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ABSTRACT
Three-point and high-order clustering statistics of the high-redshift 21 cm signal contain valuable information about the Epoch
of Reionization (EoR). We present 3PCF-FAST, an optimized code for estimating the three-point correlation function (3PCF) of
3D pixelized data such as the outputs from numerical and seminumerical simulations. After testing 3PCF-FAST on data with
known analytical 3PCF, we use machine learning techniques to recover the mean bubble size and global ionization fraction from
correlations in the outputs of the publicly available 21CMFAST code. We assume that foregrounds have been perfectly removed
and negligible instrumental noise. Using ionization fraction data, our best multilayer perceptron (MLP) model recovers the mean
bubble size with a median prediction error of around 10 per cent, or from the 21 cm differential brightness temperature with
median prediction error of around 14 per cent. A further two MLP models recover the global ionization fraction with median
prediction errors of around 4 per cent (using ionization fraction data) or around 16 per cent (using brightness temperature). Our
results indicate that clustering in both the ionization fraction field and the brightness temperature field encode useful information
about the progress of the EoR in a complementary way to other summary statistics. Using clustering would be particularly useful
in regimes where high signal-to-noise ratio prevents direct measurement of bubble size statistics. We compare the quality of
MLP models using the power spectrum, and find that using the 3PCF outperforms the power spectrum at predicting both global
ionization fraction and mean bubble size.
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1 IN T RO D U C T I O N

A few hundred million years after the big bang, the first stars and
galaxies began to form (Bromm et al. 2009). The radiation emitted
from these luminous structures interacted with the surrounding
neutral hydrogen and caused it to become ionized. These initially
isolated ionized bubbles grew over time. Around 1 billion years after
the big bang the Universe became fully ionized, see for instance
Becker, Rauch & Sargent (2007) and Gunn & Peterson (1965).
The phase shift from a fully neutral to a fully ionized Universe
occurred during the so-called Epoch of Reionization (EoR). Many
particulars about this process remain unconstrained by current data,
predominantly because there are precious few sources of observable
radiation during this time. Another way to observe the process of
reionization would be to distinguish regions of ionized hydrogen in
the neutral background. The most promising probe for this is the
21 cm hyperfine transition of hydrogen, which is only observed in
neutral hydrogen. Measurements of the 21 cm signal on the sky
thus provide a map of which parts of the Universe were neutral.
By observing this signal at different redshifts, these maps can be
extended into three-dimensional maps of the neutral hydrogen. The
size and clustering properties of the ionized hydrogen bubbles change
throughout the EoR.

� E-mail: wdj240@gmail.com

The 21 cm signal is much weaker than other foreground sources
at the same frequencies. These strong foregrounds make it difficult
to extract the actual 21 cm signal. Past and ongoing purpose-built
experiments such as the Murchison Widefield Array (MWA; Tingay
et al. 2013),1 the Low Frequency Array (LOFAR; Patil et al. 2017),2

and the Precision Array for Probing the Epoch of Reionization
(PAPER; Ali et al. 2015)3 have begun to place upper limits on
the overall intensity of the signal. The Experiment to Detect the
Global EoR Signature (EDGES)4 last year claimed a first detection
of the 21 cm signal. This 21 cm absorption profile was observed
at redshifts between 15 < z < 20 with an amplitude of 500 mK,
published in Bowman et al. (2018). This exciting result has generated
much attention in the past year, as the amplitude is significantly
more negative than that anticipated by standard reionization models.
The strongly negative amplitude is difficult to explain without
considering additional cooling mechanisms or a higher background
radiation than that of the cosmic microwave background (CMB).
Several recent publications have considered possible modifications
that could explain the discrepancy, for instance: considering dark
matter interactions (Barkana 2018; Fialkov, Barkana & Cohen 2018;

1http://www.mwatelescope.org/telescope
2http://www.lofar.org/
3http://eor.berkeley.edu/
4https://www.haystack.mit.edu/ast/arrays/Edges/

C© 2020 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/3/4518/5899061 by guest on 25 April 2024

http://orcid.org/0000-0003-1443-3483
mailto:wdj240@gmail.com
http://www.mwatelescope.org/telescope
http://www.lofar.org/
http://eor.berkeley.edu/
https://www.haystack.mit.edu/ast/arrays/Edges/


3-point correlation function to analyse EoR 4519

Muñoz & Loeb 2018); the properties of dark matter (Fraser et al.
2018; Yang 2018; Yoshiura, Takahashi & Takahashi 2018; Lawson
& Zhitnitsky 2019); axionic dark matter (Moroi, Nakayama & Tang
2018; Sikivie 2018; Lambiase & Mohanty 2020); the effects of radio-
wave background (Ewall-Wice et al. 2018); and considerations of
mirror neutrinos (Aristizabal Sierra & Fong 2018). Other attempts
have been made to explain the amplitude in terms of the foreground
analysis method (e.g. Sims & Pober 2019). However, until other 21
cm observations confirm this detection it is still sensible to continue
work with the standard fiducial models that exclude such exotic
physics.

Upcoming experiments such as the Hydrogen Epoch of Reioniza-
tion Array (HERA; DeBoer et al. 2017)5 and the Square Kilometre
Array (SKA; Mellema et al. 2013)6 will be able to provide more de-
tailed measurements and should allow us to understand the processes
of reionization in detail and confirm the scenarios proposed to explain
the EDGES detection. The most detailed theoretical modelling of
the 21 cm signal currently makes use of simulations. Numerical and
seminumerical simulations encapsulate many aspects of the complex
non-linear reioinization processes. Common numerical simulations
include C2-RAY (Mellema et al. 2006), which models the ionizing
photons emission processes and traces these rays from source to
absorption; GRIZZLY (Ghara, Choudhury & Datta 2015), which
uses one-dimensional radiative transfer simulations to model the
radiation profiles around different source types, and then stamps
these profiles on to source locations; and many codes that use adaptive
refinement (Kravtsov, Klypin & Khokhlov 1997) to model both large
scales and small scales in a single simulation (see e.g. the Cosmic
Reionization on Computers program, Gnedin 2014, and LICORICE,
Semelin, Combes & Baek 2007). Such simulations can provide
theoretical predictions for a range of possible reionization scenarios,
by specifying different values for simulation input parameters.

Comparisons between 21 cm data and theory often make use
of fast approximate seminumerical simulations such as 21CMFAST

(Mesinger, Furlanetto & Cen 2011) and SIMFAST21 (Santos et al.
2010). By running a large number of simulations for a range of
different reionization scenarios, we can determine which scenarios
give rise to the best match between simulated and observed data. Two
techniques can make this process more efficient. First, sampling
methods such as Markov chain Monte Carlo (MCMC; Greig &
Mesinger 2015, 2017a, b; Pober, Greig & Mesinger 2016; Hassan
et al. 2017) reduce the total number of simulations that are needed in
order to hone-in on the best regions of parameter space. Second, the
simulated and observed data can be compressed before comparing
them by using summary statistics. These summary statistics reduce
the total size of the data while retaining much of the useful
information, and are more robust to modelling and sample variance
errors. Common summary statistics are the power spectrum and its
higher order equivalent the bispectrum (Shimabukuro et al. 2017;
Watkinson et al. 2017; Majumdar et al. 2018; Giri et al. 2019;
Hutter et al. 2019; Watkinson et al. 2019). Both statistics contain
information about the clustering properties of ionized hydrogen
bubbles.

In this paper, we use machine learning techniques to investigate
using the three-point correlation function (3PCF) as another sum-
mary statistic for 21 cm data. In particular, we determine whether the
3PCF can inform us about the mean size of ionized bubbles (Rbubble)
and about the global ionization fraction 〈xH II〉. These statistics

5http://reionization.org/
6https://www.skatelescope.org/

provide information about the progress of the EoR and encode useful
information about different physical scenarios. They also provide a
means to reduce the effect of thermal noise, since they are statistical
quantities that are averaged over the entire map. Although the 3PCF
should be less affected by noise than full 21 cm maps, the power
spectrum should be even less affected. We compare the relative
performances of using either the power spectrum or the 3PCF with
our methodology. This indicates whether the 3PCF likely encodes
any extra information about bubble size statistics than does the power
spectrum.

As well as recent work using the bispectrum, some research has
focused on using the 3PCF as a tool for investigating the EoR.
Gorce & Pritchard (2019) use a derived statistic from the 3PCF to
concentrate on phase information. Hoffmann et al. (2019) investigate
whether the 3PCF of 21 cm data can be modelled using a local
bias model. Their resulting model makes predictions with around
20 per cent accuracy for large ionized regions at early times, but
breaks down for other scenarios.

Machine learning has already been suggested and used for a
number of different applications with 21 cm data: to emulate power
spectrum outputs quickly from 21CMFAST (Kern et al. 2017; Schmit
& Pritchard 2018; Jennings et al. 2019), to derive reionization
parameters directly from the 21 cm power spectrum (Shimabukuro
& Semelin 2017), and to derive reionization parameters from 21
cm images (Gillet et al. 2018). Jennings et al. (2019) also present
a mapping between 21CMFAST and SIMFAST21 providing a proof of
concept for mapping between simulations that predict different EoR
histories.

In this paper, we run a large representative sample of seminumer-
ical simulations using 21CMFAST. For each simulation, we calculate
the 3PCF of the resulting 21 cm maps. We also measure the
characteristic reionization features: the global ionization fraction and
the size distribution of the ionized bubbles. We then use machine
learning techniques to determine the relationships between the 3PCF
measurements and the characteristic reionization features.

The rest of the paper is split in to the following sections.
Section 2 describes the mathematical concept behind the 3PCF, and
a description of the code implementation. We also test the code
on data with known analytical 3PCF. In Section 3, we describe
current physical models of the reionization process. We include a
description of the 21CMFAST code and a summary of the range of
reionization scenarios considered in this paper. Section 4 gives an
overview of the machine learning techniques we use, including the
search strategy that we use to find the best possible model. We
also summarize the methods used to analyse the performance of
the resulting models. In the remaining sections, we use our data to
learn about the characteristic reionization features: the mean bubble
size in Section 5 and the global ionization fraction in Section 6. We
end the paper in Section 7 with our conclusions. For cosmological
parameters, we use �m = 0.3153, �b = 0.0493, �� = 0.6847, H0

= 67.36 km s−1 Mpc−1, ns = 0.9649, and σ 8 = 0.8111, the latest
results using the default Plik likelihood from Planck Collaboration
(2018).

2 TH R E E - P O I N T C O R R E L AT I O N
C A L C U L AT I O N

The 3PCF ξ (3)(r1, r2, r3) is defined as the ensemble average over
triplets of points in real space

ξ (3) (r1, r2, r3) = 〈δ(r1)δ(r2)δ(r3)〉 . (1)
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The angular brackets denote an ensemble average over a large
region of space (or over a large number of universe realizations)
to mitigate the effect of statistical fluctuations. If the signal is
translationally invariant then the ensemble average can be replaced
by a spatial average. If the signal is also rotationally invariant then
the 3PCF depends only on the lengths (r1 = |r1|) of the real-space
vectors and not on their directions. These invariance assumptions are
broken in real observations, in part due to the light-cone effect (for
example Datta et al. 2014) and redshift-space distortions (for example
Majumdar et al. 2015). Note that the three vectors r1, r2, and r3

connect three points in real space and so have a vector sum of
0, i.e. they form a closed triangle. In practice, ξ (3) measurements
are actually made over configurations of triangles, by which we
mean over sets of unique triangle side lengths in order to beat down
statistical noise. The 3PCF for a single triangle configuration is an
average over all triangles with those side lengths r1, r2, and r3,
namely

ξ (3) (r1, r2, r3) = 〈δ(r1)δ(r2)δ(r3)〉(|r1|,|r2|,|r3|) = (r1,r2,r3). (2)

2.1 Code implementation

Calculating the 3PCF involves placing differently sized triangles
into the data field. The product of the data values at each of the three
triangle vertices is summed over a large number of similarly sized
triangles, and an estimate of the 3PCF is built up. The final output of
the algorithm is the 3PCF estimates ξ (3)(ri ) at a discrete set of radius
values ri = (r1, r2, r3), corresponding to a discrete set of radius bins.
The 3PCF estimate for each radius bin is calculated by using a set
of many triangles with similar (but not identical) side lengths. In
this section, we first describe how to find these sets of triangles,
by matching triangles whose side lengths lie within a given binned
range of radii Rmin ≤ r < Rmax. We also provide pseudo-code for our
C++ 3PCF-FAST algorithm (publicly available on GitHub).7 Finally,
we discuss how we use the output statistics from the 3PCF-FAST

code to estimate 3PCF values. Our algorithm is similar in nature to
other high-order codes (see for instance Gaztañaga & Scoccimarro
2004), although we subsample both the triangle configurations and
the number of lattice points and measure the level of approximation
needed for robust estimates of the 3PCF.

2.1.1 3PCF-FAST for equilateral triangles

Efficiently finding sets of similarly sized triangles is a key preparation
stage of the algorithm. The data in this section are represented as a
pixelized set of scalar values in three dimensions. For each radius
bin, we find all the triangles whose edge lengths r1, r2, r3 lie within
a fixed range of side lengths Rmin ≤ ri < Rmax. There are a finite
number of such triangles because the three vertices are constrained
to lie on the centres of pixels in the data. To find explicit matching
triangles, we place the first vertex at the origin. We then find all
possible second vertices (r2) which lie within the spherical shell
Rmin ≤ |r2| < Rmax of the origin. From each of the matching second
vertex points, we find the third vertex points (r3) which are a valid
distance both from r2 and from the origin. This last step is effectively
finding pixels which lie in the overlap of two spherical shells. Fig. 1
shows an example in two dimensions: with the first triangle vertex
at the origin, the dark purple annulus indicates the allowed region
for the second vertex between Rmin and Rmax. The orange region then

7https://github.com/wdjennings/3PCF-Fast

Figure 1. Triangles matching the radius bin condition 2.5 pixels ≤ r <

3.5 pixels. The two regions shown are the radius conditions around the first
and second points. The allowed third point(s) then lie in the overlap of these
annuli.

shows the allowed region of third vertices from one of the possible
second vertices. The final matching triangles (of which there are two)
are outlined in black in the figure. To prevent repeated calculations,
we use a PYTHON script to search for these matching triangles and
store the resulting pairs of vectors (r2, r3) in a binary file. This binary
file can be loaded by the main C++ algorithm many times. we refer
to these binary files as vertices files. Measurements of the 3PCF are
calculated by looping over possible lattice points r1 and summing
the contributions for all triangle configurations (r2, r3) at that pixel.
Both the number of triangle configurations and the number of lattice
points are sampled to give faster calculations, and we investigate
different levels of sampling in Section 2.3.

The 3PCF of a data field is usually calculated in comparison
to a random field without clustering. The correlation function then
quantifies the extent to which the data field is more clustered than the
random unclustered field. The purpose of the random field is to create
a comparison for the data field. Using a uniform field can thus be
seen as a method for counting the number of triangle configuration
occurrences. The outputs from our three-point code are the auto-
and cross-correlation statistics between the data (D) and random (R)
fields. For the 3PCF, these statistics are the data–data–data statistic
(DDD), data–data–random (DDR), data–random–random (DRR),
and random–random–random (RRR). DDD is the autocorrelation
found by multiplying the data field at all three vertices. DDR is
the cross-correlation found by multiplying the data at two vertices
and the random field at the final vertex; and so on. These statistics
will later be combined to give an estimate of the 3PCF. For a scalar
data field, the random field should be uniform with mean equal to
the data mean. Instead, it is practically simpler and mathematically
identical to normalize the data field to have a mean of unity, so that
the random field averaged within in each pixel is also everywhere
unity. This allows our code to skip the correlation calculations for
the random field, since the value of RRR is equal to the known
integer count of triangles. Algorithm 1 shows the pseudo-code for
our algorithm, taking as inputs a data field D[r] and a binned vertices
file, and outputting the three-point correlation statistics (DDD, DDR,
DRR, and RRR) for each radius bin.
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Algorithm 1 Three-point correlation algorithm
1: procedure 3PCF(D[r], Rmin, Rmax)
2: DDD, DDR, DRR, RRR ← 0 � Initialise to zero
3: Load (r2, r3) � using (Rmin, Rmax) vertices file
4: for all r1 do � over all data pixels
5: for each r2, r3 pair do � over matching triangles
6: DDD += D[r1] × D[r1 + r2] × D[r1 + r3]
7: DDR += D[r1] × D[r1 + r2]
8: DRR += D[r1]
9: RRR += 1

10: end for
11: end for
12: return DDD, DDR, DRR, RRR
13: end procedure

Algorithm 1 outputs the correlation statistics (DDD, DDR, DRR,
RRR). An estimate of the 3PCF is found by combining these
statistics. The simplest such estimator is given by ratios of the data-
and random-field autocorrelations

ξ (3) = DDD − RRR

RRR
. (3)

Another estimator

ξ (3) = DDD − 3DDR + 3DRR − RRR

RRR
, (4)

from Landy & Szalay (1993) generally leads to less biased results,
because it takes account of cross-correlations between the data and
random fields which the simple estimator ignores.

The number of triangles found by this matching algorithm can
quickly exceed hundreds of thousands for side lengths larger than
around 10 pixels. Even running the matching algorithm itself for
such side lengths can take several days and, more significantly, using
such an exhaustive set of triangles in the correlation algorithm would
require years of CPU time. An accurate measurement of the 3PCF can
be obtained efficiently by subsampling a small number of triangles
from all valid matches. In this section, we sample 5000 occurrences
of triangle configurations from the total available number of valid
matches. In Section 2.3, we discuss the effect of sampling and why
a value of 5000 was chosen.

2.2 Testing 3PCF-FAST using points on spheres

We test our code by generating three-dimensional realizations for a
distribution with a known 3PCF. We compare the measured 3PCF
from our code to the theoretical form, to get an indication of the
regimes in which the code has good accuracy and precision. Our
testing distribution consists of three-dimensional realizations made
up of a set of points in a box. First, a large set of points are uniformly
placed on the surfaces of many identically sized spheres. The data are
then saved to a data file by overlaying a three-dimensional pixelized
grid and counting the number of points in each grid: zero for no
points, one for a single point, and so on. For all realizations in
this section, the data are represented as a box with side length 100
arbitrary units pixelized into 5123 pixels. The amplitude and shape
of the theoretical 3PCF for these realizations depend on the sphere
radius R and the number density of spheres ns. We describe a scenario
as a particular pair of these two parameters. We also use the number
of spheres Ns = ns × 106, since all realizations in this section have a
fixed box size of 100 arbitrary units in each of the three dimensions.
The equilateral 3PCF of points-on-sphere realizations has a closed
analytical form (Lorne Whiteway, private correspondence). For a

Figure 2. Slice through an example realization of points-on-spheres data.
This scenario uses spheres with R = 10 and Ns = 200. Each sphere appears
as a circular annulus as it has been horizontally sliced for this figure. Some
annuli appear thicker than others because slicing a thick spherical shell near
its pole gives a wider region when viewed from above.

scenario with parameters ns and R, the 3PCF for equilateral triangles
as a function of the triangle side length r is given by

ξ (3)(r; R, ns) =
⎧⎨
⎩

1

16π3R3n2
s r

2
√

3R2 − r2
if r < R

√
3,

0 otherwise.
(5)

Generating a realization for a scenario involves choosing where
to put the spheres and then placing points on the surfaces of those
spheres. A uniformly random set of NS points is chosen to be the
centres of the spheres. Points are then placed randomly on to the
surface of each sphere. Ensuring that the points are indeed uniformly
distributed across the spheres surface is most easily done using the
method from Muller (1959): sample three random variables x, y, z

from the normal distribution N (0, 1) and divide by the Euclidean
norm of these three coordinates. The distribution of the normalized
vector

r = R√
x2 + y2 + z2

⎡
⎢⎢⎣

x

y

z

⎤
⎥⎥⎦, (6)

is then uniform across the surface of a sphere with radius R. After
storing the locations of all points on all spheres, the final pixelized
realization of the scalar field is generated by rounding the point
coordinates to the nearest integer. Fig. 2 shows a slice through an
example realization of the testing distribution. All data in this testing
section have pixel size of around 0.2 arbitrary physical units.

2.2.1 Test results

We test our code by generating points-on-spheres realizations for
many R and Ns scenarios. We compare the outputs of our code to
that of the true theoretical 3PCF using equation (5). Fig. 3 shows the
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Figure 3. Equilateral 3PCFs for points-on-spheres scenarios with varying
sphere radius R. The dashed lines show the theoretical 3PCF for each scenario
whose parameters are shown in the legend. The shaded regions show the
standard deviation of the measured 3PCF across five realizations, using our
code with the Landy–Szalay estimator. The theory lines lie within the shaded
regions for most triangle side lengths, except at radius values near the upper
valid limits. Vertical dotted lines show the theory asymptotes at R

√
3 for each

line.

Figure 4. Equilateral 3PCFs for points-on-spheres data with varying ns

between 1 × 10−5 and 7 × 10−5, using the LS estimator. The dashed theory
lines again lie within the measured shaded regions for most triangle side
lengths. Vertical dotted line shows the theory asymptote at R

√
3 = 5

√
3.

theoretical and measured equilateral 3PCFs for seven scenarios with
a range of R values and fixed ns = 5 × 10−5, using the Landy–Szalay
estimator in equation (4). We plot the dimensionless 3PCF defined
as r3ξ (3) (see e.g. Hoffmann et al. 2019). The theoretical 3PCF is
shown in each case as the dashed line. The measured 3PCF estimates
are subject to sample variance, meaning that the output from the
code depends on the randomly seeded initial conditions. We use five
realizations with different random seeds to determine whether the
theoretical 3PCF lies inside the spread of the five measured code
outputs. The shaded regions in Fig. 3 show the standard deviation
of the measured 3PCF across these five realizations. Fig. 4 similarly
shows the theoretical and measured 3PCFs for scenarios with fixed
R = 5 and various Ns values.

The measured and theoretical 3PCFs match closely across most
of the triangle side lengths. The theoretical 3PCF in equation (5)
has a vertical asymptote at the maximum allowed radius R

√
3. This

can be seen in Fig. 3 as a slight upturn near the right-hand sides of

Figure 5. Effect of subsampling triangles in the 3PCF algorithm. When few
triangles are used, the outputs from the code show a larger variance than
when more triangles are used. For more than around 2000 triangles, the
variance plateaus indicate that adding more triangles provides minimal extra
information.

each dashed line. Our code slightly overpredicts the theory in each
case near the maximum valid radius. This is due to the binning of
triangles: each binned output is calculated using equilateral triangles
with a range of side lengths as described in Section 2.1.1. Averaging
the 3PCF over these differently sized triangles (some of which are
larger than the valid maximum radius) causes a discrepancy between
measured and theoretical 3PCF.

2.3 Optimization

A number of steps were taken to optimize and improve the code.
First, we added multithreading to make better use of available
computational resources. Second, we allow for subsampling of
triangle configurations and jackknifing to allow for calculation of
errors. The number of triangles found by the matching algorithm in
Section 2.1.1 can quickly exceed hundreds of thousands for side
lengths larger than around 10 pixels. An accurate measurement
of the 3PCF can be obtained more efficiently by subsampling a
small number of triangles from all valid matches. We test how
this subsampling affects the robustness of the final 3PCF estimate.
The 3PCF is calculated on xH II(r) data from five randomly seeded
21CMFAST realizations using as input the canonical input parameters
Tvir = 104K, ζ ion = 30.0, Rmax = 15.0 Mpc, and E0 = 200 eV. The
variance in our code’s output over the five realizations is plotted in
Fig. 5, as a function of the number of triangles used in the 3PCF
algorithm. The variance is large when only a few triangles are used
but decreases with a larger number of triangles. For more than around
2000 triangles, the scatter plateaus indicate that adding more triangles
is unlikely to result in improved final 3PCF estimates. The remaining
variance across the five runs is likely due to sample variance. We use
a conservative value of 5000 triangles in all the 3PCF estimates from
hereafter.

3 MO D E L S O F R E I O N I Z AT I O N

The 21 cm differential brightness temperature δTb is defined as the
difference between the measured 21 cm brightness temperature and
the uniform background CMB brightness temperature. By removing
the background CMB temperature, the value of δTb(r) then specifies
the extent of 21 cm emission (δTb > 0) or absorption (δTb < 0). The
actual observable for radio interferometers is δTb − 〈δTb〉, where
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〈δTb〉 is the global reionization signal averaged across the whole sky.
Furlanetto et al. (2006) give an approximate relationship for the 21
cm brightness temperature δTb(r) as

δTb(r) = 27 xH I(r)
[
1 + δ(r)

](�bh
2

0.023

)(
0.15

�mh2

)1/2

×
(

1 − Tγ

Tspin

)(
1 + z

10

)1/2(
H (z)

H (z) + δrvr (r)

)
mK. (7)

This approximation includes the effects of neutral hydrogen fraction
xH I(r); total matter density contrast δ(r); cosmological parameters
for the densities of baryonic matter �b and total matter �m; the CMB
temperature Tγ ; the spin temperature TS which quantifies the relative
populations of electrons in the higher and lower energy states of the
21cm transition; the Hubble parameter H(z); and δrvr (r), the radial
velocity gradient.

The spin temperature can be written (Furlanetto et al. 2006) as a
sum of three parts

T −1
spin = Tγ + xαT −1

α + xcT
−1

K

1 + xα + xc
(8)

with Tγ the background CMB temperature, TK the kinetic gas
temperature, Tα the Lyman alpha colour temperature (closely linked
to the gas temperature for all redshifts of interest), and the coupling
coefficients for collisions (xc) and the Wouthysen–Field coefficient
(xα) from Wouthuysen (1952). In particular, the kinetic gas tempera-
ture and the Lyman alpha background radiation have a strong effect
on the global and local evolution of the spin temperature. These two
features change throughout the EoR as different physical processes
interact with the growth of structure in the Universe.

3.1 21CMFAST

We use the publicly available seminumerical code 21CMFAST to gen-
erate our data. We briefly describe the algorithm in this subsection.
The simulation begins by seeding an initial linear density field on
to a three-dimensional grid at very high redshift. This linear density
field is evolved using first-order perturbation theory (see Zeldovich
1970) to approximate gravitational collapse, giving an approximate
gravitationally evolved density field δ(r).

The simulation then finds the highest density regions where the
matter will collapse to form luminous structures and thus contribute
ionizing photons towards the reionization process. The extent of
collapse is calculated directly from the non-linear density field
following the model of spherical collapse (Press & Schechter 1974).8

If the mean enclosed density in a region exceeds a theoretical critical
value then the region is assumed to collapse. The collapse fraction
fcoll(r, R) on decreasing scales R is then found from the contributions
of both resolved and unresolved haloes. The default 21CMFAST

implementation has a minimum halo mass Mmin for a halo to host
star-forming galaxies that evolves with redshift, corresponding to a
minimum virial temperature Tvir for ionizing photons.

The ionization fraction field xH II(r) is found by determining
whether the collapsed matter in a region generates enough ioniz-
ing photons to ionize the enclosed hydrogen atoms. An ionizing
efficiency parameter ζ ion specifies how many ionizing photons are
sourced per unit of collapsed matter. If fcoll(r, R) ≥ ζ−1

ion for any

8In order to match the more accurate ellipsoidal collapse model (Sheth, Mo
& Tormen 2001), 21CMFAST afterwards normalizes the spherical collapse
fractions so that their average value matches that expected from ellipsoidal
collapse.

particular region, then the central pixel is painted as fully ionized
using the method in Zahn et al. (2006). This differs from the default
method of another common seminumerical simulation SIMFAST21,
which instead paints the full spherical region as ionized if there are
enough photons using the method in Mesinger & Furlanetto (2007).
See Hutter (2018) for a discussion of these two methods.

Fluctuations in the spin temperature are calculated by considering
the kinetic gas temperature and the Lyman α background tempera-
ture. The kinetic gas temperature TK is determined by considering
the balance between a number of important heating and cooling
mechanisms including X-ray emissions, Hubble expansion, adiabatic
heating and cooling, and gas particle density changes due to ioniza-
tion events. The dominant heating effect in 21CMFAST is from X-rays.
The rate of emitted X-ray photons is assumed to be proportional to
the growth rate of collapsed matter in the dark matter haloes. Photons
are emitted with a range of wavelengths, the luminosities for which
are assumed to follow a power-law relationship L(ν) ∝ (ν/ν0)−α .
The parameter α controls the slope of this spectral energy density
function, and the parameter ν0 controls the minimum frequency of
X-rays which can escape into the intergalactic medium (IGM). This
minimum frequency can also be written in terms of a minimum
energy value, E0 = hν0, using the Planck constant. See Mesinger
et al. (2011) for a full derivation of the calculations and assumptions
that 21CMFAST makes for the spin temperature fluctuations.

The final step is to use equation (7) and calculate the 21 cm
brightness temperature field δTb(r) using the non-linear density field
δ(r), the neutral fraction field xH I(r) = 1 − xH II(r), and the spin
temperature fluctuation field Tspin(r).

In this paper we consider different reionization scenarios by
changing three of these simulation parameters:

(i) The ionization efficiency ζ ion, specifying how many ionizing
photons are sourced per unit of collapsed matter;

(ii) The E0 parameter which controls the minimum energy (or
frequency) of X-ray photons which are able to escape into the IGM;

(iii) The minimum virial temperature Tvir which specifies a lower
mass limit Mmin of collapsed matter which produces ionizing photons
and X-rays.

Fixing the other simulation parameters involves setting the ef-
ficiency of X-rays to a constant value. We use ζX = 10−57 M−1

�
to match the assumption in Mesinger et al. (2011), equivalent to
approximately a single X-ray photon for each stellar baryon as
motivated by observations of low-redshift galaxies. The uncertain
IGM X-ray properties are then parametrized by E0.

3.2 Training and testing data details

We run 1000 21CMFAST simulations in total for our data. Each
simulation generates three-dimensional realizations of the δTb field
in a cube of size 250 Mpc resolved into 2563 pixels (smoothed
from density fields resolved into 7683 pixels). Each simulation uses
a different random seed for the initial conditions. The resulting
redshifts from this algorithm are between z = 5 and z = 26.6 (see
Mesinger et al. 2011 for a description of the iterative algorithm that
generates these steps). These redshifts are 5.0, 5.6, 6.3, 7.0, 7.78,
8.7, 9.6, 10.7, 11.9, 13.2, 14.6, 16.1, and 17.8. We ignore simulated
results for higher redshifts, because the mean ionization fraction is
extremely small and the mean bubble size is generally smaller than
the resolution of our simulations. For each simulation, we calculate
the statistics of interest: the 3PCF using 3PCF-FAST described in
Section 2; the bubble size distribution, described in this section;
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and the global ionization fraction, found by trivially averaging the
ionization fraction field xH II(r) for each redshift.

In order to sample a range of different reionization scenarios,
we use a Latin Hypercube (McKay, Beckman & Conover 1979)
approach.9 This method efficiently samples the input space with far
fewer simulations than a naive exhaustive grid search would require.
The following ranges and scales of simulation parameters are used:

(i) Tvir in the logarithmic range [104, 2 × 105] K,
(ii) ζ ion in the linear range [5, 100],
(iii) E0 in the linear range [100, 1500] eV.

These ranges were chosen to match those by the simulation authors
(e.g. Greig & Mesinger 2015). The lower Tvir limit comes from a
minimum temperature for the cooling of atomic hydrogen accreting
on to haloes. The upper limit arises from observations of high-redshift
Lyman break galaxies (Greig & Mesinger 2015). The ζ ion upper and
lower limits correspond roughly to escape fractions of 5 per cent to
100 per cent for ionizing photons for standard values of the other
controlling factors in Greig & Mesinger (2015) such as the number
of ionizing photons produced per stellar baryon. The range for E0

was chosen in a similar way to Park et al. (2019), motivated by
hydrodynamic simulations (Das et al. 2017) and considering the
energy that would allow an X-ray photon to travel a distance of
roughly one Hubble length when travelling through a medium with
〈xH II(z)〉 = 0.5.

3.2.1 Three-point correlation function measurements

We use the code described in Section 2 to calculate the 3PCF. We
calculate ξ (3) of both the ionization fraction field xH II(r) and of
the 21 cm differential brightness temperature field δTb(r). In the
code, we use 28 equilateral triangle bin configurations with side
lengths spaced in bins between 5 and 109 Mpc. These bins are spaced
linearly for radii less than 20 Mpc, with logarithmically spaced bins
for higher radii.10 Increasing the number of r-vector configurations
beyond these equilateral triangles would almost certainly improve
our ability to predict the mean bubble size or ionization fraction
history. Further work would be needed, however, to investigate what
size and shape of triangle configurations encode the most information
about the topology of the EoR.

3.2.2 Mean free path measurements for xH II(r)

In order to measure the mean bubble size, we use our own imple-
mentation of the mean free path method described in Mesinger &
Furlanetto (2007). The mean free path method simulates the emission
of photons from random locations within the transparent regions. The
distance travelled by each photon before it hits a phase change (from
ionized to neutral) is measured and the resulting number of rays in
a range of radius bins is calculated as dP/dR. We use 105 simulated
photons in our measurements, and the resulting distances are rounded
to the nearest pixel size (L/N = 250.0 Mpc/256 = 0.98 Mpc). Fig. 6
shows the resulting distributions for RdP/dR from a simulation with
canonical parameter values Tvir = 104K, ζ ion = 30, and E0 = 200 eV.
We use the mean of these mean free path distributions (hereafter
written Rbubble) as a statistic to trace the mean bubble size.

9Using the implementation from Agarwal et al. (2014).
10The radius values for these 28 bins are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 24, 29, 35, 42, 51, 62, 75, 91, and 109 Mpc.

Figure 6. Example mean free path measurements of RdP/dR using ionization
fraction field data xH II(r). Each line shows RdP/dR for a single redshift taken
from a simulation with Tvir = 104K, ζ ion = 30.0, and E0 = 200ev.

4 MAC H I N E L E A R N I N G T E C H N I QU E S

The 3PCF of 21 cm data likely encodes much information about the
underlying reionization processes. We can uncover the relationships
between ξ (3) and these physical processes by looking at how the
3PCF changes over a range of physical scenarios. We use machine
learning techniques to learn these relationships. Our models extract
relationships between physical processes and ξ (3) measurements
by using simulated data. Our trained models can then use unseen
measurements of 3PCF data to make predictions about the physical
status of reionization in the data. In particular, we train models that
predict the global ionization fraction and the mean bubble size from
ξ (3). Training these models is effectively a form of high-dimensional
curve fitting: learning a best-fitting functional form f (x) that maps
from a set of input values x = ξ (3) to a set of output values (Rbubble

or 〈xH II(z)〉). After training, our models can make predictions for
new unseen data. For instance, the mean bubble size model can
take measurements of ξ (3) and predict the mean bubble size. In this
section, we describe the machine learning techniques we use along
with a theoretical description of how they are trained. All models
are trained on the same architecture, each on a single node using 16
Xeon E5-2650 cores and 128GB RAM. 700 of our simulations are
used for training and validation, and 300 simulations are held back
for testing.

4.1 Artificial neural networks

Artificial neural networks (ANNs) are a common regression tech-
nique for learning a complex non-linear relationship between two
sets of variables: the ‘inputs’ and ‘outputs’. An ANN represents
the relationship in functional form yi = f (xi ) by manipulating the
inputs xi through a series of weighted summations and function
evaluations. For ANNs, this series of repeated operations occurs in a
series of distinct layers. The values in the first layer h(0) are the input
variables xi . The values from one layer h

(l−1)
j affect the values in the

following layer h
(l)
j according to

h(l) = h
(l)
j = φθ

(
Ni∑
i=1

W
(l)
ij h

(l−1)
j

)
. (9)

The values in each layer are thus a sum over the values in the previous
layer, weighted using a set of trainable values W

(l)
ij . The summations

into each neuron are passed through an activation function φθ (x),
which determines the resulting output values that are passed on to
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the next layer of neurons. At the end of this process, the final layer
contains the network’s fitted evaluations of the function, yi = f (xi ).
Training these models involves choosing the set of weights W

(l)
ij

which most closely mimic the function’s behaviour. The ‘closeness’
with which the model mimics the relationship in the training data is
quantified using an objective function

Objective = 1

2N

N∑
n=1

[
f (xn) − yn

]2 − α

2

∑
i,j ,l

(
W

(l)
ij

)2
(10)

so that training is then done by finding the values W
(l)
ij which

minimize this objective function for some training data (xn, yn).
The regularization parameter α in this equation allows finer control
over the complexity of the model. A high value of α encourages
the training towards simpler models, with more of the weight values
W

(l)
ij being near zero. Three common activation functions φθ (x) are

the hyperbolic tangent function φθ (x) = tanh (x); the logistic function
φθ (x) = 1/(1 + exp (−x)); and the rectified linear unit (‘relu’) function
φθ (x) = max(0, x). All three activation functions are used during our
hyperparameter search method.

The weights are initialized randomly and are then updated itera-
tively in order to improve the objective function. Each iteration is
known as a single ‘epoch’. In each epoch, the weights are updated
using the current gradient of the objective. By using this gradient, the
weights are moved towards a value that should cause the objective
function to improve. Our ANNs use the backpropagation algorithm
(Werbos 1974), a common technique for efficiently calculating
the gradient of the objective function (see Rumelhart, Hinton &
Williams 1986 for a more detailed description of this algorithm).
The coarseness with which the weights are updated is controlled
by a parameter known as the learning rate. A high learning rate
means that the weights are changed with a large magnitude at
each step. The learning rate can be set to a constant value for all
epochs, but it can also adapt to the current speed of the learning.
An adaptive learning rate is usually set to decrease if the objective
function plateaus (i.e. begins to fall slowly between epochs). It is
common to set an upper limit for the number of epochs allowed. We
discuss this and other choices made in our models in Section 4.2
later.

Multilayer perceptrons (MLPs) are a subclass of ANNs, with the
restrictions that they contain at least one hidden layer and have a
non-linear activation function. Fig. 7 shows a typical MLP’s layer
structure, with lines representing the weighted connections between
values. Circles represent the neurons which hold the values h

(l)
j and

pass the weighted inputs through the activation function. Our MLPs
are implemented using SCIKIT-LEARN from Pedregosa et al. (2011).
We use the ‘adam’ optimization method (Kingma & Ba 2014), which
terminates either when the maximum number of epochs has been
reached or when the objective function falls below a tolerance of
10−10 for at least two consecutive iterations.

We measure the goodness of fit between predicted output values
y∗(k, z) and measured output values y(k, z) using a mean squared
error function

MSE
[
y, y∗] = 1

N

N∑
i

(
yi − y∗

i

yi

)2

, (11)

also making use of the root mean squared error RMSE = √
MSE and

the percentage mean squared error =100.0 × rmse. A percentage
rmse of 100 indicates that the predicted and measured output values
are wrong by an average factor of 2.

Figure 7. Visualization of an MLP with two hidden layers. Lines are
weighted connections from left to right. Circles are neurons which hold
the values and pass them to the following layer.

4.2 Hyperparameter search

The weighted-connection values Wij of an MLP are updated during
the training process in order to find the best match between the input
and outputs in the training data. Several aspects of models must also
be fixed before even starting to train the model. We refer to these
values as hyperparameters. The hyperparameters can have a strong
effect on the final accuracy of predictions but it is rarely obvious
what hyperparameter values will result in the most accurate model.
We use a random search method with cross-validation to find the best
hyperparmeters for each of our model applications. This process is
described here.

In order to determine the best hyperparameter values, we train
and compare a large number of models with a range of initial
hyperparameter values. Each model is trained using a set of ran-
domized hyperparameters and the model with highest prediction
accuracy is selected as the best model. Two of the most important
hyperparameters are the number of hidden layers and the sizes
of these layers, collectively known as the network architecture.
The architecture affects the model’s ability to represent complex
functions: a network with fewer and smaller layers is only able to
model simple relationships, whereas a larger network with more
layers (or larger layers) will be able to represent more complex
relationships. Using a model that is too small will result in poor
prediction accuracy. Using a model that is too large will result in
overfitting. There are no prescribed rules for deciding what range
of architectures to consider, but a common technique is to use one’s
knowledge both about the complexity and the dimensionality of the
function that is being modelled. When using the 3PCF measurements
as the inputs, there are around 30 input dimensions to the model. We
use networks with between one and three hidden layers, with layer
sizes randomly chosen uniformly in the range [0,500]. This range of
layer sizes was chosen as being a similar order of magnitude to the
input dimensionality while also remaining computationally feasible.
The full set of parameters which were randomly varied for each
model in the hyperparmaeter search are:

(i) Number of hidden layers uniformly in the linear range [1, 3],
(ii) Size of each layer uniformly in the linear range [0, 500],
(iii) Training batch size uniformly in the linear range [30, 500],
(iv) Number of training epochs uniformly in the range [50, 500],
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(v) Initial learning rate uniformly in the log range [10−4, 10−2],
(vi) Learning rate either constant and adaptive with equal chance,
(vii) Activation from ‘relu’, ‘tanh’, or ‘logistic’ with equal chance,
(viii) Regularization parameter α from equation equation (10)

uniformly in the log range [10−4, 10−2].

These ranges match those suggested by the SCIKIT-LEARN website
(Pedregosa et al. 2011). We use fixed default values for the ‘adam’
parameters BETA 1 = 0.9, BETA 2 = 0.999, EPSILON = 1e − 08, and
TOL = 0.0001. For all models, the weight values are initialized
using the Xavier initialization strategy (Glorot & Bengio 2010). This
method sets the weights in the ith layer by sampling uniform values
in the range [−Ui, Ui]. The normalizing value Ui = √

6/
√

ni + ni+1

is different for each layer, using values for the total number of input
weight connections (ni, also known as ‘fan in’) and output weight
connections (ni + 1, also known as ‘fan out’). Note that there are seven
hyperparameters being varied in this random search. Given that we
choose only 1000 different random sets from the above ranges, it is
unlikely that we have identified the optimal model.

4.3 Cross-validation

By trying a range of different hyperparameter values as described, we
can usually find a model with better prediction accuracy. However,
this process is sensitive to overfitting. In order to determine which
model has the highest accuracy while reducing the chance of
overfitting, we use five-fold cross-validation approach. Five models
are trained with the same fixed hyperparameters, where each model
is provided with data from only four of the five folds. In each case, the
fifth excluded fold is used to calculate the prediction performance,
using equation (11). The performances are thus measured on unseen
data, so that the ‘best’ model with highest performance is one
which performs well on the unseen validation data. The overall
accuracy score is taken as the mean of the validation scores. This
cross-validation approach is used to compare the performance of
every combination of hyperparameter values. After finding the best
hyperparameter values, the model is trained for a final time using all
the training data. Standard practice for machine learning tasks is to
retain a final segment of the data to check the final performance of
the best model. If the model performs well on this testing data, then
we are more confident that it makes good predictions for completely
unseen data.

4.4 Input and output scaling

Data scaling can be used to improve the efficiency of ANNs during
training, and also to improve the quality of the final predictions.
The weight values in our neural networks are initialized at small
values as described in Section 4.2. In general, different input features
into a model have different scales and magnitudes. Ideally all
inputs into the network would have similar orders of magnitude
and simple distribution such as normal or uniform. This can easily
be achieved by separately normalizing or standardizing each input
feature. Normalizing an input feature forces all values to lie in the
range [0, 1] by linearly scaling the minimum and maximum feature
values. Standardizing an input feature scales the feature to have a
mean of zero and a standard deviation of 1.0. Scaling the model output
value(s) also has a beneficial effect on the final prediction accuracy.
Our neural networks use the SCIKIT-LEARN objective function in
equation (10) to quantify the goodness of fit during training. Scaling
the output values using normalization or standardization can help

mitigate the relative importance of output values with different
magnitudes.

The input features to our models are the 3PCF measurements
ξ (3)(r) for a range of different triangle sizes r. These 3PCF values
span a wide range of magnitudes. We use the MinMaxScaler
method from SCIKIT-LEARN to normalize separately each 3PCF bin.
We also compare the effect of scaling the 3PCF values by four
different powers of the binned radius values: the raw 3PCF ξ (3); the
dimensionless 3PCF r3ξ (3)(r) used for more natural visualizations
(see for instance Hoffmann et al. 2019); and two other powers of the
radius for completeness: rξ (3)(r) and r2ξ (3)(r). The output features to
our models are either the bubble sizes Rbubble or the global ionization
fraction 〈xH II(z)〉. We scale the Rbubble function using the sinh−1

function as described by Lupton, Gunn & Szalay (1999).

5 LEARNI NG TYPI CAL BU BBLE SI ZES FRO M
T H E 3 P C F

The progress of the EoR can be tracked by measuring the mean
size of ionized regions. Ionized regions are initially small and
isolated around the earliest ionizing sources. The regions continually
grow throughout the EoR, and the precise details of this continued
growth depends on the physical interactions between ionizing sources
and the surrounding neutral regions. The sources themselves are
seeded from the clustered non-linear density field and so show
significant clustering (Kramer, Haiman & Oh 2006), but the details
of reionization also affect the clustering of the resulting ionization
fraction field xH II(r) and 21 cm brightness temperature field δTb(r).
Throughout the EoR, the mean bubble size Rbubble will likely boost
the 3PCF at characteristic triangle sizes. Thus, the 3PCF contains
information about the physics of reionization (Mcquinn et al. 2007).
Similarly, higher order clustering statistics contain information about
the physical reionization parameters (see for instance Shimabukuro
et al. 2016) which affect the morphology of the xH II(r) and δTb(r)
fields.

In this section, we train models to predict the mean bubble size
Rbubble using the 3PCF from simulated data. First, we use 3PCF
measurements of the ionization fraction field xH II(r) to train our
models. The resulting model is a useful means of determining
whether ξ (3) does indeed contain information about the mean bubble
size. In practice, however, the ionization fraction field xH II(r) is
difficult to disentangle from the actual results of interferometer
experiments. In the second half of this section, we train models
to predict the mean bubble size using simulated δTb(r) data, which
would be directly available from interferometer observations. As
well as the data cleaning steps in Sections 3.2.1 and 3.2.2, we also
exclude data with global ionization fraction outside the range 0.01
≤ xH II ≤ 0.95.

5.1 Results training on xH II(r) data

In this subsection, we train a model to learn how the mean bubble size
Rbubble is related to the 3PCF of ionization fraction data xH II(r). Our
training and testing data are from the range of simulated reionization
scenarios described in Section 3.2, and we use the MLP model
described in Section 4. Fig. 8 shows the measured xH II(r) 3PCF for
a range of redshifts, showing the true mean bubble size as vertical
lines. This figure is for a scenario with canonical parameter values
Tvir = 104 K, ζ ion = 30, and E0 = 200 eV. The amplitude of the
dimensionless 3PCF seen in Fig. 8 reaches a peak at intermediate
scales. Either side of the peak the amplitude decreases, although at
larger scales above 20 Mpc the amplitude near the start and end of
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Figure 8. Example measurements of r3ξ (3) for ionization fraction field data
xH II(r). Each line shows the measured statistic for a single redshift, all taken
from a simulation with ζ ion = 30.0, Tvir = 104 K, and E0 = 200 eV. The
redshifts and corresponding global ionization fraction are shown for each
line in the legend.

Table 1. Rmse performance on unseen testing data using
the four different input scaling types in Section 4.4. The
model using r2ξ (3) inputs has the best performance, with
the two lowest powers of r having the worst perfor-
mance. These rmse values are only for a single cross-
validated model with the fixed hyperparameters given
in Section 5.1, but this indicates that the relationship
between r2ξ (3) and the mean bubble size is easier to learn
than the other inputs.

Input scaling Rmse

ξ (3) 6.49
rξ (3) 3.59
r2ξ (3) 2.02
r3ξ (3) 2.22

the EoR (xH II = 0.82 and xH II = 0.10) show a second rise in the
amplitude.

Before running a full hyperparameter search, we first compare four
options for different input-scaling types. We train one model for each
of the four possible input scaling types, namely ξ (3), rξ (3), r2ξ (3), and
r3ξ (3). The MLP models in this section all have the same architecture,
namely two hidden layers both containing 100 nodes. The following
values are used for the other hyperparameters: a training batch size
of 200; 200 maximum epochs; a constant learning rate of 10−3;
the ‘relu’ activation function; and fixed regularization parameter α

= 10−3. These hyperparameters were chosen as the mid-points of
the allowed random search ranges or, for categorical choices, as the
default parameters suggested by the code authors (Pedregosa et al.
2011). Table 1 shows the resulting overall rmse values for models
using each of the four different scaling types. Our results indicate that
scaling the 3PCF by r2 or r3 generates more accurate models than
scaling by r or not scaling at all. Using ξ (3) or rξ (3) as inputs makes
it harder for our MLP models to uncover a relationship between the
3PCF and the mean bubble size. We use r2ξ (3)(r) as inputs to our
models hereafter, as these have the best overall rmse value.

5.1.1 Best final model

We now find the best MLP model to predict the mean bubble sizes
from the 3PCF of ionization fraction field data xH II(r). We use the full
hyperparameter search method described in Section 4.2, comparing

Figure 9. Predicted bubble size versus true bubble size for the best model
in Section 5.1.1. These predictions are made on unseen testing data, using
only the 3PCF of ionization fraction field data as inputs to the model. The
predicted values and true values generally lie along the diagonal for values
of Rbubble < 70Mpc. Larger mean bubble sizes are harder to model and show
much lager scatter away from the diagonal, as discussed in the text.

1000 randomly chosen models and selecting the one with best cross-
validated performance. The resulting best MLP model uses three
hidden layers with sizes [148, 142, 93]; training batch size of 296; a
maximum of 563 epochs (of which the model used all epochs before
terminating); adaptive learning rate starting at 4.7 × 10−3; the ‘relu’
activation function; and L2 regularization parameter 3.9 × 10−4.
Fig. 9 shows the accuracy of the best MLP model’s predictions
for unseen testing data. We plot all predicted Rbubble values as a
function of the true values. Marker colours are used to indicate
the value of 〈xH II(z)〉 for each measurement. A model with perfect
predictions would lie exactly on the dotted black diagonal line.
Deviations from this diagonal represents less accurate predictions.
Fig. 12 shows the distribution of errors predicted by this model. The
median prediction error from these distributions is a good measure
of model performance. The model in this subsection has a median
prediction error of 10.1 per cent.

The accuracy of the model depends strongly on the magnitude
of the true bubble size. The model struggles to make accurate
predictions for mean bubble sizes that are larger than 70 Mpc:
predictions for Rbubble < 70 Mpc lie close to the diagonal, but
predictions for Rbubble > 70 Mpc show much larger scatter. This
can be understood in terms of the relationship between the 3PCF
and the mean bubble size. Near the end of the EoR, the widespread
overlap of ionized bubbles gives rise to a larger average mean free
path of ionizing photons, but also blurs the definition of a mean
bubble size. Many bubbles have merged, and thus the ‘mean’ bubble
size is a less clear feature. The model’s ability to learn the mean
bubble size from 3PCF measurements reflects this.

5.2 Results training on δTb(r) data

The situation is more complicated when using measurements of the
21 cm differential brightness temperature field δTb(r) instead of the
ionization fraction field xH II(r). The relationship between δTb and
the ionization fraction xH II given in equation (7) is assumed to be
linear, but the other terms in this equation also impact the morphology
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Figure 10. Example measurements of r3ξ (3) for 21 cm differential brightness
temperature field data δTb(r), using the same simulation as Fig. 8. These data
have also been processed using the radius bins in Section 3.2.1.

of the 21 cm brightness temperature field. Most notably, local spin
temperature fluctuations Tspin(r) and local density fluctuations δ(r)
can both change the local values of δTb(r). Fluctuations in these
values confuse the otherwise simple relationship between the 3PCF
and the mean bubble size. Fig. 10 shows the measured δTb(r) 3PCF
from a simulation with parameters ζ ion = 30.0, Tvir = 104 K, and E0

= 200 eV. The true mean bubble sizes (calculated as the mean of the
mean free path distributions) are shown as vertical lines. The 3PCF
of the brightness temperature data has a more complex evolution over
the EoR than the 3PCF of ionization fraction data shown in Fig. 8.
In general, the amplitude of the δTb(r) 3PCF decreases until around
〈xH II(z)〉 = 0.25, before increasing to a maximum near the end of
the EoR. The complex evolution of other features is less obvious and
justifies the need for machine learning models here.

Using the same method as for the ionization fraction field model,
we train a model to predict the mean bubble sizes using the 3PCF
of simulated δTb(r) data. The resulting best model uses three
hidden layers with sizes [158, 188, 187]; training batch size of
169; a maximum of 864 epochs; adaptive learning rate starting at
1.3 × 10−3; the ‘relu’ activation function; and L2 regularlization
parameter 4.3 × 10−3.

This δTb(r) MLP model has a median prediction error of
13.4 per cent. This performance is slightly worse than using xH II(r)
data, indicating that the extra complexities of including local
spin temperature fluctuations and local density field fluctuations
do indeed contaminate the relationship between the mean bubble
size and the data field correlations. The model cannot distinguish
between correlations of ionized regions and correlations of low-
density contrast regions (‘underdense’ regions), because both of these
scenarios give rise to lower values for δTb. Similarly, regions with
low local values for the spin temperature Tspin can mimic ionized
regions.

We plot the δTb(r) model’s predicted mean bubble sizes for unseen
testing data in Fig. 11, as a function of the true mean bubble size. Two
features are worth nothing in comparison to the previous xH II(r) MLP
model. First, although the average performance of the δTb model is
worse, the performance at larger bubble sizes is better. Whereas
the xH II(r) model’s predictions showed a large scatter around the
diagonal for Rbubble > 70 Mpc, the δTb(r) model’s predictions
show a more consistent relationship with the mean bubble size: all
predictions with Rbubble > 25 Mpc are made with a roughly consistent
accuracy. In particular for larger bubble sizes, the 3PCF of brightness
temperature data appears to encode more information about bubble

Figure 11. Predicted bubble size versus true bubble size for unseen testing
data, using the best model in Section 5.2. This model uses the 3PCF of δTb(r)
data to predict the mean bubble size. The predicted values and true values
generally lie along the main diagonal for middling values of Rbubble between
25 and 100 Mpc. The model can accurately predict the mean bubble size
in these scenarios. Deviations from the diagonal line at larger and smaller
bubble sizes are worse for the reasons discussed in the text.

sizes than does the ionization fraction field. A likely reason for
this is the effect of neutral regions. Whereas neutral regions in the
ionization fraction field have a uniform value of xH I = 1.0, these
regions can have different values in the brightness temperature field
owing to the other terms in equation (7). This relationship could
encode information in the brightness temperature field correlations
that does not exist in the ionization fraction field, thus allowing
our MLP model to learn the mean bubble size more easily. The
second interesting feature is the δTb(r) model’s poorer performance
at low bubble sizes, seen as the large solid cluster of markers in
the bottom left of Fig. 11. It is not immediately obvious why this
occurs. Including spin temperature fluctuations certainly causes a
more complex relationship between the ionization fraction field and
the 3PCF of the brightness temperature field. It is possible that this
effect is worse at earlier times, when the mean bubble sizes are
generally smaller.

Fig. 12 shows the histograms of prediction errors for both final
best MLP models: one using xH II(r) data, and one using δTb(r) data.
Ideally, all predictions would be near zero percentage rmse. The
distribution of errors for these two models does not depend strongly
on which data are used (xH II(r) or δTb(r)) although, as mentioned
above, each model has different prediction accuracies for different
mean bubble size regimes.

5.3 Effect of modelling weights

Training an MLP model involves finding the optimal ‘weight’
parameters. These weights are usually initialized to random values
as discussed in Section 4.1. Different initial weight values will result
in different final weight values at the end of training. Thus, the
performance of an MLP model depends on the choice of initial
weight values. It is interesting to determine the impact that the
choice of initial weight values has on model performance. The black
line in Fig. 13 shows the distribution of median prediction errors
for a set of 500 models, each of which has different randomized
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Figure 12. Histogram of prediction errors for mean bubble size models.
Visibly, the overall distribution of errors does not depend strongly on which
data are used. However, it can be seen from Figs 9 and 11 that the prediction
accuracies of these two MLP models depend strongly on the mean bubble
size: the δTb(r) model makes better predictions at higher bubble sizes, and
the xH II(r) model makes better predictions at lower bubble sizes.

Figure 13. Histogram showing the spread of rmse model performance, either
for different weight initializations of the MLP models or from all 1000 models
in the hyperparameter. For the ‘weight initializations’ line, all models have
the best hyperparameters as determined in Section 5.2.

initial weights but identical hyperparameters to our best model in
Section 5.2. The lighter orange line shows the distribution of median
prediction errors for all 1000 MLP models in the full hyperparameter
search. For our best model, weight initialization clearly has a strong
effect on the model performance: the median prediction error can
vary between 10 per cent and 30 per cent. Although, it is possible
that our best model is particularly susceptible to different weight
initializations, it is likely that other MLP models would also have
a similar magnitude of spread in performances. This likely puts
an upper limit on the possible performance from any MLP model,
even if a deeper hyperparameter search were performed. Note that
the best model’s rmse value of roughly 13 per cent lies close to
the best performance found by varying random initial weights. Our
best model has almost certainly benefited somewhat from a ‘lucky’
weight initialization, in the sense that retraining the MLP model
with different initial weights would likely lead to a worse rmse
performance. Our model is a good one – it has an acceptable rmse
performance on unseen testing data – but a broader investigation

Figure 14. Predicted bubble size versus true bubble size for unseen testing
data, using the best model in Section 5.4. This model uses the power spectrum
of δTb(r) data to predict the mean bubble size. The predicted values and true
values generally lie along the main diagonal, although in comparison to
the equivalent 3PCF model in Fig. 11 this model makes significantly worse
predictions.

into the full hyperparameter space could potentially lead to a higher
accuracy model.

5.4 Comparison to power spectrum

The 21 cm line is subject to many sources of noise. In particular,
thermal noise in the raw observed data affects our ability to make
inferences from 21 cm maps. In order to reduce the effect of noise,
statistical quantities such as clustering statistics can be used. These
metrics are less affected by noise since they are calculated as averages
across the entire map. The 3PCF is a higher order clustering statistic
and so should reduce the effect of noise. However, it is also interesting
to check whether using a lower order statistic such as the power
spectrum provides equally good results. In this section, we use the
full hyperparameter search method described in Section 4.2 to find
an MLP model that predicts the mean bubble sizes from the power
spectrum of the differential brightness temperature field δTb(r). As in
the previous sections, we compare 1000 randomly chosen models and
select the one with best cross-validated performance. The resulting
best MLP model uses three hidden layers with sizes [191, 110, 76];
training batch size of 194; a maximum of 596 epochs (of which
the model used all epochs before terminating); constant learning
rate starting at 4.8 × 10−3; the ‘relu’ activation function; and L2
regularization parameter 4.5 × 10−4.

Fig. 14 shows the accuracy of the best P(k) model’s predictions
for unseen testing data. This model has a median prediction error
of 18.3 per cent, somewhat worse than the equivalent model in
Section 5.2 which uses 3PCF measurements instead of power
spectrum measurements as inputs to the MLP model. The information
encoded in the power spectrum appears to be less strongly related to
the mean bubble size than the information encoded in the 3PCF. It
is worth noting that if noise was added to the underlying simulated
δTb maps then the performances of the 3PCF models would likely be
impacted. More investigation would be needed to determine whether
this impact would be greater for the 3PCF model than for the power
spectrum models.
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Figure 15. Predicted global ionization fraction versus true global ionization
fraction for unseen testing data, using the ionization fraction 3PCF as inputs.
The predicted and true values lie very closely along the diagonal, particularly
for values 〈xH II(z)〉 < 0.6. Predictions for 〈xH II(z)〉 > 0.6 are slightly worse
as discussed in the text.

6 L E A R N I N G T H E G L O BA L IO N I Z AT I O N
F R AC T I O N FRO M TH E 3 P C F

In the previous section, we investigate using 3PCF measurements
to predict the mean bubble size. The mean bubble size is a useful
metric for tracking the growth of ionizing regions, but the global
ionization fraction 〈xH II(z)〉 is a more direct measurement for the
overall progress of the EoR. The redshift history of 〈xH II(z)〉 can be
strongly affected by the reionization parameters: different ionizing
efficiency ζ ion scenarios have a different abundance of ionizing
photons, which affects the EoR duration; different Tvir scenarios
have different halo mass function distributions, leading to more or
fewer ionizing sources and also affect the EoR duration.

In this section, we train a model to predict the value of 〈xH II(z)〉
from 3PCF measurements. Our models learn the relationship be-
tween the 3PCF and global ionization fraction by using the same
simulated data in Section 5. Measurements of the 3PCF and bubble
size distribution use the methods described in Sections 3.2.1 and
3.2.2, respectively. The data are cleaned using the same ionization
fraction filters, namely 0.01 ≤ 〈xH II(z)〉 ≤ 0.95.

6.1 Results training on xH II(r) data

We use the same search strategy as in the previous section. The best
model uses three hidden layers with sizes [192, 150, 50]; training
batch size of 261; a maximum of 365 epochs (of which the model
used all epochs before terminating); adaptive learning rate starting
at 2.00 × 10−3; the ‘relu’ activation function; and L2 regularization
parameter 3.72 × 10−4.

The model has an extremely good median prediction error of
3.6 per cent. Fig. 15 indicates the performance from this model,
showing the predicted values of 〈xH II(z)〉 as a function of the true
〈xH II(z)〉 values in the testing data. Marker colours show the mean
bubble size. All markers lie close to the perfect-model diagonal
in Fig. 15, confirming that this model makes extremely accurate
predictions. As in the previous section, the model accuracy is higher
for 〈xH II(z)〉 < 0.6 than for 〈xH II(z)〉 > 0.6.

Figure 16. Histogram of prediction errors for predicting the global ionization
fraction. Each line shows the histogram of errors for a single model. The model
using xH II(r) 3PCF data has a much more accurate median prediction error
(3.6 per cent) than the model using δTb(r) data (16.0 per cent).

Ionization fraction 3PCF measurements have a very strong re-
lationship with the global ionization fraction. Ionization fraction
field data contain a range of bubble sizes. The 3PCF measures
clustering on a range of scales and this information is apparently
strong enough to provide immediate and accurate predictions for the
mean ionization fraction. The predictions begin to worsen near the
end of the EoR for 〈xH II(z)〉 > 0.6, when overlap causes a more
complex bubble size distribution. However, the predictions are still
visibly good and still have a low rmse value.

6.2 Results training on δTb data

In this subsection, we train a model to predict the global ionization
fraction 〈xH II(z)〉 from δTb(r) 3PCF data. We use the same search
strategy as the previous subsections. The best model uses three
hidden layers with sizes [168, 174, 70]; training batch size of 361;
a maximum of 506 epochs (of which the model used all epochs
before terminating); adaptive learning rate starting at 4.44 × 10−3;
the ‘relu’ activation function; and L2 regularization parameter
3.65 × 10−3.

As seen in Fig. 17, predicting the global ionization fraction using
δTb(r) 3PCF data gives less accurate results than using xH II(r) data.
The δTb(r) model’s median prediction error is 16.0 per cent, much
worse than the error of 3.6 per cent for the xH II(r) model. Fig. 16
gives the final prediction histograms for the two global ionization
fraction models, using either ionization fraction data xH II(r) or
brightness temperature field data δTb(r). Predictions of the global
ionization fraction depend strongly on which data are used: the
prediction errors for the model using xH II(r) data are much lower
than those for the δTb(r) model.

The model predictions shown in Fig. 17 deviate more widely from
the perfect diagonal than the predictions in Fig. 15. Interestingly,
this model’s accuracy increases for the later stages of the EoR
with 〈xH II(z)〉 > 0.6, as opposed to decreasing the accuracy of
the model using xH II(r) 3PCF data. This can be understood by
considering the impact of density and spin temperature fluctuations.
Local fluctuations have a more significant impact on the δTb(r)
field at early times than at later times. Thus, the morphology of the
δTb(r) field is more closely linked to that of the xH II(r) field at later
times.
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Figure 17. Predicted global ionization fraction versus true global ionization
fraction for unseen testing data, using δTb(r) as inputs. The predictions
generally lie along the diagonal, but with larger scatter than using xH II(r)
as model inputs.

7 C O N C L U S I O N S

The 3PCF of the 21 cm signal contains valuable information
about the morphology and history of the EoR. We present an
optimized code for estimating the 3PCF of 3D pixelized data, such
as the outputs from seminumerical simulations. The code includes
jackknifing for error estimates and user-changeable parameters for
choosing a level of approximate sampling. We test the code on a
testing distribution with known analytical 3PCF, finding that the
estimates from our code match the true 3PCF closely. After testing,
we use our code to calculate the 3PCF for a range of simulated
reionization scenarios using 21CMFAST. Throughout, we assume an
idealized case where instrumental noise is negligible, and 21 cm
foregrounds have been perfectly removed.

We use machine learning techniques and train models to recover
both the typical bubble size and the global ionization fraction from
measured 3PCF outputs of seminumerical simulations. We first train
models to recover the typical bubble size, from the 3PCF of either
ionization fraction data or 21 cm differential brightness temperature
data. The two models are both able to determine the general trend
of increasing typical bubble size and have similar overall accuracy.
The model using xH II(r) 3PCF data has better performance at small
bubble sizes (1 < Rbubble < 70 Mpc, whereas the model using δTb(r)
has better performance for larger bubble sizes (Rbubble > 25 Mpc).
Both features can be understood in terms of how the data field
morphologies evolve over the EoR. We compare the performances
of predict the typical bubble size using either the 3PCF or the power
spectrum. We find that using the 3PCF instead of the power spectrum
leads a noticeable improvement in the final MLP model’s prediction
accuracy, with median prediction accuracies of around 10 per cent
and 14 per cent, respectively.

We then train a model to recover the global ionization fraction from
ionization fraction 3PCF data. The resulting model has extremely
accurate predictions and shows the three-point clustering of xH II(r)
data is strongly related to the evolution of the global ionization
fraction. Our model is able to uncover this relationship with median
prediction accuracy of 4 per cent, although the predictions are
slightly less accurate for the later stages of the EoR with 〈xH II(z)〉
> 0.6. Unfortunately, this model would practically not be useful

in EoR analysis because the ionization fraction field is difficult
to probe directly. Instead, observations are made in terms of the
differential brightness temperature. We train a fourth and final
model to predict the global ionization fraction from the 3PCF of
the differential brightness temperature field. This MLP model has
a median prediction accuracy of 16 per cent. The resulting model
makes accurate predictions for the late stages of the EoR (〈xH II(z)〉
> 0.6), but struggles with the early stages.

As with all machine learning projects, our models to predict the
typical bubble size and global ionization fraction could likely be
improved by gathering more data from a wider range of reionizaion
scenarios. This would allow the models to learn more general connec-
tions between the 3PCF measurements and characteristic reionization
features. Providing other brightness temperature field summary
statistics could also improve our models, for instance the distribution
of pixel brightnesses (Ichikawa et al. 2009) or the size distribution of
bright regions (Kakiichi et al. 2017). We also note that our models as-
sume a constant value for the X-ray efficiency. Ideally this constraint
should be lifted and the X-ray efficiency allowed to vary as with
the other simulation parameters. Further studies will be necessary
to evaluate the effectiveness of such an approach in the presence of
instrumental effects and noise, as well as foreground residuals.

The techniques in this paper are tested on simulated data. We
have assumed that instrumental noise is negligible at our scales and
lower redshifts of operation, as is expected during the EoR upcoming
experiments such as the SKA (Koopmans et al. 2015). Instrumental
smoothing will predominantly affect smaller scale features on the
same scale as the instrument’s point spread function, and the effect
on larger scale features would be minimal. While as noted by
Watkinson et al. (2019), the bispectrum of Gaussian noise is zero,
there will be noise and possibly bias on both the 3PCF and the
bispectrum due to sample variance, instrumental systematic effects,
ionispheric effects, finite number of baselines, restricted field of
view, and radio frequency interference. All of these will need to
be considered in future studies. Furthermore, we have assumed a
best-case scenario where 21 cm foregrounds have been perfectly
removed. This assumption is not uncommon in recent literature (see
e.g. Shimabukuro & Semelin 2017; Gillet et al. 2018; Jennings et al.
2018) but remains the subject of much discussion. Several studies
(Chapman et al. 2014; Mertens, Ghosh & Koopmans 2018; Li et al.
2019) have claimed that foreground removal can be effective for
the power spectrum. Watkinson, Trott & Hothi (2020) show that
foregrounds could be a problem for recovering the 21 cm bispectrum.
More work would be needed to understand the impact of foreground
residuals on the 3PCF signal.

There are several other possible avenues of future work to build
on these results. First, using similar machine learning techniques to
predict the full bubble size distribution dP/dR from 3PCF data. The
full bubble size distribution provides a more detailed description
of the morphology than the typical bubble size alone. Secondly,
using a larger selection of triangle configurations (both sizes and
shapes) would likely provide more information and make it easier
to recover the bubble size statistics. Thirdly, training models to
map from 3PCF measurements directly to parameters in a similar
way to Shimabukuro & Semelin (2017). Such inference models can
only make estimates of the ‘best’ parameters and do not provide
uncertainty regions in the same way as MCMC analysis. Instead,
training emulators to forward model the 3PCF outputs directly from
the simulation input parameters would effectively remove the need
for further simulations. Finally, investigating the effect of realistic
experiment conditions would indicate whether the 3PCF of future
21 cm measurements could be used to extract physically meaningful
bubble size statistics.

MNRAS 498, 4518–4532 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/3/4518/5899061 by guest on 25 April 2024



4532 W. D. Jennings, C. A. Watkinson and F. B. Abdalla

This work presents the first attempt to predict fundamental proper-
ties of the EoR using the 3PCF and machine learning techniques. We
provide a publicly available code 3PCF-FAST to help the community
perform similar analyses in the future.
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