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ABSTRACT

Combining different observational probes, such as galaxy clustering and weak lensing, is a promising technique for unveiling
the physics of the Universe with upcoming dark energy experiments. Whilst this strategy significantly improves parameter
constraints, decreasing the degeneracies of individual analyses and controlling the systematics, processing data from tens of
millions of galaxies is not a trivial task. In this work, we derive and test a new compressed statistic for joint clustering and
lensing data analysis, maximizing the scientific return and decreasing the computational cost. Our approach compresses the data
by up-weighting the components most sensitive to the parameters of interest, with no loss of information, taking into account
information from the cross-correlation between the two probes. We derive optimal redshift weights which may be applied to
individual galaxies when testing a given statistic and cosmological model.

Key words: gravitational lensing: weak —methods: statistical —large-scale structure of Universe.

1 INTRODUCTION

Combining different observational probes is a promising technique
to unveil the physics of the Universe with upcoming dark energy
experiments. First, any tensions or inconsistencies between different
probes can indicate new physics or help us correct for systematic
errors not controlled in an individual analysis. Secondly, a joint
analysis significantly improves measurements of the parameters
of interest, decreasing the degeneracies of an individual analysis
(Bernstein 2009; Joachimi & Bridle 2010; Yoo & Seljak 2012).

The potential of these tests will be greatly enhanced by current
and future cosmological surveys such as the Kilo-Degree Survey
(de Jong et al. 2013), Dark Energy Survey (Abbott et al. 2018),
Hyper-Suprime-Cam (HSC) lensing survey (Aihara et al. 2018),
Large Synoptic Survey Telescope (Ivezi¢ et al. 2019) and Euclid
satellite for gravitational lensing (Laureijs et al. 2011), and the Dark
Energy Spectroscopic Instrument (Levi et al. 2019) and 4-metre
Multi-Object Spectroscopic Telescope for galaxy clustering (de Jong
et al. 2012). Whilst this large volume of data represents a unique
opportunity to understand the Universe, processing tens of millions
of galaxies to detect the subtle signatures of new physics is not a
trivial task. Developing new algorithms and strategies to analyse this
data is critical to maximize the outcome of these investments.

Further, these unprecedented data volumes create another key
challenge: how do we combine information from galaxies at different
epochs in the evolution of the Universe? Past analyses dealt with this
evolution in the data by binning galaxies in different sub-samples by
epoch. However, this technique is inefficient for several reasons: it
assumes no evolution within each bin, it neglects the cross-correlation
between sub-samples, and it is time-consuming because we are
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required to repeat the same analysis for each sub-sample of galaxies.
Moreover, systematic error may be imprinted by redshift evolution, if
the same galaxy carries different weights towards different statistics
in the joint analysis.

Rather than breaking the sample into multiple subsets, optimal
weighting of the data is an alternative to this traditional approach
which instead compresses the data, maintaining sensitivity to evo-
lution in the sample. Strategies for how to compress data have
gained increasing attention as a powerful method to handle ‘big
data’, compared to brute-force data analysis (Tegmark, Taylor &
Heavens 1997; Heavens, Jimenez & Lahav 2000). As discussed in
Tegmark et al. (1997), optimal weighting based on the Karhunen—
Loéve approach can compress a data set with no loss of information if
the mean is known, obtaining results with close-to-maximal accuracy.
In simple words, the optimal weights identify those aspects of the
data that are most sensitive to the physics we care about, and amplify
them with respect to other aspects of the data, which contribute
mostly to the noise. Similar to a principal component analysis, these
weighted modes are constructed to be an optimal estimate of the
cosmological parameters of interest through the Fisher Information
Matrix.

Tegmark et al. (1997) discussed the need for data-compression
when analysing the cosmic microwave background (CMB) with
>107 pixel all-sky maps, where a direct numerical inversion of the
covariance matrix is clearly unfeasible. More recently, Mootoovaloo
et al. (2020) discussed the application of a data-compression al-
gorithm such as MOPED (Heavens et al. 2000) to weak-lensing
measurements.

Previous studies have also developed optimal weighting schemes
for data compression with focus on measuring the growth rate of
structure (Ruggeri et al. 2017, 2019a, b; Zhao et al. 2019), angular
diameter distance (Zhu et al. 2018), primordial non-Gaussianity
(Castorina et al. 2019) and cosmic shear (Bellini et al. 2019). These

© The Author(s) 2020.

Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. For permissions, please e-mail:

journals.permissions @oup.com

20z udy 0z uo 1senb Aq 9GEGE8S/8Y6Z/2/861/9I0IE/SEIUW /WO dNO"0IWaPEdE//:SARY WOl papeojumod


http://orcid.org/0000-0002-0394-0896
mailto:rruggeri@swin.edu.au
mailto:journals.permissions@oup.com

Optimal data compression for multiprobe analysis

studies explored optimal weighting for measurements with individual
probes, demonstrating how an optimal weighting scheme applied
to a data set gives unbiased results and is efficient in decreasing
the computational costs. Our current study extends the MOPED
algorithm and the ‘redshift weights’ scheme developed by Ruggeri
etal. (2017) to galaxy—galaxy lensing statistics, and the combination
of lensing and clustering measurements. The MOPED algorithm,
presented in Heavens et al. (2000), allows for a dramatic reduction
in the data set size with little or no loss of information.

When combining multiple probes, the weights for the individual
probes, e.g. for clustering or lensing only, ‘lose their optimality’
if we neglect the cross-correlation between the different probes,
which contains important information on the parameter space we are
exploring. In this work, we derive and test a new compressed statistic
for combining galaxy—galaxy lensing and galaxy clustering based
on their covariance. Our optimal data compression presents various
advantages with respect to a more standard approach of tomographic
redshift binning: by compressing the information along the redshift
direction it allows for a time-efficient analysis and drastically reduces
the computational time and covariance requirements, enabling us to
perform data analysis over a wide redshift bin. The weights depend
on the specific cosmological statistic and fiducial model and may not
be optimal for other cosmological models; however, in this case the
resulting fitted parameters will remain unbiased.

The paper is organized as follows. In Section 2.1, we briefly
describe the model for the galaxy clustering and galaxy—galaxy
lensing (cross-)power spectra and covariance. In Section 3, we derive
the optimal weights to be applied to the lenses to optimize the
statistical error of the combined probes fit. In Section 4, we test
parameter fits based on our compressed statistic using Gaussian
realizations and compare the results with uncompressed analyses.
In particular, we verify that the derived weights produce a lossless
compression of the data and unbiased results. Section 5, we discuss
a scenario in which optimal weights reduce systematic biases in
fitted parameters by tracing the redshift evolution of the galaxy bias.
In Section 6, we conclude by discussing future applications and
extensions of this method.

2 MODELS AND COVARIANCE

2.1 Angular power spectra for combined probes

We model the angular (cross-)power spectra between two different
fields §,, 8y, of redshift samples i, j, as a function of projected Fourier
mode, £, as

., i J
cil(e) = / dx%&.](e/x, 200, ()

where P,,(k, z) is the 3D (cross-)power spectrum of the fields at
wavenumber k and redshift z, and x(z) is the comoving distance
(Hu & Jain 2004; Krause & Eifler 2017). The weight function g, ,()
depends on the field considered: we focus here on auto- and cross-
correlations between gravitational lensing and galaxy large-scale
structure.

For the galaxy density field 84, g4(x) is proportional to the redshift
distribution of galaxies in each bin

i _ n{ens(z) diz
q,(x) = —— dy

lens

; (@)

where ni, (z) is the lens redshift distribution of sample i, with z the
redshift corresponding to x, and fil,, is the average lens density.
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For the convergence field d,, g.(x) is given by the lensing
efficiency
3HZQm

2¢* a(x)

3

,- gl e(@) dz (= %)
q.(x) = / = dx'
X

Mowee dX" X'
where Q,, and H, are the values of the present-day matter density
and Hubble parameter, xm.x is the maximum comoving distance
of the source distribution, and ng, .(z) and 7. are the source
redshift distribution and average density of sources in sample i. We
note that equation (1) is derived assuming the Limber and flat-sky
approximations (Lemos, Challinor & Efstathiou 2017).

2.2 Covariance matrix

The Gaussian covariance matrix between two angular power spectra
Cii (1), Cki(e,), for samples (i, j, k, 1) is given by Hu & Jain (2004)
and Krause & Eifler (2017)

_ 4 s 2

T Q.20 + DAL,

x [(Clbee) + 6uicNL) (Clita) + 81603 )
+ (Clhe) + 8uduaN2) () + 81867 )] @

where € is the angular area of the overlapping sample in steradians.
For galaxy—galaxy lensing, the covariance of the angular power
spectrum Cg, depends on the Cyy, Cyc, and C, terms. For these
probes the noises terms are

Ngg = l/ﬁ]ensa
NKK = UZ/ﬁsourcea (5)

where o, is the shape noise.

2.3 Fiducial cosmology

We adopt a fiducial cosmological model with matter density 2, =
0.3, baryon density 2, = 0.044, Hubble parameter 2 = 0.7, amplitude
of matter clustering og = 0.8 and spectral index ng; = 0.95. For the
galaxy bias model we choose a simple redshift-dependent relation

D(Zpiv)

b(z) = bpiv D(2) s

(6)

where D(z) is the linear growth rate and we selected by, = 2
as the value of the galaxy bias at the pivot redshift zp;, = 0.45.
This relation is approximately correct for the clustering amplitude
of magnitude-selected galaxy samples (Eisenstein et al. 2001). To
model the galaxy—galaxy and galaxy-convergence power spectra Pgg
and P, we assume a linear bias relation where Py, o b?0 and
Py, o bo. The power spectrum of the matter on non-linear scales
is computed from CAMB (Lewis & Bridle 2002).

3 OPTIMAL WEIGHTS METHODOLOGY

We are interested in defining optimal redshift weights which average
measurements from samples at different redshifts into a single final
data set containing the same information, i.e. which perform lossless
data compression. In this section, we briefly introduce the optimal
weights formalism and derive weights to combine galaxy clustering
and galaxy—galaxy lensing measurements, wgg 4 ¢, COmparing them
with individual-probe weights w,e and wg,.
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3.1 Derivation

3.1.1 Optimal weights for a single parameter

Consider a data set x containing n values, Gaussian-distributed with
mean g and covariance C. A linear compression transforms this data
set into a single number y:

y=w'x, (7

where w is a vector of weights of length n. The compressed
measurement y has mean w’p and variance w/Cw (Tegmark et al.
1997).

In order to obtain lossless compression we need to select weights
w which preserve the information of the original data set x in the
new value y. More formally, such weights would conserve the Fisher
information of x. Considering a single parameter of interest, e.g. 6;,
we can express the Fisher information of ; in terms of the statistics
of y as

1 /wiC,w\’
Fi == .

2 ( wlCw )
where the index, i denotes 9/06;. We note that the normalization of
the weights is arbitrary (cancels in equation 8).

We select w that maximizes Fj; in equation (8). A general
procedure to achieve this is discussed in Tegmark et al. (1997)
and Heavens et al. (2000). As is common practice, we perform
our analysis for a fixed fiducial covariance matrix (e.g. evaluated
from mock catalogues), independent of the model parameters, and
therefore assume C; = 0 and that the information on 6; is coming
only from the second term o ;. In this case, the unique solution
for the weights w in equation (8) is given by

w =C"u,. ©))

(W)’
w! Cw

, ®)

Substituting equation (9) into equation (7), we obtain the relation
y=Cux. (10)

By substituting equation (10) in equation (8), we can see that the
Fisher matrix is invariant with respect to w, thus y contains as much
information as x about 6; (Tegmark et al. 1997).

3.1.2 Optimal weights for multiple parameters

In order to determine multiple parameters from a data set, we need
to compress the data set into multiple values to retain the informa-
tion about the parameters. We specify two equivalent approaches,
following Heavens et al. (2000) and Zhao et al. (2019), which lead
to the same results.

First, following Heavens et al. (2000), we search for a second
number y that contains the same information as x about the second
parameter 6

y =w'x. (11)
If we require y to be uncorrelated with y, i.e.
wicw' =0 12)

then, substituting equation (12) into equation (8), we find the solution

for w' to be

g ww
Vi€l — (e wy?

An equivalent formulation of this approach without the Gram—
Schmidt orthogonalization is described by Zhao et al. (2019), which

w

(13)
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defines a derivative matrix

p— (2 r (14)
26," 06,

and the multiparameter weights are derived as

W = C'D, (15)

which generalizes equation (9). Both approaches provide lossless
compression, leaving the Fisher matrix of the compressed sample
equal to the Fisher matrix of the original data set. We compute and
test the weights from both methods, confirming that they lead to
identical results. Solutions for more than two parameters are also
described by Heavens et al. (2000).

3.2 Optimal weights for o'g

As shown above, the optimal weighting scheme depends on both
the parameters of interest and the statistics used in the analysis. As
a proof-of-concept, we consider determining the single parameter
og from galaxy clustering and galaxy—galaxy lensing statistics
individually, and from their combination.

3.2.1 Cgyq 0r Cyy only

We first consider the case of optimal weights for averaging a single
statistic at given ¢ over redshift. For Cy, the uncompressed data
set x

Coe(l, 21)

X = (16)
Cea(l, 20)

across n redshift bins, is compressed into a new data set y following

equation (7). From equation (9) the optimal weights for Cy, have the
form

Wy = C'9C,, /03, amn

where C is the covariance corresponding to x, i.e. between Cg,(¥,
z;) and Cge(€, z;), which is a diagonal matrix in the Limber
approximation, and

9Cy _ / i ai00a (0 8P (e x, 2(x))
903 x2 dog '

Similarly, for a data compression of the C,. power spectrum, we
have

(18)

Wy = C'Cy, /0, (19

where C is the covariance between Cy, (£, z;) and Cy, (¢, z;), and

9Cy _/d aLGOGi 00 3 Pye(8/ x5 2(0)) 20)

903 - x2 dog

3.2.2 Cy4 and Cy combined

The weights determined in Section 3.2.1 are optimal for individual
measurements of Cyg or Cy, only. Since Cyy and Cy, are correlated,
these weights would not be optimal for data compression of the
combined statistics Cyg + Cg,. In this section, we derive the optimal
weights W, | o When compressing both Cgy and Cy,.

20z 11dy 0Z uo 1s9NB Aq 9GES68S/8762/2/861/2I01HE/SEUW/Wod"dNo-olWapeo.//:sd)y WOy papeojumod



Optimal data compression for multiprobe analysis

We construct a data vector x of 2N measurements of Cg,(z;) and
CgK(Zi), with i = lN’

ng(e,zl)

ng(ﬁ, Zn)

X = s
ng(e’ Zl)

@n

Coc(t, zn)
and compress this data vector into a number y,
(22)

—wT
Y = WegracX-

We can derive the optimal weights used in equation (22) following
equation (9)

Wegie =D - C! (23)
with
303 ng(e» Zl)

005 Cog (£, 2,)

D= 24
By Ca (£ 1) @
00y Carc (€, 20)

and
(Coe(£, 21)Cye (£, 21)) . .. {Coe(€, 21)Cei (£, 2,))

C= : 25

<Cgk(ﬁs Zn)>ng(‘€, 1) ... <CgK(E’ Zn)CgK(e, Zn))

where these covariance matrix elements may be evaluated using
equation (4).

3.3 Optimal weights for multiple parameters (o3 and b;y)

Combined-probe statistics are valuable for breaking degeneracies
between model parameters. In this study, we consider the proof-of-
concept of using Cye and Cy, to break the degeneracy between the
galaxy bias by and o'g, since Cgy bgivagz while Cg o byivog. Here,
we derive the optimal weighting scheme to be applied in this case,
following the method described in Section 3.1.2. For simplicity we
present only the derivation using the method of Zhao et al. (2019).

We consider the data vector of measurements in Section 3.2.2, of
length 2N, and the covariance matrix (of dimension 2N x 2N) from
equation (25). We generalize equation (24) to the multiparameter
case, by constructing a (N x 2) matrix of the derivatives D of the
model in each redshift bin with respect to o3 and by;y,

05y Cog(£, 21) 0pCge(€, 21)

aagcgg(z, Zn) 8ngg(Z, Zn)

26
By Cac(€. 21) 3Cae (£, 21) (26)

an’g Cgk (zv Zn) ab Cgk (E, Zn)
The optimal weight matrix (of dimension N x 2) is calculated from

Weeioe = C'D 7
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using equation (4), and the compressed data set y now has dimension
2 x1,
y=W' _  x (28)

gtk

3.4 Individual galaxy weights

In Section 3.2, we derived weights to be applied to the power spectra
measured in different redshift bins, compressing them into a single
mode containing the same information as the original. These weights
can be equivalently applied to individual galaxies, which can be
convenient for some analyses (e.g. enabling statistics to be measured
across wider redshift intervals).

Once we have determined power spectrum weights wgy, and wg,
(or the corresponding sections of the total weight vector wgg 4 g) for
a particular parameter and scale, we can assign these to individual
galaxies as wy = /Wy, for a clustering measurement and wg = wy,
for a galaxy—galaxy lensing measurement. Hence, a galaxy catalogue
may contain multiple weights per galaxy, where different weights
are used for the measurement of different statistics. This is expected
as the optimal weights will always depend on the statistic under
consideration. This recipe for applying the weights to individual
galaxies has been applied in survey data analysis by e.g. Ruggeri
et al. (2019a). Since the weights are expected to vary slowly on the
scales of interest for clustering (Zhao et al. 2019), we can choose a
single effective scale instead of computing weight for every scale,
which would be impractical.

In configuration space, if combining e.g. the shear-galaxy correla-
tion function y,(0) and the galaxy—galaxy angular correlation w(9),
we can also apply weights to a pair directly, instead of to an individual
galaxy (Zhu et al. 2018).

4 RESULTS

4.1 Survey configuration

In this section, we apply the data compression framework derived in
Section 3 to joint measurements of galaxy—galaxy lensing and galaxy
clustering. We demonstrate that an optimal weighting scheme allows
for loss-less compression of the data set, and recovers unbiased
parameter constraints.

For demonstration purposes, we construct as test data a set of
Gaussian realizations (see Section 4.2) representative of current
lensing and clustering surveys (we do not employ N-body simulations
as we are interested in a proof-of-concept where data are precisely
drawn from models). For the lenses, we assume a homogeneous
galaxy sample with a constant number density distribution

Niens(z) = 1074 3 Mpc™ 02 <z <0.7, (29)

representative of a Luminous Red Galaxy sample (Eisenstein et al.
2001). We model the redshift distribution of the sources as

nsource(z)/ﬁsource(Z) X Zz exp (_Z/ZO) 0.1 <z <35, (30)

with zop = 1/3, which is representative of the HSC photometric
lensing catalogue (Oguri & Takada 2011). These redshift probability
distributions are displayed in Fig. 1. The shape noise for each
ellipticity component o, source density, and angular area used for
the test data are defined in Table 1. The values chosen are consistent
with the HSC data set.

We explored alternative survey configurations, varying the density
of the lenses or their redshift range, to investigate the behaviour of
the weights for different signal-to-noise ratios. All tests performed
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Figure 1. The source and lens redshift probability distribution of our model
survey configuration.

Table 1. The survey configuration adopted for our test lensing data set.

Shape noise per component e 0.28
Source density flsource 17 arcmin—2
Survey area Qg 1000 deg2

led to equivalent conclusions, and therefore we limit our discussion
to the single survey configuration described here.

4.2 Gaussian realizations

For the test data we use a set of Gaussian realizations of the angular
power spectra Cye and Cy. We consider one redshift bin for the
sources, 0.0 < z < 3.5, and N = 5 redshift bins for the lenses
of width Az = 0.1 in the range 0.2 < z < 0.7. For illustrative
purposes, we select modes in the range 0 < £ < 1000 in bins with
AL =10 (£ = 1000 corresponds to k =~ 1.7 h Mpc~! at z = 0.2 and
k=0.6hMpc~!atz=0.7).

We assume measurements in different multipole bins to be inde-
pendent, and for each bin £ we compute the 2N x 2N covariance
matrix between Cgo(z;, €) and Cg(z;, £) (equation 4), thereby
including the correlations between different lens redshift slices.
To generate each Gaussian realization we Cholesky-decompose the
covariance matrix C as

LL* =C, (31)

where L is a lower triangular matrix with real and positive diagonal
entries, and ‘%’ denotes the conjugate transpose. The noisy data
vector x of each Gaussian realization for C,y, and C,, is then given
by

x=Lv+pu, (32)

where u' = [Cee(z1) ... Cye(zn)], and vis arandom vector of length
2N, drawn from a normal distribution with mean 0 and unit standard
deviation.

Once the test data are created, we fit each realization for either
or both of the amplitude parameters (og, b), fixing the other
cosmological parameters (the fiducial cosmology considered is listed
in Section 2.3). We use a normal chi-squared likelihood method
to perform the fit, comparing each data vector x with the model
described in Section 2.1, generated in redshift slices and weighted
in the same way as the data. We quantify the errors in the fits using
the standard deviation of the best-fitting parameters across 1000
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different Gaussian realizations, and use these parameter errors to test
the Fisher matrix predictions, the effectiveness of the loss-less data
compression and the systematic errors described in Section 5.

4.3 Single parameter fit for og

In this section, we consider results fitting only o, and fixing the
other parameters to their fiducial values. In the following section, we
will consider joint fits to o and b. We repeat the parameter fits using
three different approaches:

i) weighted analysis,
ii) uncompressed sample analysis,
iii) wide redshift bin analysis.

Method (i) uses the optimal weighting scheme to compress the
information in the redshift direction into a single measurement, and
method (ii) corresponds to an uncompressed analysis in which the
multiple redshift slices are retained and jointly analysed. Method (iii)
instead utilizes initial measurements in a single wide redshift bin (0.2
< z < 0.7 in this case), without maintaining sensitivity to the redshift
evolution across the sample, which we expect to lose information.

For each method (i)—(iii), we consider fitting the amplitude
parameters using

a) Cgye only,
b) Cg only,
c) the combination of Cyy + Cy,

to investigate how the optimal weights and parameter errors
depend on the statistic(s) analysed.

(i) Weighted analysis. We compress the data from each realization
by applying the optimal weighting scheme presented in Section 3. We
apply the weights to each angular power spectrum Cgg (21, £)..Cyc (215
£) as a function of £, obtaining a single mode C,s 4 4. for each ¢
considered. If the compression is lossless, Cgg 4 g is €xpected to
carry the same information as the uncompressed statistics Cge(21,
£)..Cyc(z4, £). We derive different weights for the different choices
of statistics (a), (b), and (c) listed above. As discussed in Section 3,
the optimal weights depend on the mean and the covariance matrix
of the statistic(s) employed.

ii) Uncompressed analysis. We consider the angular power
spectra of all N redshifts slices Cyg(zi, £), Cyc(zj, £) and the full
covariance between them. No compression of the data or optimal
weighting is applied in this approach, and the x> function for the
likelihood fitting is given by

x2()=d"Cc1d, (33)

for each ¢, where d = [Cg(z1,¢) — Cpa(z1,£)--- Cpi(zn, £) —
C ;‘f( (zn, £)], where the superscripts D and M indicate the data and
models, respectively. The models for Cy, and Cy, are described in
Section 2.1. We keep the covariance matrix fixed at the fiducial
model.

iii) Wide redshift bin analysis. Here, we analyse the data
considering a single wide redshift bin for the lens distribution,
generating the model and data at a fixed redshift, which we take
to be the mean lens redshift z. = 0.45. Otherwise, we perform fits
using the same x? likelihood method as described above. Comparing
results from this approach with method (i) demonstrates the benefit
of optimal (loss-less) compression of the tomographic samples.

Fig. 2 compares the angular power spectra for the analyses (i)—(iii)
in the range 1 < ¢ < 1000, and Fig. 3 displays the weights employed
as a function of redshift when compressing statistics (a), (b), and (c).
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Figure 2. Model galaxy clustering and galaxy—galaxy lensing angular power
spectra used in this analysis. Top panel: the galaxy clustering power spectra,
Cgg. The blue line indicates the weighted, compressed Cgg, the red line
displays Cgg for one wide redshift bin, and the dotted grey lines indicate
the values of Cyy for each uncompressed redshift slice. Middle panel: the
galaxy—galaxy lensing power spectra Cy, with the same lines and colours as
the top panel. Bottom panel: the summed Cgg + Cg, power spectra, for the
weighted case (blue line) and the wide redshift bin case (red line).

We note that the redshift weights applied for each statistic will be
different if that statistic is analysed individually, or in combination.
We display these weights for £ = 200, which corresponds to the
rough location of the linear to non-linear transition at the mean
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Figure 3. The optimal weights for Cygg (top panel) and Cy, (bottom panel)
for £ =200, as a function of lens redshift. The red lines indicate the optimal
weights when the two power spectra are combined in a joint analysis. The
green dashed lines indicate the weights for Cgg (top panel) and Cy, (bottom
panel) when these statistics are considered individually.

redshift of the lens sample, although the weights show a similar
redshift dependence for different €. The weighting scheme does not
depend on the normalization (as seen in Section 3), thus a convenient
normalization is set for the comparison.

For the Cy, statistic, the redshift weights do not vary significantly
between cases (a) and (c). For Cy, we notice a stronger redshift
dependence of the weights when moving from case (b) to (c). This is
due to the Cyq terms in the covariance matrix in case (c), enhancing
the redshift sensitivity.

Fig. 4 presents the errors in og obtained for the analyses: (i)
weighted data and (ii) uncompressed data, for the three different
choices of statistics (cases a—c). For each of these cases we plot the
mean and standard deviation of the best-fitting og parameters for
each of the 1000 Gaussian realization. All cases considered provide
an unbiased estimation of og.

The analyses of the compressed data sets provide parameter
errors that are comparable to those obtained in the corresponding
uncompressed analyses for all cases (a)—(c), confirming that the
compression is loss-less.

4.4 Multiparameter fit

We now consider jointly fitting o'y and the bias parameter by, defined
in equation (6) to our data sets. We again compare results using the
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Figure 4. Comparison of the mean and standard deviation of the best fits of
a single parameter og to the individual or jointly analysed galaxy clustering
and galaxy—galaxy lensing power spectrum, Cgy and Cg, for analyses of
weighted and compressed data (‘w’) and uncompressed data (‘unc’).
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Figure 5. The sum of the Cgg and Cg power spectra, comparing cases
applying optimal weighting for og (blue line) and bias (green line) and a
single wide redshift bin without optimal weighting (red line).

weighted, compressed data sets, the uncompressed measurements,
and wide redshift bin analysis, similarly to Section 4.3.

i) Optimal weight compression for two parameters. We use
the optimal weighting scheme discussed in Section 3.3 to define
weights corresponding to o g and by,;y and hence compress the data and
models of Cge(z;), Coc(z;) into two power spectra, which we jointly
analyse.

ii) Uncompressed analysis. We again consider the angular power
spectra for all N redshift slices and their covariance when com-
puting the x? statistic, adding by, as a free parameter in the
fits.

iii) Wide redshift bin. We fit the data in one wide redshift bin,
constructing our models at fixed z = z, as in Section 4.3. We fit
for o'g(z.) and byiy(z.), considering our model constant over redshift
while the data are constructed from a model containing an evolving
bias. In this way, we are constructing a test for the systematic error
associated with a discrepancy between the assumed and fiducial bias
evolution (see Section 5 for more details).
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Figure 6. The mean and standard deviation of the best fits of o'g for a joint
fit of o'g and the bias parameter to the combined Cgy and Cy, data set. We
compare analyses of weighted and compressed data (‘w’), uncompressed data
(‘unc’), and in a wide redshift bin (‘1-bin’).
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Figure 7. The mean and standard deviation of the best fits for the bias
parameter for a joint fit of o'g and the bias to the combined Cgg and Cy, data set.
‘We compare analyses of weighted and compressed data (‘w’), uncompressed
data (‘unc’), and in a wide redshift bin (‘1-bin’).

Fig. 5 compares the angular power spectra for the analyses (i)
and (iii) in the range 1 < £ < 1000. We compare the two weighted
power spectra: Wy, (blue line) and wy, (green line) with the wide-
bin angular power spectrum (red line). The og and by;, weighting
schemes produce similar results with different amplitude.

Figs 6 and 7 present the comparison between o g and bias parameter
fits for methods (i), (ii), and (iii), for the multiparameter fit. As for
the single-parameter fits, the weighting and uncompressed analysis
recover unbiased estimates of o'g. When a wide redshift bin is used,
we find a systematic error in the recovered parameters due to the
discrepancy in the assumed bias evolution (see Section 5 for more
details). Fig. 8 shows the distribution of the best-fitting values for o'g
and b, across the 1000 realisations for optimally weighted (green
contour) and uncompressed (red contour) analyses across the 1000
Gaussian realizations. As expected the two analyses show a very
close agreement.
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Figure 8. Distribution of the best-fitting values for o'g and by, for optimally
weighted (green contour) and uncompressed (red contour) analyses across
the 1000 Gaussian realizations.

5 AMPLITUDE SYSTEMATICS

The specification of the optimal redshift weights in Section 3 depends
on the redshift evolution of the amplitudes of Cg, and Cg,, which may
not be known in advance. Further, this redshift evolution can imprint
systematic errors into parameter fits if not correctly modelled, given
that it influences the signal contributed by each lens galaxy.

This issue arises due to the fact that Cye and Cy, (equation 1) have
different redshift kernels qu and ¢,q, . Therefore, a bias factor that
evolves with redshift affects the amplitude of Cyg and Cy, differently
at the same redshift. As a simple illustration of the effect, suppose
we consider a wide redshift bin and, neglecting the redshift evolution
within, generate the power spectra in equation (1) at a single effective
redshift zg,

Cap(6) = b Prun €/ Xetts 2 / &z 22, (34)

Coc(l) = b Poam(£/ Xett zerf)/dz 95(2) qx(2)- (35)

where P, (k, z) is the matter power spectrum. Here, we assumed a
single bias parameter for which Py, = b? P and Pye =D Py If
we now compare equation (34) with equation (1) we find that the
galaxy bias amplitude from Cy, is given by

f dz qé(Z) Pmm(e/Xs Z)

b (Cyy) = : (36)
& Pmm(e/Xeffs Zeff) f dz Q§(Z)
Similarly for C, we have
dz ,(2) ¢ (2) Pom(£/ X, 2)
B(Cy) = Jdzq:(2)q /X 37

P (€] Xetts Zett) [ 4z qo(2) g (2)

In general b(Cy) # b(Cy), therefore fitting the galaxy bias factor
from the combination of C, and Cg, would produce a systematic
multiplicative error in the amplitude.

We quantify this systematic error by comparing fits to the un-
compressed and weighted/compressed data with a wide-redshift bin
analysis where the bias evolution is neglected. These results are
presented in Figs 6 and 7, demonstrating how a redshift weights
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analysis gives unbiased results, consistent with the uncompressed
sample analysis.

To mitigate this systematic and compress the data we first need to
obtain a model for the evolution of the bias. One approach is to divide
the sample into narrow redshift bins and fit for b(z), then compress
the narrow bins into a single measurement using redshift weights. An
alternative strategy, following Ruggeri et al. (2019a), is to introduce
a free functional form for the galaxy bias (e.g. a Taylor expansion).
We can then set up an iterative process, computing the first set
of weights for fiducial bias parameters, fitting the parameters, and
then re-generating the weights. We note here that incorrect weights
are expected to cause sub-optimality, but not bias, in the resulting
parameter fits.

6 CONCLUSIONS

As cosmology transits from a data-starved science to a data-driven
discipline, developing new strategies to handle the upcoming big-
data volumes is a key requirement. In this work, we presented a
proof-of-concept of an efficient approach for combining galaxy—
galaxy lensing and galaxy clustering probes across a wide redshift
range in an optimal way, compressing the data set with no loss
of information. We considered just the amplitude parameters in
this study, but the work could be extended to other cosmological
parameters. We derived a set of weights to constrain the galaxy bias
and o, to be applied to the angular power spectra Cgy and Cy, (and
which may alternatively be applied to individual galaxies). We test
the weights on a set of Gaussian realizations mimicking the lens
and source distributions of representative surveys. We compared the
weighted analysis with the uncompressed data sets to demonstrate
that the weights carry the same information as the original data
set. Finally, we discussed how to handle potential systematic errors
associated with evolution in redshift of the galaxy bias. The next step
in this work is to apply the methodology to full mock catalogues and
survey data samples.
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