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A B S T R A C T 

In the advent of large-scale surv e ys, individually modelling strong gravitational lenses and their counterpart time delays in order 
to precisely measure H 0 will become computationally e xpensiv e and highly complex. A complimentary approach is to study 

the cumulative distribution function (CDF) of time delays where the global population of lenses is modelled along with H 0 . In 

this paper, we use a suite of hydrodynamical simulations to estimate the CDF of time delays from doubly imaged quasars for a 
realistic distribution of lenses. We find that the CDFs exhibit large amounts of halo–halo variance, regulated by the density profile 
inner slope and the total mass within 5 kpc. With the objective of fitting to data, we compress the CDFs using principal component 
analysis and fit a Gaussian processes regressor consisting of three physical features: the redshift of the lens, z L ; the power-law 

index of the halo, α, and the mass within 5 kpc, plus four cosmological features. Assuming a flat Universe, we fit our model to 

27 doubly imaged quasars finding H 0 = 71 

+ 2 
−3 km s −1 Mpc −1 , z L = 0 . 36 

+ 0 . 2 
−0 . 09 , α = −1 . 8 

+ 0 . 1 
−0 . 1 , log ( M ( < 5 kpc) /M �) = 11 . 1 

+ 0 . 1 
−0 . 1 , 

�M 

= 0 . 3 

+ 0 . 04 
−0 . 04 , and �� 

= 0 . 7 

+ 0 . 04 
−0 . 04 . We compare our estimates of z L and log ( M ( < 5 kpc)/ M �) to the data and find that within the 

sensitivity of the data, they are not systematically biased. We generate mock CDFs and find with that the Vera Rubin Observatory 

(VRO) could measure σ / H 0 to < 3 per cent , limited by the precision of the model. If we are to exploit fully VRO, we require simu- 
lations that sample a larger proportion of the lens population, with a variety of feedback models, exploring all possible systematics. 

Key words: cosmology – gravitational lensing: strong – cosmological parameters. 
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 I N T RO D U C T I O N  

he currently accepted standard model of cosmology states that we 
ive in a homogenous and isotropic Universe that is dominated by 
n unknown energy density that is causing the observed expanding 
niverse to accelerate (Planck Collaboration 2018 ). Despite the 

ommunity wide acceptance of this model, the specific details 
re becoming increasingly intriguing. Recent measurements of the 
xpansion rate at the current day, i.e Hubble constant H 0 , using
ocal estimators (Riess et al. 2011 , 2019 ; Bonvin et al. 2017 ; Birrer
t al. 2019 ; Wong et al. 2019 ; Rusu et al. 2020 ) are arguably in
ension with measurements made from the early Universe (Planck 
ollaboration 2018 ). This tension has become a central issue in 
osmology, and much discussed in the literature (Bernal, Verde & 

iess 2016 ; Di Valentino et al. 2018 ). If we are to understand this
ension, it is important that we continue to constrain and study H 0 

sing complimentary probes with orthogonal systematics. 
First suggested by Refsdal ( 1964 ), strong gravitational lensing 

ime delays have recently become a viable and competitive tool 
n this quest to constrain H 0 (For a re vie w see Treu & Marshall
016 and Suyu et al. 2018 ). When the light from a distant source is
eavily distorted and bent, multiple images of the same source can be
bserved. Since the geodesics of a single source take differing paths 
ith differential lengths, the same variable emission of a quasar is
 E-mail: harv e y@lorentz.leidenuniv.nl 

N  

n  

t

2020 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. Th
ommons Attribution License ( http://cr eativecommons.or g/licenses/by/4.0/), whic
rovided the original work is properly cited. 
bserved at different times in each multiple image. This time delay
s caused by tw o f actors, the geometrical difference in path-length
nd the differing potential of the lensing galaxy that the light passes
hrough. Given that the path-length is defined by a combination of
ngular diameter distances to the source and lens, the time delay is
ensitive to the Hubble constant with little dependence on the other
osmological parameters (Coe & Moustakas 2009 ). 

Current measurement of the Hubble constant from gravitational 
ime delays require not only accurate measurements of the time delay
Courbin et al. 2010 ; Bonvin et al. 2017 ; Millon et al. 2020 ) but also
etailed information about the lens-source configuration in order to 
onstrain the lensing potential. As such it is useful to gain extra
nformation such as the velocity dispersion of the host lens (Suyu
t al. 2012 ; Yıldırım, Suyu & Halkola 2020 ; Rusu et al. 2020 ). These
ethods have provided extremely tight constraints (2 . 4 per cent ) on
 0 from just a few lenses (Bonvin et al. 2017 ; Shajib 2019 ; Wong

t al. 2019 ; Rusu et al. 2020 ). 
Although a promising method to constrain H 0 , the study of

ndividual lenses can be challenging, for example, 

(i) The modelling of each individual lens is time consuming, and 
equires extra information in order to understand how it is perturbing
he time delay. Much progress has been made with the automation
f lens modelling (Hezaveh, Perreault Le v asseur & Marshall 2017 ;
ightingale, Dye & Massey 2018 ; Shajib et al. 2019 ), ho we ver, it is
ot clear how feasible this will be for the number of lenses expected
o be observed by the Vera Rubin Observatory (VRO). 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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(ii) The time delays are prone to microlensing of individual stars
n each galaxy (Tie & Kochanek 2018 ). 

(iii) The time delays are prone to environmental effects, line-of-
ight structures, and mass sheet degeneracies (Greene et al. 2013 ;
irrer et al. 2017 ; Tihhonova et al. 2018 , 2020 ). 

.1 Statistical studies of time delays 

ork exploiting statistical measurements of time delays have been
imited. The first studies aimed to measure the inner density profile
f galaxies, noting that the time delay probability density function
PDF) was sensitive to this, and therefore assuming some known
ubble constant, they could be used to infer the global density profile
f galaxies (Oguri et al. 2002 ). Ho we ver, it was quickly realized that
he power in this technique was to directly measure the Hubble
onstant itself. Thus, Oguri ( 2007 ) proposed a framework whereby it
ould be possible to combine many time delays via a ‘reduced time
elay’, and assuming knowledge of the lens distribution, constrain
he Hubble parameter. In this exploratory paper, they numerically
nd analytically calculated the conditional probability of the Hubble
onstant given an image configuration and then from these they
enerated a conditional probability of a time delay. Using this
ramework, they consequentially estimated the Hubble constant from
16 lenses. Ho we ver, the use of analytical approximations limited

heir work, stating that not including the full distribution of galaxies
ould bias their estimate. Moreo v er, the y also did not consider
nvironmental effects and the bias on the time delay. A follow-up
tudy by Oguri & Marshall ( 2010 ) that specifically looked at how
any lensed quasars and lensed supernova the VRO will observe was

arried out. They predicted that the VRO should observe roughly
000 lensed quasars that will result in a ∼2 per cent error in H 0 ,
gain citing limitations in their method due to not accounting for
ark substructures, microlensing, and other effects. This number was
ubsequently re-estimated following a set of time delay challenges,
hereby Liao et al. ( 2015 ) suggested that in fact the VRO could

eturn as low as 400 useful time delays. Finally, Coe & Moustakas
 2009 ) looked at doing this with a few well observed objects. They
ound that with just ∼100 well-studied lenses that had precise mass
easurements; they would be able to garner competitive constraints.
These detailed pieces of work showed that the VRO indeed has the

tatistical power to constrain H 0 to the target precision of < 2 per cent .
o we ver, these works were all based on analytical prescriptions
f galaxies, often assuming a Singular Isothermal Sphere density
rofile. As such they do not include substructure in the lens that will
ause perturbations, the environmental effect of lenses lying in o v er
ense environments and line-of-sight effects. 
In this paper, we will extend this body of work, calculating the

umulative distribution function (CDF) of time delays for doubly
maged quasars from a suite of state-of-the-art hydrodynamical sim-
lations. We therefore do not assume any analytical form, allowing
or a completely free-form CDF. Integrating over all possible image
onfigurations, we will also account for environmental and line-of-
ight effects. Finally, we develop an innov ati ve frame work to fit
hese CDFs to data provide interesting constraints. We focus this
tudy specifically on double imaged quasars for four main reasons: 

(i) They are an efficient probe of H 0 since there are approximately
0:1 doubles to quads (Oguri & Marshall 2010 ; Harv e y et al. 2020 ).
(ii) For the same reason, in our small simulation volume we have

ccess to many more doubly imaged quasars as quadruply and can
herefore make much stronger statements about the future prospects
f this technique. 
NRAS 498, 2871–2886 (2020) 
(iii) Time delays from doubles are less scattered and are less
usceptible to large perturbations in the lens than quadruply imaged
uasars (Oguri 2007 ) therefore perturbations caused by unknown
eedback in the simulations will have a smaller impact on the
redicted CDF (making it easier to predict the CDF of double imaged
ime delays). 

(iv) Doubles have longer delays, leading to a much better precision
n their measurements. Many quads have delays shorter than 20 d,
ard to measure with the 3 d cadence of the VRO (Oguri & Marshall
010 ). 

In Section 2 , we introduce the theory, how we generate estimates
f the time delay and our validation tests. We then construct the full
DF in Section 3 followed by introducing the suite of simulations in
.4 . In Section 4 , we show our initial results before constructing our
odel for the CDF and our constraints on H 0 in Section 4.1 . Finally,
e predict the sensitivity of the VRO in Section 4.2 and discuss and

onclude in Section 5 . 

 M E T H O D O L O G Y  

.1 The strong lensing time delay calculation 

ere, we present a brief re vie w of the technical details of strong
ravitational time delays, ho we ver, for a full re vie w please see
artelmann ( 2010 ). We begin by defining a unit-less coordinate

ystem for a position in the lens plane, ξ , and source plane η, where
he lens is al w ays positioned the origin of the source plane, x = ξ / ξ 0 

nd y = η/ η0 , where η0 = ξ 0 D L / D S , ξ0 = 4 π
(

σv 

c 

)2 D L D LS 
D S 

, and D L ,
 LS , and D S are the angular diameter distances between the lens and

he observer, the lens and the source, and the source and the observer,
espectively. From this, it is possible to show that the time delay due
o two photons taking two different geodesics is a combination of the
ime delay due to a difference in path-length and the fact that the two
hotons pass through the lens potential at different points inducing
 gravitational time delay, i.e. 


t = ξ 0 
2 (1 + z L ) 

D S 

D L D LS 
[ φ( x 1 , y) − φ( x 2 , y) ] , (1) 

here 

( x i , y ) = 

( x i − y ) 2 

2 
− �( x i ) , (2) 

nd � is the dimensionless lensing potential defined as the integral
f the 3D Newtonian potential  along the line of sight, i.e. 

( x) = 

1 

ξ 2 
0 

D L D LS 

D S 

2 

c 2 

∫ 
 ( ξ, z )d z . (3) 

ollowing equation ( 3 ), we can relate the Newtonian potential to the
ensity via the Poisson equation and hence find that the normalized
rojected surface density, κ is the deri v ati ve of the lensing potential,
.e. 

( x ) = 

�( x ) 

� crit 
= 

1 

2 
� x �( x ) , (4) 

here � is the projected surface density and the critical density is 

 crit = 

c 2 

4 πG 

D S 

D L D LS 
, (5) 

nd G is Newton’s constant. Using this relation between the projected
urface density and the time delay, we are able to directly calculate
he time delays from a density field. To do this, we first calculate � 

nd hence the deflection angle, α( x ) = � x �( x ), for each position
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Figure 1. Sing the known analytical PDF of a single isothermal sphere (SIS) 
for z L = 0.2 and z S = 5., we carry out two tests on the code. Top, a source 
plane convergence test: We test the sensitivity of the CDF to our pixellized 
source plane using an SIS with a velocity dispersion of 250 km s −1 . We 
test five different source plane resolutions (with a lens plane resolution of 
0.1 kpc). The bottom panel shows that CDF converges above a resolution of 
0.025 kpc. We therefore choose a source plane resolution of 0.025 kpc for the 
rest of the paper. Bottom: Code accuracy: We also test the accuracy of the 
code by analysing three different velocity dispersion of the SIS. The bottom 

panel shows the difference between the predicted and the analytical value. 
The adopt the maximal difference of 2 per cent as our theoretical systematic 
floor. 
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n the image plane. Using the lens equation y = x − α( x ), we
race a pixellized grid in the image plane to the source plane via
he calculated deflection angles and collect all those source plane 
ix els that hav e two or more pix els on the image plane, retaining
nly those source pixels that result in doubly imaged positions. We 
ollow Oguri & Marshall ( 2010 ) and select only those doublets that
ave a magnification ratio μ2 / μ1 > 0.1 since in the case where the
agnification ratio is small, a lens with large flux differences would 
ake the second image hard to observe. Ho we ver, the detection will

lso depend on the brightness of the quasar and therefore this is an
pproximation. We then calculate the time arri v al surface for the
ens and then use equation ( 1 ) to calculate the time delay. Before
rogressing, we validate our code on known density profiles. 

.2 Validation tests on single isothermal spheres 

ollowing the calculation of the time delays, we validate the code 
o ensure that it reco v ers a known distribution of time delays. For a
ingle isothermal sphere (SIS), the mass density profile as a function 
f halo-centric radius, r is 

= 

σ 2 
v 

4 πGr 2 
, (6) 

here σ v is velocity dispersion. From this, it can be shown that the
nalytical time delay is (Oguri et al. 2002 ) 


t = 32 π2 
(σ

c 

)4 D L D LS 

D S 
(1 + z L ) y, (7) 

nd is hence just a function of the source position. Integrating over
ll source positions, p ( η, η + d η), the normalized probability is (Li,
jorth & Richard 2012 ) 

( η, η + d η) = 

∫ η+ d η

η

2 
η

η2 
0 

d η; η < η0 , (8) 

nd hence 

( log ( 
t )) = 

2 ln 10 


t 2 peak 


t 2 ; log ( 
t ) < log ( 
t peak ) . (9) 

ence, the probability p (log ( 
 t )) ∝ 
 t 2 . Indeed, Li et al. ( 2012 )
uggested that this would hold for any internal density profile slope, 
, such that 

( log ( 
t)) ∝ 
t β . (10) 

e use equation ( 9 ) to test our code. We first simulate an SIS halo
ith a σ v = 250 km s −1 , with a z L = 0.2, a single source plane
f z S = 5, and calculate the cumulative density function (CDF). In
rder to estimate the sensitivity of the pixellization of the source 
lane to the results, we carry out the calculation for different source
lane resolutions (assuming a lens plane resolution of 0.1 kpc). The 
op panel of Fig. 1 shows the results of this test. We show the
DF { i.e. p [ > log ( 
 t )] } for five different source plane resolutions
nd the analytical expectation. We find that the CDF converges at 
.025 kpc where the error in the CDF goes below ∼2 per cent . We
herefore choose a source plane resolution of 0.025 kpc for the rest
f our analysis. Following this, we test the accuracy of our code.
e simulate three different velocity dispersions, σ = 200, 250, 

00 km s −1 , representing what is expected from massive ellipticals. 
he bottom panel of Fig. 1 shows the results. We find that in all three
ases we return the expected distribution to within 2 per cent , where 
his level represents the systematic floor of our analysis. 
 T H E  FULL  C U M U L AT I V E  DENSI TY  

U N C T I O N  

ow, we have the raw CDF for a single lens-source configuration
e construct the full expected CDF. To do this, we first consider the
bservational systematics that will affect this single lens-source plane 
onfiguration. This includes line-of-sight structures, mass sheets, and 
icrolensing; here we explore them individually. 

.1 Line-of-sight structures and mass sheets 

t is known the environment and line-of-sight structures perturb 
eodesics, and hence can shift a single time delay by a non-negligible
mount. The impact of a constant mass sheet on the time delay is 

t O = 
t T (1 − κext ) , (11) 

here κext is the external convergence that perturbs the geodesics, 
 t O and 
 t T are the observed time delay that has been perturbed

y some external mass and ‘true’ time delays, the unperturbed time
MNRAS 498, 2871–2886 (2020) 
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Figure 2. The impact of line-of-sight structures and microlensing: The 
observed time delays are perturbed by intervening structures along the line 
of sight and compact objects within the lens. In order to determine this, 
we convolve the PDF with both numerical and analytical estimates of these 
ef fects. Here, we sho w the impact of line-of-sight structures and two le vels 
of microlensing, a realistic value of 1 d and 2 d for a single SIS ( σ = 

250 km s −1 ) lens ( z L = 0.25) with a source at z S = 5.0. The bottom panel 
shows the difference between each distribution and the intrinsic (red) one. 
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elay. Hence, H 0 will be o v erestimated if the external convergence
s unaccounted for properly. Here, we explicitly consider two forms
f line-of-sight structures: there is the immediate environment of the
ens (but not substructure), which on average will be more dense
Collett & Cunnington 2016 ), i.e. mass sheets and the uncorrelated
tructure that the geodesic encounters beyond the lens. We already
nclude the first in the PDFs since we cut out cylinders in the simula-
ion of 1 Mpc (see Section 3.4 ), which includes any environment up
o a cluster scale (which are not considered in this study), down to
he mass resolution of the simulations. The second we consider here.
he impact on the PDF on the ‘true’, unperturbed time delay, p T is 

( 
t O )d 
t O = p T ( 
t T )d 
t T p κ ( κext )d κext , (12) 

here p κ is the probability of passing through a halo with a
onvergence κ , and p ( 
 t O ) is the ‘observed’ or perturbed PDF.
ubstituting in ( 11 ), we find 

( 
t O ) = 

∫ 
d 
t ′ 


t ′ 
p T ( 
t ′ ) p κ

(
1 − 
t O 


t ′ 

)
. (13) 

ince we will be carrying out the calculations in p (log ( 
 t )), we
onvert via the standard Jacobian to get 

( log ( 
t O 

)) = ln (10) 
∫ 

d log ( 
t ′ ) 

t O 


t ′ 

×p T ( log ( 
t ′ )) p κ (1 − 
t O 

/
t ′ ) . (14) 

his final equation ( 14 ) shows how the distribution of time delays
s statistically perturbed by cosmological structures along the line
f sight in a given cosmology. To incorporate this equation into
ur pipeline and estimate p [log ( 
 t O )] for a given lens-source
onfiguration, we take the estimate of p [log ( 
 t T )] and for each value
e convolve it with the probability of passing through a halo of

onvergence p κ , we then integrate this over the entire distribution of
og ( 
 t T ) to get our final estimate of log ( 
 t O ). We use the publicly
vailable code, TURBOGL to calculate the PDF of the geodesic passing
hrough a halo, p κ . TURBOGL is a numerical code that estimates the
osmological PDF of convergence for any given line of sight. It
oes this by carrying out compound weak lensing to estimate the
inear contribution of haloes in a � CDM model (Kainulainen &

arra 2009a , b , 2011 ). We show the results in Fig. 2 where we show
or a simulated SIS lens ( z L = 0.2, z S = 5, σ = 250 km s −1 ) the
rue intrinsic distribution (in red) and the convolved distribution (in
reen). The bottom panel shows the relative difference between the
wo. We find that the impact of line-of-sight structures is small even
n this extreme case of a source at a redshift of z S = 5. 

.2 Microlensing 

n a similar way, we estimate the impact of microlensing on the
istribution. T ie & K ochanek ( 2018 ) calculated the cumulative
robability distribution of the microlensing induced time delays for
he lenses RXJ1131-231 and HE 0435-1223. They used numerical
imulations to shoot light rays through a de Vaucouleurs model of
he stellar distribution to calculate a time delay map. Taking 3000
ifferent line-of-sight, they found that the mean delay was zero for
 active galactic nuclei disc with no inclination, and of order ∼1
 for inclined discs. Moreo v er, the variance in the time delay is of
rder days. Therefore, we model the impact of microlensing by a
aussian with a zero mean and width of 1 d and 2 d. This is a

onserv ati ve estimate since Tie & Kochanek ( 2018 ) investigate the
mpact of quadruply imaged quasars where projected stellar density
s higher and hence will results in large microlensing. Given that this
ffects each time delay, it is simply a convolution with the intrinsic
NRAS 498, 2871–2886 (2020) 
istribution. Fig. 2 shows the resulting distribution. We find that
or a reasonable delay, microlensing could have up to a 10 per cent
mpact on a single lens-source configuration. We note here that
lthough milli-lensing by substructure in the lens can have impact
n the time delay, it is expected to be an order of magnitude lower
han microlensing considered here (Keeton & Moustakas 2009 ), and
herefore we do not consider this systematic. 

.3 Combining different lenses and source planes 

ow, with a full estimate of a single lens-source configuration we
ant to set-up a framework in which we can integrate this over a

ens and source population. In order to do this, we must weight each
ens and source by the volume of the redshift in question, consider
hat sources behind lenses will be magnified and that the number
ensity of quasars at different redshifts changes. In summary, the
nal estimated PDF will be 

( log ( 
t)) = 

∫ 
d z S 

∫ 
d z L 

∫ 
d M 

∫ 
d M v p( z L , z S , L, μ, M v ) , 

(15) 

here p is the probability distribution of a single, source-lens
onfiguration, given by 

 = 

d V 

d z S 

d 

d M 

d V 

d z L 

d N 

d M v 

σlens p( log ( 
t O 

)) , (16) 

here the final term is the number of time delays in an interval
log ( 
 t ) for a given lens with mass M v ,at a given lens redshift,
 L , for a source distribution (or luminosity function) d  /d L (and
agnitude M ) at a redshift, z S , the volume factor for the lens and

ource is given by 

d V 

d z i 
= 

cd t 

d z i 
(1 + z i ) 

3 , (17) 

nd σ lens is the ‘magnification bias’ caused by the magnification
nduced by the foreground lens increasing the source number density
y bringing faint sources in from beyond the magnitude limit of the

art/staa2522_f2.eps
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Table 1. The statistics of each simulated halo. We show the ID of the halo (both the ID from Oppenheimer et al. 2016 
and Despali et al. 2020 ), the halo mass (total mass inside a radius where the density is 200 times the critical density at 
the given redshift), the virial radius, the stellar mass of the central galaxy, the consequential velocity dispersion from the 
fitting function in Zahid et al. ( 2016 ). The final two columns give the stellar ef fecti ve radius in 3D and the 2D average 
o v er man y projections using the stellar particles belonging to the main galaxy within 300 (100) kpc. 

ID M 200c r 200c M ∗ σ r ∗, e (3D) 〈 r ∗, e (2 D ) 〉 
( M �) (kpc) ( M �) (km s −1 ) (kpc) (kpc) 

B008/1 1.06 10 13 401 9.45 10 10 192 12.76 (8.45) 9.31 (8.12) 
B009/2 1.05 10 13 401 1.00 10 11 194 22.31 (13.31) 27.11 (13.93) 
B005/3 6.40 10 12 340 5.07 10 10 159 6.24 (4.64) 5.80 (4.24) 
B002/4 3.99 10 12 290 5.48 10 10 163 6.46 (5.09) 5.15 (4.09) 

Table 2. The three cosmological parameter fitting MCMC runs. We run three different fits, a fixed where we assume � M 

= 0.3 and �

� 

= 0.7 and � K = 0., our fiducial run where we assume a flat Universe, and a final run where we assume nothing about cosmology. 

Model H 0 /(km s −1 Mpc −1 ) z lens α log( M ( < 5 kpc)/ M �) �M 

�� 

�K 

Fixed 70 + 2 −2 0 . 36 + 0 . 09 
−0 . 04 −1 . 9 + 0 . 08 

−0 . 08 11 + 0 . 04 
−0 . 2 

� CDM 71 + 2 −3 0 . 36 + 0 . 2 −0 . 09 −1 . 8 + 0 . 08 
−0 . 1 11 + 0 . 1 −0 . 08 0 . 3 + 0 . 04 

−0 . 04 0 . 7 + 0 . 04 
−0 . 04 

� CDMk 71 + 3 −3 0 . 36 + 0 . 2 −0 . 07 −1 . 8 + 0 . 08 
−0 . 1 11 + 0 . 1 −0 . 08 0 . 3 + 0 . 05 

−0 . 05 0 . 7 + 0 . 05 
−0 . 05 0 . 00029 + 0 . 02 
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urv e y and is given by 

lens = 

∫ 
d μ

μ

d / d L ( L/μ) 

d / d L ( L ) 
, (18) 

here we adopt the analytical quasar luminosity function from Manti 
t al. ( 2017 ), 

d  

d L 

= 

 

� 

10 0 . 4( α( z ) + 1)( M−M � ( z )) + 10 0 . 4( β( z ) + 1)( M−M � ( z )) 
, (19) 

ssuming a magnitude limit of M AB = 27 (Ivezic et al. 2019 ), α =
3.23, β = −1.35, and log (  

� ) = a + bz + cz 2 with a = −6.0991,
 = 0.0209, and, c = 0.0171. The final CDF is therefore 

( > log ( 
t)) = 1 −
∫ log 
t 

−∞ 

p( log ( 
t ))d log ( 
t ) . (20) 

.4 Application to hydrodynamical simulations 

ow, we have set-up the framework in which to extract time 
elays and fold in line-of-sight structures and microlensing, we 
o v e be yond simple analytical profiles. We adopt a suite of n -

ody simulations that uses a full hydrodynamical prescription that 
ncludes the EAGLE baryonic prescription and a modified GADGET 

 code (Schaye et al. 2015 ). The suite consists of four haloes that are
oomed in simulations of giant ellipticals from a larger simulation, 
dentified as the most appropriate for re-simulation as determined by 
ppenheimer et al. ( 2016 ) and suitable for lensing observations by
espali & Vegetti ( 2017 ). A detailed description of these simulations

an be found in Despali et al. ( 2020 ), ho we ver, here we present a
oncise summary. The simulations include pressure–entropy smooth 
article hydrodynamics (Crain et al. 2015 ; Schaye et al. 2015 ),
tellar e volution, supernov a feedback, acti ve galactic nuclei, and 
ooling. Haloes were identified using a friends-of-friends algorithm 

nd their properties using SUBFIND (Springel et al. 2001 ; Dolag 
t al. 2009 ). Each of the four v olumes ha ve gas particle mass of
 gas = 2.3 × 10 5 M � with cosmological parameters consistent with 

he Planck Collaboration ( 2018 ) constraints: h 0 = 0.6777, �0 = 

.307, �b = 0.04825, �� 

= 0.693, n s = 0.9611, and σ 8 = 0.8288. 
able 1 shows the statistics of each halo simulated, including the 
roup ID (ID from Oppenheimer et al. 2016 and Despali et al.
020 ), the halo mass, the virial radius, the stellar mass, the estimated
elocity dispersion that we assume follows the relation in Zahid et al.
 2016 ), the ef fecti ve stellar radius of the 3D and 2D distribution of
tellar particles. In order to carry out the lensing analysis, we first
reate 2D mass maps of each simulated halo at various redshifts.
o do this, we extract cones from five redshift snapshots ( z L =
.20, 0.25, 0.37, 0.50, 0.74) and create 2D mass maps projected
n all three dimensions (i.e. 15 projected mass maps per halo),
ach out to an x –y distance of 100 p kpc (physical kpc) and with
 projected depth of 1 p Mpc, and a pixel resolution of 0.1 p kpc.
 projected depth of 1pMpc should account for the contribution to

nvironmental effects from all nearby structures M � 10 14 M �. We
xtract three key features from the simulations that will be important
n the analysis: 1.) The number of substructure inside a projected
0 kpc (and 1Mpc deep) cylinder, with a mass M 200 c > 10 7 M �; the
ensity profile derived from the projected inner 10 kpc of the galaxy
and then de-projected); and the total projected mass within 5 kpc of
he galaxy. 

Equation ( 15 ) implies that we can integrate to an infinitely small
 z L and d z S , ho we ver, in practice with finite amount of hard-
isc space and computation power this is unfeasible. From the 60
xtracted lens planes (four haloes, three projections, five redshift 
lices), we follow the prescription laid out in 2.1 and calculate the
DF p T ( 
 log t ) for a single source-lens configuration. For a given
ource plane, we then convolve with equation ( 14 ) to find p O ( 
 log t ).
e then calculate the magnification bias, σ lens from equation ( 18 ) for

ach multiple image given a quasar luminosity function at the given
edshift (assuming a limiting magnitude of m AB, limit = 27; LSST 

cience Collaboration 2017 ). The magnification value we choose in 
quation ( 18 ) will depend on the observing strategy. Here, we follow
guri & Marshall ( 2010 ) and choose the magnification of the fainter

mage. From this, we now have our final PDF (for a single lens-source
onfiguration). We then do the same for a range of source redshift
lanes choosing equal steps in the lensing kernel (i.e. 
 [ D LS D L / D S ])
rom the lens redshift to a maximum source redshift of 8, with 21
edshift bins. Fig. 3 shows the lens-source configuration for the five
ens redshifts we use. Each colour shows a source redshift bin, the
olid black line shows the lensing kernel of each redshift with respect
o the lens redshift given by the solid red vertical lines. 
MNRAS 498, 2871–2886 (2020) 
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M

Figure 3. The lens-source configurations of the simulations . For each simulated halo we extract five redshift slices: z L = (0.20, 0.25, 0.37, 0.5, 0.74), shown 
as each row here. For each lens we select 21 source redshift slices to integrate over, each one equally spaced in change in lensing kernel (i.e. 
 [ D LS D L / D S ]) up 
to z S = 8. 

Figure 4. Cosmological dependence of the CDFs . Each panel shows the 
change in the CDF relative to H 0 = 70 km s −1 Mpc −1 , �M 

= 0.3, �K = 0, 
and � � 

= 0.7. Although the ranges are relatively arbitrary, we see that the 
dominant parameter is H 0 with changes of ̃  1 0 per cent . 
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.5 Implementing cosmological dependence 

e now extend the CDFs of the cosmological simulations at a
ingle cosmology to any cosmology. To completely encapsulate the
mpact of a change in cosmology on the CDF we would need to
e-simulate the entire cosmological box with varying cosmological
arameters. Ho we ver, this is currently unfeasible, moreo v er, the
ominant modification will be to the time delay distance and the
eighting of each redshift slice by the volume. Hence, to simulate
 CDF for a given set of cosmological parameters, we re-calculate
quation ( 15 ), with the new cosmology and note that future works
hould study the impact on structure formation that this method
oes not encapsulate. Fig. 4 shows multiple examples of this re-
alculation showing the total CDF relative to a � CDM CDF (i.e.
NRAS 498, 2871–2886 (2020) 
 0 = 70 km s −1 Mpc −1 , �M 

= 0.3, �K = 0., and �� 

= 0.7) . We find
hat as expected, the time delay CDF is most sensitive to deviations
n H 0 , with curvature having the smallest. Given the changes in the
DF, we do not expect competitive constraints on anything except

he Hubble Parameter. 

 RESULTS  

e now present the full CDF, including all sources of systematics,
nte grating o v er all lens and source configurations. The left-hand
anel of Fig. 5 shows the cumulative probability of observing a time
elay, i.e. p ( > log ( 
 t ) for six Hubble parameters. We find that the
hange in Hubble constant acts to simply shift the CDF along the
ime delay axis. 

Following the study of the ensemble lenses, we investigate the
alo-to-halo variance. The right-hand panel of Fig. 5 shows the
esults of this test. We show the median value of each halo with
 dashed line, and the shaded regions show the 16 per cent and
4 per cent of all CDFs. We see that the halo to halo variation is quite
arge, with B002 and B008 exhibiting higher expected time delay
istributions than B005 and B009. This is much more interesting if
ou consider that B002 has a lower velocity dispersion than B009.
o we ver, as sho w in Despali et al. ( 2020 ), B009 has significantly
ore substructure than B002, by a factor of 4. We therefore follow

his up by studying three key properties of the lens, the number of
ubstructures, the halo total mass density profile, and the total mass
ithin 5 kpc, which roughly translates to the Einstein Radius of these

enses. Fig. 6 shows the results of these three tests. 
In the left-hand panel of Fig. 6 , we show the expected median

ime delay [log ( 
 t med )] in black and the most likely time delay
log ( 
 t max )] in red as function of number of structures inside 20 kpc
nd with a mass M / M � > 10 7 . We see that both the most likely
nd median time delay are effected by the amount of substructure in
he lens, acting to reduce it. This is interesting given that Gilman,
irrer & Treu ( 2020 ) found that ignoring substructures did not
ias the estimated Hubble constant from quadruply imaged quasars.
o we ver, this study looked looked at the impact of substructures
n specific lenses. We see in the left-hand panel of Fig. 6 that
lthough the general trend is for an increase in the number of
ubstructures tends to decrease the expected time delay, there is a

art/staa2522_f3.eps
art/staa2522_f4.eps
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Figure 5. Final CDFs as predicted by the simulations . Left: The cumulative density function for all lenses for different values of H 0 , including line-of-sight 
effects, microlensing, and magnification bias. Right: The halo to halo variance for all field in the four volumes. The dashed line gives the median value and the 
shaded regions contain the 16 per cent and 84 per cent percentile of CDFs. 

Figure 6. Left: The median (black) and most likely (red) time delay as a function of number of substructures inside 20 kpc and with a mass M / M � > 10 7 . 
Centre: The relationship between the power-law index and as a function of density profile power-law index and lens redshift. We see the clear degeneracy 
between both parameters. Right: The relationship between the most probable time delay (i.e. the peak of the PDF) and the total mass within 5 kpc of the centre 
of the galaxy. 
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arge amount of scatter and it is not unlikely that a single lens system
ith many substructures will have an increased expected time delay. 
s such comparing the statistical impact of substructures with the 

mpact of substructures of a specific lens configuration is difficult 
nd hence this is not comparable with the study by Gilman et al.
 2020 ). 

The central panel explores the impact of the varying density profile 
ndex, testing the relation stated in equation ( 10 ) that the power law of
he PDF correlates directly with the power law of the halo. We test this 
y first measuring the projected density profile of each individual lens 
nd de-project assuming spherical symmetry. We then fit a power-law 

odel to each PDF, fitting only to the p (log 
 t ) > 10 −2 . The central
anel of Fig. 6 shows the measured power-la w inde x of the PDF as a
unction of the density profile, for each halo, with the redshift of the
alo in colour. The blue line shows the fitted trend with the black-
ashed line showing the expectation from equation ( 10 ). We see that
he mean relation matches that expected, ho we ver, we notice a larger
ariance in the measured PDF, with a clear trend in redshift. We also
ote that the points at z = 0.37 have larger amounts of substructure
n the lens and therefore mean the power-law fit is not a good one. 
Finally, we test how the amount of projected mass within 5 kpc
f the lens effects the most probable time delay (i.e. the peak of
he PDF). We show the measured values from each halo in the
imulations with the fitted line and error in blue. We show the 
 t prob ∝
 

2 in the dashed line, which is what is expected from an SIS. We
nd that these match extremely well. 
To summarize, we find that there exists a large halo-to-halo 

ariance, with substructures in the lens shifting the expected time 
elay to lower values, and although the lenses follow the expected 
elation, the density profiles seem to be shallower than α = −2
which had been simulated in pre vious studies), ho we ver, the most
robable time delay closely follows a 
 t ∝ M 

2 relation, which is
aively what we would expect. 

.1 Constraints on current data 

e now look to data to see how precisely we can measure H 0 .
o we ver, in order to do this, we must construct a model to compare

o the data. To do this, we carry out the following procedure: 
MNRAS 498, 2871–2886 (2020) 
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Figure 7. Top: Choice of noise level for the Matern Kernel in the Gaussian 
Processor Regressor (GPR). Bottom: GPR as a function of number of principal 
components used. The top panel shows the mean difference between the 
estimated CDF ( ¯CDF ) and the true CDF for different number of principal 
components (different colours). We find that the GPR can predict the CDF 
to within 0.1 per cent bias. The bottom panel shows the root mean square 
of the GPR for different number of principal components. We find that the 
statistical variance is ∼2 per cent . 
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(i) Reduce the dimensionality of each halo’s CDF using a principal
omponent analysis (PCA); 

(ii) For a given set of features, [ z L , α (density profile power law
ndex)] and log [ M ( < 5 kpc)/ M �], train a Gaussian Process Regressor
hat can predict the principal components for the fiducial cosmology;

(iii) Learn the expected shift in the CDF due to change in the
osmological parameter set (i.e. Fig. 4 ), by fitting a simple linear
egressor; 

(iv) With an algorithm that can now predict the CDF for a given
ens redshift, power-la w inde x, and cosmological parameter set,
stimate the parameters of any CDF; 

(v) In a Bayesian framework, use a Monte Carlo Markov Chain
MCMC) to estimate the parameters from a mock observation of
ime delays. 

(vi) Apply the framework to observed data. 

.1.1 PCA analysis to reduce the dimensionality 

e first reduce the dimensionality of the CDFs by decomposing them
n to their principal components with a principal components analysis
PCA). PCA analysis is a popular way to compress information, often
n, for example, image analysis. PCA is founded on the idea that a
ata vector will have a number of principal, orthogonal axes, such that
he high dimensionality of a data vector can be reduced. By linearly
ombining each component of the data vector with some weight, we
re able to transform the data in to a subspace that has the highest
ossible variance, i.e. it explains the largest amount of the data. This
mounts to the first principal component. This component can then
e remo v ed and the subsequent principal components can be found. 
We carry out a PCA analysis on each individual time delay CDF. In

otal, we have 60 CDFs (four haloes, three projections, and five lens
edshifts, z L ). We adopt the PCA analysis from the python package
CKIT-LEARN 

1 that follows a probabilistic PCA. 2 

.1.2 Gaussian process r egr essor to predict the principal 
omponents 

ow with our principal components at discrete regions in the
arameter space (for a fiducial cosmology) we look to create a
redictive model that can interpolate between these and predict at
ll regions. To do this, we adopt a Gaussian process regression
echnique (GPR). A GPR is a supervised machine learning method
hat adopts a mixture of Gaussian distributed functions that allow us
o interpolate between variables by mapping a function or kernel
o an N-dimensional space. GPRs have been used to constrain
he Hubble constant in the past, for example, Liao et al. ( 2020 )
ombined strong gravitational time delays and Supernova to estimate
 0 = 72 . 8 + 1 . 6 

−1 . 7 km s −1 Mpc −1 , constituting a 2.3 per cent uncertainty
n the Hubble constant. For more about GPR please see Rasmussen
 Williams ( 2006 ). 
In order to apply the GPR to this problem, we fit and train on

ach principal component with input features � = [ z L , α, log ( M ( <
 kpc)/ M �); i.e. lens redshift, density profile power law index and
he mass within 5 kpc], this way for each component the GPR
earns the relationship between these features and the target principal
omponent value. In order to train the most accurate GPR, we carry
NRAS 498, 2871–2886 (2020) 

ut a MCMC o v er the meta-variables of each kernel available in the 

 ht tps://scikit -learn.org/stable/modules/generated/sklearn.decomposit ion. 
CA.html 
 http:// www.miketipping.com/ papers/met-mppca.pdf

3

4

.
5

e

CIKIT-LEARN package. 3 We find that the combination of the Matern
ernel 4 returns the highest log-likelihood value during the fitting
rocess. The choice of meta-parameters is important in this situation
ince they will govern how well the GPR is at predicting the PCA. We
nitially adopt a length-scale = 1. and ν = 3/2 and find that the log-
ikelihood of the GPR is insensitive to variations in these parameters,
o we ver, the v alue of the noise floor, αN does alter the log-likelihood.
e therefore carry out a simple search for the noise value that returns

he highest log-likelihood. The top panel of Fig. 7 shows that the value
f αN with the highest log likelihood is αN = 4 × 10 −3 . 
We now extend this algorithm that can predict the CDF for a given

et of physical parameters to include a complete set of cosmological
arameters. To do this, we calculate the shift in the CDF due to a
hange in the cosmological parameter set by first setting up a grid
f cosmological parameters: H 0 = [60, 80], �M 

= [0.25, 0.35],
� 

= [ 0 . 65 , 0 . 75 ] , and �K = [ −0.02, 0.02], with each having five
qually spaced intervals except H 0 , which has 11. We calculate the
DF at each point in the 4D parameter grid and the associated
osmological shift and then fit a linear regression to this shift 5 such
hat we can estimate the shift at any cosmology . We now have a
lgorithm that can estimate the CDF gi ven se ven parameters, � =
 z L , α, log ( M ( < 5 kpc) /M �)) , H 0 , �M 

, �� 

, �K 

). 
We show the accuracy of the GPR in Fig. 7 . The top panel shows

he mean difference between the predicted CDF and the true CDF.
e see that the systematic bias has a maximum of < 0 . 1 per cent for
 ht tps://scikit -learn.org/stable/modules/Gaussian process.html 
 ht tps://scikit -learn.org/stable/modules/generated/sklearn.Gaussian process 
ker nels.Mater n.html#sklearn.Gaussian process.ker nels.Mater n 
 ht tps://scikit -learn.org/stable/modules/generated/sklearn.linear model.Lin 
arRegression.html 

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
http://www.miketipping.com/papers/met-mppca.pdf
art/staa2522_f7.eps
https://scikit-learn.org/stable/modules/Gaussian_process.html
https://scikit-learn.org/stable/modules/generated/sklearn.Gaussian_process.kernels.Matern.html#sklearn.Gaussian_process.kernels.Matern
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
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ll principal components abo v e three. The bottom panel shows the
oot mean square between the true and the predicted CDF . W e find
bo v e fiv e principal components there is no discernible difference.
s such we decide to use six principal components going forward. 
oreo v er, we find that the intrinsic dispersion in the estimator is

GPR ∼ 1 . 5 per cent , signifying the precision limit of this model. 

.1.3 Validating the model and sample 

ow armed with an algorithm that can predict the CDF for any
iven � = ( z L , α, log ( M ( < 5 kpc) /M �)) , H 0 , �M 

, �� 

, �K 

) we can
stimate H 0 from a given sample of time delays. We first test the
elf-consistency of our algorithm. We simulate a mock CDF with 
 = { H 0 = 0.7, z L = 0.4, α = −1.75, log ( M ( < 5 kpc)/ M �) =

1.05, �M 

= 0.3, �� 

= 0.7 } and a fixed value of �K = 0. We
imulate a surv e y of n lens = 10 3 observed lenses, 100 times. We fit
ur model to the data in the same flat prior space that we laid out
ur grid of cosmological parameters, i.e. H 0 /(100 km s −1 Mpc −1 ) =
 0.6, 0.8 } , z L = { 0., 0.74 } , α = { − 2.1, −1.4 } , �M 

= { 0.25, 0.35 } ,
nd �� 

= { 0 . 65 , 0 . 75 } . At each step of the MCMC, we calculate the
xpected CDF from the GPR and compare to the observed via the
ram ́er -v on Mises criterion that is the sum of square of the distance
etween the data, D , and the model M : 

( m ( � ) | D) = 

∑ 

( C DF D − C DF M 

( � )) 2 . (21) 

e use the publicly available package EMCEE , 6 using a burn in length
f n burn = 500 and a sampling chain length of n chain = 1000. Fig. 8
hows the results of this test. We find that we return the input H 0 ,
 L , density profile index α and the two cosmological parameters, �M 

nd �� 

. Interestingly we find that the posterior of the mass within
 kpc has a de generac y with α, whereby, the sampler does return the
nput value, but it is also possible to produce similar features in the
DF with a steeper density profile and less mass within 5 kpc. 

.1.4 Constraints from current data 

ow with our self-validated code we fit our model to the current
bserved data. We adopt time delays with their associated errors from
illon et al. ( 2020 ; and references therein). Table A1 in Appendix A

iv es an o v erview of the each object used, reference for the measured
ime delay, the lens redshift, source redshift, and the estimated time 
elay and error. We create a CDF from these time delays and fit our
odel. To incorporate the error bars in the estimates, we then Monte
arlo the CDF 100 times, each time resampling the CDF from the

tated error bars and refitting the model. We carry out this procedure
n three different cosmologies, the first, and our stated constraints, 
 flat Universe, assuming �K = 0, the second not assuming a flat
niverse and the third a fixed cosmology ( �M 

= 0.3, �� 

= 0.7, and
K = 0.). We show the MCMC samples assuming a flat Universe 

n Fig. 9 from the complete 100 Monte Carlo tests and the median,
6 per cent and 84 per cent in Table 2 . The posteriors from the other
wo runs can be found in Appendix B (Figs B1 and B2 ). 

Finally, we fold in the statistical variance of our PCA estimator 
rom Fig. 7 of 2 per cent , adding in quadrature and find, assuming a
at Universe, that H 0 = 71 + 2 

−3 km s −1 Mpc −1 , z L = 0 . 36 + 0 . 2 
−0 . 09 , α =

1 . 8 + 0 . 1 
−0 . 1 , log ( M ( < 5 kpc) /M �) = 11 . 1 + 0 . 1 

−0 . 1 , �M 

= 0 . 3 + 0 . 04 
−0 . 04 , and

� 

= 0 . 7 + 0 . 04 
−0 . 04 . 
 https:// emcee.readthedocs.io/en/ stable/user/ sampler/ # 

w  

w  

w  

V  
Following this, we estimate the variance due to the choice of noise
arameter in the GPR. Although we chose the noise parameter with
he highest log-likelihood, this choice could be seen as relatively 
rbitrary. We therefore measure H 0 for a variety of different noise
evels of the GPR. Fig. 10 shows each estimate relative to the fiducial
alue of αN = 4 × 10 −3 . We find the estimate is stable within
0 . 1 per cent . 

.1.5 Appropriateness of the simulations 

n this study, we have used the simulated haloes to estimate the
onstraints from data. A key systematic will be the appropriateness 
f these simulations with respect to the observed lensed systems. We
ntentionally did not input any lens redshift or mass within 5 kpc into
his method for two reasons. The first was that in the case of large-
cale surv e ys this information may not be available, so as such we
anted to test this method as it would on large scale data. Secondly,

t would provide an important consistency check. 
This consistency test entails two questions: 1. Is the estimated 

edshift consistent with the true lens redshift? 2. Is the estimated mass
ithin 5 kpc consistent with the same observed mass? We make it

lear here that these are consistency checks and not validity checks.
ig. 11 shows the results of this consistency test. The top panel shows

he true lens redshift distribution in red and the estimated distribution
rom the data. We see that the sampled distribution is bi-modal, with
 preference for lo wer redshifts, ho we ver, with also some excess
robability at higher redshifts. We hypothesis that the sampler is 
rying to fit to the high and low-redshift regions of the data, ho we ver,
n both cases finds a consistent H 0 value. 

The bottom panel of Fig. 11 shows the estimated mass within
 kpc and the ‘true’ mass. In order to estimate the ‘true’ observed
ass, we have make some assumptions about the systems. We first

ssume that all systems have an image separation of either r sep =
.5 arcsec or r sep = 1.0 arcsec. If we examine the appendix A
n Millon et al. ( 2020 ), we see that this is typically the observed
eparation of the images. From this we can calculate the mass within
he Einstein radius. We note that this is sometimes larger or smaller
han 5 kpc, so assuming the M ∝ r , we account for this difference. We
how the estimated mass within 5 kpc in green and the ‘true’ mass
ssuming a typical image separation of r sep = 1(1.5)’ in red (green).
e see that the estimated masses from these simulations bookend 

he estimated mass. Moreo v er, we see that the estimated mass has a
road peak and therefore for this sample size, we are insensitive to
ny discrepancies on this scale. As such we state the bias induced by
he differences in mass between the observed and simulated sample 
s small. 

.2 Statistical reach of the Vera Rubin Obser v atory 

ow, we have attempted to measure H 0 from current data we explore
he power of future data, specifically VRO. In our previous tests,
e assumed that the observing strategy of VRO is infinite, whereas

n truth VRO will have a implicit minimum possible observed time
elay due to the return schedule (i.e. how often a single patch of sky
s returned to). As such we now implement a minimum time delay
n the CDF of 
 t min = 10 d (LSST Science Collaboration 2017 ). 
Using the same mock samples as we did to the validate the code,

e now determine the expected statistical reach of VRO. To do this
e estimate the error on each of the six parameters (omitting �K as
e are insensitive to this) for a range of lens sample sizes assuming a
RO minimum time delay (i.e. 
 t min = 10). For each case, we mock
MNRAS 498, 2871–2886 (2020) 
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Figure 8. Consistency check on the Gaussian Process parameter estimation. We generate a mock sample of n lens = 10 3 observed quasars from the trained 
model and then using an MCMC to find the best-fitting parameters. here we show the 0.5 and 1 σ contours with the black marks showing the true value. 
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 sample CDF and then fit to the data, iterating 100 times per sample
ize. Fig. 12 shows the results for each of the six parameters with
he error bar showing the 1 σ uncertainty in the estimated sensitivity.
n the top panel, we show the constraints on H 0, in the dashed cyan
ine we show the current sensitivity, the red line shows the current
ensitivity limit of the GPR model to predict the CDFs. In each
anel, we show the expected sensitivity from an VRO surv e y with an
ptimistic ∼3000 lenses and conserv ati ve ∼400 lenses. We find that
p to this conserv ati ve limit, our model is sufficient and constraints
n H 0 < 3 per cent are possible. Similarly, marked impro v ements in
he sensitivity in �M 

and �� 

are seen, however, these will never be
s competitive as other probes. We also find that we maybe able to
NRAS 498, 2871–2886 (2020) 
ake significant impro v ements in our understanding on the global
ensity profile index, with predicted constraints of < 4 per cent . 
It is clear from these results that although this model we have

resented here is sufficient for the current data set, it needs improving
f we are to exploit the full statistical power of VRO. 

.3 Discussion 

ere, we have presented a 4 per cent statistical error estimate on H 0 .
e have shown that the distribution in lens redshifts and masses

re consistent with simulated lenses. Moreo v er, the method is not

art/staa2522_f8.eps
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Figure 9. The posteriors from our final fit. Contours show the 1 σ error. We run three different fits, one with a fixed cosmology (i.e. �M 

= 0.3, �� 

= 0.7, �K = 

0.), one assuming a flat Universe and one completely free. Here, we show the results assuming a flat Universe, the other two fits can be found in Appendix B . 
We find H 0 = 70 ± 3 km s −1 Mpc −1 , z L = 0 . 36 + 0 . 3 −0 . 08 , α = −1 . 8 + 0 . 08 

−0 . 1 , log ( M ( < 5 kpc) /M �) = 11 + 0 . 1 −0 . 08 , �M 

= 0 . 3 + 0 . 05 
−0 . 05 and �� 

= 0 . 7 + 0 . 05 
−0 . 05 . 

t
w
H  

o
M
o  

e  

A  

t  

o
d  

M  

s  

H  

n  

h  

P
(  

t  

b  

α  

c

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/2/2871/5894941 by guest on 09 April 2024
oo sensitive to the mass parameter and hence although important, 
ill not have a significant bias on the Hubble parameter estimate. 
o we ver, we do note that this study was based on the simulations
f four elliptical galaxies that do not represent the entire population. 
oreo v er, there are known inconsistencies between simulated and 

bserved galaxies (Wang, Chen & Li 2017 ; Xu et al. 2017 ; Peirani
t al. 2019 ), particularly in the core where time delays are sensitive.
s such, if this method is to be competitive going forward in to

he era of sub 2 per cent estimates on H 0 , then we will require not
nly more accurate simulations, but an understanding of the time 
elay distributions o v er a larger population than just four volumes.
oreo v er, we showed that the algorithm used here had a 2 per cent
ystematic error when compared to analytical profiles. If we are to
 0 in this fashion in the era of Vera Rubin Observatory then this will
eed to be impro v ed. Finally, in this study we suggest that the galaxies
ave a shallower profile that that of a Singular Isothermal Sphere.
revious studies of massive ellipticals from gravitational lensing [e.g. 
Gavazzi et al. 2007 )] suggest that galaxies follow a profile closer to
hat of an singular isothermal sphere ( α = 2.). Ho we ver, this could
e due to the fact the GPR was trained on galaxies with profiles
< 2. Therefore, going forward, the finding here would have to

orroborated with independent studies as any bias could impact the 
MNRAS 498, 2871–2886 (2020) 

art/staa2522_f9.eps


2882 D. Harvey 

M

Figure 10. Dependence of the estimate of H 0 on the GPR meta-parameter 
αN . We constrain the data using a variety of different noise levels in the 
Gaussian Processor and find that the value varies within ∼0 . 1 per cent around 
the fiducial estimate ( αN = 4 × 10 −3 ). 

Figure 11. Consistency checks from our fit to the observed data. The top 
panel shows the true lens redshift (red) and the posterior from the sampling 
(blue). We see that the two distributions are consistent with one another and 
in fact there is evidence for bi-modality in the posterior, which may reflect 
the true observed bi-modality. The bottom panel shows the posterior of the 
mass (blue) and the ‘true’ mass assuming a typical image separation of r sep = 

1.5(1.0)’ in red (green). For these typical image separations, the ‘true’ mass 
is consistent with our mass estimate. 
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Figure 12. Predicted constraints (percentage) on the six parameters using 
this method as a function of sample size with a minimum observable time 
delay of 
 t min = 10 d. In the top panel, we show the current systematic floor 
of ∼2 per cent given by the red line. We also show the current sensitivity 
from this study in the dashed cyan line. In each panel, we should the 
expected constraints that the Vera Rubin Observatory will gain with an 
optimistic ∼3000 lenses (dashed black) and a conserv ati ve 400 lenses (dotted 
black). We see that there are immediate gains up to 400, ho we ver, the 
accuracy of this model prevents us from predicting constraints lower than 
this. 
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stimated value of H 0 . If so it would have implications for the training
ample used when estimating the CDFs. Having said that, this method
s able to reco v er the lens redshift of the observed sample, providing
ome evidence for the potential competitive nature of estimating H 0 

rom a distribution of time delays. 

 C O N C L U S I O N S  

trong gravitational time delays are an independent and competitive
ay to constrain the Hubble Constant, H 0 . Studies of individual time
elays have led to tight constraints on H 0 , ho we ver, in the advent
f large-scale surv e ys, this will be difficult to scale. As such we
uild on previous statistical studies of lensed quasars and propose
 new, complementary forward-modelling method to constrain H 0 

sing the CDF of observed time delays that does not rely on the
etails of individual lenses. 
We develop a ray-tracing algorithm that is able to take a projected

urface density map, for a given lens-source configuration and
stimate the CDF. We validate this code on analytical forms of the
DF using Singular Isothermal Spheres. We find that the code can
NRAS 498, 2871–2886 (2020) 
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eturn the expected CDF to within a theoretical systematic error of
sys < 2 per cent . 
Using full n -body simulations we use this framework to estimate 

he CDF of strong gravitational time delays in doubly imaged 
uasars. In doing so for the first time we do not assume analytical pro-
les, taking in to account dark haloes and substructure and the direct

mpact of baryonic feedback on time delays. We include the impact of
ine-of-sight structures both within the immediate environment of the 
ens (down to the mass resolution of the simulation) and uncorrelated 

ass along the line-of-sight, microlensing, and magnification bias. 
We find that the CDFs exhibit large amounts of halo to halo

ariance, caused by varying number of substructures at different 
edshifts, projected density profiles, and total mass with 5 kpc. 
ndeed, we find that the the relation between the power-law index 
f the PDF and the density profile is consistent with analytical 
xpectations and that the most probable time delay (i.e. the peak 
f the PDF) is proportional to the square of the total mass within
 kpc, again consistent with analytical expectations. Ho we ver, there 
s a large amounts of scatter around these relations, showing how 

ndividual haloes can induce different features in the CDFs. 
We construct a model of the CDF for a fiducial cosmology by

educing their dimensionality using a principal component analysis 
nd then interpolating between these using a GPR. We then calculate 
he cosmological shift from different parameter sets and fit a linear 

odel. This way we are able to predict a CDF for a given lens
edshift, z L , power-la w inde x, α and a full set of cosmological
arameters including H 0 , �M 

, �� 

, and �K . We carry out a self-
onsistency test estimating six parameters (omitting �K since we are 
nsensitive to this). We find the model returns the expected value, 
o we v er, there is de generac y between the density profile parameter

and the mass within 5 kpc. We also find that all cosmological
arameters are mildly degenerate with one another. We then estimate 
he true H 0 from a sample of 27 doubly imaged time delays reported
n Millon et al. ( 2020 ). Assuming a flat Universe, we measure
 0 = 71 + 2 

−3 km s −1 Mpc −1 , z L = 0 . 36 + 0 . 2 
−0 . 09 , α = −1 . 8 + 0 . 1 

−0 . 1 , log ( M ( <
 kpc) /M �) = 11 . 1 + 0 . 1 

−0 . 1 , �M 

= 0 . 3 + 0 . 04 
−0 . 04 , and �� 

= 0 . 7 + 0 . 04 
−0 . 04 . This

mounts to a 4 per cent estimate of the Hubble parameter. 
We discuss the appropriateness of the simulations, and find that 

ithin the sensitivity of current data we are not systematically biased. 
e return a consistent lens redshift distribution and the estimated 
asses are both within the expected true mass, and that the model

s not particularly sensitive to this parameter. However, we note that 
here is debate on the reliability of such simulations at reproducing 
he properties of galaxies, which may impact these results (Wang 
t al. 2017 ; Xu et al. 2017 ; Peirani et al. 2019 ). 

Finally, we estimate the statistical reach of future data, specifically 
RO. We find that large impro v ements can be made in the first few
undred lenses, with predicted constraints of 
H 0 /H 0 < 3 per cent .
o we ver, due to the sensitivity limit of the model (2 per cent ), beyond
000 lenses, the model will need to be impro v ed before advances
an be made. Should VRO return the optimistic 3000 lenses, then an
mpro v ed model, trained on many more simulations, could make a
ompetitive measurement of the Hubble Constant. 
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age quasars taken from the literature. Col 1: Quasar ID, 
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 of the lens, Col 4: Redshift of the source, Col 5: Time 

z lens z source 
 t 
(d) 

0.407 1.678 10.4 ± 3.5 
0.491 2.719 97 + 16 . 1 

−15 . 5 
0.317 1.29 22.7 ± 3.6 
0.723 1.689 0 . 8 + 5 . 0 −5 . 2 

0.39 3.115 153 . 8 + 13 . 2 
−14 . 6 

0.659 1.115 125 . 3 + 12 . 8 
−23 . 4 

0.517 1.123 33.7 ± 2.7 
0.701 1.370 81 . 5 + 10 . 8 

−12 

NA 1.424 47 . 2 + 7 . 5 −7 . 8 

0.742 2.054 210 . 2 + 5 . 5 −5 . 7 
0.398 1.158 171.5 ± 8.7 
0.603 2.033 39 + 14 . 9 

−16 . 7 
0.491 2.719 89 ± 11 
0.685 0.944 10 . 1 + 1 . 5 −1 . 6 

 0.830 1.377 60 + 2 −4 
0.260 1.246 16 ± 2 
0.415 1.838 119.3 ± 3.3 
0.729 2.319 152 . 2 + 2 . 8 −3 . 0 
0.748 1.789 111.3 ± 3 
0.717 1.855 130 ± 3 
0.414 1.589 51 ± 4 
0.577 1.547 49.5 ± 1.9 
0.89 2.507 26 + 4 −5 

0.603 2.033 103 ± 12 
0.68 1.07 20.0 ± 5 

 0.609 2.243 47 + 5 . 0 −6 . 0 
 0.284 2.0 25 ± 1.5 
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Col 2: Measurement reference from literature, Col 3: Red
delay with associated error. 
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SBS 1520 + 530 Burud et al. ( 2002b ) 
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APPENDIX  B:  OTH ER  C O S M O L O G I C A L  FITS  

Here, we show the posteriors from the other two MCMC runs assuming a fixed cosmology (i.e. �M 

= 0.3, �� 

= 0.7, �K = 0.) and a completely 
free cosmology. 

Figure B1. Posterior from a fixed cosmological model (i.e. �M 

= 0.3, �� 

= 0.7, �K = 0.). 
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Figure B2. Posteriors from an open cosmology. 
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