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A B S T R A C T 

Numerical simulations play an essential role in helping us to understand the physical processes behind relativistic jets in active 
galactic nuclei. The large number of hydrodynamic codes available today enables a variety of different numerical algorithms to 

be utilized when conducting the simulations. Since many of the simulations presented in the literature use different combinations 
of algorithms it is important to quantify the differences in jet evolution that can arise due to the precise numerical schemes used. 
We conduct a series of simulations using the FLASH (magneto-)hydrodynamics code in which we vary the Riemann solver and 

spatial reconstruction schemes to determine their impact on the evolution and dynamics of the jets. For highly refined grids 
the variation in the simulation results introduced by the different combinations of spatial reconstruction scheme and Riemann 

solver is typically small. A high level of convergence is found for simulations using third-order spatial reconstruction with the 
Harten–Lax–Van-Leer with contact and Hybrid Riemann solvers. 
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 I N T RO D U C T I O N  

elativistic jets produced by active galactic nuclei (AGN) play
n important role in the evolution of galaxies and the large-scale
tructure in the Uni verse. Ho we ver, the detailed physical processes
ssociated with the energetic interactions between jets and their
nvironments are not fully understood. Numerical simulations are
 powerful tool to investigate the interactions between jets and their
urroundings, providing insights into how jets couple their energy to
heir surroundings, impact the evolution of galaxies and clusters, and
ow jet morphology and dynamics are influenced by the conditions
n their local environments. 

The development of early hydrodynamic and magneto-
ydrodynamic ( MHD ) codes such as the hydrodynamics code de-
eloped by Gull ( 1976 ) and based on the Eulerian finite difference
ethod of Gentry, Martin & Daly ( 1966 ), the 2D axisymmetric MHD

ode flow (Lind 1987 ), and the Eulerian finite difference schemes
or conserv ati ve Eulerian hydrodynamics proposed by Wilson ( 1979 )
nabled early simulations of various jet processes. Numerical sim-
lations using these codes included the production of jets from
agnetised accretion discs via the Blandford–Payne mechanism ( e .g .
ind, Meier & Payne 1994 ), and the kiloparsec scale evolution of jets
 e .g . Norman et al. 1982 ). Early simulations conducted by Norman
t al. ( 1982 ), Wilson & Scheuer ( 1983 ), Clarke, Norman & Burns
 1986 ), Lind et al. ( 1989 ), and Mart ́ı et al. ( 1997 ) explored the nature
f jet propagation and impro v ed our understanding of the structure
f radio galaxies. These simulations also provided some important
 E-mail: g.musoke@uva.nl 
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onstraints on the density of AGN jets – they concluded that in
rder to reproduce the expanding cocoon morphologies present
n observations, AGN jets must be composed of material that is
nderdense with respect to the surrounding environment. 
The simulations in Norman et al. ( 1982 ) were some of the

rst high-resolution hydrodynamic simulations of extragalactic jets.
hese 2D axisymmetric simulations reco v ered features at the heads
f supersonic jets – the bow shock, jet shock, and contact surface,
hich were remarkably similar to the basic jet components in the
eam model for extragalactic radio sources proposed by Blandford &
ees ( 1974 ). Impro v ements in computing performance and computer
emory, alongside advances in multiprocessor computing and the

evelopment of computationally efficient methods for multidimen-
ional problems made 3D simulations of extragalactic jets viable.
ome of the very first 3D simulations of AGN jets were performed
y Williams & Gull ( 1984 ) and Arnold & Arnett ( 1986 ) at low
esolution. 

Continual advancements in computational hardware, alongside
evelopments in high-resolution shock capturing schemes and tem-
oral and spatial discretization have lead to the increased solution
ccuracy of (magneto-)hydrodynamics codes, better shock handling
apabilities, and the ability to run simulations at increasingly high
esolutions. These advancements have lead to the generation of a
ariety of modern MHD codes such as FLASH (Fryxell et al. 2000 ),
MRVAC (Keppens et al. 2003 ), PLUTO (Mignone et al. 2007 ), ATHENA

Stone et al. 2008 ), and ZEUS-3D (Stone & Norman 1992a , b ; Clarke,
orman & Fiedler 1994 , see Mart ́ı & M ̈uller 2015 for a detailed list of

he available MHD codes). These modern codes are enabling complex
et simulations to be conducted – from fully relativistic simulations of
GN jets (O’Neill, Beckwith & Begelman 2012 ; Guan, Li & Li 2014 ;
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ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 

http://orcid.org/0000-0003-1984-189X
http://orcid.org/0000-0003-3626-9151
mailto:g.musoke@uva.nl
http://creativecommons.org/licenses/by/4.0/


Impact of numerical schemes on jet evolution 3871 

T
2
o
H  

e  

i
j  

2

d
p
s
r
v  

d
S
a  

a  

p
t
k
f  

l
n
n  

F  

m
m

s
d  

a
r
a
d
T
a
t

a
a
w
t
r

j
c
2  

v
m
t
p
t
g  

b
L
H  

a
m
o
o  

s

w
L  

f
W  

f
a  

s

m
r
i  

T  

r  

a  

t
t
a
o

2

I  

b  

t
j

fl
fl  

n
 

a  

u  

r  

v  

g

w
f

 

ρ

E

w
 

m  

a  

r

P

w

1 Monotone upwind scheme for conservation laws. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/3/3870/5900565 by guest on 24 April 2024
chekhovsk o y & Bromberg 2016 ; English, Hardcastle & Krause 
016 , 2019 ), to simulations exploring the disturbed morphology 
f (M)HD jets propagating in dynamic cluster atmospheres (e.g. 
einz et al. 2006 , 2008 ; Mendygral, Jones & Dolag 2012 ; Musoke

t al. 2020 ) alongside the interactions between jets and substructure
n the surrounding ambient medium (e.g. the interactions between 
ets and interstellar clouds; Saxton et al. 2005 ; Mukherjee et al.
016 ). 
A major problem faced when simulating jets concerns the vastly 

ifferent temporal and spatial scales associated with aspects of jet 
henomena. The formation, acceleration, collimation, and large- 
cale propagation of jets, and the feedback and regulation processes 
elated to AGN activity, all depend on processes occurring on 
 astly dif ferent scales. This leads to jet processes spanning a large
ynamic range, from process occurring on spatial scales of a few 

chwarzschild radii through to megaparsec scales. The formation 
nd launching of the jet in the vicinity of the black hole and
ccretion disc for example concern spatial scales in the order of
arsecs and smaller. The collimation and large-scale interactions of 
he jets as they propagate through the intracluster medium concern 
iloparsec spatial scales, while the processes that go v ern AGN 

eedback can concern spatial scales in the order of megaparsecs or
arger. Furthermore, specific physical processes can play important 
on-negligible roles for some evolutionary phases but can often be 
eglected in others depending on the precise nature of the system.
 or e xample, magnetic fields and general relativity pertinent to the
agneto-rotational acceleration processes are clearly essential for 
odelling jet formation. 
The vast number of hydrodynamics codes available today allow 

imulations to be performed using different algorithms, each of which 
etermine how the numerical problem is e v aluated. The dif ferent
pproaches taken in the computations, include changes in the spatial 
epresentation of the fluid states on a discretized simulation grid 
nd how discontinuities in the fluid flow are handled, alongside 
ifferences in the underlying assumptions used in the calculations. 
hese algorithms can provide varying degrees of spatial and temporal 
ccuracy leading to different computational efficiencies and abilities 
o resolve features within the fluid flow. 

Many numerical simulations of jets presented in the literature 
re not only conducted with a variety of different codes, but 
lso often incorporate different combinations of numerical schemes 
ithin these codes. Different numerical algorithms applied to 

he same initial conditions may not produce exactly the same 
esults. 

In this work, we conduct 2D axisymmetric simulations of AGN 

ets, to determine the dependence of the jet evolution on the 
hoice of numerical algorithm. We use the FLASH (Fryxell et al. 
000 ) code to conduct the simulations. FLASH is a Eulerian finite-
olume, Godunov-based MHD code that utilizes parallel adaptive 
esh refinement (AMR). The algorithms of interest in this work are 

he Riemann solvers used to compute the solution to the Riemann 
roblem at the cell interfaces and the reconstruction method used 
o determine the spatial variation of the fluid variables across the 
rid cells. Of the different solvers available in FLASH , the 1D-
ased Harten–Lax–Van-Leer with contact (HLLC; Li 2005 ), Harten–
ax Van-Leer [HLL(E); Einfeldt 1988 ], Hybrid [use of HLLC and 
LL(E) solv ers] Riemann solv ers, and the LLF (Lax 1954 ) solver

re compared. For each solver, a selection of spatial reconstruction 
ethods are tested. These reconstruction methods determine the 

rder of spatial accuracy in reconstructing the normal components 
f the fluid states at the cell interfaces from the v olume a veraged cell
tates. Second- and third-order reconstruction methods are tested, 
hich correspond to the MUSCL 

1 -Hancock (MH; see VanLeervan 
eer 1979 ) method in which the cell states are modelled as linear

unctions and the piece-wise parabolic method (PPM; Colella & 

oodward 1984 ) in which the cell states are modelled as parabolic
unctions, respectively. We quantify how the morphology, dynamics, 
nd energetics of the jets differ depending on the choice of Riemann
olver and reconstruction scheme. 

Sections 2 –5 introduce key concepts concerning the different 
ethods employed by a selection of Riemann solvers and spatial 

econstruction schemes. A full description of the Riemann solvers 
s beyond the scope of this work and the reader is referred to
oro, Spruce & Speares ( 1994 ), Toro ( 2009 ), LeVeque ( 2002 ), and
eferences therein for a full o v erview. The simulation parameters
nd the numerical approach taken are discussed in Section 6 . In
he remaining sections, we discuss and quantify the differences in 
he numerical solutions introduced by the various combination of 
lgorithms by comparing the morphology, dynamics, and energetics 
f the simulated jets o v er the course of their evolution. 

 EULER  EQUATI ONS  

n this work, we assume that the dynamics of AGN jets are dominated
y the thermal plasma rather than the jet magnetic fields. We
herefore take a purely hydrodynamic approach when simulating the 
ets. 

By neglecting magnetic fields and relati vistic ef fects alongside 
uid viscosity and heat conduction, and assuming a compressible 
o w, the e volution of the jet flo w is go v erned by the time-dependent
on-relativistic Euler equations. 
The Euler equations can be written in terms of the conserved vari-

bles; the mass density ρ, the momentum u where u = ( ρu, ρv, ρw),
 , v, and w are the x , y , and z are components of the velocity,
espectiv ely, the v elocity v = ( u, v, w), and the total energy per unit
olume of the fluid E . In conserv ati ve form, the Euler equations are
iven by 

∂ρ

∂t 
+ ∇ · ( ρv ) = 0 , (1) 

∂ρv 

∂t 
+ ∇ · ( ρv v ) + ∇ P = ρg , (2) 

∂E 

∂t 
+ ∇ · [( E + P ) v ] = ρv · g , (3) 

here g is the gravitational acceleration, which can be calculated 
rom an external gravitational potential � through g = −∇� . 

The total energy per unit volume E is the sum of the internal energy
ε and kinetic energy and is given by 

 = ρ

(
ε + 

1 

2 
v 2 
)

, (4) 

here ε is the specific internal energy. 
Equations ( 1 ), ( 2 ), and ( 3 ) represent the conservation of mass,
omentum, and energy , respectively . It should be noted that the

bo v e formulation of equation ( 3 ) neglects energy loss terms from
adiative cooling. 

We close equations ( 1 –3 ) using the ideal gas equation of state: 

 = ( γ − 1) ρε, (5) 

here P is the pressure and γ is the adiabatic index. 
MNRAS 498, 3870–3887 (2020) 
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M

Figure 1. Four possible wave patterns in the solution to the Riemann problem for the Euler equations e v aluated at the interface between cells i and i + 1. The 
solid lines represent shock waves, the dashed lines represent the contact discontinuity, and the group of four thin lines correspond to raref action w aves. The cell 
index i + 1/2 (i.e. along the t -axis in these images) denotes the interface position between the cells. The four states U L , U 

∗
L , U 

∗
R , and U R alongside the wave 

speeds S L , S ∗, and S R correspond to all the Riemann fans presented but are shown only in Figure ( a ) for clarity. The half-integer notation on the fluid states (and 
the time indices) have been dropped, (i.e. U L corresponds to U 

L,i+ 1 2 
, similarly for the other fluid states.). 
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The Euler equations can also be written in conservation law form,
n three dimensions they then read 

 t + F ( U ) x + G ( U ) y + H ( U ) z = S ( U ) , (6) 

here each suffix represents a derivative, U is a column vector of
onserved state variables, and vectors F , G , and H represent flux
ectors in the x- , y -, and z-directions, respectively. These vectors are
iven by 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρ

ρu 

ρv 

ρw 

E 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, F = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρu 

ρu 2 + p 

ρuv 

ρuw 

u ( E + p) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, G = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρv 

ρuv 

ρv 2 + p 

ρvw 

v( E + p) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, H = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ρw 

ρuw 

ρvw 

ρw 

2 + p 

w ( E + p ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (7) 

S is a source term and body forces such as gravity are represented in
his term. The injection of mass, momentum, or energy into a system
an also be included in this source term. In the absence of such terms,
he right-hand side of equation ( 6 ) is simply 0. 

 R I E M A N N  PROBLEM  

he Euler equations can be written in terms of a hyperbolic system
f conservation laws. In a one dimension, in a Cartesian coordinate
ystem and in the absence of source terms this gives 

 t + F ( U ) x = 0 , (8) 

here U ( = U ( x, t)) is a vector of the conserved fluid variables and
he flux vector F is a function of the conserved variable vector U 

nd denotes the flux along the x -direction. 
NRAS 498, 3870–3887 (2020) 
The two vectors are defined as 

 = 

⎡ 

⎣ 

ρ

ρu 

E 

⎤ 

⎦ , F = 

⎡ 

⎣ 

ρu 

ρ2 u + p 

u ( E + p) 

⎤ 

⎦ . (9) 

The Riemann problem for the 1D Euler equations is then the initial
alue problem given by the following initial conditions: 

 ( x, t = 0) = 

{
U L if x < 0 
U R if x > 0 

. (10) 

At the time of the initial set-up ( t = 0), the Riemann problem
onsists of two states, described by the conserved variable vectors
 L and U R (where the subscripts L and R refer to the left and right

tates, respectively), separated by a common boundary at x = 0. At
 = 0 the boundary is remo v ed and the states U L and U R are allowed
o interact. The Riemann problem is a generalization of the shock
ube problem in which two stationary gasses in a tube are separated
y a membrane (Toro 2009 ). The membrane is remo v ed and the
as states interact, generating wa ves that tra vel in both directions
own the tube. Solving the Riemann problem for the Euler equations
etermines what the resulting waves will be. 

.1 Solutions to the Riemann problem 

or purely hydrodynamic problems, the solution to the Riemann
roblem consists of a three-wave pattern generated once the boundary
s remo v ed and the states interact. In the x –t plane, see Fig. 1 ,
his three-wave pattern corresponds to a Riemann fan bounded by
w o non-linear w aves that are separated by a contact discontinuity

art/staa2657_f1.eps
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contact wave) moving at the fluid velocity S ∗. The two non-linear
aves can represent either shocks or raref action w aves. The tw o non-

inear waves on the left and right of the contact discontinuity travel
ith velocities as S L and S R , respectively. 
Four possible three-wave patterns in the solution of the Riemann 

roblem are shown in Fig. 1 . Only a selection of possible wave
onfigurations are shown – the contact discontinuity can be on either 
ide of the interface, or the waves can all be on one side of the interface
e.g. if all waves are supersonic). The wave pattern formed by the two
on-linear waves and the contact discontinuity divides the x − t plane 
nto four regions; U L , U 

∗
L , U 

∗
R , and U R [see panel ( a ) in Fig. 1 ], each

f which define a constant state (Mignone & Bodo 2005 ). The region
etween the two non-linear wav es, giv en by the states U 

∗
L and U 

∗
R is

eferred to as the star region. Within the star region, the pressure, and
he velocity are constant, i.e. p 

∗
L = p 

∗
R and u 

∗
L = u 

∗
R , while the density

and internal energy) changes discontinuously across the contact 
iscontinuity: The density on the left of the contact discontinuity in 
he region U 

∗
L is then given by ρ∗

L , and the density on the right of
he discontinuity in state U 

∗
R is given by ρ∗

R . The states in region
 L and U R simply correspond to the initial left and right states of

he Riemann problem as the waves have not had time to reach these
egions. 

Consider the initial state of the Riemann problem in the context 
f a discretized simulation domain – the states U L and U R then 
orrespond to the fluid states immediately to the left and right of the
ell interfaces and the boundary then corresponds to the interfaces 
etween the computational grid cells. For a given cell with index i the
oundary is positioned at x i+ 

1 
2 

and the left and right hand states at the
oundary are given by U L,i+ 

1 
2 

and U R,i+ 

1 
2 
, respectively (see Fig. 1 ).

ach interface in the discretized grid then ef fecti vely generates a
ocal Riemann problem, which for each interface then reads 

 ( x, t = 0) = 

{ 

U L ,i+ 

1 
2 

if x < x i+ 

1 
2 

U R ,i+ 

1 
2 

if x > x i+ 

1 
2 
. 

(11) 

nce the interface is remo v ed at t = 0, the states are allowed to
nteract for some time interval � t and the solution is advanced in
ime to give the new cell averaged states U 

n + 1 
i using Godunov’s 

ethod (Godunov 1959 ) 

 

n + 1 
i = U 

n 
i + 

�t 

�x 
[ F i− 1 

2 
− F i+ 

1 
2 
] , (12) 

here n denotes the time t = t n and n + 1 the time at t = t n + � t
nd U 

n 
i is the cell averaged state at time t given by 

 

n 
i = 

1 

�x 

∫ x i+ 1 / 2 

x i−1 / 2 

˜ U ( x, t n )d x . (13) 

ere, ˜ U is the reconstructed cell averaged state given by a piece-wise 
inear, constant, or parabolic function describing the cell state along 
 . 

The intercell flux F i+ 

1 
2 

= F ( U i+ 

1 
2 
(0)) is given by the solution to

he local Riemann problem at x i+ 

1 
2 

provided that the time-step � t
atisfies the Courant, Friedrichs, and Lewy (CFL) condition. 

The CFL condition guarantees that information is not allowed to 
ravel across more than one computational grid cell per time-step. In
rder to meet this constraint, the time-step � t must be small enough
he ensure that the fastest waves on the grid at a given time do not
ave enough time to travel a distance of more than once cell length
 x . If we denote the fastest wave speed present on grid at some time

 = t n as S n max , then the CFL coefficient C CFL is defined by 

 CFL = 

�t S n max 

�x 
, (14) 
here the time-step � t is of a size such that 

 < C CFL ≤ 1 . (15) 

 N U M E R I C A L  DI FFUSI ON  

n Eulerian-based finite-volume hydrodynamic codes, the physical 
uid variables are approximated o v er discretized grid cells of size
 x . The change in various fluid quantities o v er some evolution

ime t is then obtained by computing the flux of the discretized
ariables through the cell boundaries during time intervals of 
ize � t . In Godunov-based numerical schemes, the approximate 
olutions for these discretized fluxes are obtained by solving the 
iemann problem at cell interfaces, with the initial states on 
ither side of the interface determined from cell averaged fluid 
ariables. 

As the resulting flux is then itself a discretized approximation to
he physical flux exchanged at the cell boundaries during the time
nterval � t , there is a truncation error associated with it. Additional
r missing high order terms in the discretized approximation can 
ppear as an ef fecti ve viscosity or thermal conductivity (Robertson
t al. 2010 ). This results in the smearing or dispersion of features
n the fluid flow, i.e . the addition of numerical diffusion. Thus, the
nherent discretization of Godunov-based numerical schemes mean 
hat they are naturally associated with numerical diffusion. In order 
o ensure that the discretized approximation to the physical flux 
ccurately represents the physical flux, the numerical dissipation 
ust be kept to a minimum. Methods that add the least numerical

iffusion are therefore the most accurate. The level of numerical 
iffusion in Godunov-based codes like FLASH varies depending on 
he precise numerical set-up used and is influenced by (i) the cell size
 x , (ii) the spatial reconstruction method used to determine the states

n either side of the cell interfaces, (iii) the precise method used to
olve the Riemann problem, (iv) the nature of the flow velocities
eing simulated, and (v) the choice of slope limiter (e.g. minmod,
an Leer, MC, Limited, Superbee – for a full o v ervie w of the ef fect
f slope limiters on hydrodynamic and MHD problems, see T ́oth &
dstr ̌cil 1996 ). 

.1 Spatial reconstruction methods 

nce the original physical, continuous fluid state is discretized, we 
btain a description of the fluid in terms of v olume-a veraged states in
ach cell. Ho we v er, in order to solv e the Riemann problem we must
epresent how these states vary spatially across the entire cell in
rder to obtain the values of the fluid states at the cell interfaces. The
ethod used to determine the fluid states between the cell interfaces

s given by the reconstruction 2 scheme and can effect the level of
umerical diffusion in the simulations. 
In the standard Godunov scheme, the reconstruction method 
odels the fluid states between the cell interfaces as constant spatial

unctions; the cell-averaged fluid states simply correspond to the 
uid state across the entire cell. This reconstruction method is 
rst-order accurate in space and is termed the first-order Godunov 
ethod. Due to the low order of spatial accuracy, this reconstruction

cheme introduces significant amounts of diffusion to the numerical 
olution. 

In order to impro v e the description of these intercell fluid states
igher order reconstruction methods are used, which increase the 
MNRAS 498, 3870–3887 (2020) 
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patial accuracy of the representation and consequently introduce
ess numerical diffusion. These higher order methods fit linear,
arabolic, and smooth high degree polynomial functions to the
veraged states at the cell centres in order to reconstruct the
ntercell states from the average states at the cell centres and are
econd-, third-, and fifth-order accurate in space, respectively. The
inear and parabolic functions correspond to the MH and the PPM

ethods, respectiv ely. Smooth high-de gree approximations can be
btained using the weighted essentially non-oscillatory (Jiang &
hin Wu 1999 ) functions, in which the cell states are defined as
he weighted average of multiple interpolating polynomials. (The

ultiple interpolating polynomials result from selecting different
eighbouring cell states o v er which to interpolate). 

 R I E M A N N  SOLV ERS  

he method used to solve the Riemann problem is determined by
he choice of Riemann solver, each of which has its own associated
evels of dissipation. The most accurate solvers are those that are
he least dif fusi ve, ho we ver, they can also be the most susceptible
o numerical pathologies. An o v erview of a selection of Riemann
olv ers is giv en below in order to highlight the differences between
he algorithms and their associated accuracy. 

In the following sections, we drop the half-integer notation i + 

1 
2 

n the fluid state vectors U used to denote the cell interface positions
or simplicity (e.g. U L ≡ U L,i+ 

1 
2 
, U HLL ≡ U HLL ,i+ 

1 
2 

U 

∗
L ≡ U 

∗
L,i+ 

1 
2 

nd so on). We also drop the time index n on the fluid state vectors
and the flux vectors, e.g . F ) by assuming the problem is e v aluated
t t = t n = 0 for the standard Godunov scheme where the cell
nterface states are not centred in time prior to e v aluating the Riemann
roblems. 

.1 HLL(E) 

he HLL solver originally introduced by Harten, Lax & van Leer
 1983 ) provides the simplest approximation to the solution of the
iemann problem. The HLL solver is based on three key assumptions
s described in Toro et al. ( 1994 ): 

(i) The four wave patterns present in the exact solution of the
iemann problem are represented by only a single wave pattern. 
(ii) The only waves present in the solution are the two non-linear

aves. 
(iii) The a priori estimates of the maximum and minimum bounds

f the wave speeds S L and S R of the non-linear waves are available. 

As a result of the first approximation stated, the two non-linear
aves bounding the Riemann fan are treated as shocks. The approx-

mation listed in point ( 2 ) abo v e has some important consequences;
he contact discontinuity present in the exact solution of the Riemann
roblem is no longer present in the HLL approximation to the solution
nd only the two of the three waves present in the exact solution
re reco v ered. As a result, the states describing the star re gion U 

∗
L 

nd U 

∗
R are averaged into a single constant state U HLL . The wave

onfiguration then corresponds to two waves separated by three
onstant states, U L , U HLL , and U R , and the approximate solution
o the Riemann problem on the x / t = 0 axis (corresponding to the
nterface position i + 1/2) is therefore given by 

 (0 , t) = 

⎧ ⎨ 

⎩ 

U L if S L � 0 , 
U HLL if S L � 0 � S R , 
U R if S R � 0 , 

(16) 
NRAS 498, 3870–3887 (2020) 
here the constant state U HLL can be constructed from estimates of
he wave speeds S L and S R to give 

 HLL = 

S R U R − S L U L + F L − F R 

S R − S L 
. (17) 

It should be noted that equation ( 17 ) corresponds to the integral
verage of the solution of the Riemann problem over the Riemann
an (Toro 2009 ). The flux functions (in the x -direction) F L and F R 

re given by F L = F ( U L ) and F R = F ( U R ). The corresponding
ntercell flux F i+ 

1 
2 

for the HLL scheme is then given by 

F i+ 

1 
2 

= 

⎧ ⎨ 

⎩ 

F L if S L � 0 , 
F HLL if S L � 0 � S R , 
F R if S R � 0 , 

(18) 

here 

F HLL = 

S R F L − S L F R + S R S L ( U R − U L ) 

S R − S L 
. (19) 

The wave speed estimates are obtained using a variety of different
lgorithms depending on the exact formulation of the HLL solver
sed, for an o v erview of such algorithms see section 10.5 of Toro
 2009 ). The HLL solver in FLASH is the HLL(E) solver of Einfeldt
Einfeldt 1988 ) that differs from the HLL solver of Harten, Lax and
an Leer (Harten et al. 1983 ) with regards to the computation of the
ave speeds S L and S R . 
The HLL scheme reco v ers only two of the three waves present in

he pure hydrodynamic (Euler) solution to the Riemann problem; the
utermost and fastest forward and backward moving waves. Thus,
he Riemann fans (Fig. 1 ) are replaced with simpler approximation
s shown in Fig. 2 by resolving/reco v ering only a selection of
he moving discontinuities (waves) and replacing the intermediate
tates that are separated by the unresolved intermediate waves with
n average single state U HLL . The HLL scheme does not retain
he central contact (entropy) wave as it is ef fecti vely lost in the
veraging of the intermediate system state, hence the HLL solver is
n incomplete Riemann solver as it does not recover all of the three
aves present in the solution to the Euler equations. 
The lack of resolution of the central contact wave means that the

LL solver does not recover all of the intermediate substructure in
he Riemann fan. This introduces further numerical diffusion into
he system on top of that already introduced through the averaging
rocess inherent in the discretization. Consequently, the resolution of
hocks, contact discontinuities, shear waves, and material interfaces
n the HLL scheme can be very inaccurate (Toro 2009 ), as small-
cale flow features are more effectively smeared out as the numerical
iffusion increases. In order to keep the simulated discretized system
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Figure 3. Riemann fan for HLLC solver. The HLLC solver restores the 
central contact discontinuity absent in the HLL solver, making it a three- 
wa ve, four -state solver. 
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ehaving as closely to the real physical continuous system on which 
t is based, numerical diffusion is therefore required to be kept to
 minimum. The accuracy of a Riemann solver is therefore tied to
he level of approximation used in capturing the correct substructure 
n the Riemann fan (Mignone 2007 ). The most dif fusi v e solv ers
re the least accurate, though are typically the most stable. The 
hoice of suitable Riemann solver is therefore often determined by 
he solvers ability to best balance numerical accuracy and stability. 
onsequently, the specific choice of Riemann solver may differ 
epending on the nature of the problem to which it is being applied.
The problems associated with the lack of resolution of the contact 

iscontinuity can be addressed by methods that restore this missing 
entral contact wave, restoring some of the substructure missing in 
he approximation to the exact Riemann fan. This leads to schemes 
uch as the HLLC scheme proposed by Toro et al. ( 1994 ) in which
he central contact wave is restored. 

.2 HLLC 

he HLLC solv er impro v es the standard HLL formalism by restoring
he central contact wave, and is therefore a three-wa ve, four -state
olver as shown in Fig. 3 . The single averaged state U HLL is now
eplaced with two approximate states U 

∗
L and U 

∗
R separated by the 

entral contact wave which is assumed to have constant speed S ∗.
he full solution to the Riemann problem is then given by 

 (0 , t) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

U L if S L � 0 , 
U 

∗
L if S L � 0 � S ∗, 

U 

∗
R if S 

∗ � 0 � S R , 
U R if S R � 0 . 

(20) 

he intercell numerical fluxes are then given by 

F i+ 

1 
2 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

F L if S L � 0 , 
F 

∗
L if S L � 0 � S ∗, 

F 

∗
R if S 

∗ � 0 � S R , 
F R if S R � 0 . 

(21) 

The fluxes in the star region F 

∗
L and F 

∗
R can be expressed in terms

f the constant states U 

∗
L and U 

∗
R from the Rankine–Hugoniot jump 

onditions (Mignone & Bodo 2005 ): 

S L ( U 

∗
L − U L ) = F 

∗
L − F L 

 R ( U 

∗
R − U R ) = F 

∗
R − F R . (22) 

As the central contact wave is restored in this scheme, the HLLC
olver is a complete Riemann solver regarding the Euler equations. 
his is because the approximate wave structure in the resulting 
iemann fan now contains all of the waves present in the solution to
he Euler equations. The inclusion of the missing central contact 
ave comes at the cost of requiring additional jump conditions 

or the restored wave, thus increasing the number of equations 
nd unknowns in the scheme (Mignone, Bodo & Ugliano 2012 ).
onsequently, the HLLC solver is less computationally efficient than 

he standard HLL solver. Despite this there are definite advantages 
o using the HLLC solver at the expense of computational efficiency. 
he HLLC scheme goes a long way in resolving the important flow

eatures as a result of reco v ering the central contact wave; the solver
orrectly captures contact discontinuities and shear wav es, pro viding 
harper representation of these flow features alongside small-scale 
tructure which often lacks detail with the HLL solver (Toro 2009 ).
he HLLC Riemann solver is shown to work robustly for both
ydrodynamic and MHD flows and is found to be superior to the
LL solver producing less dif fusi ve and more accurate results to

hose obtained with the HLL solver (e.g. Toro et al. 1994 , Mignone &
odo 2005 , Kong 2011 and section 10.8 of Toro 2009 ). 

.3 Roe 

he Roe solver is an approximate Riemann solver proposed by Roe
 1981 ). Like the HLLC solver, the Roe solver recovers all of the
aves present in the exact solution to the Riemann problem. The
ey difference between the Roe and HLLC schemes concerns the de-
cription of the wave propagation speeds and average interface state, 
rimarily concerning how these are obtained (see Toro 2009 ). In the
oe formalism, the average interface states (and thus corresponding 
umerical fluxes) are obtained rigorously by taking account of the 
ull characteristic structure of the equations in the computation and 
he linearization of the hyperbolic equations is performed in such a
ay that the correct wave speeds are preserved. This is in contrast to

he HLL-type solvers that rely on wave speed estimates from a given
lgorithm. The Roe solver is the most accurate and least dif fusi ve of
he approximate solvers mentioned and provides the best resolution 
f shocks, contact discontinuities, and small-scale flow features. The 
ncreased accuracy of the Roe solver, ho we ver, comes at the cost of
omputational efficiency and stability. 

The low numerical diffusion of the Roe solver means it is more
nstable to numerical pathologies, and thus produces numerical 
rtef acts f ar more easily than the other more dif fusi v e solv ers. The
oe solver can generate non-physical solutions such as expansion 

hocks in the place of what should be smooth rarefaction waves
Quirk 1994 ) and has been known to generate ne gativ e densities and
ressures in regions containing large gradients such as those in the
roximity of strong shocks. Numerical artefacts associated with the 
oe scheme include the carbuncle phenomenon, a type of shock wave 

nstability that leads to the breakdown of a discrete shock profile. The
henomenon occurs in the presence of strong shocks and causes the
mooth shock profile to develop a pair of oblique shocks at the shock
id-point, leading to a pyramid or point-like feature upstream of 

he shock (Kemm 2018 ). In hydrodynamic simulations of supersonic 
ets, the carbuncle phenomenon unusually appears as an extended 
ose in front of the jet along its axis (Quirk 1994 ). 

.4 Hybrid 

he Hybrid solver for hydrodynamics problems appropriately com- 
ines the HLLC and HLL schemes depending on the strength of the
hocks (Lee 2013 ). The HLL solver is only used in the presence of
trong shock fronts that are detected by a pair of pressure-based
nd velocity-based shock switches (see Lee 2013 ; Shen, Yan &
uan 2016 and Balsara & Spicer 1999 ), while the HLLC solver
MNRAS 498, 3870–3887 (2020) 
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Table 1. Table outlining the different combinations of Riemann solver 
and reconstruction method used for each simulation. The first col- 
umn gives the simulation name that follows the following format; 
solver reconstruction scheme . The second column displays the 
Riemann solver used in the simulation. The third column gives the spatial 
reconstruction method used, where MH and PPM refer to the MUSCL- 
Hancock and piece-wise parabolic method, respectively (see Section 4.1 ). 
The order of spatial accuracy of the corresponding reconstruction method 
is given in the final column. Further simulation parameters, including those 
used for the jet and ambient medium, are given in Section 6 . 

Name Riemann solver Reconstruction method Order 

HLLC 02 HLLC MH Second 
HLLC 03 HLLC PPM Third 

HLL 02 HLL MH Second 
HLL 03 HLL PPM Third 

LLF 02 LLF MH Second 
LLF 03 LLF PPM Third 

HY 02 Hybrid MH Second 
HY 03 Hybrid PPM Third 
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s used for all the remaining regions (Lee 2013 ). This has the effect
f using the dif fusi ve methods associated with the HLL scheme
n regions close to, and along the lengths of strong shocks while
sing the less dif fusi ve methods of the HLLC scheme in regions
way from the shock front. This consequently eliminates numerical
rtefacts associated with low numerical diffusion in the presence
f strong shocks (such as the carbuncle phenomenon) and a v oids
he computation of non-physical system states in regions containing
arge gradients. 

.5 LLF 

nlike the Roe and HLL-type solvers that solve the Riemann
roblem, the local Lax–Friedrichs (LLF) scheme solves systems
f hyperbolic partial differential equations based on finite central
ifferences. In this scheme, the flux at the cell interfaces is defined
s the average of the fluxes calculated at the centre of cells adjacent
o the cell of interest (Massaglia, Zurlo & Bodo 2003 ). 

The LLF scheme is obtained from the original Lax–Friedrichs
cheme proposed in Lax ( 1954 ), in which the conserv ati ve temporal
pdate in equation ( 12 ) of the original Lax–Friedrichs scheme is
iven by 

 

n + 1 
i = 

1 

2 

(
U 

n 
i−1 + U 

n 
i+ 1 

) + 

1 

2 

�t 

�x 

(
F 

n 
i−1 − F 

n 
i+ 1 

)
, (23) 

hich can be written as 

 

n + 1 
i = U 

n 
i + 

�t 

�x 

[ 
F i− 1 

2 
− F i+ 

1 
2 

] 
, (24) 

nd the corresponding intercell numerical flux is 

F i+ 

1 
2 

= 

1 

2 

(
F 

n 
i + F 

n 
i+ 1 

) + 

1 

2 

�x 

�t 

(
U 

n 
i − U 

n 
i+ 1 

)
, (25) 

here � x = x i + 1/2 − x i − 1/2 is the length of the cell and the time-step
 t = t n + 1 − t n . 
The standard Lax–Friedrichs scheme is extremely dif fusi ve and

roduces numerical solutions that are badly smeared unless very
ighly refined grids are used (LeVeque 2002 ). The LLF scheme
ntroduced by Rusanov ( 1961 ) on the other hand introduces less
umerical diffusion and the scheme is obtained by replacing � x / � t
ith a locally (chosen at each Riemann problem) determined value of

he maximum modulus of the characteristic wave speeds at adjacent
ells (Massaglia et al. 2003 ). 

Of all the solvers mentioned in the previous sections, the LLF
cheme is the most dif fusi ve and is associated with the lowest
esolution of small-scale flow features. As a result of the diffu-
ive nature of the scheme, it is the least accurate of the solvers
utlined. 

 SIMULATIONS  

.1 Parameters 

ll the simulations presented are conducted using the FLASH (M)HD
ode (Fryxell et al. 2000 ) in its pure hydrodynamics mode. Table 1
hows the combination of Riemann solver and reconstruction scheme
sed in each run. The simulation set-up and parameters used as the
asis of the numerical study correspond to the 2D axisymmetric
imulation ‘Run 2’ conducted in Reynolds, Heinz & Begelman
 2002 ), in which the active and passive evolution of a bipolar conical
et is simulated. The simulations are performed in cylindrical ( r , z)
oordinates. We perform 2D axisymmetric simulations in order to
nsure that the jet and cocoon are well resolved during both the
NRAS 498, 3870–3887 (2020) 
ctive and passive evolution, o v er the full 500 Myr evolution. A
ull 3D treatment spanning the dynamic range of the simulations
resented here would be extremely computationally intensive for the
rid resolution that we utilize in this work. 
As in Reynolds et al. ( 2002 ), a bipolar jet with a total kinetic

ower of 5.08 × 10 45 erg s −1 propagates through a stratified external
edium. The density profile of the external medium is given by the

sothermal beta model: 

= ρ0 

(
1 + 

R 

2 

r 2 c 

)−3 β/ 2 

, (26) 

here ρ0 is the core density, r c = 100 kpc is the core radius, and
 = 

√ 

r 2 + z 2 is the distance from the origin. We use β = 0.5 as in
eynolds et al. ( 2002 ). 
The gravitational acceleration g = −∇� required to maintain

ydrostatic equilibrium in the external medium is then given by 

 = − 3 βkT 

μm H r c 

R/r c [
1 + 

(
R 

2 /r 2 c 

)] . (27) 

Jet material is continually injected into the simulation domain for
0 Myr, after which injection of the jet material is stopped and the
ystem allowed to evolve passively until t = 500 Myr. 

The jet injection velocity is 0.3 c , which corresponds to an internal
relative to the sound speed in the jet material) Mach number of 10,
nd the jets are initialized with a 15 deg half opening angle on the
ow. The number density at the centre of the external medium n 0 =
.01cm 

−3 and the density contrast between the external medium and
he jet η = ρ j / ρ0 = 0.01. The jet fluid is in pressure balance with the
xternal medium and the adiabatic index γ = 5/3. The simulations
re performed in scaled simulation units. The key units are briefly
oted as follows: one unit of time corresponds to 50 Myr, the unit of
istance is 50 kpc, and the unit of energy is 3.68 × 10 44 J. The unit
f speed corresponds to the sound speed in the ambient medium c s =
 × 10 8 cm s −1 . Given these units, the active phase of the evolution
nds at t = 1 simulation unit and the simulations span a total evolution
ime of t = 10 simulation units. The density in the external medium
0 = n 0 μm p = 1, where m p is the proton mass and μ = 0.6, the jet
ensity ρ jet = 0.01, the pressure of the jet and external medium is
iven by 1/ γ = 3/5, the sound speed in the external medium c s = 1 and
he jet velocity v j = 100. The simulation domain spans the region r ∈
0, 53.46), z ∈ ( − 26.73, −26.73) simulation units. The simulations



Impact of numerical schemes on jet evolution 3877 

Figure 4. Figure showing different levels of grid refinement around a zoomed 
in region of the cocoon in run HLLC 03. Only the blocks on the AMR grid, 
and not the internal block cells, are shown in this image for clarity. The AMR 

grid is o v erlaid on to a log density map, where red indicates high-density 
regions and yellow/white corresponds to the low-density cocoon. 
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Table 2. Computational efficiencies for algorithm com- 
parison. Wall time for each simulation is given in seconds. 
The average time-step size < d t > is given in simulation 
units where one unit of time is 50 Myr. 

Run Wall time ( s ) < d t > 

HLLC 02 2739.87 2.66 E-6 
HLLC 03 3272.05 2.62 E-6 
HY 02 2957.58 2.61 E-6 
HY 03 3637.93 2.63 E-6 
HLL 02 2478.61 2.64 E-6 
HLL 03 3177.11 2.63 E-6 
LLF 02 2899.34 2.63 E-6 
LLF 03 3229.04 2.64 E-6 
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se AMR with a total of 11 levels of refinement. The highest refined
rid cells have dimensions of 3.26 × 10 −3 simulation units per side 
nd the jet radius spans 8 of these cells. Since we only have 8 cells
n the jet radius, we cannot adequately impose radial stratification in 
he jet inlet that will lead to a spine-sheath configuration along the
et axis downstream of the inlet. Radial stratification of the jet has
een shown to impact the stability of the jet, influence the degree of
ntrainment of shocked ambient medium, and also impact the large- 
cale jet morphology (see Walg et al. 2013 for a full numerical study
f jet radial stratification and references therein). 
The AMR grid used in our simulations refines the grid on two

riteria: (1) the second deri v ati ve of the pressure and density and
2) the passive jet tracer used to track the injected jet fluid (see
ection 6.3 ). The highest refined grid cells are used in the locations
here (1) and/or (2) are high. This ensures that high-resolution grid 

ells are placed within the jet, cocoon, and at the contact discontinuity 
nd bow shock as shown in Fig. 4 . 

We note that the whilst high-order spatial reconstruction methods 
e.g. second and third order) are available in FLASH , the order of
ccuracy of these methods apply only to smooth flows in which 
iscontinuities are not present. In the vicinity of strong shocks 
nd discontinuities, the spatial reconstruction schemes are at best 
rst-order accurate (e.g. see ASC FLASH 2012 ). Nevertheless 
econstructing the spatial states with higher order reconstruction 
chemes reduces some of the inherent numerical diffusion in the 
imulation and thus differences are still seen across the simulations 
ven though their global order of accuracy is the same. 

.2 Algorithms 

n this work, we compare the effect of different combinations of
iemann solver and reconstruction method on the simulation results 

see Table 1 ). We conduct a series of simulations with the HLLC,
LL(E), and Hybrid [combination of HLLC and HLL(E)] Riemann 

olvers and the LLF solver. For each Riemann solver, we test two
ifferent spatial reconstruction methods – MH (second-order spatial 
ccuracy) and the PPM (third-order spatial accuracy) methods (see 
ection 4.1 ). We note that simulations using the Roe solver did not
emain stable for the problem being simulated in this work and thus
t is not compared here. 

In all the simulations, we use the Van Leer slope limiter, a CFL =
.3 and the directionally unsplit hydrodynamics solver (see Lee 
013 ). The simulations are computed on the University of Bristol’s
lueCrystal super computer on four nodes, each comprising 16 
.6 GHz SandyBridge cores with 4GB RAM per core. 

.3 Cocoon identification 

n these simulations, we assign a passive tracer to the injected jet fluid.
his allows us to see how the jet fluid mixes with the surrounding
mbient medium and track the cocoon region during the simulation. 
he volume fraction associated with the jet fluid tracer is given
y f j . For all the simulations, we define the cocoon region as the
olume inside which f j > 10 −3 , where a non-zero value is chosen
o take account of any mixing between the jet and shocked ambient
edium. 

 C O M P U TAT I O NA L  EFFI CI ENCY  

able 2 displays the wall time in seconds required to complete
000 time-steps, alongside the time-step size d t in simulation units
v eraged o v er the same time-steps. The time-steps are sampled from
tep number 1000–10 000 in order to omit the wind-up period from
he initial small time-step d t = 1.0E −10 simulation units, while
lso a v oiding any writing to plot files that could interfere with
he wall time measurements. Additionally, during these time-steps 
he AMR grid does not refine, as the jet is still within the radius
t which we enforce maximum refinement around the jet inflow 

egion. The wall time presented should therefore be an accurate 
epresentation of the different computational requirements of the 
arious algorithms. Table 2 shows that for each solver the wall time
educes with decreasing spatial reconstruction order. The second- 
rder spatial reconstruction scheme is typically ∼ 10 –20 per cent 
ore efficient than third-order spatial reconstruction. 
The average time-step size < d t > becomes smaller as the order

f accuracy in the spatial reconstruction is increased from second 
o third order. Thus, for the simulations using the third-order spatial
econstruction scheme more Riemann problems are solved over the 
ourse of the evolution. The computational efficiency is more depen- 
ent on the reconstruction method rather than the choice of Riemann
olver. Of the combinations tested run HY 03 (Hybrid solver with
hird-order reconstruction) is the most inefficient. Moreo v er, for a
MNRAS 498, 3870–3887 (2020) 
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M

Figure 5. Log density map showing the evolution at t = 1 simulation unit (end of the active evolution) for the different solvers and reconstruction methods. 
The axes and legend are in simulation units (see Section 6 ). Low-density material corresponds to black and high-density material to white. 
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iven reconstruction method the Hybrid solver is the most inefficient,
equiring the longest wall times. 

 E VO L U T I O N  OV ERVIEW  

.1 Acti v e ev olution 

s the jets begin to propagate into the isothermal β atmosphere, they
rive a pair of upstream and downstream moving shock fronts, the
ow shocks and jet shocks, respectively. The jet shock (Mach disc)
arks the abrupt termination point of the jet. The jet shock acts to

low the advance of the jet by broadening the jet head, and spreading
he momentum flux of the jet across a larger area. The advance speed
f the jet, go v erned by the jet thrust, then becomes a fraction of the
njection velocity. Jet material that crosses the jet termination shock
s thermalized and is deflected side ways, flo wing back alongside the
NRAS 498, 3870–3887 (2020) 
ulk flow of the jet and inflating a cocoon of shocked jet material.
ressure feedback from the cocoon generates a series of regularly
paced oblique shocks along the bulk flow of the jet. 

The bow shock compresses and heats the regions of the external
edium that pass through it, creating a shell of shocked ambient
edium around the cocoons. The strength of the bow shock is mostly

etermined by the total power of the jet (e.g. Zanni et al. 2005 ). The
hocked ambient medium and the undisturbed ambient medium are
eparated by the bow shock, while the turbulent cocoon is separated
rom the shocked ambient medium via a contact discontinuity. This
atter structure is subject to Kelvin–Helmholtz instabilities that act
o destroy the contact discontinuity and mix the shocked ambient
edium of the shell into the cocoon of shocked jet material. The

nstabilities are excited by the turbulent nature of the cocoons and
ncrease in strength as the jet backflow increasingly decelerates away
rom the head of the jet. During this phase of the evolution the jet,
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Figure 6. Log density map showing the evolution during the passive phase at t = 6 simulation units for the different solvers and reconstruction methods. 
Low-density material corresponds to black and high-density material to white. Axes and legend are in simulation units (see Section 6 for more details). 
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ocoon and shocked shell are in pressure equilibrium with each 
ther, but are o v erpressured with respect to the ambient medium
e.g. Reynolds et al. 2002 ). 

.2 P assi v e ev olution 

t 50 Myr into the jet evolution ( t = 1 simulation unit), the jets
re switched off. The jet-ambient system is then allowed to evolve 
assively for a further 450 Myr as in Reynolds et al. ( 2002 ) in order to
imulate the relics of dead radio galaxies. More recently, English et al. 
 2019 ) have used relativistic MHD simulations to model the passive
volution of jets with various kinetic powers, in a variety of different
luster environments described by the isothermal beta model (see 
ection 6 ). As described in Reynolds et al. ( 2002 ), the onset of the
assi ve e volution immediately results in the disappearance of the 
et termination shock. The channels excavated by the bulk jet flow 

ollapse and disappear due to the absence of the oblique shocks
ithin the bulk jet flow. 
The advance speeds of the cocoon slows due to the absence of

am pressure from the jets and the velocities of the backflow reduce
s the cocoons are no longer replenished by the shocked supersonic 
ackflow created by the jet material crossing the terminal shock. The 
ontact discontinuity between the cocoon material and shocked shell 
f external medium becomes unstable to Rayleigh–Taylor instabili- 
ies once the deceleration of the contact discontinuity does not exceed 
he local gravitational acceleration of the atmosphere (Zanni et al. 
005 ). Once the cocoons establish a rough pressure balance with the
mbient medium this condition for stabilising the contact discontinu- 
ty against the Rayleigh–Taylor instabilities is no longer maintained 
nd the contact discontinuity becomes Rayleigh–Taylor unstable. 

The bow shock begins to weaken following the onset of the passive
volution, as it is no longer supported by the jet thrust. The profile
f the bow shock becomes increasingly spherical in shape as it is
o longer acti vely dri ven by the jet. The shocked shell decelerates
nd the bow shock eventually weakens, and begins to propagate at
ubsonic velocities through the ambient medium, transitioning from 

 shock to a sound/compression wave. This subsequently reduces the 
ompression of the ambient medium that passes though the shock. 

Following the cocoon establishing pressure balance with the ambi- 
nt medium, the cocoon rises in the ambient medium as it is buoyantly
nstable due to its inertia and high entropy. The surrounding shocked
mbient medium begins to recover a new hydrostatic equilibrium 

nd the dense ambient medium begins to settle back into the centre,
eforming the dense core region of the atmosphere. The returning 
ense ambient medium squeezes the regions of the cocoon closest 
o the centre of the atmosphere, eventually pinching the cocoon into
wo separate plumes of low density and higher entropy compared 
o the surrounding ambient medium. Ambient medium previously 
ntrained by the cocoons continues to be carried along by the plumes.
he plumes continue to entrain ambient medium as they rise due

o the cocoon vortices. These vortices drag surrounding ambient 
edium into the plume bases, while strong eddies produce wispy 

tructures at the plume bases. 
MNRAS 498, 3870–3887 (2020) 
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Figure 7. Log density maps showing detailed cocoon structure at t = 1 simulation unit (50 Myr) for different Riemann solvers and reconstruction methods. 
The axes and legend are in simulation units. The colour scale is in simulation units, the dark colours correspond to low density, and the light colours correspond 
to high density. 
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 M O R P H O L O G Y  

he log density maps in Figs 5 and 6 show the effect of changing
he Riemann solver and reconstruction method on the large-scale

orphology of the jets at t = 1 simulation unit (50 Myr, the
nd of the active evolution) and t = 6 simulation units (passive
volution). The columns in Figs 5 and 6 correspond to the different
iemann solvers tested and the solvers are roughly ordered in

erms of the dif fusi vity of the solver, with the least dif fusi v e solv er
n the left (HLLC) and the most dif fusi v e solv er on the right
LLF). 

For simulations using third-order spatial reconstruction (top row),
he differences in the cocoon and jet morphology are negligible for
NRAS 498, 3870–3887 (2020) 
he Riemann solvers considered. For the simulations conducted with
econd-order spatial reconstruction, the large-scale cocoon structure
s similar for the Riemann solvers tested, ho we ver, the small-scale
tructure within the cocoon becomes less well resolved as the
if fusi vity of the Riemann solver increases. The differences in small-
cale structure within the cocoons are more clearly seen in Figs 7 and
 that show a zoomed in views of the cocoon and a Schlieren plot of
he density (e.g. Keppens et al. 2012 and Hughes, Miller & Duncan
002 ), respectively, at t = 1 simulation unit (50 Myr). The small-
cale turbulent features of the cocoon and the Kelvin–Helmholtz
nstabilities at the contact discontinuity are less sharply defined in the

ost dif fusi ve simulation, LLF 02, compared to the least dif fusi ve

art/staa2657_f7.eps
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Figure 8. Schlieren plot of the density at t = 1 simulation unit (end of the acti ve e volution). The figures sho w the small-scale density structure in the shocked 
shell of ambient medium, the cocoon, and at the contact discontinuity for each run. Axes are in simulation units (see Section 6 ). 
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imulation HLLC 03. This is due to the fact that the larger numerical
iffusion of run LLF 02 in the subsonic regions of the fluid prevent
he sharp resolution of shear and tangential waves, which results 
n the absence of a significant amount of the small-scale structure
e.g. see Mignone & Bodo 2005 ). Furthermore, fewer of the weaker
hocks within the shocked shell of ambient medium are present in 
he most dif fusi ve simulations (HLL 02 and LLF 02, see Fig. 8 ).
ncreasing the grid resolution of run LLF 02, for example, would
etter resolve the small-scale structure in the cocoons/shocked shell 
uch that they represent those in run HLLC 03. Ho we ver, increasing
he resolution would be less computationally efficient compared to 
sing a less dif fusi v e solv er with higher order spatial reconstruction.
MNRAS 498, 3870–3887 (2020) 
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Figure 9. Top: mean cocoon length. The cocoon length is averaged over 
both sides of the bipolar source. Bottom: total cocoon mass. The axes of each 
figure are shown in simulation units (see Section 6 ). The gre y v ertical dashed 
line indicates the time at which the jet is switched off and begins the passive 
phase of its evolution. 
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0  J E T  DY NA MIC S  

he cocoon lengths averaged over both sides of the bipolar jet are
hown in Fig. 9 . During the active evolution the average differences
etween the propagation lengths of the cocoons for all simulations are
egligible – The jets in all the simulations travel through the ambient
edium with average advance speeds (averaged over both sides of the

ipolar source) in the order of 0.01 c , while the bow shocks advance
nto the ambient medium with external Mach numbers (relative to
he sound speed in the undisturbed external medium) of ∼3 during
he active evolution of the jet. 

F ollowing the Sedo v e xpansion phase at the v ery start of the
assi ve e volution, the adv ance of the cocoon head slo ws and the
ow shocks in all the simulations transition to subsonic prop-
gation velocities in the order of 10 −3 c due to the absence of
am pressure from the bulk flow of the jet. These propagation
elocities remain roughly constant for the duration of the passive
volution. Though more variation in the average cocoon length
see Fig. 9 ) is seen between the runs towards the end of the
assi ve e volution, all runs are in agreement at around the 10 per cent
evel. 
NRAS 498, 3870–3887 (2020) 
1  C O C O O N  PA R A M E T E R S  

ig. 10 shows the v olume-a veraged cocoon/plume parameters. The
atio of the cocoon to ambient pressures (top left-hand panel of
ig. 10 ) gives a measure of the average strength of the shock driven

nto the external medium (Zanni et al. 2003 ). The shock strength is
oughly the same for all combinations of Riemann solver and recon-
truction method simulated. Following the initial pressure increase of
he cocoon pressure at the very beginning of the active evolution, the
ocoon pressure quickly adjusts to the ambient pressure as seen by
he falling pressure ratios in Fig. 10 . After the jets are switched off,
 rough pressure balance between the cocoons and external medium
egins to be established at around t ≈ 1.6 simulation units (80 Myr).
The v olume-a veraged specific entropy s = p / ρ5/3 is displayed in

ig. 10 . The specific entropy presented is normalized by the entropy
f the injected jet material, which has a value of 1293 simulation
nits. The entropy in the cocoons is increased due to shocks, and
et material that has crossed the jet termination shock can be of
onsiderably high entropy compared to the entropy of the injected
et material, thus the cocoon entropy is largest during the active phase
f the evolution. Once the jets are switched off and the terminal jet
hock and internal shocks along the bulk flow dissipate and the
ocoon entropy begins to drop due to the absence of the shocks
nd also due to the continual entrainment of lower entropy ambient
edium into the cocoons/plumes (Reynolds et al. 2002 ). During

he active phase of the evolution, the variation in specific entropy
etween the runs is driven by the strong shocks within the bulk flow
f the jets and in the cocoon backflow. 

1.1 Cocoon Volume and mass 

he total cocoon volume is displayed in the bottom right-hand panel
f Fig. 10 . The cocoon volume rapidly increases during the active
volution due to the constant energy injection and the supersonic axial
nd radial expansions of the cocoon. During the active jet evolution,
he cocoon volume is in excellent agreement for all simulations.
ollowing the onset of the passive evolution, the cocoon volume
e gins to div erge at t ≈ 4.2 simulation units and continues to do so for
he remainder of the evolution. During the late stages of the passive
v olution, the cocoon v olume differs by as much as 20 per cent at t =
0 simulation units for the different combinations of reconstruction
chemes and Riemann solvers simulated. Simulations with second-
rder spatial reconstruction typically result in a smaller cocoon
olume at a given evolution time towards the end of the passive evo-
ution, and display more variation in the cocoon volume for a given
iemann solver. The simulations conducted with third-order spatial

econstruction on the other hand are in better agreement, differing by
ess than 10 per cent during the final stages of the passive evolution. 

The cocoon mass as a function of evolution time is displayed
n Fig. 9 . Material in the shocked shell of ambient medium is
ignificantly more dense than the material injected by the jet, thus
ts entrainment in the cocoon/plumes has a significant effect on the

ass. The cocoon mass for the various runs starts to diverge as
oon as the jet is switched off and begins the passive phase of its
 volution. During the passi ve e volution the cocoon mass varies by at
ost ∼15 per cent for the different combinations of reconstruction

cheme and Riemann solver used. 

2  E N E R G Y  PA RT I T I O N I N G  

s jets begin their active evolution into the ambient medium, the
njected jet energy is converted to the internal and kinetic energies
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Figure 10. Volume-averaged cocoon parameters and cocoon volume (in scaled simulation units, see Section 6 ). Top left: ratio of the v olume-a veraged cocoon 
pressure the pressure in the external medium averaged over the corresponding cocoon volume. Top right: cocoon density. Bottom left: Volume-averaged cocoon 
entropy normalized by the entropy of the injected jet material. Bottom right: Cocoon volume. The grey vertical dashed line in each figure indicates the time at 
which the jet is switched off and begins the passive phase of its evolution. 
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f the external medium and cocoon and ambient medium. The 
nternal and kinetic energy of the ambient medium increase as 
t is compressed and heated by the expanding bow shock. The 
otential energy of the external medium increases as regions of the 
xternal medium are displaced higher up in the potential well of the
tmosphere by the advance of the bow shock, while the increase in the
otential energy in the cocoon arises largely due to the entrainment 
nd subsequent transport of ambient medium. 

At the onset of the passi ve e volution, the absence of support
rom the jet thrust slows the advance of the bow shock, cocoon,
nd shocked shell of ambient medium. Consequently, the kinetic 
nergy of the shocked shell falls sharply. For the cocoon, the absence
f the large velocities associated with the active jet mean that the
igh backflow velocities are no longer sustained and the cocoon 
inetic energy also decreases. During the Sedov expansion phase in 
he early passive evolution, the cocoon/lobes are still o v erpressured 
nd with respect to the ambient medium and therefore continue 
o expand, continuing to drive the bow shock. (Reynolds et al. 
002 ) 
F ollowing the Sedo v e xpansion phase, the plumes enter the

uoyant phase of their evolution (Reynolds et al. 2002 ). The plumes
lowly accelerate, rising in the atmosphere and increasing their 
inetic energy. As the plumes rise they drag the surrounding ambient 
edium in their w ak e and entrain significant amounts of this material

t their bases, lifting it higher into the potential well of the atmo-
phere and increasing the potential energy of the plumes. The bow 
hock weakens and the shocked shell of ambient medium expands, 
ecreasing the pressure and consequently the internal energy of the 
hocked shell, as it attempts to reco v er hydrostatic equilibrium. The
inetic energy of the external medium begins to increase, though at
 much shallower rate than that in the active evolution, as the plumes
ise dragging ambient medium in their w ak e and the remnant bow
hock broadens, increasing its spherical profile and encompassing 
arger regions of the surrounding ambient medium. As the ambient 

edium is continually lifted in the w ak e of the plumes the potential
nergy of the ambient medium also increases. 

In order to study the effects of the choice of algorithm on the
nergetic properties of the simulations various energy components 
ertaining to the cocoon, ambient medium, and the entire grid are
omputed using as follows: 

The cocoon internal energy is given by 

 int ( t) = 

1 

γ − 1 

∫ 
( C , E , G ) 

p d V . (28) 

he cocoon kinetic energy is given by 

 kin ( t) = 

1 

2 

∫ 
( C , E , G ) 

ρυ2 d V , (29) 

hile the gravitational potential energy of the cocoon given by 

 pot ( t) = −
∫ 

( C , E , G ) 
ρ� d V . (30) 
MNRAS 498, 3870–3887 (2020) 
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Figure 11. Clockwise from top left: Total internal, kinetic, and potential energy on the grid as a function of evolution time. The time at which the jets are 
switched off is indicated by the vertical dashed grey line at 1 simulation unit (50 Myr) in each of the images. Axes are in simulation units. 
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here C, E, and G correspond to the volumes comprising the cocoon,
xternal medium, and entire grid (cocoon + external medium). The
ocoon region is defined using the jet tracer f j and is given by the
olume inside of which f j > 10 −3 (see Section 6.3 ). The external
edium is defined as the regions in which f j ≤ 10 −3 . 
The internal � E int , kinetic � E kin , and potential � E pot for the

ocoon, external medium, and the entire computational grid are all
eferenced from their values at initialisation, such that � E = E ( t ) −
 (0). 
The total internal kinetic and potential energies on the grid during

oth active and passive evolution are displayed in Fig. 11 . During the
ctive phase of the evolution, the simulations typically agree within
 per cent for the grid internal, kinetic, and potential energy. During
he passive phase, the differences in the grid energies becomes more
pparent and the grid energy components can differ by ∼13 per cent.

The cocoon internal, kinetic, and potential energies are displayed
s a function of evolution time in Fig. 12 . The dependence of
he cocoon energies on the Riemann solver is minimized for the
imulations with third-order spatial reconstruction (the solid curves
n Fig. 12 ). The jet tracer-based numerical definition used to define
he cocoon region is particularly sensitive to the degree of mixing
etween the surrounding ambient medium and the jet material,
nd the level of numerical diffusion in the simulations. Thus, the
imulations with second-order reconstruction typically show more
ariation in the cocoon energetics (as much as 30 per cent for the
ocoon kinetic energy for example), particularly during the passive
hase of the evolution. 
NRAS 498, 3870–3887 (2020) 
The internal, kinetic, and potential energy of the ambient medium
longside the ratio of the total cocoon to total ambient medium
nergy as function of evolution time are shown in Fig. 13 . During the
cti ve e volution, the internal energy of the ambient medium increases
inearly with evolution time and is marginally larger for simulations
ith second-order spatial reconstruction. 
The external energy components of the simulations using third-

rder spatial reconstruction (solid curves in Fig. 13 ) are typically
n better agreement for the different Riemann solvers used during
oth the active and passive phase of the evolution. The second-
rder simulations with the least dif fusi v e solv ers (runs HLLC 02 and
LL 02) are in closer agreement to the simulations using third-order

patial reconstruction. For the Riemann solvers tested, more variation
n the external energetics of the system is present for simulations with
econd-order spatial reconstruction, particularly for the internal and
otential components of the external medium throughout the passive
volution. 

3  SUMMARY  A N D  C O N C L U S I O N S  

imilar large-scale jet, cocoon, and shocked shell morphologies are
roduced with third- and second-order reconstruction schemes for
 given Riemann solver. Ho we ver, the third-order reconstruction
ethods provide better resolution of the small-scale features, turbu-

ence, and shocks. Furthermore, for a given reconstruction scheme
hese small scale features are more sharply resolved with the least
if fusi v e solv ers; the HLLC and Hybrid Riemann solv ers, though
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Figur e 12. Cocoon ener gies. Clockwise from top left: cocoon internal, kinetic, and potential energy as a function of evolution time. The time at which the jets 
are switched off is indicated by the vertical dashed grey line at 1 simulation unit (50 Myr) in each of the images. Axes are in simulation units. 
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he dependence of the resolution of these features on the choice of
olver is less significant than the dependence on the reconstruction 
ethod. The less dif fusi v e solv ers are therefore the most efficient for
 given grid resolution in highly resolving the small scale features in
he simulations and spread these flow features o v er fewer grid cells
or a given reconstruction order. The more diffusive solvers would 
ikely produce results similar to the HLLC and Hybrid solvers at the
ost of increasing the grid resolution. The sharper representation of 
mall scale features obtained with the HLLC and Hybrid solvers, 
o we ver, comes at a cost of computational efficiency as for a given
econstruction order these solvers are the most time intensive. 

The simulation results typically highlight a tendency for the 
emporal evolution of the parameters presented to be grouped by 
econstruction order rather than fa v ouring any clear systematic 
rdering in terms of solver. Hence, the solutions are more dependent 
n the reconstruction order used rather than the choice of solver, 
t least for the combinations of Riemann solver and spatial recon- 
truction schemes that are used here. Furthermore, the sensitivity 
f the solution on the reconstruction scheme is minimized as the 
econstruction order is increased, and results obtained with third- 
rder reconstruction are the most comparable across all the solvers 
ested. Converging behaviour between different Riemann solvers 
ith increasing grid resolution alongside increasing convergence 

ates between the solvers with increasing reconstruction order has 
een noted by Mignone & Bodo ( 2005 ). The similarity of the
olutions obtained, is typically within 10 per cent, for all quantities 
omputed for simulations with third-order spatial reconstruction, 
nd more-so for simulations with the HLLC and Hybrid solvers. The
atter indicates a high degree of convergence between the HLLC and
ybird solvers. Thus, results obtained from suitably highly resolved 

imulations are likely to be produce comparable results, even with 
ome of the more dif fusi v e solv ers. 

That the least dif fusi v e solv ers obtain a sharper representation of
he flow features alongside displaying both an increased intensity 
nd a more numerous shock distribution are similar conclusions to 
hose reached in Massaglia et al. ( 2003 ) regarding the effects of the
 xact Riemann solv er, Roe, HLL(E), and LLF solv ers with second-
rder reconstruction methods on simulated jets. We hav e e xtend the
nalysis presented in Massaglia et al. ( 2003 ) to a different set of
olvers and across a selection of reconstruction methods using the 
LASH code. We quantify the differences in solution for the large
cale morphological and dynamical properties of the jets, and for 
he energetics across both a passive and active jet evolution. In
greement with Massaglia et al. ( 2003 ), we find that during the
ctive phase for a given reconstruction method the difference in 
olution due to the choice of Riemann solver is typically small for
any of the quantities presented. Significantly, more variation in the 

omputed quantities is seen across the different simulations during 
he passive phase of the evolution. This is particularly the case for
he simulations in which second-order spatial reconstruction is used, 
o we ver, these dif ferences are small, with v ariations typically smaller
han 20 per cent for the majority of the computed quantities. 
MNRAS 498, 3870–3887 (2020) 
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Figure 13. External medium energies. Top left: Internal energy. Top right: Kinetic energy. Bottom left: Potential energy. Bottom right: Ratio of the total cocoon 
energy to the total energy in the external medium. Axes are in simulation units. 
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We find a high level of convergence for runs HLLC 03 and
Y 03. Ho we ver, since we find that the Hybrid solver is the

east efficient of the Riemann solvers tested we choose to use
he HLLC solver with third-order spatial reconstruction for our
uture work. All the combinations of Riemann solver and spatial
econstruction scheme presented here are in very good agreement
or both evolutionary phases and therefore the different schemes
an be used interchangeably and directly compared for the type of
roblem simulated, provided that the grid is suitably resolved – it is
mportant to note that the simulations presented are conducted with a
igh level of grid refinement. Simulations conducted at lower levels
f refinement may show significantly more variation for the different
ombinations of Riemann solver and spatial reconstructions used. 
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