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ABSTRACT
The origin of the diverse population of galaxy clusters remains an unexplained aspect of large-scale structure formation and
cluster evolution. We present a novel method of using X-ray images to identify cool core (CC), weak cool core (WCC), and non-
cool core (NCC) clusters of galaxies that are defined by their central cooling times. We employ a convolutional neural network,
ResNet-18, which is commonly used for image analysis, to classify clusters. We produce mock Chandra X-ray observations for
a sample of 318 massive clusters drawn from the IllustrisTNG simulations. The network is trained and tested with low-resolution
mock Chandra images covering a central 1 Mpc square for the clusters in our sample. Without any spectral information, the
deep learning algorithm is able to identify CC, WCC, and NCC clusters, achieving balanced accuracies (BAcc) of 92 per cent,
81 per cent, and 83 per cent, respectively. The performance is superior to classification by conventional methods using central
gas densities, with an average BAcc = 81 per cent, or surface brightness concentrations, giving BAcc = 73 per cent. We use
class activation mapping to localize discriminative regions for the classification decision. From this analysis, we observe that the
network has utilized regions from cluster centres out to r ≈ 300 kpc and r ≈ 500 kpc to identify CC and NCC clusters, respectively.
It may have recognized features in the intracluster medium that are associated with AGN feedback and disruptive major mergers.
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1 IN T RO D U C T I O N

As the product of hierarchical structure formation, clusters of galax-
ies are the largest gravitationally collapsed objects in the Universe,
carrying valuable information on the nature of dark matter and dark
energy. Clusters of galaxies contain vast reservoirs of intracluster
medium (ICM), radiating vigorously in X-rays, providing unique lab-
oratories to study the cooling and heating of the hot baryons and the
astrophysical processes that shape their thermodynamical properties.

Galaxy clusters are conventionally divided into three categories:
cool core (CC), weak cool core (WCC), and non-cool core (NCC)
based on their core properties. CC clusters feature a sharp X-ray emis-
sion peak associated with a dense, cool, and enriched core (Sanders
et al. 2004). The gas cooling time at centres of CC clusters is much
shorter than the Hubble time. High sensitivity X-ray observations
provided by Chandra and XMM–Newton reveal interactions between
the active galactic nuclei (AGNs) at the centres of the brightest
cluster galaxies (BCG) and the ambient ICM manifested by X-ray
cavities, jets, and shocks (e.g. Fabian 2012; Randall et al. 2015; Su
et al. 2017a), which could pump additional energy into the ICM
and compensate for the radiative losses. In contrast, the gaseous,
thermal, and chemical distributions of NCC clusters are relatively
homogeneous over the inner region of a cluster. WCC clusters,
often featuring a remnant CC, appear to be an intermediate class
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(and possibly a transitional phase) between CC and NCC clusters
(Markevitch et al. 2003; Su et al. 2016).

The origin of different populations of galaxy clusters has been
a subject of debate for decades. In the prevailing model, a CC is
considered to be the natural state resulting from radiative cooling.
Major mergers may have disrupted cluster CCs and created NCC
clusters, while CC clusters have only experienced minor or off-
axis mergers. This interpretation is supported by X-ray observations
showing that CC clusters appear to have a more symmetric morphol-
ogy than NCC clusters (Buote & Tsai 1996; Lovisari et al. 2017).
Radio observations also reveal that clusters that host large-scale
diffuse synchrotron emissions, suggesting that they have undergone a
recent merger, are predominantly NCC clusters (Rossetti et al. 2011).
However, CC and NCC clusters do not appear to have different gas
properties at large radii (Ghirardini et al. 2019; Ghizzardi et al. 2020).
Conflicting results have also emerged in numerical simulations as
to whether mergers are capable of transforming CC clusters into
NCC clusters (Poole et al. 2008; Rasia et al. 2015; Barnes et al.
2018). In an alternative scenario, the presence (or absence) of a
CC is determined by the physical conditions and mechanisms at
cluster centres, e.g. the level of thermal conduction (Cavagnolo et al.
2008; Voit et al. 2008) and precipitation (Voit et al. 2015), the power
of AGN outburts (Guo & Mathews 2010), or the combined effect
of mergers and AGN activity (Chadayammuri et al. 2020). X-ray
observations indicate that gas properties of cluster cores display little
evolution over the last 10 Gyr, suggesting that thermal equilibrium
and feedback processes in cluster cores have been in place since

C© 2020 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/4/5620/5903706 by guest on 10 April 2024

http://orcid.org/0000-0002-3886-1258
http://orcid.org/0000-0002-6583-9478
mailto:ysu262@g.uky.edu


A deep learning approach to galaxy clusters 5621

the early Universe (Hlavacek-Larrondo et al. 2015; McDonald et al.
2017; Su et al. 2019b; Ghirardini et al. 2020).

It is desirable to obtain a complete and unbiased picture of
galaxy clusters to understand the origin of their diversity, the
interplay between the ICM and AGN feedback, and the formation
and evolution of large-scale structure. Flux-limited X-ray-selected
samples are biased towards CC clusters as their centres are X-ray
brighter than NCC clusters at a given cluster mass (Hudson et al.
2010; Eckert, Molendi & Paltani 2011). Recent Sunyaev–Zel’dovich
(SZ) surveys provide nearly unbiased mass-limited samples of galaxy
clusters. It was found that two-thirds of the Planck clusters are NCC
or WCC (Andrade-Santos et al. 2017; Rossetti et al. 2017).

Ongoing and future extragalactic surveys such as eROSITA,
SPT-3G, and LSST are designed to detect ∼100 000 clusters,
allowing the model-independent determination of cosmological pa-
rameters (Haiman, Mohr & Holder 2001). Modern data analysis
techniques can be utilized to efficiently characterize the cluster
properties across the electromagnetic spectrum. Machine learning
tools have been applied to reduce errors in galaxy cluster X-
ray masses (Green et al. 2019; Ntampaka et al. 2019), dynamical
masses (Ntampaka et al. 2015, 2016; Ho et al. 2019; Kodi Ramanah
et al. 2020), SZ masses (Gupta & Reichardt 2020a), lensing analyses
(Gupta & Reichardt 2020b; Springer et al. 2020), and to model micro-
calorimeter X-ray spectra (Ichinohe et al. 2018). These techniques
offer flexibility to take advantage of complicated correlations, well
suited for mining large data sets and extracting information in the
observational data that is inaccessible by conventional methods.

We present a deep learning approach to characterizing the
thermodynamic structures of clusters of galaxies. The paper is
structured as follows. In Section 2, we describe the IllustrisTNG
simulations, the mock Chandra observations, and the network
architecture. We present the predicted cluster type classifications in
Section 3. We discuss the implication of this work in Section 4, and
conclude in Section 5.

2 ME T H O D S

2.1 IllustrisTNG clusters

The IllustrisTNG project includes a series of state-of-the-art cos-
mological magnetohydrodynamical simulations of galaxy formation
(Marinacci et al. 2018; Naiman et al. 2018; Nelson et al. 2018, 2017) .
It is a successor to the original Illustris simulation (Vogelsberger et al.
2014). IllustrisTNG utilizes both large volumes and high resolutions,
which reproduces relations between black hole masses and the
properties of their host galaxies (Li et al. 2019a), the metal abundance
of the ICM (Vogelsberger et al. 2018), and the cosmic large-scale
structures (Springel et al. 2018). TNG300 is the largest simulation
volume in IllustrisTNG, containing a simulated cubic volume of
(300 Mpc)3 with a baryonic mass resolution of 7.6 × 106 M� (Nelson
et al. 2019), providing a rich and diverse collection of collapsed
haloes (Pillepich et al. 2018). The simulations use a cosmological
model based on the constraints of Planck Collaboration XXIV (2016)
with �m = 0.3089, �� = 0.6911, and H0 = 67.74 km s−1 Mpc−1.

We select galaxy clusters with a total mass within R500
1 above

M500 = 1013.75 M� using the Friends-of-Friends algorithm (Davis
et al. 1985) from the z = 0 snapshot in the TNG300 simulation, which
forms an unbiased mass-limited sample of 318 massive clusters. A

1R� is the radius within which the overdensity of the galaxy cluster is �

times the critical density of the Universe.

Figure 1. Distributions of central cooling times and logM500/M� of TNG300
clusters in our sample. Their central cooling times are in the range of 0.012–
27.85 Gyr. We define CC and NCC clusters as those with cooling times shorter
than 1 Gyr and longer than 7.7 Gyr, respectively. Clusters with 1 < tcool <

7.7 Gyr are defined as WCC clusters. Clusters in our sample have M500 in the
range of 1013.75–15.06 M�.

detailed analysis of the cluster populations in TNG300 is presented
in Barnes et al. (2018). The radiative cooling time is defined as

tcool = 3

2

(ne + ni)kBT

neni�(T , Z)
(1)

where ne and ni are the number densities of electrons and ions,
respectively; kB is Boltzmann constant, and T is the gas temperature;
�, the cooling function, is determined by the plasma temperature
and metallicity. Following Barnes et al. (2018), we calculate the
average tcool from a 3D volume within 0.012 R500. CC clusters are
defined as those with tcool < 1 Gyr, an observation-based threshold for
the presence of multiphase gas likely due to the thermally unstable
cooling. NCC clusters are those with tcool > 7.7 Gyr, corresponding
to a lookback time to z ≈ 1 and representing the period since the last
major merger. Clusters with tcool between 1 and 7.7 Gyr are classified
as WCC clusters. Such divisions for CC, WCC, and NCC clusters are
commonly adopted in practice (e.g. Hudson et al. 2010; McDonald
et al. 2013; Hogan et al. 2017; Barnes et al. 2018). 10 per cent,
61 per cent, 29 per cent of clusters in our sample are CC, WCC, and
NCC, respectively. Distributions of the masses and cooling times of
clusters in our sample are shown in Fig. 1.

2.2 Mock Chandra observations

Mock Chandra X-ray observations of the TNG300 clusters
are produced in an end-to-end fashion using PYXSIM v2.2.02,
an implementation of the PHOX algorithm (Biffi, Dolag & Böhringer
2013; ZuHone et al. 2014), and the SOXS v2.2.03 software suite
for simulating X-ray events and producing mock observations. A
large number of photons in the energy band of 0.5–7.0 keV are

2http://hea-www.cfa.harvard.edu/∼jzuhone/pyxsim
3http://hea-www.cfa.harvard.edu/soxs
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5622 Y. Su et al.

Figure 2. Top: Example images of mock Chandra observations of CC clusters. Each image covers a D = 1 Mpc square region. Bottom: Class activation maps
highlight the discriminative regions in an image for the CNN to classify that image into a category. Each map corresponds to the above input image. All these
clusters are predicted correctly with a probability above 0.9. The network has utilized radial ranges more extended than r < 0.012 R500 (where the central cooling
time and density are measured) to identify CC clusters.

Figure 3. Same as Fig. 2 but for WCC clusters.

generated with PYXSIM for each cluster over a spherical volume
with a radius of 2 Mpc, based on their 3D distributions of density,
temperature, and metallicity in TNG300. We adopt a wabs × apec

model, where the apec thermal emission model (Foster et al. 2012)
represents the ICM component and the wabs model (Morrison &
McCammon 1983) characterizes the foreground Galactic absorption
assuming a hydrogen column density of 4 × 1020 cm−2. We assume
all the clusters reside at a redshift of z = 0.05, such that 1 arcsec =
1.01 kpc for the assumed cosmological parameters in IllustrisTNG.
Each data set is then projected along three orthogonal directions x,
y, z. Mock Chandra ACIS-I event files are produced by convolving
each photon list with an instrument model for the ACIS-I detector of
Chandra. The effective area and spectral response are based on the
Cycle 0 response files. The ACIS-I particle background, the galactic
foreground, and the Cosmic X-ray background are also included.
Each mock observation is integrated for an exposure time of 100 ks.
We extract images of the central 16.8 arcmin square region in the
0.5–7.0 keV energy band from the simulated event files. The field
of view corresponds to a 1 Mpc square at the assumed redshift.
Each 8 × 8 pixel2 is binned up into a single pixel such that the
final mock ACIS-I images have a dimension of 256 × 256. Example
mock Chandra images of CC, WCC, and NCC clusters are shown in
Figs 2, 3, and 4, respectively.

2.3 Neural network architecture

Convolutional neural networks (CNNs; Fukushima & Miyake 1982;
LeCun et al. 1999; Krizhevsky, Sutskever & Hinton 2012; Simonyan
& Zisserman 2014) are a class of deep machine learning algorithms
that are commonly used for image analysis. Unlike traditional
(shallow) image understanding methods, CNNs extract meaningful
patterns from the input imagery using sets of convolutional layers
(Conv-layer) with weights that are optimized for a given loss
function. The output of each convolutional layer is a feature map,
which is a vector-valued spatial function defined over a grid of
image locations. Network architectures typically consist of a linear
sequence of Conv-layers followed by a set of fully connected layers.
The Conv-layers extract spatial features, often with a reduction in
spatial resolution later in the sequence. After the Conv-layers, the
spatial feature map is converted into vector, by either averaging the
features across the image or just reshaping the feature map into a
vector (‘flattening’). The subsequent fully connected layers label the
data with discrete labels for classification tasks or continuous labels
for regression tasks. Increasing the number of layers in a CNN will
tend to improve results, but at some point, very deep models become
too difficult to train. Residual neural networks (ResNets He et al.
2016a; He et al. 2016b) are a type of CNNs that use skip connections,
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Figure 4. Same as Fig. 2 but for NCC clusters. The network has utilized regions out to the edge of the input image to identify NCC clusters.

Figure 5. A residual block is a two Conv-layers shallow network with each
Conv-layer followed by a ReLU. A skip connection passes the input of the
residual block to be added to the output of the second Conv-layer and fed to the
second ReLU. One advantage of building a model with residual blocks is that
it allows for deeper and more flexible models that can be trained efficiently.

which has been shown to reduce the difficulty in training CNNs with
many layers. ResNets have been used in astronomical applications
including finding strong gravitational lenses (Lanusse et al. 2018),
galaxy morphology classification (Zhu et al. 2019), and identifying
candidate Lyman α emitting galaxies (Li et al. 2019b).

The ResNet-18 network, employed in this study, contains one
Conv-layer, eight residual blocks, and one fully connected layer. A
residual block is a shallow network of two Conv-layers (Fig. 5).
Each Conv-layer is followed by a rectified linear unit (ReLU) (Zeiler
et al. 2013). A skip connection is added to the data passing flow to
directly pass the input of the residual block to the end of the second
Conv-layer. The input of the residual block and the output of the
second Conv-layer are then added together to be fed to the second
ReLU. The output of the second ReLU is the output of the residual

block. A 3 × 3 max-pooling layer follows the first Conv-layer, and a
global average pooling (GAP) layer follows the last residual block.
The ResNet-18 network contains a total of 18 hidden layers. Its basic
architecture is shown in Fig. 6.

Our network is implemented in PyTorch (Paszke et al. 2019).
A learning rate of lr = 0.001, a batch size of 64, and Adam
optimizer (Kingma & Ba 2014) are used during training. A ResNet-
18 model is pre-trained on the ImageNet Dataset which contains over
one million images for a 1000-class classification (Deng et al. 2009).
The pre-trained network is fine tuned with our data set for predicting
cluster types. Weighted cross-entropy (LeCun, Bengio & Hinton
2015) is used as our loss function. Weights that are inversely pro-
portional to the number of data in each class are included in the loss
function to mitigate the impacts of the imbalanced data set. The mock
Chandra images have a dimension of 256 × 256. Since the ResNet-
18 network expects a 3-channel input image, each image is replicated
three times to form a 256 × 256 × 3 image. All the input images are
randomly split into 10 folds (groups) of roughly equal size. No image
from the same cluster appears in more than one fold. We use 8 folds
for training, 1 fold for validation, and 1 for testing. Input images
are augmented by a random combination of horizontal/vertical flip
and 0/90/180/270 degrees rotation during training. Each model is
trained for 200 epochs. The model that gives the highest F1-score
(equation 5) on the validation set is chosen and used for testing. A 10-
fold cross-validation has been applied to cycle through all the data.

We apply a class activation mapping (Zhou et al. 2016) technique
to highlight regions that are discriminative for the CNN. We compute

Figure 6. Architecture of a ResNet-18 neural network. The input and output shapes of each layer are labelled. After the first pooling layer, every two Conv-layers
form a residual block as illustrated in Fig. 5. The dashed shortcuts involve dimension changes.
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a weighted sum of the feature maps of the last Conv-layer to obtain a
class activation map (CAM) for each image. The activation of unit k
in the last Conv-layer at a 2D coordinate of (x, y) is fk(x, y). The result
of GAP for that unit is Fk = ∑

x, yfk(x, y). The input to the softmax
for class c is Sc = ∑

k wc
kFk , where wc

k is the weight for class c and
unit k. We obtain

Sc =
∑
x,y

∑
k

wc
kfk(x, y) =

∑
x,y

Mc(x, y), (2)

where Mc(x, y) is the value on the CAM for position (x, y). The
probability for each class, Pc = exp(Sc)/

∑
cexp(Sc), is used to make

the final decision. CAM therefore reveals the importance of each part
in an image that leads to the classification of an image to a class.
The resulting CAM has the same dimension as the output of the last
Conv-layer and the input of the GAP layer of 8 × 8.

3 R ESULTS

We use our CNN algorithm to predict whether a cluster is CC, WCC,
or NCC from the mock Chandra X-ray images. The cluster types are
defined by their actual central cooling times in TNG300. We compare
the performances with the estimates given by two traditional methods
of using central gas densities and surface brightness concentrations.

We use the following criteria to evaluate the performance of each
experiment. Hereafter, tp, fp, tn, and fn are the numbers of true
positive, false positive, true negative, and false negative predictions,
respectively. Precision, also called positive predictive value, is the
number of true positives, divided by the number of all positive calls:

Precision = tp

tp + fp
. (3)

Recall, also called true positive rate, is the number of true positives
divided by the number of positive samples:

Recall = tp

tp + f n
. (4)

F1-score is the harmonic mean of precision and recall, defined as

F1 = 2 · Precision · Recall

Precision + Recall
. (5)

It conveys the balance between precision and recall and provides a
more comprehensive evaluation. We base our main conclusions on
F1-score. Balanced accuracy (BAcc) is the average of true positive
predictions divided by the number of positive samples and true
negative predictions divided by the number of negative samples.
It is related to tp, fp, tn, and fn:

BAcc = 1

2

(
tp

tp + f n
+ tn

tn + fp

)
. (6)

BAcc is a measurement of accuracy that does not suffer from
imbalanced data sets.

We train and test our deep learning classification algorithm with
mock Chandra ACIS-I images as shown in Figs 2–4 and described
in Section 2.2. Each ACIS-I field covers a 1 Mpc square, whereas
clusters in our sample have a median R500 of 710 kpc. The spatial
resolution is degraded to 3.9

′′
/pixel which is 8 times worse than

the half arcsec resolution of Chandra ACIS. Without any spectral
information, the network is able to distinguish CC, WCC, and NCC
clusters with F1-scores of 0.83, 0.82, and 0.73, respectively. Details
of the results are shown in Fig. 7 and values of performance measures
are listed in Table 1. Predictions and the ground truths are compared
in the normalized confusion matrix as shown in Fig. 8. Diagonal
elements represent the fraction of data for which the predicted class
is the same as the true class, while off-diagonal elements are those

that are misclassified. The deep learning algorithm gives a confusion
matrix with high diagonal values, indicating good predictions.

Here, we compare the deep learning method to more conventional
methods for cluster classification. Although these approaches are
not directly comparable, the comparisons are instructive. A rapidly
cooling core implies a high central gas density as the ICM gradually
loses its pressure support and falls to smaller radii. Central gas
densities have been widely used to determine whether a cluster
contains a CC, which requires far fewer counts than measuring the
temperatures and metallicities (Lovisari, Reiprich & Schellenberger
2015; Su et al. 2019a). We calculate the central electron number
density ne as the average ne of a 3D volume within 0.012 R500 as
shown in Barnes et al. (2018). Following Barnes et al. (2018) and
Hudson et al. (2010), clusters with a central ne > 1.5 × 10−2 cm−3,
1.5 × 10−2 > ne > 0.5 × 10−2 cm−3, and ne < 0.5 × 10−2 cm−3

are classified as CC, WCC, and NCC, respectively. For clusters in
our sample, this method achieves F1 = 0.69, averaged over the three
cluster types (see Figs 7 and 8 and Table 1), which is not as accurate
as the predictions given by our ResNet-18 classifier.

In X-ray observations, it is challenging to directly measure gas
properties within r� 10 kpc for a modest exposure time. The elevated
ICM metallicity and density at the centre of a CC cluster produce a
central peak in X-ray surface brightness. The ratio of this peak emis-
sion to the ambient emission is therefore sensitive to the CC strength.
The X-ray concentration parameter was originally introduced by
Santos et al. (2008) to infer whether a cluster contains a CC:

CSB =
∑

(< 40 kpc)∑
(< 400 kpc)

, (7)

where
∑

(< r) is the accumulated projected ICM emission in
0.5–5.0 keV from a circular region with a radius of r. We extract
images in the 0.5–5.0 keV energy band from mock Chandra
observations. Following Barnes et al. (2018) and Andrade-Santos
et al. (2017), clusters with CSB > 0.155, 0.075 < CSB < 0.155, and
CSB < 0.075 are classified as CC, WCC, and NCC, respectively.
Using this method, we obtain an average F1-score of 0.33 for
clusters in our sample. Barnes et al. (2018) also note that this
criterion overpredicts NCC clusters and fails to identify CC clusters.
We further sort all the images with a decreasing CSB and divide
them into the three categories based on the fractions of CC, WCC,
and NCC in our sample. We obtain an F1-score of 0.64 (see Figs 7
and 8 and Table 1). Our ResNet-18 classifier which utilizes the 2D
ICM distribution outperforms the 1D concentration measurement.

4 INTERPRETATI ON AND DI SCUSSI ON

Using mock Chandra X-ray images of a 1 Mpc square centred on
each cluster, our network is able to predict whether a cluster is CC,
WCC, or NCC with an average F1-score of 0.79. The cluster types
are defined by their actual central cooling times, which depend on
temperature, density, and metallicity as shown in equation (1). Our
deep learning method is superior to the estimate using the actual
central gas densities of these clusters with an average F1 = 0.69.
X-ray images may contain information that is more directly related
to the cooling time than gas density. To localize features that are
most useful for the network to make classification decisions, we
generate a CAM for each input image as described in Section 2.3.
Example CAM images and their original images are compared in
Figs 2–4. Regions that are brighter in CAM are more informative for
the network. We stack and normalize all the CAM images associated
with correct predictions with a probability above 0.9 for CC, WCC,
and NCC clusters, respectively, as shown in Fig. 9. The radial profiles
of the values in the activation maps are shown in the right-hand panel
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Figure 7. Scores of precision (top-left), recall (top-right), F1-score (bottom-left), and balanced accuracy (bottom-right) for CC, WCC, and NCC classifications
obtained using different methods (x-axis): 1. Deep learning using mock Chandra images. 2. Central gas density. 3. X-ray concentration parameter derived from
mock Chandra images. Details of the performance measures are listed in Table 1.

Table 1. Values of performance measures for different experiments. Precision, recall, F1-score, and balanced accuracy
are defined in Section 3.

Method Ave. F1 Ave. BAcc Class Precision Recall F1 BAcc

CC 0.81 0.86 0.83 0.92
Deep learning 0.79 0.85 WCC 0.88 0.77 0.82 0.81

NCC 0.66 0.82 0.73 0.83

CC 0.55 0.74 0.63 0.83
Density 0.69 0.81 WCC 0.92 0.58 0.71 0.75

NCC 0.57 0.99 0.72 0.86

CC 0.49 0.45 0.47 0.70
Concentration 0.64 0.73 WCC 0.78 0.82 0.8 0.71

NCC 0.70 0.63 0.66 0.77

of Fig. 9. To identify CC clusters, the network uses 2D information
out to r ≈ 300 kpc which is broader than r < 0.012 R500 (10 kpc)
where the central gas density and cooling time are measured. Patterns
in X-ray images could provide important clues about the central
cooling time. For example, sizes of X-ray cavities and their distances
to the cluster centre are determined by the outburst of the AGN,
which is related to the radiative cooling rate (Bı̂rzan et al. 2012;
Li, Su & Jones 2018). Mechanical energies released by AGN could

be dissipated by heating the ICM via turbulent cascades, which can
be probed through the power spectrum of X-ray surface brightness
fluctuations (Zhuravleva et al. 2014). These informative 2D features
in X-ray images may have allowed the network to obtain stronger
constraints on tcool than the methods of using central gas densities
and surface brightness concentrations.

While the discriminating power of each region declines quickly
as a function of radius for CC clusters, it is relatively uniform for

MNRAS 498, 5620–5628 (2020)
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Figure 8. Normalized confusion matrix of CC, WCC, and NCC classification which compares the predicted class and the true class for each experiment.
1. Deep learning using mock Chandra images. 2. Central gas density. 3. X-ray concentration parameter derived from mock Chandra images. Details of the
performance measures are listed in Table 1.

Figure 9. Class activation maps of the central D = 1 Mpc averaged over CC, WCC, and NCC clusters, respectively. All these clusters are predicted correctly
with a probability above 0.9. The right-hand panel shows the radial profiles of the three CAM maps. The network utilizes relatively more information from
the cluster centres to identify CC clusters but relies on the morphology over a wider radial range to identify NCC clusters. The radial dependance of the
discriminating power of regions in WCC clusters is between those of CC and NCC clusters.

NCC cluster. The network uses extended regions out to the edge of
the input images of r ∼ 500 kpc to identify NCC clusters as shown
in Fig. 9. Mergers may have disrupted the thermal structures of the
ICM and contributed to the formation of NCC clusters. Interestingly,
Barnes et al. (2018) find that NCC clusters do not have significantly
higher kinetic energies than CC clusters. We speculate that head-on
mergers and certain off-axis mergers may have similar impacts on
the global kinetics of the clusters. Cluster CCs are resilient to off-
axis mergers as indicated by the ubiquitous presence of sloshing cold
fronts in CC clusters (Markevitch & Vikhlinin 2007; Su et al. 2017b).
The impact parameter and angular momentum of a merger may be
critical in determining the fate of cluster CCs, as seen in numerical
simulations (Hahn et al. 2017).

We note that the misclassified cases are either associated with
cooling times that are close to the class boundaries or outliers for
their class. Some of the failures in our model are shown and discussed
in detail in Appendix A. We only considered clusters at a single
redshift in this work. Our algorithm may have some resilience to
distance since the data set consists of clusters with a wide range
of masses and physical sizes. The application of deep learning
techniques to systems at different redshifts will be an important
aspect of future studies. In overall, this work demonstrates that CNNs
are able to take advantage of X-ray images and provide a unique
approach to the thermodynamics of the ICM. The neural network

can, in principle, be trained to predict the specific values of tcool

for CC clusters as a regression task, and fetch features associated
with the life cycles of AGN feedback. Potentially, the deep learning
algorithm can also be used to determine the merger history of a
cluster from multiwavelength images – X-ray, radio, and optical,
which would greatly enhance our understanding of cluster formation,
thermalization, and particle acceleration.

5 C O N C L U S I O N S

ResNet-18 is a subclass of CNNs that is well suited for image
classification. We employ a ResNet-18 network to assess whether
a cluster is CC, WCC, or NCC from their X-ray images. The
cluster type is defined purely by its central cooling time, which is
related to the gas density, temperature, and metallicity. We produce
mock Chandra observations for 318 clusters of galaxies in TNG300
with particle background, contaminating point sources, galactic
foreground, etc. included. We train and test the network with low-
resolution mock Chandra ACIS-I images. It achieves an average
precision, recall, F1-score, and balanced accuracy of 0.78, 0.82,
0.79, and 0.85, respectively, well above a random prediction of 0.33.
Our deep learning algorithm outperforms the estimates given by the
central gas densities and surface brightness concentration parameters.
We use the class activation mapping to probe the contribution of each
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region to the classification decisions. The network may have utilized
2D features in X-ray images that are related to the cooling and heating
mechanisms in the ICM. Features at larger radii are more important
for identifying NCC clusters than CC clusters, possibly due to the
role of head-on major mergers in disrupting cluster CCs.

Unlike traditional methods of using one-dimensional information
to estimate the cluster type, the neural network is able to identify
features on different scales and at various radii, making it a potentially
powerful tool to probe the thermodynamic state of a cluster. CNNs
can be utilized to exploit cluster images in Chandra and XMM–
Newton archives, large cluster samples from the ongoing eROSITA
all-sky survey, and the exquisite data promised by next-generation
X-ray observatories, such as Lynx.
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APPENDIX A : MISCLASSIFIED CLUSTERS

To better understand the failures of our model, we inspect the
cases that are classified confidently but incorrectly. All the incorrect
predictions with a probability above 0.9 are associated with WCC,
which supports that WCC is a transitional phase between CC and
NCC with intermediate morphologies that are more difficult to

classify. Among them, two images are CC classified as WCC, eight
are NCC classified as WCC, four are WCC classified as CC, and
eight are WCC classified as NCC. Most of these clusters have
cooling times close to the boundaries of tcool (CC|WCC) = 1 Gyr
and tcool (WCC|NCC) = 7.7 Gyr. However, six images from three
clusters have typical coolings times for their type, as shown in
Fig. A1. These cases appear to be outliers in their class. The top-left
and top-middle images in Fig. A1 are from the same CC but it appears
to be disturbed with a very asymmetric morphology and the network
classified it as WCC. The top-right image is a WCC and it appears to
be undergoing a merger. CAM suggests that the network may have
noticed the subcluster in the lower right corner and classified it as
NCC. The three images in Fig. A1 (bottom) are from the same NCC
cluster but classified as WCC. It appears to be relatively relaxed.
The double nuclei at the cluster centre may be mistaken as a bright
filament. The network may not be well trained to identify these
outliers due to the rarity of such atypical cases in our sample.

Figure A1. Same as Figs 2–4 but for clusters that are misidentified by the neural network. Their true cooling times are labelled in the Chandra X-ray images
and their true and predicted cluster types are labelled in the class activation maps. All these clusters are predicted incorrectly with a probability above 0.9. Their
X-ray morphologies appear to be atypical for their cluster types.
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