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ABSTRACT

In the advent of large-scale surveys, individually modelling strong gravitational lenses and their counterpart time delays in order
to precisely measure Hy will become computationally expensive and highly complex. A complimentary approach is to study
the cumulative distribution function (CDF) of time delays where the global population of lenses is modelled along with Hj. In
this paper, we use a suite of hydrodynamical simulations to estimate the CDF of time delays from doubly imaged quasars for a
realistic distribution of lenses. We find that the CDFs exhibit large amounts of halo—halo variance, regulated by the density profile
inner slope and the total mass within 5 kpc. With the objective of fitting to data, we compress the CDFs using principal component
analysis and fit a Gaussian processes regressor consisting of three physical features: the redshift of the lens, z; ; the power-law
index of the halo, o, and the mass within 5 kpc, plus four cosmological features. Assuming a flat Universe, we fit our model to
27 doubly imaged quasars finding Hy = 7173 kms~' Mpc~!, zp. = 0.36702,, @ = —1.8701, log (M(< 5kpc)/Mg) = 11.1751,
Qm = 037001, and Q4 = 0.770:5;. We compare our estimates of z;_ and log (M(< 5kpc)/M) to the data and find that within the
sensitivity of the data, they are not systematically biased. We generate mock CDFs and find with that the Vera Rubin Observatory
(VRO) could measure o/Hj to <3 per cent, limited by the precision of the model. If we are to exploit fully VRO, we require simu-
lations that sample a larger proportion of the lens population, with a variety of feedback models, exploring all possible systematics.
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1 INTRODUCTION

The currently accepted standard model of cosmology states that we
live in a homogenous and isotropic Universe that is dominated by
an unknown energy density that is causing the observed expanding
Universe to accelerate (Planck Collaboration 2018). Despite the
community wide acceptance of this model, the specific details
are becoming increasingly intriguing. Recent measurements of the
expansion rate at the current day, i.e Hubble constant H,, using
local estimators (Riess et al. 2011, 2019; Bonvin et al. 2017; Birrer
et al. 2019; Wong et al. 2019; Rusu et al. 2020) are arguably in
tension with measurements made from the early Universe (Planck
Collaboration 2018). This tension has become a central issue in
cosmology, and much discussed in the literature (Bernal, Verde &
Riess 2016; Di Valentino et al. 2018). If we are to understand this
tension, it is important that we continue to constrain and study Hy
using complimentary probes with orthogonal systematics.

First suggested by Refsdal (1964), strong gravitational lensing
time delays have recently become a viable and competitive tool
in this quest to constrain Hy (For a review see Treu & Marshall
2016 and Suyu et al. 2018). When the light from a distant source is
heavily distorted and bent, multiple images of the same source can be
observed. Since the geodesics of a single source take differing paths
with differential lengths, the same variable emission of a quasar is
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observed at different times in each multiple image. This time delay
is caused by two factors, the geometrical difference in path-length
and the differing potential of the lensing galaxy that the light passes
through. Given that the path-length is defined by a combination of
angular diameter distances to the source and lens, the time delay is
sensitive to the Hubble constant with little dependence on the other
cosmological parameters (Coe & Moustakas 2009).

Current measurement of the Hubble constant from gravitational
time delays require not only accurate measurements of the time delay
(Courbin et al. 2010; Bonvin et al. 2017; Millon et al. 2020) but also
detailed information about the lens-source configuration in order to
constrain the lensing potential. As such it is useful to gain extra
information such as the velocity dispersion of the host lens (Suyu
etal. 2012; Yildirim, Suyu & Halkola 2020; Rusu et al. 2020). These
methods have provided extremely tight constraints (2.4 per cent) on
H, from just a few lenses (Bonvin et al. 2017; Shajib 2019; Wong
et al. 2019; Rusu et al. 2020).

Although a promising method to constrain Hj, the study of
individual lenses can be challenging, for example,

(1) The modelling of each individual lens is time consuming, and
requires extra information in order to understand how it is perturbing
the time delay. Much progress has been made with the automation
of lens modelling (Hezaveh, Perreault Levasseur & Marshall 2017;
Nightingale, Dye & Massey 2018; Shajib et al. 2019), however, it is
not clear how feasible this will be for the number of lenses expected
to be observed by the Vera Rubin Observatory (VRO).
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(ii) The time delays are prone to microlensing of individual stars
in each galaxy (Tie & Kochanek 2018).

(iii) The time delays are prone to environmental effects, line-of-
sight structures, and mass sheet degeneracies (Greene et al. 2013;
Birrer et al. 2017; Tihhonova et al. 2018, 2020).

1.1 Statistical studies of time delays

Work exploiting statistical measurements of time delays have been
limited. The first studies aimed to measure the inner density profile
of galaxies, noting that the time delay probability density function
(PDF) was sensitive to this, and therefore assuming some known
Hubble constant, they could be used to infer the global density profile
of galaxies (Oguri et al. 2002). However, it was quickly realized that
the power in this technique was to directly measure the Hubble
constant itself. Thus, Oguri (2007) proposed a framework whereby it
would be possible to combine many time delays via a ‘reduced time
delay’, and assuming knowledge of the lens distribution, constrain
the Hubble parameter. In this exploratory paper, they numerically
and analytically calculated the conditional probability of the Hubble
constant given an image configuration and then from these they
generated a conditional probability of a time delay. Using this
framework, they consequentially estimated the Hubble constant from
~16 lenses. However, the use of analytical approximations limited
their work, stating that not including the fu/l distribution of galaxies
could bias their estimate. Moreover, they also did not consider
environmental effects and the bias on the time delay. A follow-up
study by Oguri & Marshall (2010) that specifically looked at how
many lensed quasars and lensed supernova the VRO will observe was
carried out. They predicted that the VRO should observe roughly
3000 lensed quasars that will result in a ~2 per cent error in Hy,
again citing limitations in their method due to not accounting for
dark substructures, microlensing, and other effects. This number was
subsequently re-estimated following a set of time delay challenges,
whereby Liao et al. (2015) suggested that in fact the VRO could
return as low as 400 useful time delays. Finally, Coe & Moustakas
(2009) looked at doing this with a few well observed objects. They
found that with just ~100 well-studied lenses that had precise mass
measurements; they would be able to garner competitive constraints.

These detailed pieces of work showed that the VRO indeed has the
statistical power to constrain H to the target precision of <2 per cent.
However, these works were all based on analytical prescriptions
of galaxies, often assuming a Singular Isothermal Sphere density
profile. As such they do not include substructure in the lens that will
cause perturbations, the environmental effect of lenses lying in over
dense environments and line-of-sight effects.

In this paper, we will extend this body of work, calculating the
cumulative distribution function (CDF) of time delays for doubly
imaged quasars from a suite of state-of-the-art hydrodynamical sim-
ulations. We therefore do not assume any analytical form, allowing
for a completely free-form CDF. Integrating over all possible image
configurations, we will also account for environmental and line-of-
sight effects. Finally, we develop an innovative framework to fit
these CDFs to data provide interesting constraints. We focus this
study specifically on double imaged quasars for four main reasons:

(i) They are an efficient probe of Hj, since there are approximately
10:1 doubles to quads (Oguri & Marshall 2010; Harvey et al. 2020).

(i1) For the same reason, in our small simulation volume we have
access to many more doubly imaged quasars as quadruply and can
therefore make much stronger statements about the future prospects
of this technique.
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(iii) Time delays from doubles are less scattered and are less
susceptible to large perturbations in the lens than quadruply imaged
quasars (Oguri 2007) therefore perturbations caused by unknown
feedback in the simulations will have a smaller impact on the
predicted CDF (making it easier to predict the CDF of double imaged
time delays).

(iv) Doubles have longer delays, leading to a much better precision
on their measurements. Many quads have delays shorter than 20 d,
hard to measure with the 3 d cadence of the VRO (Oguri & Marshall
2010).

In Section 2, we introduce the theory, how we generate estimates
of the time delay and our validation tests. We then construct the full
CDF in Section 3 followed by introducing the suite of simulations in
3.4. In Section 4, we show our initial results before constructing our
model for the CDF and our constraints on Hj in Section 4.1. Finally,
we predict the sensitivity of the VRO in Section 4.2 and discuss and
conclude in Section 5.

2 METHODOLOGY

2.1 The strong lensing time delay calculation

Here, we present a brief review of the technical details of strong
gravitational time delays, however, for a full review please see
Bartelmann (2010). We begin by defining a unit-less coordinate
system for a position in the lens plane, &, and source plane 1, where
the lens is always positioned the origin of the source plane, x = £/&
and y = n/no, where no = §0D/Ds, § = 4 (”7’)2 DLT'ZLS, and Dy,
Dy s, and Dy are the angular diameter distances between the lens and
the observer, the lens and the source, and the source and the observer,
respectively. From this, it is possible to show that the time delay due
to two photons taking two different geodesics is a combination of the
time delay due to a difference in path-length and the fact that the two
photons pass through the lens potential at different points inducing
a gravitational time delay, i.e.

cAt = &o* (1 +z1) Ds [@(x1,y) — d(x2, y)] (D)
=50 L Dy Dys 1,y 2, Y)1,
where
L 2
ey = T gy, @)

2

and W is the dimensionless lensing potential defined as the integral
of the 3D Newtonian potential ® along the line of sight, i.e.

1 DDis 2
W(x) = =D C—z/é(é,z)dz. 3)

Following equation (3), we can relate the Newtonian potential to the
density via the Poisson equation and hence find that the normalized
projected surface density, « is the derivative of the lensing potential,
ie.

(x) 1
= = = vy V(x), 4
K(x) s 2V (x) “
where X is the projected surface density and the critical density is
6‘2 Ds
crit = s ©)
4 G DL DLS

and G is Newton’s constant. Using this relation between the projected
surface density and the time delay, we are able to directly calculate
the time delays from a density field. To do this, we first calculate WV
and hence the deflection angle, a(x) = v,V (x), for each position
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in the image plane. Using the lens equation y = x — «(x), we
trace a pixellized grid in the image plane to the source plane via
the calculated deflection angles and collect all those source plane
pixels that have two or more pixels on the image plane, retaining
only those source pixels that result in doubly imaged positions. We
follow Oguri & Marshall (2010) and select only those doublets that
have a magnification ratio u,/p; > 0.1 since in the case where the
magnification ratio is small, a lens with large flux differences would
make the second image hard to observe. However, the detection will
also depend on the brightness of the quasar and therefore this is an
approximation. We then calculate the time arrival surface for the
lens and then use equation (1) to calculate the time delay. Before
progressing, we validate our code on known density profiles.

2.2 Validation tests on single isothermal spheres

Following the calculation of the time delays, we validate the code
to ensure that it recovers a known distribution of time delays. For a
single isothermal sphere (SIS), the mass density profile as a function
of halo-centric radius, r is

(72

T 4nGr?’

where o, is velocity dispersion. From this, it can be shown that the
analytical time delay is (Oguri et al. 2002)

o (6)

4 Dy D,
cAr = 3277 (5) LIS 42y, )
C DS

and is hence just a function of the source position. Integrating over
all source positions, p(n, n + dn), the normalized probability is (Li,
Hjorth & Richard 2012)

n+dn n
p(n,n+dn) = / 2—dn; n < 1o, (8)
n Mo
and hence
2In10  ,
p(log(At)) = INE ) A7 log(At) < log(Atpear). )
peal

Hence, the probability p(log (Af)) o« A%, Indeed, Li et al. (2012)
suggested that this would hold for any internal density profile slope,
B, such that

p(log(Ar) o< ArP. (10)

We use equation (9) to test our code. We first simulate an SIS halo
with a o, = 250kms™', with a z. = 0.2, a single source plane
of zg = 5, and calculate the cumulative density function (CDF). In
order to estimate the sensitivity of the pixellization of the source
plane to the results, we carry out the calculation for different source
plane resolutions (assuming a lens plane resolution of 0.1 kpc). The
top panel of Fig. 1 shows the results of this test. We show the
CDF {i.e. p[> log (An)]} for five different source plane resolutions
and the analytical expectation. We find that the CDF converges at
0.025 kpc where the error in the CDF goes below ~2 per cent. We
therefore choose a source plane resolution of 0.025 kpc for the rest
of our analysis. Following this, we test the accuracy of our code.
We simulate three different velocity dispersions, o = 200, 250,
300kms~!, representing what is expected from massive ellipticals.
The bottom panel of Fig. 1 shows the results. We find that in all three
cases we return the expected distribution to within 2 per cent, where
this level represents the systematic floor of our analysis.
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Figure 1. Sing the known analytical PDF of a single isothermal sphere (SIS)
for z;, = 0.2 and zs = 5., we carry out two tests on the code. Top, a source
plane convergence test: We test the sensitivity of the CDF to our pixellized
source plane using an SIS with a velocity dispersion of 250kms~!. We
test five different source plane resolutions (with a lens plane resolution of
0.1 kpc). The bottom panel shows that CDF converges above a resolution of
0.025 kpc. We therefore choose a source plane resolution of 0.025 kpc for the
rest of the paper. Bottom: Code accuracy: We also test the accuracy of the
code by analysing three different velocity dispersion of the SIS. The bottom
panel shows the difference between the predicted and the analytical value.
The adopt the maximal difference of 2 per cent as our theoretical systematic
floor.

3 THE FULL CUMULATIVE DENSITY
FUNCTION

Now, we have the raw CDF for a single lens-source configuration
we construct the full expected CDF. To do this, we first consider the
observational systematics that will affect this single lens-source plane
configuration. This includes line-of-sight structures, mass sheets, and
microlensing; here we explore them individually.

3.1 Line-of-sight structures and mass sheets

It is known the environment and line-of-sight structures perturb
geodesics, and hence can shift a single time delay by a non-negligible
amount. The impact of a constant mass sheet on the time delay is

Atg = AlT(l - Kexl)v (ll)

where k. 18 the external convergence that perturbs the geodesics,
Ato and Aty are the observed time delay that has been perturbed
by some external mass and ‘true’ time delays, the unperturbed time
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delay. Hence, H,y will be overestimated if the external convergence
is unaccounted for properly. Here, we explicitly consider two forms
of line-of-sight structures: there is the immediate environment of the
lens (but not substructure), which on average will be more dense
(Collett & Cunnington 2016), i.e. mass sheets and the uncorrelated
structure that the geodesic encounters beyond the lens. We already
include the first in the PDFs since we cut out cylinders in the simula-
tion of 1 Mpc (see Section 3.4), which includes any environment up
to a cluster scale (which are not considered in this study), down to
the mass resolution of the simulations. The second we consider here.
The impact on the PDF on the ‘true’, unperturbed time delay, pr is

p(Ato)dAto = pr(Atr)dAtr py (Kex)dKexts (12)

where p, is the probability of passing through a halo with a
convergence k, and p(Atg) is the ‘observed’ or perturbed PDF.
Substituting in (11), we find

dAr’ , Ato
p(Atp) = / pr(AT)pe (1 ) . 13)

AV NE
Since we will be carrying out the calculations in p(log (A?)), we
convert via the standard Jacobian to get

 Ato
p(log(At)) = In(10) / dlog(Ar) 7

x prlog(At)pe(l — Ato/At). (14)

This final equation (14) shows how the distribution of time delays
is statistically perturbed by cosmological structures along the line
of sight in a given cosmology. To incorporate this equation into
our pipeline and estimate p[log(Afy)] for a given lens-source
configuration, we take the estimate of p[log (A#7)] and for each value
we convolve it with the probability of passing through a halo of
convergence p,, we then integrate this over the entire distribution of
log (Afy) to get our final estimate of log (Azy). We use the publicly
available code, TURBOGL to calculate the PDF of the geodesic passing
through a halo, p,. TURBOGL is a numerical code that estimates the
cosmological PDF of convergence for any given line of sight. It
does this by carrying out compound weak lensing to estimate the
linear contribution of haloes in a ACDM model (Kainulainen &
Marra 2009a,b, 2011). We show the results in Fig. 2 where we show
for a simulated SIS lens (z;, = 0.2, zg = 5, 0 = 250kms~!) the
true intrinsic distribution (in red) and the convolved distribution (in
green). The bottom panel shows the relative difference between the
two. We find that the impact of line-of-sight structures is small even
in this extreme case of a source at a redshift of zg = 5.

3.2 Microlensing

In a similar way, we estimate the impact of microlensing on the
distribution. Tie & Kochanek (2018) calculated the cumulative
probability distribution of the microlensing induced time delays for
the lenses RXJ1131-231 and HE 0435-1223. They used numerical
simulations to shoot light rays through a de Vaucouleurs model of
the stellar distribution to calculate a time delay map. Taking 3000
different line-of-sight, they found that the mean delay was zero for
a active galactic nuclei disc with no inclination, and of order ~1
d for inclined discs. Moreover, the variance in the time delay is of
order days. Therefore, we model the impact of microlensing by a
Gaussian with a zero mean and width of 1 d and 2 d. This is a
conservative estimate since Tie & Kochanek (2018) investigate the
impact of quadruply imaged quasars where projected stellar density
is higher and hence will results in large microlensing. Given that this
affects each time delay, it is simply a convolution with the intrinsic
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Figure 2. The impact of line-of-sight structures and microlensing: The
observed time delays are perturbed by intervening structures along the line
of sight and compact objects within the lens. In order to determine this,
we convolve the PDF with both numerical and analytical estimates of these
effects. Here, we show the impact of line-of-sight structures and two levels
of microlensing, a realistic value of 1 d and 2 d for a single SIS (o =
250kms™") lens (zr, = 0.25) with a source at zg = 5.0. The bottom panel
shows the difference between each distribution and the intrinsic (red) one.

distribution. Fig. 2 shows the resulting distribution. We find that
for a reasonable delay, microlensing could have up to a 10 per cent
impact on a single lens-source configuration. We note here that
although milli-lensing by substructure in the lens can have impact
on the time delay, it is expected to be an order of magnitude lower
than microlensing considered here (Keeton & Moustakas 2009), and
therefore we do not consider this systematic.

3.3 Combining different lenses and source planes

Now, with a full estimate of a single lens-source configuration we
want to set-up a framework in which we can integrate this over a
lens and source population. In order to do this, we must weight each
lens and source by the volume of the redshift in question, consider
that sources behind lenses will be magnified and that the number
density of quasars at different redshifts changes. In summary, the
final estimated PDF will be

p(log(At)) = /dZs/dZL/dM/de pzL, zs, L, oy My),
(15)

where p is the probability distribution of a single, source-lens
configuration, given by

dV d® dV dN

= — — — —— s P(102(Atp)), 16
p dzs deZLdeol p(log(Ato)) (16)

where the final term is the number of time delays in an interval
dlog (Ar) for a given lens with mass M,,at a given lens redshift,
71, for a source distribution (or luminosity function) d®/dL (and
magnitude M) at a redshift, zs, the volume factor for the lens and
source is given by

dV  cdt
dz; ~ dz
and oy 1S the ‘magnification bias’ caused by the magnification

induced by the foreground lens increasing the source number density
by bringing faint sources in from beyond the magnitude limit of the

(1+z)%, (17
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Table 1. The statistics of each simulated halo. We show the ID of the halo (both the ID from Oppenheimer et al. 2016
and Despali et al. 2020), the halo mass (total mass inside a radius where the density is 200 times the critical density at
the given redshift), the virial radius, the stellar mass of the central galaxy, the consequential velocity dispersion from the
fitting function in Zahid et al. (2016). The final two columns give the stellar effective radius in 3D and the 2D average
over many projections using the stellar particles belonging to the main galaxy within 300 (100) kpc.

ID Mao0c 200¢ M, o T, ¢(3D) (r+, «(2D))
Mp) (kpc) Mop) (kms™) (kpc) (kpc)
B008/1 1.06 103 401 9.4510'0 192 12.76 (8.45) 9.31(8.12)
B009/2 1.05 103 401 1.00 10! 194 22.31(13.31) 27.11 (13.93)
B005/3 6.40 10'2 340 5.07 1010 159 6.24 (4.64) 5.80 (4.24)
B002/4 3.99 10'2 290 5.48 10'0 163 6.46 (5.09) 5.15 (4.09)

Table 2. The three cosmological parameter fitting MCMC runs. We run three different fits, a fixed where we assume 2\ =0.3 and @
A =0.7 and @ g =0., our fiducial run where we assume a flat Universe, and a final run where we assume nothing about cosmology.

Model Ho/(km s~'Mpc~1) Zlens a log(M(< 5kpe)/Mg) Qu Qa Qx
Fixed 7013 0367000 —1.97008 11409
2 0.2 0.08 0.1 0.04 0.04
ACDM 7173 0.36% 5 —1.8%)1 110 0.3%00  0.7%0 0
3 02 0.08 0.1 0.05 0.05 0.02
ACDMK 713 0.36%0 5, -1.8%9 11750 03700 07700 0.000297003
survey and is given by 2020), the halo mass, the virial radius, the stellar mass, the estimated
dp d®/dL(L /) velocity dlsperswp that we assume follows the relation in Z.ahlc.l etal.
Olens = | ————————, (18) (2016), the effective stellar radius of the 3D and 2D distribution of
u  dd/dL(L)

where we adopt the analytical quasar luminosity function from Manti
et al. (2017),

do P*
dL T 1004@@+DM =M. ) 4 [(04BE)+D(M—M, ()

19)

assuming a magnitude limit of Msp = 27 (Ivezic et al. 2019), o =
—3.23, B = —1.35, and log (®*) = a + bz + cz* witha = —6.0991,
b =0.0209, and, ¢ = 0.0171. The final CDF is therefore

log At

p(>log(Ar)) =1 —/ p(log(At))dlog(At). (20)

—00

3.4 Application to hydrodynamical simulations

Now, we have set-up the framework in which to extract time
delays and fold in line-of-sight structures and microlensing, we
move beyond simple analytical profiles. We adopt a suite of n-
body simulations that uses a full hydrodynamical prescription that
includes the EAGLE baryonic prescription and a modified GADGET
3 code (Schaye et al. 2015). The suite consists of four haloes that are
zoomed in simulations of giant ellipticals from a larger simulation,
identified as the most appropriate for re-simulation as determined by
Oppenheimer et al. (2016) and suitable for lensing observations by
Despali & Vegetti (2017). A detailed description of these simulations
can be found in Despali et al. (2020), however, here we present a
concise summary. The simulations include pressure—entropy smooth
particle hydrodynamics (Crain et al. 2015; Schaye et al. 2015),
stellar evolution, supernova feedback, active galactic nuclei, and
cooling. Haloes were identified using a friends-of-friends algorithm
and their properties using SUBFIND (Springel et al. 2001; Dolag
et al. 2009). Each of the four volumes have gas particle mass of
Mges = 2.3 x 103M¢, with cosmological parameters consistent with
the Planck Collaboration (2018) constraints: kg = 0.6777, Q¢ =
0.307, 2, = 0.04825, Q25 = 0.693, ny = 0.9611, and oy = 0.8288.
Table 1 shows the statistics of each halo simulated, including the
group ID (ID from Oppenheimer et al. 2016 and Despali et al.

stellar particles. In order to carry out the lensing analysis, we first
create 2D mass maps of each simulated halo at various redshifts.
To do this, we extract cones from five redshift snapshots (z;. =
0.20, 0.25, 0.37, 0.50, 0.74) and create 2D mass maps projected
in all three dimensions (i.e. 15 projected mass maps per halo),
each out to an x—y distance of 100 pkpc (physical kpc) and with
a projected depth of 1pMpc, and a pixel resolution of 0.1 pkpc.
A projected depth of 1pMpc should account for the contribution to
environmental effects from all nearby structures M < 10'“M,. We
extract three key features from the simulations that will be important
in the analysis: 1.) The number of substructure inside a projected
20 kpc (and 1Mpc deep) cylinder, with a mass Mag. > 107M; the
density profile derived from the projected inner 10 kpc of the galaxy
(and then de-projected); and the total projected mass within 5 kpc of
the galaxy.

Equation (15) implies that we can integrate to an infinitely small
dzp and dzg, however, in practice with finite amount of hard-
disc space and computation power this is unfeasible. From the 60
extracted lens planes (four haloes, three projections, five redshift
slices), we follow the prescription laid out in 2.1 and calculate the
PDF pr(Alogt) for a single source-lens configuration. For a given
source plane, we then convolve with equation (14) to find po(Alog 7).
We then calculate the magnification bias, o e,s from equation (18) for
each multiple image given a quasar luminosity function at the given
redshift (assuming a limiting magnitude of map, jimit = 27; LSST
Science Collaboration 2017). The magnification value we choose in
equation (18) will depend on the observing strategy. Here, we follow
Oguri & Marshall (2010) and choose the magnification of the fainter
image. From this, we now have our final PDF (for a single lens-source
configuration). We then do the same for a range of source redshift
planes choosing equal steps in the lensing kernel (i.e. A[DysDy/Ds])
from the lens redshift to a maximum source redshift of 8, with 21
redshift bins. Fig. 3 shows the lens-source configuration for the five
lens redshifts we use. Each colour shows a source redshift bin, the
solid black line shows the lensing kernel of each redshift with respect
to the lens redshift given by the solid red vertical lines.
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Figure 3. The lens-source configurations of the simulations. For each simulated halo we extract five redshift slices: z1, = (0.20, 0.25, 0.37, 0.5, 0.74), shown
as each row here. For each lens we select 21 source redshift slices to integrate over, each one equally spaced in change in lensing kernel (i.e. A[DysDy./Ds]) up
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Figure 4. Cosmological dependence of the CDFs. Each panel shows the
change in the CDF relative to Hy = 70kms~!Mpc~!, Qv = 0.3, Qx =0,
and 2 5, = 0.7. Although the ranges are relatively arbitrary, we see that the
dominant parameter is Hy with changes of 10 per cent.

3.5 Implementing cosmological dependence

We now extend the CDFs of the cosmological simulations at a
single cosmology to any cosmology. To completely encapsulate the
impact of a change in cosmology on the CDF we would need to
re-simulate the entire cosmological box with varying cosmological
parameters. However, this is currently unfeasible, moreover, the
dominant modification will be to the time delay distance and the
weighting of each redshift slice by the volume. Hence, to simulate
a CDF for a given set of cosmological parameters, we re-calculate
equation (15), with the new cosmology and note that future works
should study the impact on structure formation that this method
does not encapsulate. Fig. 4 shows multiple examples of this re-
calculation showing the total CDF relative to a ACDM CDF (i.e.

MNRAS 498, 2871-2886 (2020)

Hy=70kms™! Mpc_', Qv =0.3,Q2k =0.,and 2, =0.7) . We find
that as expected, the time delay CDF is most sensitive to deviations
in Hy, with curvature having the smallest. Given the changes in the
CDF, we do not expect competitive constraints on anything except
the Hubble Parameter.

4 RESULTS

We now present the full CDF, including all sources of systematics,
integrating over all lens and source configurations. The left-hand
panel of Fig. 5 shows the cumulative probability of observing a time
delay, i.e. p(> log (Ar) for six Hubble parameters. We find that the
change in Hubble constant acts to simply shift the CDF along the
time delay axis.

Following the study of the ensemble lenses, we investigate the
halo-to-halo variance. The right-hand panel of Fig. 5 shows the
results of this test. We show the median value of each halo with
a dashed line, and the shaded regions show the 16 per cent and
84 per cent of all CDFs. We see that the halo to halo variation is quite
large, with BOO2 and B0OO8 exhibiting higher expected time delay
distributions than BOO5 and B009. This is much more interesting if
you consider that BOO2 has a lower velocity dispersion than B0O09.
However, as show in Despali et al. (2020), BO09 has significantly
more substructure than B002, by a factor of 4. We therefore follow
this up by studying three key properties of the lens, the number of
substructures, the halo total mass density profile, and the total mass
within 5 kpc, which roughly translates to the Einstein Radius of these
lenses. Fig. 6 shows the results of these three tests.

In the left-hand panel of Fig. 6, we show the expected median
time delay [log(Afneq)] in black and the most likely time delay
[log (Atmax)] in red as function of number of structures inside 20 kpc
and with a mass M/M > 107. We see that both the most likely
and median time delay are effected by the amount of substructure in
the lens, acting to reduce it. This is interesting given that Gilman,
Birrer & Treu (2020) found that ignoring substructures did not
bias the estimated Hubble constant from quadruply imaged quasars.
However, this study looked looked at the impact of substructures
on specific lenses. We see in the left-hand panel of Fig. 6 that
although the general trend is for an increase in the number of
substructures tends to decrease the expected time delay, there is a
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Figure 5. Final CDFs as predicted by the simulations. Left: The cumulative density function for all lenses for different values of Hp, including line-of-sight
effects, microlensing, and magnification bias. Right: The halo to halo variance for all field in the four volumes. The dashed line gives the median value and the
shaded regions contain the 16 per cent and 84 per cent percentile of CDFs.
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Figure 6. Left: The median (black) and most likely (red) time delay as a function of number of substructures inside 20 kpc and with a mass M/M¢ > 10.
Centre: The relationship between the power-law index and as a function of density profile power-law index and lens redshift. We see the clear degeneracy
between both parameters. Right: The relationship between the most probable time delay (i.e. the peak of the PDF) and the total mass within 5 kpc of the centre
of the galaxy.

large amount of scatter and it is not unlikely that a single lens system Finally, we test how the amount of projected mass within 5 kpc
with many substructures will have an increased expected time delay. of the lens effects the most probable time delay (i.e. the peak of
As such comparing the statistical impact of substructures with the the PDF). We show the measured values from each halo in the
impact of substructures of a specific lens configuration is difficult simulations with the fitted line and error in blue. We show the Az, o<
and hence this is not comparable with the study by Gilman et al. M? in the dashed line, which is what is expected from an SIS. We
(2020). find that these match extremely well.

The central panel explores the impact of the varying density profile To summarize, we find that there exists a large halo-to-halo
index, testing the relation stated in equation (10) that the power law of variance, with substructures in the lens shifting the expected time
the PDF correlates directly with the power law of the halo. We test this delay to lower values, and although the lenses follow the expected
by first measuring the projected density profile of each individual lens relation, the density profiles seem to be shallower than o« = —2
and de-project assuming spherical symmetry. We then fit a power-law (which had been simulated in previous studies), however, the most
model to each PDF, fitting only to the p(log Af) > 1072, The central probable time delay closely follows a At oc M? relation, which is
panel of Fig. 6 shows the measured power-law index of the PDF as a naively what we would expect.

function of the density profile, for each halo, with the redshift of the
halo in colour. The blue line shows the fitted trend with the black-
dashed line showing the expectation from equation (10). We see that

. . 4.1 Constraints on current data
the mean relation matches that expected, however, we notice a larger

variance in the measured PDF, with a clear trend in redshift. We also We now look to data to see how precisely we can measure Hy.
note that the points at z = 0.37 have larger amounts of substructure However, in order to do this, we must construct a model to compare
in the lens and therefore mean the power-law fit is not a good one. to the data. To do this, we carry out the following procedure:

MNRAS 498, 2871-2886 (2020)
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(1) Reduce the dimensionality of each halo’s CDF using a principal
component analysis (PCA);

(ii) For a given set of features, [z, « (density profile power law
index)] and log [M(< 5 kpc)/M ], train a Gaussian Process Regressor
that can predict the principal components for the fiducial cosmology;

(iii) Learn the expected shift in the CDF due to change in the
cosmological parameter set (i.e. Fig. 4), by fitting a simple linear
regressor;

(iv) With an algorithm that can now predict the CDF for a given
lens redshift, power-law index, and cosmological parameter set,
estimate the parameters of any CDF;

(v) In a Bayesian framework, use a Monte Carlo Markov Chain
(MCMC) to estimate the parameters from a mock observation of
time delays.

(vi) Apply the framework to observed data.

4.1.1 PCA analysis to reduce the dimensionality

We first reduce the dimensionality of the CDFs by decomposing them
in to their principal components with a principal components analysis
(PCA). PCA analysis is a popular way to compress information, often
in, for example, image analysis. PCA is founded on the idea that a
data vector will have a number of principal, orthogonal axes, such that
the high dimensionality of a data vector can be reduced. By linearly
combining each component of the data vector with some weight, we
are able to transform the data in to a subspace that has the highest
possible variance, i.e. it explains the largest amount of the data. This
amounts to the first principal component. This component can then
be removed and the subsequent principal components can be found.

We carry out a PCA analysis on each individual time delay CDF. In
total, we have 60 CDFs (four haloes, three projections, and five lens
redshifts, z;.). We adopt the PCA analysis from the python package
SCKIT-LEARN! that follows a probabilistic PCA.?

4.1.2 Gaussian process regressor to predict the principal
components

Now with our principal components at discrete regions in the
parameter space (for a fiducial cosmology) we look to create a
predictive model that can interpolate between these and predict at
all regions. To do this, we adopt a Gaussian process regression
technique (GPR). A GPR is a supervised machine learning method
that adopts a mixture of Gaussian distributed functions that allow us
to interpolate between variables by mapping a function or kernel
to an N-dimensional space. GPRs have been used to constrain
the Hubble constant in the past, for example, Liao et al. (2020)
combined strong gravitational time delays and Supernova to estimate
Hy = 72.87}5 kms~' Mpc~!, constituting a 2.3 per cent uncertainty
on the Hubble constant. For more about GPR please see Rasmussen
& Williams (2006).

In order to apply the GPR to this problem, we fit and train on
each principal component with input features ® = [z, «, log (M(<
5kpc)/My); i.e. lens redshift, density profile power law index and
the mass within Skpc], this way for each component the GPR
learns the relationship between these features and the target principal
component value. In order to train the most accurate GPR, we carry
out a MCMC over the meta-variables of each kernel available in the

Uhttps://scikit-learn.org/stable/modules/generated/sklearn.decomposition.
PCA .html
Zhttp://www.miketipping.com/papers/met-mppca.pdf
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Figure 7. Top: Choice of noise level for the Matern Kernel in the Gaussian
Processor Regressor (GPR). Bottom: GPR as a function of number of principal
components used. The top panel shows the mean difference between the
estimated CDF (C D F) and the true CDF for different number of principal
components (different colours). We find that the GPR can predict the CDF
to within 0.1 per cent bias. The bottom panel shows the root mean square
of the GPR for different number of principal components. We find that the
statistical variance is ~2 per cent.

SCIKIT-LEARN package.? We find that the combination of the Matern
kernel* returns the highest log-likelihood value during the fitting
process. The choice of meta-parameters is important in this situation
since they will govern how well the GPR is at predicting the PCA. We
initially adopt a length-scale = 1. and v = 3/2 and find that the log-
likelihood of the GPR is insensitive to variations in these parameters,
however, the value of the noise floor, on does alter the log-likelihood.
We therefore carry out a simple search for the noise value that returns
the highest log-likelihood. The top panel of Fig. 7 shows that the value
of wn with the highest log likelihood is ax = 4 X 1073,

We now extend this algorithm that can predict the CDF for a given
set of physical parameters to include a complete set of cosmological
parameters. To do this, we calculate the shift in the CDF due to a
change in the cosmological parameter set by first setting up a grid
of cosmological parameters: Hy = [60, 80], ), = [0.25, 0.35],
Qa = [0.65,0.75], and Qg = [—0.02, 0.02], with each having five
equally spaced intervals except Hy, which has 11. We calculate the
CDF at each point in the 4D parameter grid and the associated
cosmological shift and then fit a linear regression to this shift> such
that we can estimate the shift at any cosmology. We now have a
algorithm that can estimate the CDF given seven parameters, ® =
(zL, a, log (M(< S5kpe)/Mp)), Ho, Qm, Q4, Q).

We show the accuracy of the GPR in Fig. 7. The top panel shows
the mean difference between the predicted CDF and the true CDE.
We see that the systematic bias has a maximum of <0.1 per cent for

3https://scikit-learn.org/stable/modules/Gaussian_process.html
“https://scikit-learn.org/stable/modules/generated/sklearn.Gaussian_process
kernels.Matern.html#sklearn.Gaussian_process.kernels.Matern
Shttps://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lin
earRegression.html
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all principal components above three. The bottom panel shows the
root mean square between the true and the predicted CDF. We find
above five principal components there is no discernible difference.
As such we decide to use six principal components going forward.
Moreover, we find that the intrinsic dispersion in the estimator is
ogpr ~ 1.5 per cent, signifying the precision limit of this model.

4.1.3 Validating the model and sample

Now armed with an algorithm that can predict the CDF for any
given © = (zp, @, log (M(< 5kpc)/ M), Ho, Q1, Q4, Q) We can
estimate H, from a given sample of time delays. We first test the
self-consistency of our algorithm. We simulate a mock CDF with
© ={Hy =07, zL =04, « = —1.75, log(M(< 5kpc)/My) =
11.05, Qv = 0.3, Q5 = 0.7} and a fixed value of Qg = 0. We
simulate a survey of nje,s = 103 observed lenses, 100 times. We fit
our model to the data in the same flat prior space that we laid out
our grid of cosmological parameters, i.e. Hy/(100kms~! Mpc~!) =
{0.6,0.8},2. ={0.,0.74}, « = { — 2.1, — 1.4}, ), = {0.25, 0.35},
and 2, = {0.65, 0.75}. At each step of the MCMC, we calculate the
expected CDF from the GPR and compare to the observed via the
Cramér-von Mises criterion that is the sum of square of the distance
between the data, D, and the model M:

pn(@)|D) = > (CDFy — CDFy(©))* 1)

We use the publicly available package EMCEE,® using a burn in length
of npym = 500 and a sampling chain length of n¢p,, = 1000. Fig. 8
shows the results of this test. We find that we return the input Hy,
7L, density profile index « and the two cosmological parameters, 2y
and Q4. Interestingly we find that the posterior of the mass within
5 kpc has a degeneracy with o, whereby, the sampler does return the
input value, but it is also possible to produce similar features in the
CDF with a steeper density profile and less mass within 5 kpc.

4.1.4 Constraints from current data

Now with our self-validated code we fit our model to the current
observed data. We adopt time delays with their associated errors from
Millon et al. (2020; and references therein). Table Al in Appendix A
gives an overview of the each object used, reference for the measured
time delay, the lens redshift, source redshift, and the estimated time
delay and error. We create a CDF from these time delays and fit our
model. To incorporate the error bars in the estimates, we then Monte
Carlo the CDF 100 times, each time resampling the CDF from the
stated error bars and refitting the model. We carry out this procedure
in three different cosmologies, the first, and our stated constraints,
a flat Universe, assuming Qg = 0, the second not assuming a flat
Universe and the third a fixed cosmology (2 = 0.3, 2, = 0.7, and
Qg = 0.). We show the MCMC samples assuming a flat Universe
in Fig. 9 from the complete 100 Monte Carlo tests and the median,
16 per cent and 84 per cent in Table 2 . The posteriors from the other
two runs can be found in Appendix B (Figs B1 and B2).

Finally, we fold in the statistical variance of our PCA estimator
from Fig. 7 of 2 per cent, adding in quadrature and find, assuming a
flat Universe, that Hy = 7172 kms~' Mpc™!, 7 = 0.3675%), o« =
—1.8%01 log (M(< 5kpe)/Mo) = 11.1701, @y = 0.379% and
Qp =070

Shttps://emcee.readthedocs.io/en/stable/user/sampler/#
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Following this, we estimate the variance due to the choice of noise
parameter in the GPR. Although we chose the noise parameter with
the highest log-likelihood, this choice could be seen as relatively
arbitrary. We therefore measure H, for a variety of different noise
levels of the GPR. Fig. 10 shows each estimate relative to the fiducial
value of ey = 4 x 1073. We find the estimate is stable within
~0.1 per cent.

4.1.5 Appropriateness of the simulations

In this study, we have used the simulated haloes to estimate the
constraints from data. A key systematic will be the appropriateness
of these simulations with respect to the observed lensed systems. We
intentionally did not input any lens redshift or mass within 5 kpc into
this method for two reasons. The first was that in the case of large-
scale surveys this information may not be available, so as such we
wanted to test this method as it would on large scale data. Secondly,
it would provide an important consistency check.

This consistency test entails two questions: 1. Is the estimated
redshift consistent with the true lens redshift? 2. Is the estimated mass
within 5 kpc consistent with the same observed mass? We make it
clear here that these are consistency checks and not validity checks.
Fig. 11 shows the results of this consistency test. The top panel shows
the true lens redshift distribution in red and the estimated distribution
from the data. We see that the sampled distribution is bi-modal, with
a preference for lower redshifts, however, with also some excess
probability at higher redshifts. We hypothesis that the sampler is
trying to fit to the high and low-redshift regions of the data, however,
in both cases finds a consistent Hy value.

The bottom panel of Fig. 11 shows the estimated mass within
Skpc and the ‘true’ mass. In order to estimate the ‘true’ observed
mass, we have make some assumptions about the systems. We first
assume that all systems have an image separation of either ry, =
1.5 arcsec or rgp = 1.0 arcsec. If we examine the appendix A
in Millon et al. (2020), we see that this is typically the observed
separation of the images. From this we can calculate the mass within
the Einstein radius. We note that this is sometimes larger or smaller
than 5 kpc, so assuming the M o r, we account for this difference. We
show the estimated mass within 5 kpc in green and the ‘true’ mass
assuming a typical image separation of ry, = 1(1.5)” in red (green).
We see that the estimated masses from these simulations bookend
the estimated mass. Moreover, we see that the estimated mass has a
broad peak and therefore for this sample size, we are insensitive to
any discrepancies on this scale. As such we state the bias induced by
the differences in mass between the observed and simulated sample
is small.

4.2 Statistical reach of the Vera Rubin Observatory

Now, we have attempted to measure H, from current data we explore
the power of future data, specifically VRO. In our previous tests,
we assumed that the observing strategy of VRO is infinite, whereas
in truth VRO will have a implicit minimum possible observed time
delay due to the return schedule (i.e. how often a single patch of sky
is returned to). As such we now implement a minimum time delay
on the CDF of Afy;, = 10 d (LSST Science Collaboration 2017).
Using the same mock samples as we did to the validate the code,
we now determine the expected statistical reach of VRO. To do this
we estimate the error on each of the six parameters (omitting Qx as
we are insensitive to this) for a range of lens sample sizes assuming a
VRO minimum time delay (i.e. Ay, = 10). For each case, we mock

MNRAS 498, 2871-2886 (2020)
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Figure 8. Consistency check on the Gaussian Process parameter estimation. We generate a mock sample of rjens = 103 observed quasars from the trained
model and then using an MCMC to find the best-fitting parameters. here we show the 0.5 and 1o contours with the black marks showing the true value.

a sample CDF and then fit to the data, iterating 100 times per sample
size. Fig. 12 shows the results for each of the six parameters with
the error bar showing the 1o uncertainty in the estimated sensitivity.
In the top panel, we show the constraints on HO, in the dashed cyan
line we show the current sensitivity, the red line shows the current
sensitivity limit of the GPR model to predict the CDFs. In each
panel, we show the expected sensitivity from an VRO survey with an
optimistic ~3000 lenses and conservative ~400 lenses. We find that
up to this conservative limit, our model is sufficient and constraints
on H, < 3 per cent are possible. Similarly, marked improvements in
the sensitivity in €2y and €2, are seen, however, these will never be
as competitive as other probes. We also find that we maybe able to

MNRAS 498, 2871-2886 (2020)

make significant improvements in our understanding on the global
density profile index, with predicted constraints of <4 per cent.

It is clear from these results that although this model we have
presented here is sufficient for the current data set, it needs improving
if we are to exploit the full statistical power of VRO.

4.3 Discussion

Here, we have presented a 4 per cent statistical error estimate on Hy.
We have shown that the distribution in lens redshifts and masses
are consistent with simulated lenses. Moreover, the method is not
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Figure 9. The posteriors from our final fit. Contours show the 1o error. We run three different fits, one with a fixed cosmology (i.e. @y = 0.3, Q5 = 0.7, Qx =
0.), one assuming a flat Universe and one completely free. Here, we show the results assuming a flat Universe, the other two fits can be found in Appendix B.
We find Ho = 70 = 3kms™" Mpc ™!, z1. = 0.361 055, & = — 1.8 705, log (M(< 5kpe)/Me) = 11750, @m = 0.3709 and @4 = 0.770:93.

too sensitive to the mass parameter and hence although important,
will not have a significant bias on the Hubble parameter estimate.
However, we do note that this study was based on the simulations
of four elliptical galaxies that do not represent the entire population.
Moreover, there are known inconsistencies between simulated and
observed galaxies (Wang, Chen & Li 2017; Xu et al. 2017; Peirani
et al. 2019), particularly in the core where time delays are sensitive.
As such, if this method is to be competitive going forward in to
the era of sub 2 per cent estimates on Hy, then we will require not
only more accurate simulations, but an understanding of the time
delay distributions over a larger population than just four volumes.

Moreover, we showed that the algorithm used here had a 2 per cent
systematic error when compared to analytical profiles. If we are to
H, in this fashion in the era of Vera Rubin Observatory then this will
need to be improved. Finally, in this study we suggest that the galaxies
have a shallower profile that that of a Singular Isothermal Sphere.
Previous studies of massive ellipticals from gravitational lensing [e.g.
(Gavazzi et al. 2007)] suggest that galaxies follow a profile closer to
that of an singular isothermal sphere (¢ = 2.). However, this could
be due to the fact the GPR was trained on galaxies with profiles
a < 2. Therefore, going forward, the finding here would have to
corroborated with independent studies as any bias could impact the
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Figure 10. Dependence of the estimate of Hy on the GPR meta-parameter
ay. We constrain the data using a variety of different noise levels in the
Gaussian Processor and find that the value varies within ~0.1 per cent around
the fiducial estimate (e = 4 x 107%).
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Figure 11. Consistency checks from our fit to the observed data. The top
panel shows the true lens redshift (red) and the posterior from the sampling
(blue). We see that the two distributions are consistent with one another and
in fact there is evidence for bi-modality in the posterior, which may reflect
the true observed bi-modality. The bottom panel shows the posterior of the
mass (blue) and the ‘true’ mass assuming a typical image separation of rge, =
1.5(1.0)" in red (green). For these typical image separations, the ‘true’ mass
is consistent with our mass estimate.

estimated value of Hy. If so it would have implications for the training
sample used when estimating the CDFs. Having said that, this method
is able to recover the lens redshift of the observed sample, providing
some evidence for the potential competitive nature of estimating H,
from a distribution of time delays.

5 CONCLUSIONS

Strong gravitational time delays are an independent and competitive
way to constrain the Hubble Constant, Hy. Studies of individual time
delays have led to tight constraints on Hj, however, in the advent
of large-scale surveys, this will be difficult to scale. As such we
build on previous statistical studies of lensed quasars and propose
a new, complementary forward-modelling method to constrain Hy
using the CDF of observed time delays that does not rely on the
details of individual lenses.

We develop a ray-tracing algorithm that is able to take a projected
surface density map, for a given lens-source configuration and
estimate the CDF. We validate this code on analytical forms of the
CDF using Singular Isothermal Spheres. We find that the code can
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return the expected CDF to within a theoretical systematic error of
Ogys < 2 per cent.

Using full n-body simulations we use this framework to estimate
the CDF of strong gravitational time delays in doubly imaged
quasars. In doing so for the first time we do not assume analytical pro-
files, taking in to account dark haloes and substructure and the direct
impact of baryonic feedback on time delays. We include the impact of
line-of-sight structures both within the immediate environment of the
lens (down to the mass resolution of the simulation) and uncorrelated
mass along the line-of-sight, microlensing, and magnification bias.

We find that the CDFs exhibit large amounts of halo to halo
variance, caused by varying number of substructures at different
redshifts, projected density profiles, and total mass with 5kpc.
Indeed, we find that the the relation between the power-law index
of the PDF and the density profile is consistent with analytical
expectations and that the most probable time delay (i.e. the peak
of the PDF) is proportional to the square of the total mass within
5 kpc, again consistent with analytical expectations. However, there
is a large amounts of scatter around these relations, showing how
individual haloes can induce different features in the CDFs.

We construct a model of the CDF for a fiducial cosmology by
reducing their dimensionality using a principal component analysis
and then interpolating between these using a GPR. We then calculate
the cosmological shift from different parameter sets and fit a linear
model. This way we are able to predict a CDF for a given lens
redshift, z;, power-law index, o and a full set of cosmological
parameters including Hy, Q2m, 24, and Qg. We carry out a self-
consistency test estimating six parameters (omitting Qx since we are
insensitive to this). We find the model returns the expected value,
however, there is degeneracy between the density profile parameter
a and the mass within Skpc. We also find that all cosmological
parameters are mildly degenerate with one another. We then estimate
the true Hy from a sample of 27 doubly imaged time delays reported
in Millon et al. (2020). Assuming a flat Universe, we measure
Hy =71"2 kms~'Mpc~!, z;. = 0.36702,, « = — 1.8}, log (M(<
Skpe)/Me) = 11.1701, Qu = 037001, and Q4 = 0.77004. This
amounts to a 4 per cent estimate of the Hubble parameter.

We discuss the appropriateness of the simulations, and find that
within the sensitivity of current data we are not systematically biased.
We return a consistent lens redshift distribution and the estimated
masses are both within the expected true mass, and that the model
is not particularly sensitive to this parameter. However, we note that
there is debate on the reliability of such simulations at reproducing
the properties of galaxies, which may impact these results (Wang
et al. 2017; Xu et al. 2017; Peirani et al. 2019).

Finally, we estimate the statistical reach of future data, specifically
VRO. We find that large improvements can be made in the first few
hundred lenses, with predicted constraints of A Hy/ HO < 3 per cent.
However, due to the sensitivity limit of the model (2 per cent), beyond
1000 lenses, the model will need to be improved before advances
can be made. Should VRO return the optimistic 3000 lenses, then an
improved model, trained on many more simulations, could make a
competitive measurement of the Hubble Constant.
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APPENDIX B: OTHER COSMOLOGICAL FITS

Here, we show the posteriors from the other two MCMC runs assuming a fixed cosmology (i.e. 2y = 0.3, 24 = 0.7, 2k = 0.) and a completely

free cosmology.
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Figure B1. Posterior from a fixed cosmological model (i.e. @y = 0.3, Q24 = 0.7, Qx = 0.).
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This paper has been typeset from a TEX/IATEX file prepared by the author.

MNRAS 498, 2871-2886 (2020)

202 11dy 60 U0 159NB Aq | 6685/ 1 282/2/861/2I01E/SEIUW/W0d"dNODIWLapED.//:Sd)lY WO} PaPEOjUMOQ


art/staa2522_fb2.eps

	1 INTRODUCTION
	2 METHODOLOGY
	3 THE FULL CUMULATIVE DENSITY FUNCTION
	4 RESULTS
	5 CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: TIME DELAY SAMPLE
	APPENDIX B: OTHER COSMOLOGICAL FITS

