modelling.

The covariance matrix, X, defines how correlated the data points
are over observer time and frequency. To construct the covariance
matrix, a squared-exponential kernel is chosen, over the 2D input

where A represents the amplitude of the correlations, /; and /, deter-
mine the length-scales of the correlations over time and frequency,
respectively, and o, represents the amount of white noise in the data
set. These parameters are called the hyperparameters of the GP and
need to be marginalized together with the model parameters. The
white noise parameter is formulated as o, = 0iqg 5, 0, Where 0Oiqg 7,
is the uncertainty in the logarithm of the flux measurements and o,
is the hyperparameter that scales the reported uncertainties. Thus,
the hyperparameters can be expressed as

0= (A1, Lo 5)

In this work, we use the george PYTHON package (Ambikasaran
et al. 2015) as the GP framework. george enables us to calculate
efficiently the covariance matrix and the GP likelihood even for
relatively large data sets, and it is designed to be used with any
external optimization/sampling algorithm.

2.3 Model

We assume a relativistic, collimated, outflow interacting with the
circumburst medium (CBM), forming a pair of shocks propagating
into the ejecta (short-lived reverse shock) and into the CBM (long-
lived forward shock) where charged particles are accelerated and
emit synchrotron radiation (Sari et al. 1998; Wijers & Galama 1999;
Granot & Sari 2002). In this work, we only consider the emission
originating from the forward shock. The forward shock model has
been able to successfully describe the spectral and temporal evolution
of GRB afterglows.

In this work, we incorporate scalefit (Ryan et al. 2015;
Ryan et al. in preparation), as the mean function of the GP model.
scalefit is an afterglow model, which uses pre-calculated tables
of spectral features (i.e self-absorption break v,, injection break vy,
cooling break v, and peak flux density of the spectrum f;, pea) over
decades in time and for different observing angles. scalefit takes
advantage of scale invariance to calculate the observed flux density
for given explosion and microphysical parameters, observer times,
and frequencies. The model parameters are described as

& = (80, Ex iso» 110, Oobs, P €5, Eer Ex)T (6)

where 0 is the opening angle of the jet, Ek;s, is the isotropic-
equivalent kinetic energy of the explosion, n is the circumburst
number density, 6, is the observing angle, p is the power-law index
of the accelerated electron population, €p is the fraction of thermal
energy in the magnetic fields, €, = ]”)%fee, where €, is the fraction of
thermal energy in the accelerated electrons, and &y is the fraction of
electrons being accelerated.

boxfit (van Eerten, van der Horst & MacFadyen 2012) is used
to produce the tables containing the spectral features. boxfit
is a GRB afterglow modelling tool, which uses pre-calculated
hydrodynamics data and solves radiative transfer equations dur-
ing runtime. Since it relies on hydrodynamics data, it is able to
model the dynamics of the blast wave reliably. boxfit has been
used to successfully model the broad-band emission from various
afterglows (see e.g. Guidorzi et al. 2014; Higgins et al. 2019;
Kangas et al. 2020), but its computationally expensive repeated
radiative transfer calculations are a drawback when implementing
boxfit in a sampling algorithm. scalefit instead draws from
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a table that reproduces the spectral breaks and peak fluxes from
boxfit exactly, but approximates the spectral curvature across breaks
when reconstructing spectra. Through its approximation of spectral
curvature, scalefit avoids the need for repeated radiative transfer
calculations and allows for fast computation (for applications, see e.g.
Ryan et al. 2015; Zhang et al. 2015). This offers a good compromise
between speed and accuracy. In this work, aimed at GPs, we use the
fact that due to the slight differences in their approach the different
modelling tools produce afterglow light curves with different relative
systematics, leaving a detailed comparison of the relative merit
between the methods for afterglow modelling in general for future
work.

2.4 Regression

To marginalize over the model parameters and the hyperparameters
of the GP, we use pymultinest (Buchner et al. 2014), which
is the PYTHON implementation of the MultiNest nested sampling
algorithm (Feroz, Hobson & Bridges 2009). Sampling from complex
objective functions can be challenging as algorithms can get stuck
in local maxima. The main advantage of using pymultinest
is that it is able to converge on the global maximum with high
efficiency (i.e. relatively small number of function evaluations). For
all the presented results, pymultinest is used in the importance
sampling mode (Feroz et al. 2019) with mode separation disabled.
We use 1000 initial live points and use an evidence tolerance of 0.5
as our convergence criterion. These values are adapted from Feroz
et al. (2009).

The fraction of accelerated electrons, &y, is degenerate with respect
to (E iso, N0, €5, €.), Where (Ex 5o, 1o) are proportional to 1/£ y, and
(e, €,) are proportional to & y (Eichler & Waxman 2005). Because of
this degeneracy, we fix £y to be 0.10. Canonically, &y is set to unity
when modelling GRB afterglows, however, for our sample we find
that a smaller value for &y gives more physical results for € and ,,
since accepting the canonical value results in non-physical parameter
values (e.g. €g + €, > 1). Moreover, particle-in-cell simulations
have shown that £y can be as low as 0.01, depending on the shock
conditions (Sironi & Spitkovsky 2011).

Regression is performed by marginalizing over both the hyper-
parameters and model parameters (see equations 5 and 6). In all of
the fits presented in this work, we assume that the systematics are
uncorrelated over the frequency domain by fixing the hyperparameter
I, to a very small number. We recognize that this assumption
may not hold for regions of the spectrum where the frequency
domain is sampled closely (e.g. radio or optical observations at
similar frequencies). Also, dust extinction may lead to correlated
noise in the frequency space over several decades. However, af-
ter correcting for dust extinction, when the data set spans over
multiple decades in frequency, the emission in radio, optical and
X-rays will not be correlated. In Fig. 1, we present an example
regression result for the radio light curve of GRB 970508, which
contains significant variability in radio bands at early times due
to interstellar scintillation. It can be seen that over time, as the
shock front expands and the source size increases, the variability
decreases.

3 APPLICATION TO SYNTHETIC DATA

To test the effectiveness of the proposed method, we generate
synthetic data sets and try to recover the true parameters by modelling
the synthetic data using both the conventional method of sampling
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Figure 1. Example regression result from modelling GRB 970508 using the
GP model. The radio light curve at 8.46 GHz is shown, where the solid line is
the scalefit light curve, the dashed line is the mean predicted by the GP
model, and the shaded area represents the 1o uncertainty of the GP model. It
can be seen that at early times the data are heavily affected by scintillation,
and the systematics are modelled by the GP. The variability in the model (the
solid line) is due to numerical noise.

Table 1. Assumed priors for modelling syn-
thetic data sets.

Parameter range Prior distribution

0.01 <6y < 1.6
10 < Egjso < 10%
107* < np < 1000

Log-uniform
Log-uniform
Log-uniform

0 < BOops/bp <2 Uniform
1.5<p<30 Uniform
1077 < ep < 0.50 Log-uniform
1074 < é < 10 Log-uniform

the x? likelihood and the proposed method of sampling the GP log
likelihood function (equation 2).

Two sets of synthetic data are generated using scalefit (Model
1 from now on) and boxfit (Model 2 from now on) as the
underlying model. The synthetic data sets are generated in radio,
optical, and X-ray bands and across 10 time epochs, which are
log-uniformly separated. The uncertainty fractions are chosen to be
10 per cent, 2 per cent, and 10 per cent, for radio, optical, and X-ray
bands, respectively. The data points are generated by drawing from
a Gaussian distribution with the model value (either Models 1 or
2) as the mean and the corresponding uncertainty as the standard
deviation.

In this work, we model any type of data set using Model 1 (see
Section 2.3). Therefore, the synthetic data set generated with Model
1 contains only white noise, whereas the synthetic data set generated
with Model 2 also contains systematics with respect to Model 1.
This allows us to test the performance of the GP model, both in the
absence and presence of systematic differences. For all the synthetic
data modelling, we use the same prior for the parameters, which is
presented in Table 1. We select fiducial GRB parameter values for
our synthetic data sets; (0o, Ex.iso, 10, Oobs/00, Ps €5, €.) = (0.10,
1033, 1.00, 0.30, 2.4, 1072, 1071).

Tables 2 and 3 show fit results for both data sets and modelling
approaches. As it can be seen in Table 2, the GP model and x>
sampling perform similarly in the absence of systematics. Overall, the
GP model results in larger parameter uncertainties. When there are
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Table 2. Fit results for the synthetic data set generated using Model 1.
The data set contains only white noise as described in Section 3. Results
from both x? and GP (GP) likelihood sampling are presented. All the
uncertainties on the parameters represent the 95 per cent credible interval.
Parameter estimations that include and exclude the true parameter value
within the 95 per cent credible interval are marked as v"and X, respectively.

2

Parameter X grP True value
0.016 0.017
0o 0.0967 00y v 0.098F ) 050 v 0.10
log10(Ex iso53) 0.011037 v —0.04702 v 0.00
log10(n0) —0.097018 v —0.12402 v 0.00
Bobs/00 0294017 v 0274038 v 0.30
0.022 0.028
p 24050052 v 240610035 vV 2.40
logio(ep) —1.941021 —1.91%037 v —2.00
logo (&) 148705 v —151M018 v —1.54

Table 3. Fit results for the synthetic data set generated using Model 2. The
data set contains both white noise and systematics as described in Section 3.
Results from both x? and GP (GP) likelihood sampling are presented. All
the uncertainties on the parameters represent the 95 percent credible interval.
Parameter estimations that include and exclude the true parameter value
within the 95 percent credible interval are marked as v'and X, respectively.

Parameter )(2 gP True value
0o 0.03570T00008) x - 0.07110582 v 0.10
log10(EK jso,53) 0.5197003% x 0.5779%87 v 0.00
logio(n9) 266970048 X —-02M3 v 0.00
Oobs/fo 0.64179033 x 0.7015:48 v 0.30
p 2.46910011 X 233700 v 2.40
logio(ep) —0.5387 008 x 203 v —2.00
logo (&) —1779T508 x - —1.961048 v —1.54

systematics involved, the shortcomings of the x? sampling approach
stand out. In Table 3, we show that the y? sampling technique is
unable to recover any of the true parameters, despite inferring small
uncertainties on the parameters. On the other hand, the GP model
is able to recover every parameter within the 95 per cent credible
interval.

In Fig. 2, we show the fit results for all synthetic data sets and
modelling approaches in the form of violin plots. Violin plots are
a way to visualize the marginalized distributions of parameters in
a compact way, where the shaded area represents the normalized
histogram of the posterior samples, and the solid bar shows the
interquartile range of the distribution. As it can be seen, the GP model
results in larger uncertainties, more complex marginal distributions,
and more accurate parameter estimations.

To investigate further whether sampling the GP likelihood results
in more reliable parameter inferences, regardless of the chosen
parameters for the synthetic data sets, we generate 100 sets of
synthetic data both using Models 1 and 2 with randomly chosen
GRB parameters. We fit all of the data sets using both the pro-
posed method of GP likelihood sampling and x> sampling. We
perform coverage measurements on these fit results to determine
how accurate the inferred uncertainties are. Coverage measurements
are performed by fitting 100 synthetic data sets and counting how
many times the true parameter was recovered for a given confidence
region.

In Fig. 3, we show the coverage measurement results for each
GRB parameter both in the presence and the absence of systematic
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Figure 2. Violin plot of the fit results for different synthetic data sets and
methods. Data sets that are generated by Model 2 (M2) contain systematics
and white noise. Data sets generated with Model 1 (M1) contain no
systematics but the same amount of white noise as Model 2. Both data sets are
fitted using x2 sampling (x?) and sampling the GP likelihood in Equation 2
(GP). The horizontal dashed lines represent the true parameter values.

deviations. These plots show the fraction of successfully recovered
parameters (vertical axis) for a given credible interval ! (horizontal
axis; Sellentin & Starck 2019). The black points show the ideally
expected coverage, where the error bars are calculated using the
binomial uncertainty, given by

o =+/p(l=p)/N. @)

where p is the probability of containing the true parameter (credible
interval) and N is the number of samples (100 in our case). The

ICredible interval is the Bayesian analogue of confidence interval.
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Figure 3. Coverage measurement results for GRB parameters. The blue and red lines show the coverage measurement results in the case where the data
only contains white noise (synthetic data set generated by Model 1) for GP model regression (GP) and x> sampling, respectively. The magenta and yellow
lines show the coverage measurement results in the case where the data contains systematic deviations (synthetic data set generated by Model 2) for GP
model regression and x2 sampling, respectively. The black points show the ideally expected coverage, where the error bars are calculated using the binomial
uncertainty o = /p(I — p)/N, where p is the probability of containing the true parameter (credible interval) and N is the number of samples (100 in

our case).

coverage measurements show that the GP model performs better
both in the presence and the absence of systematic deviations, as the
measured coverage for the GP model is closer to the ideal case. x>
sampling underestimates the errors on the parameters, especially for
parameters that affect the temporal slope of the light curves (6, 0 obs,
and p). In the presence of systematic deviations, even the GP model
underestimates the errors on the parameters, however, less so than
x? sampling.

MNRAS 497, 4672-4683 (2020)

4 APPLICATION TO ARCHIVAL GRB
AFTERGLOW DATA

In this section, we present fit results for five long GRB afterglows
for which significant modelling has already been done, namely;
GRB 970508, GRB 980703, GRB 990510, GRB 991208, and GRB
991216. We compare our results to previous, multiwavelength,
modelling efforts. In Table 4, we present the overall properties of the
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Table 4. Redshift (z), Galactic foreground extinction (Ayyw), rest-
frame host galaxy extinction (Ay post). and the best-fitting extinction
model for the host galaxy of the long GRB sample. MW denotes
Milky Way type host extinction, and SMC denotes Small Magellanic
Cloud type host extinction (Pei 1992).

GRB name z Aymw AV host Host type
970508 0.835 ~0 ~0 N/A
980703 0.966 0.1891 0.90 MW
990510 1.619 ~0 0.22 SMC
991208 0.706 0.0512 0.80 MW
991216 1.02 2.016 ~0 N/A

Table 5. Assumed priors for modelling the long
GRB sample.

Parameter range Prior distribution

001 <60y <1.6
10 < Ekjiso < 10°°
1074 < no < 1000

Log-uniform
Log-uniform
Log-uniform

0 < Oops/00 <2 Uniform
1.0<p <30 Uniform
1077 < ep < 0.50 Log-uniform
1079 <& < 10 Log-uniform

GRB sample. For this work, we were able to generate scalefit
tables for constant density CBM only. Therefore, constant density
CBM is assumed when fitting the afterglow data. We use the prior
distributions presented in Table 5 in our modelling efforts. The
inferred parameter distributions for the long GRB sample can be
seen in Fig. 4 in the form of a violin plot.

4.1 GRB 970508

GRB 970508 exhibits an increase in optical flux at around ~1 d after
the burst, and starts to decline as a power law with time. Panaitescu
& Kumar (2002; PKO2 from now on) explain the rise in the optical
flux by assuming that the jet is viewed off-axis with O ~ 4/36.
They find that a wind-like CBM (n o r~2) suits the observations
best. On the other hand, Yost et al. (2003; Y03 from now on) favour
a constant density CBM in their analysis.

In our analysis, we exclude the data points before the peak of
the rise in optical wavelengths, and fit the data points which obey
the power-law behaviour. We take the observing angle as a free
parameter, allowing viewing angles both larger and smaller than the
opening angle.

Fig. Al shows the light curves for the inferred parameter dis-
tribution for the afterglow of GRB 970508 using GP regression.
Table 6 shows the inferred parameter values. Assuming that the
re-brightening in optical bands is due to late-time energy injec-
tion from the central engine, the energetics inferred from our
modelling will overestimate the initial explosion energy. We find
a wide opening angle, 0.74f8j§§ rad, which is consistent with
Y03, who find an opening angle of 0.84f8:8§ rad. The inferred
isotropic kinetic energy by the GP model is consistent with both
PKO02 and Y03, whereas the 2 sampling infers a lower Ekjs
with small uncertainty. Both GP likelihood and x2 sampling infer
similar p values of ~2.4, which is larger than what PK02 and
Y03 found.

4677

4.2 GRB 980703

Panaitescu & Kumar (2001; PKO1 from now on) favour a constant
density CBM for GRB 980703. Following Vreeswijk et al. (1999),
PKO1 take the host extinction to be Ay = 1.45 £ 0.13, and find that
p = 3.08. YO3 also favour a constant density CBM, and find a value
of Ay = 1.15 for the host extinction and infer p = 2.5470%, In this
work, we take the host extinction to be Ay = 0.9 (Bloom et al. 1998)
and find that p = 2.05009..

The host galaxy of GRB 980703 has a significant contribution to
the observed radio and optical emission. We assume that the host
galaxy contribution is constant over time and leave the host galaxy
flux in radio and optical wavelengths as free parameters.

Fig. A2 shows the light curves for the inferred parameter dis-
tribution for the afterglow of GRB 980703 using GP regression.
Table 7 shows the inferred parameter values. The GP model infers
an opening angle that is consistent with Y03, whereas x? likelihood
sampling infers a smaller opening angle. Inferred ny and Ek s, values
are significantly smaller than Y03.

4.3 GRB 990510

PKO1 favour a constant density CBM for the case of GRB 990510.
The optical afterglow of GRB 990510 exhibits a break in its temporal
evolution at around 1.5d. This break is interpreted as a jet-break.
PKO1 find p = 2.09 =+ 0.03 using closure relations, which is also
consistent with the inferred value from the GP model.

Fig. A3 shows the light curves for the inferred parameter distribu-
tion for the afterglow of GRB 990510 using GP regression. Table 8
shows the inferred parameter values. The inferred opening angle
is consistent with van Eerten et al. (2012), where they performed
a detailed fit using boxfit (vVE12) model and found an opening
angle 0.07570007 rad assuming an on-axis observer. On the other
hand PK02 find a smaller opening angle 0.0547590! rad. The GP
model predicts a larger € value when compared to x? sampling and
previous studies.

4.4 GRB 991208

Fig. A4 shows the light curves for the inferred parameter distribution
for the afterglow of GRB 991208 using GP regression. Table 9 shows
the inferred parameter values. The inferred p value by the GP model
agrees with the results presented in PK02, whereas x2 sampling
results in a smaller p value.

In our analysis, we find a smaller opening angle than PKO02
with an extremely off-axis observer angle. The GP regression and
x* sampling give significantly different results for microphysical

parameters and observer angle.

4.5 GRB 991216

Fig. AS shows the light curves for the inferred parameter distribution
for the afterglow of GRB 991216 using GP regression. Table 10
shows the inferred parameter values. PK0O2 find a hard electron
distribution with p = 1.36 £ 0.03, which is consistent with the
results we get from GP modelling.

GP regression and x> sampling result in very different parameter
values for GRB 991216. This is mainly because the optical data
contribute to the x2 value the most, whereas the radio data has a
small contribution to the x 2. The best fit obtained from x? sampling,
despite the fact that it has a smaller x2 value than the best fit of the
GP model, completely misses the radio data points and therefore is
an inadequate representation of the observed emission.

MNRAS 497, 4672-4683 (2020)

20z 11dy 0} U 159NB Aq €£€188S/2L9Y/¥/.6/2I0IMe/Seuw/Wwod"dno-olwapeoe//:sdiy oy papeojumod



4678 M. D. Aksulu et al.

2
X gpP
107 3 3 ¢
& 1071 o O —— 1 ¢
é’ e — ] ¢ +
1072 3
T T T T T h T T T T T
3 2 4 —— m—— q
< 14 =l i ¢
SN
o o
R — . 4+-
— T T T T T T T T T T
cv"a—
g 27 1
L.
= —l— i ¢
:O 04 ——f— —r— i ¢
= ——
o0
-—40 T T T T T T T T T T
2 - -
o
&)
> 14
e f—
04 —r— i
T T T T T T T T T T
2.5 4 e — - ¢
¢
o 207 E
1.5 4 ¢
P
T T T T T T T T T T
0 o
2, ]
E ——
@, —p— |
°
—rf—
—6 - T T T T T - T T T T T
-1
———
- ¢ I
2 ——
% —— ¢
L 3 4
——
T T T T T T T T T T
970508 980703 990510 991208 991216 970508 980703 990510 991208 991216
GRB name

Figure 4. Violin plot showing the inferred marginalized distributions of the GRB parameters for the long GRB sample. The panel on the left shows the results
for x2 sampling, whereas the panel on the right shows the results from GP likelihood sampling.

5 DISCUSSION

GRBs are thought to be collimated outflows therefore the isotropic
equivalent energies of these events are an overestimation of the true
energetics. The true, beaming corrected, energies of these events
significantly depend on the geometry of the outflow (i.e. the opening
angle):

Ex = Eg iso(1 — cos ). ®)

Previous studies have shown that there is observational evidence
that there exists a standard energy reservoir for GRBs. Frail et al.
(2001) have measured the opening angle of a sample of GRBs based
on achromatic breaks in the afterglow light curve. They have shown
that the beaming corrected energy release in gamma-rays is narrowly

MNRAS 497, 4672-4683 (2020)

clustered around 5 x 10 erg. Moreover, Panaitescu & Kumar
(2002) have shown, using multiwavelength afterglow modelling,
that the beaming corrected kinetic energy of GRBs are narrowly
distributed and vary between 10 to 5 x 10 erg. Similarly, Berger,
Kulkarni & Frail (2003) have analysed the X-ray afterglow data
for a large sample of GRBs with known jet breaks, and have found
evidence that the beaming corrected kinetic energy of these events
are approximately constant. Note that, these studies are based on
pre-Swift afterglow observations and therefore might be biased
towards more energetic GRBs. After the launch of Swift, because of
improved localization, the number of redshift measurements have
increased and other classes of GRBs have been discovered, such
as low-luminosity GRBs (1I-GRBs) that exhibit significantly less
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Table 6. Fit results for GRB 970508. Results from both x 2 sampling and GP
likelihood sampling (GP) are presented. The uncertainties on the parameters
represent the 95 per cent credible interval for columns x2 and GP. Columns
PKO02 and Y03 show results from Panaitescu & Kumar (2002) and Yost et al.
(2003), respectively. PKO2 did not provide uncertainties on the parameters
for this burst. The uncertainties for the Y03 results represent the 68.3 per cent
credible interval. All the values taken from previous studies have been
converted to the same units. The values have been corrected for our choice of
&xn = 0.1 by multiplying (Ekiso, 10) by 10 and dividing (ep, €.) by 10 (see
Section 2.4).

GRB 970508
Parameter x2 gP PKO02 Y03
0.0063 0.52 0.030
N 0.50071 00es 074103 032 0.8470030

log10(EK,iso, 53) 0.370%0037 0.53793%  0.597  0.56%001

log10(1t9) 0.40770058 0.8070% 087  0.301003
Oobs/00 0.6977T0005, 075070008 133 0
’ 2404905 2397000 218 21270,
logio(ep) 272910073 —35%12 234 1607000
log;o(&c) —2.078%001  —1.977030 —2.77  —2.43100%

Table 7. Fit results for GRB 980703. Results from both x? sampling and GP
likelihood sampling (GP) are presented. See Table 6 for detailed explanation.

4679

Table 9. Fit results for GRB 991208. Results from both x> sampling and
GP likelihood sampling (GP) are presented together with literature values.
See Table 8 for detailed explanation.

GRB 991208
Parameter x2 grP PKO02
0o 0.02261 759005 0.0350100072 0.22+0:02¢
log10(Ex iso,53) 19517502 1587939 —0.015705

log10(0) —0.141010:5073 0.147938 2.25%042
Oobs/0o 0.007979007, 1.587038 0
» LG s s
logio(ep) —0.30186 000086 —0.86103% 2457043
logyo(&) —3.24110017 —2.57+02 N/A

Table 10. Fit results for GRB 991216. Results from both 2 sampling and
GP likelihood sampling (GP) are presented together with literature values.
See Table 8 for detailed explanation.

GRB 980703
Parameter x2 gP Y03

0o 014990700095 0.19910:94 02347002
log10(EK jiso,53) 0.13910:91 —-0.02%919 1077508
log1o(10) 0.1567 025 0.58%03% 244700
BOons/00 0.31379023 0.317928 0
p 2.202+0:026 2.04910092 2.541004
logio(ep) —0.58810:048 —0.871038  _3.7470.087
log; (&) ~2.52015013 -236701  —2.02400%

Table 8. Fit results for GRB 990510. Results from both x> sampling and GP
likelihood sampling (GP) are presented. The uncertainties on the parameters
represent the 95 per cent credible interval for columns x2 and GP. Columns
PKO02 and vE12 show results from Panaitescu & Kumar (2002) and van Eerten
et al. (2012). The uncertainties for the PK02 and vE12 results represent the
90 per cent and 68 per cent credible intervals, respectively. All the values taken
from previous studies have been converted to the same units. The values have
been corrected for our choice of &y = 0.1 by multiplying (Ek iso, 10) by 10
and dividing (ep, &) by 10 (see Section 2.4). Since PKO2 find p < 2, the
conversion from €, to the equivalent &, results in a negative value. Therefore,
we denote log;(&,.) as N/A.

GRB 990510
Parameter X2 gP PKO02 vE12

0o 0.064237500078  0.0671109062  0.0547350%  0.075709%2
10210 (Ex jso.53) 112579926 0.8707 0% 0.98+0%0 1.25+0.06

log1o(n0) 029350385 —0.011015 04670358 052709
Oobs/00 0.7051 0000 0.29795, 0 0
P 2.230%0 52 1915055 1835050 2.28%000
logio(ep) —3.62010 058 —1.728007  —3.28M00 3331007
log;o(&.) —1.803+0:0%0 —2.497010 N/A —2.08+053

GRB 991216
Parameter x2 GgP PKO02
0.0031 0.028 0.006
0y 0.12687 ) 0005 0.033%0015  0.047%50%5
log10(EK jso,53) 19961700047 1.3410:3 0.991058
log10 (o) —0.6833700%4 -0.60%2, 1677038
Oons/00 0.7979:9071 0.43%03% 0
0.016 0.18 0.03
p 2.536%0017 149701 136003
logio(ep) ~5.04170:034 —0.761036  —2.74703¢
logo(&) —1.60110:023 —2.77H082 N/A
\\\ + X2
2 \\- -
— S| 991208 + P
1)
o
21 991216 13990510
= N 970508
o ~ L)
»_ 1980703
i 4 S |
& 0 ~
= N
20 ~
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Figure 5. Isotropic equivalent kinetic energy (Ekiso) dependence on the
opening angle (f) inferred from our modelling. The red measurements (%)
are obtained by x? sampling and the blue measurements (GP) are obtained
by sampling the GP log likelihood function. The dashed black line represents
the Ekiso(1 — cosfp) = 1.7 x 10°! relation. The error bars represent the
95 per cent credible interval.

luminous prompt emission. lI-GRBs might constitute outliers in the
overall GRB population and might not conform with the idea of a
constant energy reservoir (Liang et al. 2007).

Our analysis also shows a strong correlation between 6, and
Ekiso- In Fig. 5, we show the measured opening angles and isotropic
energies of our GRB sample. It can be seen that, when the GP model
is used for inferring parameters, the measured values suggest that
the beaming corrected kinetic energies are approximately the same

MNRAS 497, 4672-4683 (2020)

20z 11dy 0} U0 159NB Aq €£€188S/229Y/¥//6/2101E/SEIUW/WO0d"dNODILSPED.//:Sd)lY WO} PaPEOjUMOQ


art/staa2297_f5.eps

4680 M. D. Aksulu et al.

10°0 1+
970508

990510 991208 991216

GRB name
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Figure 6. Beaming corrected kinetic energies of the long GRB sample.
The red measurements (x2) are obtained by x> sampling and the blue
measurements (GP) are obtained by sampling the GP log likelihood function.
The dashed line is the log-average of GRBs 980703, 990510, 991208, 991216,
which is equal to 1.7 x 103! erg. The error bars represent the 95 per cent
credible interval.

for long GRBs. GRB 970508 is a clear outlier, which is consistent
with the findings of Panaitescu & Kumar (2002). As discussed
in Section 4.1, GRB 970508 exhibits a re-brightening in optical
wavelengths, which could be due to late-time energy injection.
This energy injection could account for the overestimation of the
isotropic-equivalent kinetic energy of this source, which might
imply that the standard energy reservoir applies more strongly to
the initial ejecta formation of a GRB than to any later activity of
the central engine. Note that the correlation is not apparent when 2
sampling is used for parameter estimation.

In Fig. 6, we show the inferred beaming corrected kinetic energies
with 95 per cent credible intervals for the sample GRBs. The inferred
Ex in our analysis is ~1.7 x 10°'erg, which is about an order
of magnitude larger than what previous studies have found. This
discrepancy with previous studies is expected as we fix £ to be 0.1
instead of the canonical value of 1.0. We also recognize that it is
too early to judge whether these few very well studied, well-sampled
GRB afterglows are representative of the whole population.

6 CONCLUSIONS

In this work, we have introduced a novel method for modelling GRB
afterglows, where GPs are used to take into account any systematics
between the model and observations in a non-parametric fashion.
Using synthetic data sets, we have shown that the GP approach results
in more accurate posterior distributions with respect to sampling the
x? likelihood.

We model a sample of five well-known long GRBs with mul-
tiwavelength coverage (GRBs 970508, 980703, 990510, 991208,
991216), using the scalefit code together with the GP frame-
work. We compare the inferred parameters for each GRB with the
literature values and comment upon the parameter distributions of the
overall sample. We find a correlation between the isotropic-kinetic
energy and opening angle, with GRB 970508 being the only outlier.
This correlation, which is consistent with previous studies, suggests
that there is a common energy reservoir that drives the dynamics of
GRBs.
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Figure Al. Fit result for GRB 970508 by sampling the GP likelihood.
Observed flux density values are presented in radio, optical, and X-ray bands
(upper, middle, and lower panel, respectively) together with the posterior
predictive light curves. The triangles represent 3o upper limits. A sample of
100 parameter sets are randomly drawn from the inferred joint probability
distribution of the parameters, and scalefit light curves are drawn for
each parameter set.
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Figure A2. Fit result for GRB 980703 by sampling the GP likelihood.
Observed flux density values are presented in radio, optical, and X-ray bands
(upper, middle, and lower panel, respectively) together with the posterior
predictive light curves. The triangles represent 3o upper limits. A sample of
100 parameter sets are randomly drawn from the inferred joint probability
distribution of the parameters, and scalefit light curves are drawn for
each parameter set. The host galaxy contribution in radio and optical is not
subtracted.
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Figure A3. Fit result for GRB 990510 by sampling the GP likelihood.
Observed flux density values are presented in radio, optical, and X-ray bands
(upper, middle, and lower panel, respectively) together with the posterior
predictive light curves. A sample of 100 parameter sets are randomly
drawn from the inferred joint probability distribution of the parameters, and
scalefit light curves are drawn for each parameter set.
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Figure A4. Fit result for GRB 991208 by sampling the GP likelihood.
Observed flux density values are presented in radio and optical bands (upper
and lower panel, respectively) together with the posterior predictive light
curves. Triangles represent 3o upper limits. A sample of 100 parameter sets
are randomly drawn from the inferred joint probability distribution of the
parameters, and scalefit light curves are drawn for each parameter set.
The host galaxy contribution in optical is not subtracted.
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Figure AS. Fit result for GRB 991216 by sampling the GP likelihood.
Observed flux density values are presented in radio, optical, and X-ray bands
(upper, middle, and lower panel, respectively) together with the posterior
predictive light curves. The triangles represent 3o upper limits. A sample of
100 parameter sets are randomly drawn from the inferred joint probability
distribution of the parameters, and scalefit light curves are drawn for
each parameter set. The host galaxy contribution in optical is not subtracted.
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