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ABSTRACT
Identifying galaxy groups from redshift surveys of galaxies plays an important role in connecting galaxies with the underlying
dark matter distribution. Current and future high-z spectroscopic surveys, usually incomplete in redshift sampling, present both
opportunities and challenges to identifying groups in the high-z Universe. We develop a group finder that is based on incomplete
redshift samples combined with photometric data, using a machine learning method to assign halo masses to identified groups.
Test using realistic mock catalogues shows that �90 per cent of true groups with halo masses Mh � 1012M� h−1 are successfully
identified, and that the fraction of contaminants is smaller than 10 per cent. The standard deviation in the halo mass estimation
is smaller than 0.25 dex at all masses. We apply our group finder to zCOSMOS-bright and describe basic properties of the group
catalogue obtained.
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1 IN T RO D U C T I O N

Identifying galaxy groups/clusters from galaxy surveys is a practice
that can be dated back to Abell (1958), who identified 2700
clusters from the Palomar Observatory Sky Survey (POSS) using the
distribution of galaxies in the sky. Similar investigations have been
carried out later by Zwicky & Herzog (1966) and Abell, Corwin &
Olowin (1989). Without distance information, these catalogues can
be contaminated severely by projection effects. With the advent of
large redshift surveys of galaxies, efforts have been made to identify
galaxy clusters/groups (collectively referred to as galaxy groups in
the following) using the galaxy distribution in redshift space. For
example, galaxy groups have been identified from the CfA redshift
survey (e.g. Huchra & Geller 1982), the Two Degree Field Galaxy
Redshift Survey (e.g. Eke et al. 2004; Yang et al. 2005a; Tago et al.
2006), the Two Micron All Sky Redshift Survey (e.g. Lavaux &
Hudson 2011; Tully 2015; Crook et al. 2007), and the Sloan Digital
Sky Survey (e.g. Goto 2005; Berlind et al. 2006; Yang et al. 2007).

In the contemporary paradigm of structure formation, the matter
content of the Universe is dominated by dark matter, and the structure
in the cosmic density field forms hierarchically through gravitational
instability. The virialized parts of the structure, commonly referred
to as dark matter haloes, are the places where galaxies form and
evolve (see Mo, Van den Bosch & White 2010 for a review). Since
the relationship between the distribution of haloes and the underlying
density field is well understood (e.g. Mo & White 1996), one can
use haloes to trace the cosmic density field. Thus, there is a strong
motivation to select galaxy groups to represent dark matter haloes
in the observed Universe. With this in mind, many of the group
catalogues published recently have been constructed using methods
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that are calibrated with galaxy occupations in dark matter haloes (e.g.
Yang et al. 2005a, 2007; Tinker, Wetzel & Conroy 2011; Duarte &
Mamon 2015; Lu et al. 2016; Lim et al. 2017).

As virialized regions in the cosmic density field, galaxy groups
can be used to investigate the role played by environment in galaxy
formation and evolution, and a wealth of investigations have been
carried out in this area. For example, the group-galaxy cross-
correlation function can be used not only to probe how galaxies
are distributed in haloes but also to verify the presence of transition
from the one-halo to two-halo terms (e.g. Yang et al. 2005b; Coil
et al. 2006; Knobel et al. 2012b). Weinmann et al. (2006) studied
the dependence of galaxy properties on their host haloes, and
found a strong correlation in the properties of galaxies residing
in common dark matter haloes, a phenomenon now referred to as
galactic conformity (see also Knobel et al. 2015; Kawinwanichakij
et al. 2016; Darvish et al. 2017). Wang et al. (2018) found that the
apparent dependence of the quenched fraction of galaxies on large-
scale environment is largely induced by the dependence of quenching
on the host halo mass combined with the biased distribution of dark
matter haloes in the cosmic density field. By stacking galaxy groups
of similar mass, one can also extract the weak signal of Sunyaev–
Zel’dovich (SZ) effects produced by the gas associated with dark
matter haloes over a large halo mass range (e.g. Li et al. 2011; Vikram,
Lidz & Jain 2017; Lim et al. 2018, 2020). A similar approach can
also be applied to extract weak gravitational lensing signals produced
by galaxy groups (e.g. Mandelbaum et al. 2006; Yang et al. 2006;
Han et al. 2015; Viola et al. 2015; Luo et al. 2018), and to obtain
the halo occupation distribution or conditional luminosity functions
of galaxies in haloes of different masses (e.g. Yang, Mo & van
den Bosch 2008, 2009; Rodriguez, Merchán & Sgró 2015; Lan,
Ménard & Mo 2016).

Since galaxy groups and the corresponding dark matter haloes
are biased tracers of the underlying density field, the group/halo
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population can also be used to reconstruct the current cosmic density
field (Wang et al. 2009; Muñoz-Cuartas, Müller & Forero-Romero
2011) and to constrain the initial conditions that produced the
observed cosmic web (e.g. Wang et al. 2016). Such reconstructions
cannot only help to quantify the mass density field within which real
galaxies reside, but also provide information about the formation
history of the observed cosmic web.

So far galaxy group catalogues have been constructed mainly for
the low-redshift Universe, where large and complete redshift surveys
of galaxies are available. The situation is expected to change, as a
number of large surveys of high-z galaxies have been or are being
carried out: for example VVDS (Le Fèvre et al. 2005), ORELSE
(Lubin et al. 2009), zCOSMOS (Lilly et al. 2007), DEEP2 (Newman
et al. 2013), VIPERS (Guzzo et al. 2014), and PFS (Takada et al.
2014). However, surveys at high-z are distinguished from their
low-z counterparts. Because of detection and time limits, redshift
sampling in a high-z survey is usually incomplete. For example,
the zCOSMOS-bright survey has a sampling rate of ∼55 per cent
and the planed PFS a sampling rate of ∼70 per cent. The sampling
rate may even be inhomogeneous across the sky – for example,
fibre collisions can make the sampling rate lower in higher density
regions. In addition, since higher-z galaxies are on average fainter,
it is more difficult for a high-z survey to include galaxies of low
luminosities. Both of these make it more challenging to identify
galaxy groups from high-z data reliably. Nevertheless, there have
been attempts to identify galaxy groups from such incomplete
spectroscopic samples (e.g. Gerke et al. 2005, 2013; Knobel et al.
2009, 2012a; Cucciati et al. 2010), although one must be cautious
about the uncertainties such incomplete sampling may generate. On
the other hand, almost all high-z spectroscopic surveys are based
on deep photometric surveys with multiwaveband information that
can be used to obtain photometric redshifts as well as to estimate
colours, luminosities and stellar masses of individual galaxies. This
information can be combined with the spectroscopic data to improve
group identifications. Indeed, such an approach has been applied in
some previous investigations (e.g. Knobel et al. 2012a). There have
also been attempts to identify galaxy groups using only photometric
data (e.g. Li & Yee 2008; Gillis & Hudson 2011; Oguri et al.
2018; Euclid Collaboration et al. 2019; Maturi et al. 2019). The
goal of this paper is to develop a group finding algorithm that is
suitable for high-redshift surveys with incomplete redshift sampling.
Our method combines spectroscopic galaxies with those in the
corresponding parent photometric survey to make full use of the
information provided by galaxy clustering in the observational data.
We aim to identify all groups above a certain halo mass so as to
obtain a complete group catalogue to represent the dark matter halo
population. We calibrate and test our group finder using detailed
mock catalogues that mimick real observations at high redshift. As
an application, we apply our method to zCOSMOS-bright survey
(Lilly et al. 2007, 2009).

The structure of the paper is as follows. In Section 2, we describe
our group finding method, including identifications of groups from
spectroscopic data and the incorporation of photometric galaxies.
The mock catalogues used to test our group finder is presented in
Section 3. We test the performance of our group finding method,
including halo mass assignment, in Section 4. The application of our
method to the zCOSMOS-bright survey is presented in Section 5.
Finally, we summarize our main results in Section 6. Throughout
the paper, cosmological parameters are adopted from Dunkley et al.
(2009): matter density parameter �m = 0.258, cosmological constant
�� = 0.742, reduced Hubble constant h = 0.72, and primordial
power index n = 0.96.

2 ME T H O D

Different group finding methods have been proposed to identify
galaxy groups from both spectroscopic and photometric surveys of
galaxies, such as the friends-of-friends (FoF) grouping algorithm
(e.g. Huchra & Geller 1982; Davis et al. 1985; Eke et al. 2004; Knobel
et al. 2009), the Voronoi–Delaunay Method (VDM; Marinoni et al.
2002; Gerke et al. 2005; Knobel et al. 2009), the halo-based group
finder (e.g. Yang et al. 2005a), and the adaptive matched filter method
(e.g. Kepner et al. 1999; Dong et al. 2008). In this paper, we will
use a version of the FoF group finder to select potential groups,
and test its performance for high-z surveys where spectroscopic
redshifts are usually incomplete.1 After identifying potential groups
with spectroscopic galaxies, we will examine how the inclusion of
galaxies with photometric information can improve the quality of the
selected groups in their ability of representing dark matter haloes.

2.1 The FoF method

The FoF group finding algorithm is the simplest and one of the
most commonly used method to identify galaxy groups from redshift
surveys of galaxies (e.g. Huchra & Geller 1982; Davis et al. 1985;
Eke et al. 2004; Knobel et al. 2009). The basic idea of this algorithm
is to assign two galaxies into a common group if they satisfy the
following criteria:

θij � 1

2

(
l⊥,i

di

+ l⊥,j

dj

)
, (1)

|di − dj | � l‖,i + l‖,j
2

, (2)

where θ ij is the angular separation of the two galaxies, di and dj are
their co-moving distances. The two length scales l⊥ and l‖ in the
above equations are defined as

l⊥,i = min

[
lmax(1 + zi),

b

n̄1/3(αi, δi , zi)

]
, (3)

l‖,i = R · l⊥,i , (4)

where b is the transverse linking length in units of the mean
separation between galaxies, and R is the ratio of the line-of-sight
(los) linking length to the transverse one. To avoid the linking length
from becoming unreasonably large in low-density regions, lmax is
employed to set a limit. In general, the sampling rate of galaxy
redshift may change with both redshift and position in the sky (see
below). We take into account the effect of such a sampling by using
a local mean number density defined as

n̄(α, δ, z) = n̄(z) × C(α, δ)

C̄
, (5)

where n̄(z) is the number density of spectroscopic galaxies at redshift
z. The completeness, C(α, δ), is the number ratio between galaxies
with spectroscopic redshift and all the galaxies that satisfy the sample
selection criteria at a given sky position (α, δ), and C̄ is the number
ratio of all the spectroscopic galaxies to all the galaxies satisfying
the selection criteria. Altogether, the group finder contains three free
parameters: lmax, b, and R, which are tuned to achieve an optimal
performance (see below).

1We note that methods, such as the halo-based method and the matched
filter method, are not suitable for galaxy surveys with severe redshift
incompleteness, because these methods need reliable halo mass estimates
to assign group memberships.
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2.2 Supplementing with photometric galaxies

Spectroscopic observations are usually shallower than the corre-
sponding photometric catalogues from which targets for spectro-
scopic observation are selected, and different surveys usually have
different target selection criteria. For high-z spectroscopic surveys,
a large fraction of the target galaxies may not have redshift mea-
surements owing to observational limitations. Thus, the final product
of a redshift survey depends both on its target selection criteria and
its redshift sampling rate. In general, the incompleteness produced
by these two factors depends not only on galaxy properties such as
colour but also on the local number density of galaxies. Because of
this, the average sampling rate alone cannot characterize a survey
completely. Incomplete sampling introduces two problems for group
identifications. First, a group may miss most of its member galaxies
in the spectroscopic sample, especially for a poor system. Some
groups may, therefore, be totally missed in the selection from the
spectroscopic sample. Secondly, a group may miss its dominating
member galaxy (its central galaxy) in the spectroscopic data. In this
case, the group could be identified but its halo mass will be wrongly
determined.

Meanwhile, high-quality multiwavelength photometric data are
usually available not only for all target galaxies for spectroscopy but
also for other galaxies down to a fainter magnitude. Such photometric
data can be used not only to obtain sky positions and colours for these
galaxies but also to determine their photometric redshifts (photo-
z), providing useful distance information. In particular, estimates
of luminosity and stellar mass can be obtained from modelling
the spectral energy distribution provided by the multiwavelength
photometric data for individual galaxies. All these can be used
together with the spectroscopic data to improve group identifications.

To tackle the two problems described above, we focus on two
populations of galaxies in the photometric sample. The first is group
central, defined as the central galaxy of a group whose members
are correctly assigned to a galaxy group in the spectroscopic data.
The second is isolated central, defined as a central galaxy whose
group members are completely missed in the spectroscopic sample.
We use information provided by all the spectroscopic groups around
each photometric galaxy to determine the status of the galaxy. To do
this, we select, for each photometric galaxy, ng closest (based on a
projected distance, rp) groups identified from the spectroscopic data
that satisfy

�z ≤ 3σz,phot(1 + z), (6)

where �z is the redshift difference between the photometric galaxy
and the most massive galaxy in the identified spectroscopic group,
and σz,phot is the uncertainty of the photo-z. The choice of �z is to
ensure that most of the true centrals are included; the final choice is
to be made by the machine-learning algorithm described below. The
features to be used are quantities describing the relationship between
the photometric galaxy and the ng spectroscopic groups, which are
as follows:

(i) M∗,phot: the stellar mass of the photometric galaxy;
(ii) (rp,1, rp,2, ...rp,ng

): the projected distances between the pho-
tometric galaxy and the surrounding ng groups;

(iii) (�z1,�z2, ...�zng
): the absolute value of redshift differences

between the photometric galaxy and the surrounding ng groups;
(iv) (�M∗,1, �M∗,2, ...�M∗,ng ): the logarithm of the stellar mass

ratio between the photometric galaxy and the most massive galaxy
of the surrounding ng groups.

Thus, for each photometric galaxy, we have 3ng + 1 features. The
target is to describe the real relationship of the photometric galaxy
with the ng surrounding groups. To this end, we define the target as a
vector of ng + 1 boolean values, with its first component indicating
whether or not the photometric galaxy is a central, and the remaining
ng components indicating if the galaxy belongs to group i (i = 1, 2,
...ng).

We employ a powerful machine learning algorithm, the random
forest classifier (RFC) in scikit-learn (Pedregosa et al. 2011),
to do the classification for photometric galaxies. We consider the
photometric galaxy sample as a set of objects,

D = {xi , yi}|D|
i=1, (xi ∈ X , yi ∈ Y), (7)

where xi represents the features for the ith photometric galaxy as
listed above and is a point in the feature space X , yi denotes the
target vector defined above and is a point in the target space Y , and
D stands for the photometric galaxy sample with its size denoted
by |D|. The RFC is an ensemble of many decision trees, each of
which is constructed from a bootstrap sample, Dbts ∈ D, which is
selected from the original sample D and only retains a randomly
chosen subset of the features for individual galaxies. A decision tree
is built up through a recursive training process as follows. First, the
bootstrap sample is divided into two sub-samples, left child Dbts,L

and right child Dbts,R, according to a critical value of one feature.
The feature and the critical value are both chosen to minimize the
Gini impurity, which is defined as

Gini =
∑

k=L,R

|Dbts,k|
|Dbts|

(
1 −

|Y|∑
i=1

p2
k,i

)
, (8)

where |Dbts| is the size of the bootstrap sample, |Dbts,k| is the size
of the sub-sample, |Y| is the dimension of the target space (number
of target classes), and pk, i is the fraction of the ith class objects
in the sub-sample k. A small value of the Gini impurity, therefore,
indicates high purity of the target vectors in each of the sub-samples.
This process is repeated for each sub-sample recursively until some
termination criterion is met. Each splitting is referred to as an internal
node, and a sub-sample that will not be split further is called a leaf
node. A termination criterion can be set to achieve either a user-
defined maximum depth of the tree, or a minimal sample size (number
of photometric galaxies) required for further splitting. Each leaf node
is assigned a target vector specified as the mode of the target vectors
of the objects it contains. After the training process, each decision
tree can be used to predict the target vector for any other input
object by assigning it to a leaf node according to its feature values.
Finally, since each of the decision trees (i.e. each of the bootstrap
samples) gives a target vector prediction for an input object, the RFC
chooses the mode of the target vectors as the final prediction for the
object.

Several hyperparameters are used to control the flexibility of
the RFC: n estimators specifies the number of decision trees;
min samples split specifies the minimal number of objects
for further splitting an internal node; max features specifies
the number of features chosen for each bootstrap sample; and
class weight specifies the weight of training samples with
different target values.

We create 20 different mock samples for our tests (see below).
For each mock, we combine photometric galaxies from other five
mock samples to form a training sample and apply the trained RFC
to that mock (recipient sample). This process is repeated in turn for
20 different combinations of training and recipient samples, so that
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Table 1. The PFS survey selection criteria.

Redshift mlimit Sampling rate
(per cent)

0.7 < z < 1.0 y < 22.5 50
1.0 < z < 1.7 y < 22.5 70
1.0 < z < 1.7 y > 22.5 and J < 22.8 70

we have RFC predictions for all the 20 mock samples to test the
accuracy of the classification.

3 MO C K C ATA L O G U E S

3.1 Source selection

To quantify the performance of the group finder described above,
we have constructed mock catalogues which mimick existing and
future high-z galaxy redshift surveys. Detailed description of the
mock catalogues can be found in a parallel paper by Meng et al.
(2020). These catalogues are based on ELUCID (Wang et al.
2016), a large N-body cosmological simulation run with 30723

particles in a box of 500 Mpc h−1 on a side. Dark matter haloes
are populated with galaxies using an empirical model of galaxy
formation, constrained by the local stellar mass function of galaxies
in rich clusters and the stellar mass function of galaxies from z =
0 to 5 (see Lu et al. 2014 for details). The implementation of the
empirical model in the simulated ELUCID halo merger trees is
described in Chen et al. (2019). The minimal halo mass is about
1010M� h−1 in the simulation, but the merger trees are extended
to 109M� h−1 using a Monte Carlo method. The corresponding
minimal stellar mass is about 108M� h−1, much lower than the
PFS and zCOSMOS-bright targets. Light-cone mock catalogues
are constructed by Meng et al. (2020) to mimic the selection
criteria of galaxy redshift surveys at intermediate and high redshifts,
such as zCOSMOS-bright (Knobel et al. 2012a) and the upcoming
Prime Focus Spectrograph (PFS) galaxy survey on Subaru (Takada
et al. 2014).

The PFS survey will be carried out by the 8-m Subaru telescope,
with the spectroscopy to be obtained with 2394 fibres distributed
in a hexagonal field of view with an effective diameter of about
1.3 deg. As one of three major experiments of the PFS project,
the PFS galaxy evolution survey will obtain spectroscopy for about
256 000 galaxies over the redshift range from z = 0.7 to 1.7 and
a sky coverage of ∼14.5 deg2 (see Table 1 for the PFS galaxy
target selection criteria). The redshift sampling rate ranges from
50 per cent to 70 per cent in different redshift ranges, so that
about 30–50 per cent of the galaxies that meet the target selection
criteria will not have spectroscopic observation. This will affect
the completeness of the group catalogue to be constructed, as
we will see below. To reduce the impact of such incompleteness,
we will use photometric data from the Hyper Suprime-Cam SSP
survey, which is complete to y = 25.3 (Aihara et al. 2018). For
galaxies satisfying the selection criteria in Table 1 and having no
spectroscopic redshift measurements, we will use their photometric
redshifts, which have an accuracy of �z/(1 + z) ∼ 0.02. To quantify
cosmic variances, we generate 20 different mock samples from the
simulation. These mock samples are constructed with random tiling
and shifting of the simulation box so as to minimize duplicates
of structures among them. In Meng et al. (2020), it is shown that
the covariances in the number density and clustering of galaxies
between different mock samples are much smaller than the variances,

indicating that these mocks may be considered as independent
statistically.

3.2 Sampling effect

Due to the limited number of fibres on the focal plane, one has
to revisit the same pointing several times in order to achieve the
planned sampling rate. For the PFS project, the sampling effect can
be mimicked using the fibre assignment software, Exposure Targeting
Software (ETS),2 which is being developed by the PFS collaboration.
In our modeling, we tune the number of visits for each pointing to
ensure the average sampling rate listed in Table 1. Since most of the
survey volume is enclosed by the redshift range from 1.0 to 1.7,
we only consider galaxies in this redshift range when testing our
group finder. The corresponding sample produced by the ETS will
be denoted as ETS(f), and we only consider f = 70 per cent as an
example.

Although the mock catalogues described above are created for the
PFS galaxy evolution survey, we will use the parent sample to con-
struct a set of more general mock catalogues that may be applicable
to other deep redshift surveys, such as zCOSMOS (Lilly et al. 2009),
DEEP2 (Newman et al. 2013), and VVDS (Le Fèvre et al. 2005). As
mentioned earlier, limited spectroscopic sampling is a common prop-
erty of these deep redshift surveys. To quantify the effects of such in-
completeness on group identification, we construct mock catalogues
with a set of different sampling rates denoted as Rand(f) where f =
100 per cent, 85 per cent, 70 per cent, 55 per cent, respectively. The
catalogue of a given sampling rate is obtained by randomly selecting
the corresponding fraction of galaxies from the complete parent
sample.

In general, the final sampling effect is determined by the com-
bination of two types of sampling processes. First, the spatial
sampling process, e.g. fibre assignment, determines which galaxies
are targeted by the spectral observation among all the sources that
satisfy the selection criteria. This effect is spatially inhomogeneous
and may depend on the distribution of galaxies in the sky. The
other effect is called redshift success rate, i.e. the probability to
accurately determine the redshifts from the observed spectra. The
latter effect may depend on the luminosity, redshift, or colour of
the sources. In both cases, the incompleteness can be described by
an incompleteness map that specifies the probability for the target
objects to be included in the spectroscopic sample. As demonstrated
in Meng et al. (2020), our mock catalogues not only reproduce
the general population of galaxies in the redshift range probed in
terms of both abundance and clustering, when compared to the real
galaxy samples provided by the zCOSMOS survey, but also mimic
the selection effects that are generally applied to real surveys at high
redshift. Therefore, these mock catalogues can be used here for the
purpose of testing our group finding algorithms.

4 T E S T I N G TH E P E R F O R M A N C E O F T H E
G RO U P FI N D E R

4.1 Performance measures

A good group finder should correctly identify a high fraction of true
groups (TGs), and simultaneously include a low fraction of false
groups that are not TGs. We define two quantities to characterize
the performance of our group finder: completeness and purity.

2https://github.com/Subaru-PFS/ets fiber assigner.
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Completeness is defined as the fraction of TGs that are correctly
identified by the group finder, and purity is defined as the fraction of
all the identified groups (IGs) that are true. For convenience, we use
the following two terms in our description: Identified Group, defined
as a group identified by the group finder; True Group, defined as
a TG in the mock catalogue. In practice, it is not straightforward
to match IGs with the corresponding TGs. This is because in many
cases an IG is composed of a portion of the member galaxies of the
corresponding TG plus a number of interlopers, while the member
galaxies of a TG may be divided into different IGs. Here, we consider
three matching schemes that we will use to link IGs and TGs:

(i) Member Matching (MM). The MM scheme was called two-
way matching in Knobel et al. (2009). This matching is established if
more than φ × NI members in an IG belong to the same TG, and more
than φ × NT members in this TG is contained by the IG. Here, NT is
the richness of the TG modified by the sampling process, and NI is
the richness for the IG. For φ ≥ 0.5, this scheme leads to a perfectly
one-to-one matching, and we thus adopt φ = 0.5. However, this
matching scheme may too strict for poor systems, where incorrect
assignments of a few low-mass members may not affect much the
halo mass calibration, but can change NI significantly so as to affect
the match between IG and TG.

(ii) Central Matching (CM). The matching is established if the
central galaxy of a TG is correctly identified as the central of an
IG. This matching criterion is used by Lim et al. (2017). Because
of incomplete sampling, an IG can have its central lost while still
keeping many of its satellites in the spectroscopic sample. Such
systems cannot be matched in the CM scheme.

(iii) Member or Central Matching (MCM). In this case, we
combine the MM and CM schemes to overcome the problems of
the previous two matching schemes, and we refer this new scheme
as Member or Central matching. The matching is established if a TG
and an IG satisfy either the MM or the CM scheme. If a TG (or an
IG) is matched with two counterparts, the MM pair has the priority.
This matching scheme is one-to-one, as the previous two matching
schemes. We will adopt this matching scheme in what follows.

If an IG is matched with a TG, the IG is said to be true, and is
referred to as an IG-T. Similarly, if a TG is matched with an IG, the
TG is said to be identified, and is referred to as a TG-I.

With the matching scheme above, we define the completeness in
two ways. The first one, C1(N), introduced in Knobel et al. (2009), is
defined as the fraction of TG-Is among all TGs in the mock catalogue
(including the effect of incomplete sampling) as a function N, where
N is the richness of a galaxy group obtained from the incomplete
sample. The maximum value of C1 is 1.0. The second, C2(Mh), is
defined as the fraction of TG-Is of given mass, Mh, among all haloes
of such mass in the volume of the mock catalogue (without including
the incomplete sampling). The maximum value of C2 is limited by
the sampling rate, as we will see later. For the purity, P, we also use
the definition of Knobel et al. (2009), which is the fraction of IG-Ts
among all the IGs in the group catalogue as a function of richness.
Table 2 lists the acronyms and quantities defined above.

4.2 Performance on spectroscopic samples

As described in Section 2.1, the FoF group finder contains three free
parameters that need to be calibrated: lmax, b, and R. Motivated by
the quantity g̃1 defined in Knobel et al. (2012a), we calibrate these
parameters by minimizing the following quantities:

g =
√[

1 − C̄1(1 − 10)
]2 + [

1 − P̄ (1 − 10)
]2

, (9)

Table 2. Summary of symbols used in this paper.

Symbol Interpretation

TG True galaxy group in the mock

IG Identified galaxy group with the group finder

TG-I True galaxy group which is matched with
identified galaxy group under MCM matching scheme

IG-T Identified galaxy group which is matched with
true galaxy group under MCM matching scheme

C1(N) # of TG-Is
# of TGs in the sampled mock as function of richness N

C2(Mh) # of TG-Is
# of haloes in the survey volume as function of halo mass Mh

P(N) # of IG-Ts
# of IGs in the sampled mock as function of richness N

Rand(f) Mock with sampling rate as f
by proceeding the sampling process randomly

ETS(f) Mock with sampling rate as f
by proceeding the sampling process using ETS software

Table 3. Adopted FoF parameters calibrated with mock PFS
samples.

Parameters b l max(Mpc h−1) R

Values 0.09 0.25 19.13

where C̄1(1 − 10) and P̄ (1 − 10) represent the average values of C1

and P for systems with richness from N = 1 to 10 under the MCM
scheme. We find that the optimal parameters for different sampling
cases are quite similar. For simplicity we therefore use the same set
of parameters, as given in Table 3, for all the sampling cases. We note
that the difference in the results obtained from the optimal parameter
set and the set adopted is small.

With the three parameters determined, we apply the group finder
to 20 different mock catalogues. The performances on the group
level are shown in Fig. 1 as dashed lines. As one can see, for cases
of random sampling, both the C1 and P indices can reach 90 per cent
even for a sampling rate as low as 55 per cent. This indicates that the
FoF method can identify most of the galaxy systems and that the IGs
are mostly true. Meanwhile, the C2 index decreases systematically
with decreasing sampling rate. The decrease is larger for systems of
lower masses. The reason for this is simple: haloes of lower masses
typically contain smaller number of member galaxies, so that the
probability for them to lose all their members in the spectroscopic
sample is higher. For ETS(70 per cent), both C1 and P can still reach
90 per cent, but the C2 index is lower than that in Rand(70 per cent),
especially for rich/massive groups. This happens because the ETS
fibre assignment algorithm makes the sampling rate lower in higher
density regions where rich/massive systems are usually located.

4.3 Improvement by incorporating photometric data

The good performance of the FoF group finder in terms of C1 and
P indicates that the group finder is able to correctly identify most of
the galaxy systems that are contained in the spectroscopic sample.
Thus, the low C2 values for cases of low sampling rates must be due
to the missing of group systems in the spectroscopic sample, caused
by incomplete sampling of the survey. In order to find these lost
systems, we make use of information from the parent photometric
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Figure 1. Performance comparison under MCM scheme with and without photometric data. Solid lines are results with photometric data, while dashed lines
use only spectroscopic data. Error bars are the standard deviations among 20 different mocks.

sample. As mentioned in Section 2, we apply the RFC to identify
two kinds of lost central galaxies from the photometric sample: the
group central and the isolated central.

To determine if a photometric galaxy is a group central, or an
isolated central, or neither of the two, we characterize the relationship
between the photometric galaxy and the spectroscopic groups around
it. As described in Section 2.2, we do this by determining both the
hyperparameters for RFC and ng, the number of spectroscopic groups
around the galaxy in question.

To find the optimal hyperparameters of the RFC, we employ
the n-fold cross-validation method. First, we randomly divide the
photometric sample into n sub-samples with an equal number of
galaxies. We then train the model on n − 1 sub-samples and make a
prediction for the remaining one to test the performance. This process
is repeated for each of the n sub-samples. Here, we choose n = 5.
We use the following set of quantities to describe the goodness of
the prediction:

(i) Ciso: completeness of isolated centrals, defined as the fraction
of isolated centrals that are correctly identified among all the isolated
centrals in the photometric sample;

(ii) Piso: purity of isolated centrals, defined as the fraction of
isolated centrals which are correctly identified among all the found
isolated centrals;

(iii) Cgrp: completeness of group centrals, defined as the fraction
of group centrals correctly identified among all group centrals, where
a group central is the central of a group with at least one galaxy in
the spectroscopic sample;

(iv) Pgrp: purity of group centrals, defined as the fraction of group
centrals correctly identified among all the IG centrals.

The hyperparameters are chosen to achieve a balance among the
above four quantities. Specifically, we optimize the values of the
hyperparameters by maximizing the quantity, g, defined as

g = Ciso · Piso · Cgrp · Pgrp. (10)

We find that the g index is not sensitive to the exact values of the
hyperparameters, so we will use the set of hyperparameters given in
Table 4 for different cases of redshift sampling. We also find that ng =
3 is sufficient for our purpose, independent of the redshift sampling.

Using the updated group catalogue that incorporates photometric
data, we plot the performance of the MCM scheme in Fig. 1. It can
be seen that the main improvement is in the C2 index at the low-mass
end. This happens because most of the isolated centrals that are lost
in the spectroscopic sample are now found in the photometric data.

Table 4. Adopted hyperparameters of the RFC for pho-
tometric galaxy classification.

Hyperparameter Value

n estimators 30
min samples split 10
max features 6
class weight balanced

In addition, the missed massive groups in the ETS(70 per cent) case
can also be identified from the photometric data. There is, however,
a noticeable decline in the purity at Richnessf = 1, since not all
the isolated centrals identified from the photometric data are true
centrals.

4.4 Assigning halo masses to groups

Galaxies are formed and evolved in dark matter haloes, and so the
total stellar mass and number of member galaxies in a host halo are
expected to be related to the dark matter mass of the host halo. Thus,
it is possible to infer the halo mass of a group from the galaxies it
contains. In this subsection, we apply the Random Forest Regressor
(RFR), which is similar to the RFC, to infer the host halo mass for
each of the identified galaxy groups (see Man et al. 2019 for a recent
application of the RFR in this regard). The RFR is different from
RFC in two ways. First, instead of the Gini impurity, RFR partitions
the feature space to minimize the mean squared error (MSE), defined
as

MSE =
|Dbts,L|∑

j=1

(
yj − ȳL

) +
|Dbts,R|∑

j=1

(
yj − ȳR

)
, (11)

where |Dbts,L| and |Dbts,R| are the sizes of the two subsamples at a
node, yj is the jth target value, and ȳL and ȳR are the means of the
target values in the two subsamples. Secondly, the target value for
each leaf is chosen to be the mean target value of the training sample
in each leaf, rather than the mode. We use the following features
from both the spectroscopic and photometric data to infer the halo
mass:

(i) M∗, tot: the total stellar mass;
(ii) M∗, c: the stellar mass of the central galaxy;
(iii) Ntot: the group richness, which is the total number of member

galaxies (both spectroscopic and photometric);
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Table 5. Adopted hyperparameters for RFR in halo mass
calibration.

Hyperparameter Value

n estimators 30
min samples split 30
max features 3

(iv) σ G: velocity dispersion estimated using the gapper algorithm
(Beers, Flynn & Gebhardt 1990),

σG =
√
π

N (N − 1)

N−1∑
i=1

i(N − i)(vi+1 − vi), (12)

where vi = czi/(1 + zgrp), with v1 ≤ v2 ≤ ... ≤ vN, are the velocities
of spectroscopic members, zgrp is the mean of zi, and N is the number
of spectroscopic members. We set σ G = −1 for systems with N < 2.

(v) Group tag: which is equal to 0 for a pure spectroscopic group,
1 for a group with photometric central and spectroscopic members,
and 2 for an isolated photometric central;

(vi) Redshift: group redshift, defined to be the photometric redshift
of the central for groups that contain only a single photometric
central, and to be the mean redshift of spectroscopic members for
other groups;

(vii) log[M∗,enc(< 5 Mpc h−1) − M∗,tot]: where M∗,enc(<
5 Mpc h−1) is the total stellar mass of galaxies whose projected
distance to the group centre (defined by the sky position of the
central and the redshift of the group) is smaller than 5 Mpc h−1

and the redshift difference (using spectral z and photo-z for
spectroscopic and photometric galaxies, respectively) is smaller
than 3σz,phot(1 + z);

(viii) log[M∗,enc(< 10 Mpc h−1) − M∗,tot]: similar to quantity de-
fined above, except the projected distance to the group is smaller
than 10 Mpc h−1.

As shown in the appendix, the information about halo mass is
dominated by the first four features.

The hyperparameters are tuned to minimize the mean squared
error of the halo mass. Here, we employ the n-fold cross-validation
method as in Section 4.3. The optimal values of the hyperparameters
are almost the same for different cases. We thus use the same set of
values as given in Table 5 for cases of different redshift samplings.

We use all the 20 mock catalogues to check the performance of
the halo mass prediction. For each mock catalogue, we use five other
mock catalogues to train the RFR and to predict the results for the
mock in question. The performance of the halo mass prediction is
quantified by the discrepancy between the true halo mass, Mh,t, and
the predicted (fitted) halo mass, Mh,fit.

In Fig. 2, we plot the relation between Mh,t and Mh,fit (upper panels)
and the standard deviation of log(Mh,fit/Mh,t) (lower panels) for cases
of different redshift sampling. For the case of 100 per cent redshift
sampling, the standard deviation ranges from 0.1 to 0.2 dex over the
halo mass range from ∼ 1011 to ∼ 1014M� h−1. This is similar to the
result in Lim et al. (2017) for the SDSS galaxy sample using the halo-
based group finder. For the cases of random sampling, the standard
deviation at given halo mass increases with decreasing sampling rate,
reaching a range between 0.15 to 0.22 dex for the sampling rate of
55 per cent. In the case of ETS (70 per cent), the overall performance
is slightly worse than that of Rand (70 per cent), particularly at the
massive end (>1013 M� h−1). This can be understood as follows: due
to fibre collisions the effective sampling rate is a decreasing function
of galaxy target number density, leading to relatively low sampling

rates for massive systems that are located in high-density regions.
In ETS (70 per cent), the effective sampling rate is only about 30–
40 per cent at halo masses above ∼1013M� h−1. As a result, many
of the member galaxies in a massive group only have photometric
redshifts and cannot be assigned to the group reliably. In addition,
for cases with low sampling rates and for ETS (70 per cent), there are
outliers at the low-mass end, caused by groups that can be identified
but their halo masses are poorly predicted owing to the missing of
member galaxies in the spectroscopic sample.

The distribution of the predicted halo mass, Mh,fit, is presented in
Fig. 3 for three successive redshift intervals over 1 < z < 1.7, in
comparison with the halo mass functions obtained directly from the
simulation used to construct the mock catalogues. It is obvious that
the halo mass distribution is underestimated to varying degree at the
massive end (>1013 M� h−1), even for Rand (100 per cent). This
is expected, because our halo mass estimate is optimized for each
selected group to have an estimated mass (Mh,fit) that best match the
true mass (Mh,t), and because there is scatter in the true halo mass for
a given estimated mass (see Fig. 2). To take into account the effects
of such scatter, we introduce a random variable, Mh,samp, defined as

Mh,samp = Mh,fit + Norm[0, σ (Mh,fit)], (13)

where Norm[0, σ (Mh,fit)] is a random number generated from
a normal distribution with zero mean and a standard deviation,
σ (Mh,fit), as inferred from Fig. 2. To estimate a statistical quantity,
s, using a set of halo masses, {Mh, fit}, we first generate a set of halo
masses, denoted by {Mh, samp}i, using equation (13), and repeat the
process Nsamp times. Our estimate for s is

ssamp = 1

Nsamp

Nsamp∑
i=1

s({Mh,samp}i). (14)

The average distribution of Mh, samp, obtained using Nsamp = 30, is
calculated in this way and plotted in Fig. 3 as the corresponding solid
line for each of the cases. As one can see, the distribution of Mh, samp

matches well the true halo mass function in the simulation for all
cases, demonstrating again that the group sample selected by our
group finder is quite complete and unbiased in the mass distribution.
Note that due to the magnitude limit in our mock galaxy sample,
the halo sample selected is incomplete at the low-mass end. A halo
mass limit, below which the incompleteness becomes significant is
indicated by the vertical dashed line in Fig. 3. This limit is defined as
the mass below which the amplitude of the estimated mass function
deviates from the halo mass function given by the original simulation
by more than 0.05 dex.

4.5 Group memberships

The tests presented above are at the level of groups, based on
group completeness and purity, and on halo mass assignments. In
this subsection, we will test our group finder at the level of group
members. We first consider the conditional stellar mass function
(CSMF) of member galaxies in haloes of a given mass, which is
defined as the average number of member galaxies in these groups
as a function of the stellar mass of galaxies.

In order to account for redshift sampling effects, we need to include
photometric galaxies around a group in a probabilistic way when
calculating the CSMF. Here, we employ a method similar to that
proposed by Knobel et al. (2009), which consists of the following
steps:

(i) Construct the map of the fraction of true members: Using
the mock catalogue, we calculate the fraction of true members
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Figure 2. Upper panels: The scatter plot between the predicted halo mass and the true halo mass. Lower panel: the standard deviation in the true halo mass for
a given predicted halo mass, with error bar showing the variance among 20 mocks.

Figure 3. Halo mass functions in three redshift bins. The circle in upper panels are the halo mass functions of groups identified from samples of different
redshift samplings, with error bars representing the variance among 20 mocks. The solid lines are means of the distribution for Mh,samp. The shaded areas are
the mass functions of simulated haloes used to construct the mock catalogues, with the width indicating the variance among 20 mocks. The vertical dashed lines
indicate masses below which the halo samples become incomplete. The lower panel shows the ratio of halo mass distribution obtained from the IGs to that of
the simulated haloes.

among all the photometric galaxies, excluding group centrals and
isolated centrals, around spectroscopic groups (those identified from
spectroscopic galaxies with spectroscopic or photometric centrals)
with given halo mass, in bins of the redshift difference, �z/σ z, phot/(1
+ z), and the projected separation, �rp/Rvir. As an example, Fig. 4
shows the map of the fraction for the case of Rand (55 per cent).

(ii) Assign membership probability: After running the group find-
ing pipeline, each photometric galaxy, i, that has not been identified
as an isolated central or a group central, will be assigned to a
spectroscopic group, J, in its neighbourhood with a probability, pi → J,
inferred from the fraction map constructed in previous step, based on
the redshift difference and projected distance to the group. We note
that each photometric galaxy, i, can be assigned to several groups
around in a probabilistic manner.

(iii) Regulate the probability: To ensure the summation of the
probabilities for a photometric galaxy to belong to all of its neigh-
bouring spectroscopic groups and to be in the field is equal to one,

we regulate the probability as (Knobel et al. 2012a)

p̃i→J = pi→J × 1 − pfield∑
J pi→J

, with pfield =
∏
J

(1 − pi→J ). (15)

Finally, we estimate the CSMF as

�(M∗|Mh,l, Mh,u) =
∑

i

∑
J p̃i→J

NG�M∗
, (16)

where the summation on i runs over all the galaxies whose stellar
masses satisfy M∗ − �M∗/2 ≤ M∗, i < M∗ + �M∗/2, and summation
on J runs over all NG spectroscopic groups whose halo masses satisfy
Mh, l ≤ M∗, j < Mh,u. For each spectroscopic galaxy or group central,
i, we set p̃i→J = 1 if it belongs to group J, and p̃i→J = 0 otherwise.

The CSMFs estimated in this way are plotted in Fig. 5 in five halo
mass bins (blue circles) with error bars representing the variance
between the 20 mock catalogues, in comparison with the CSMFs
obtained directly from the member galaxies of dark haloes in the
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Figure 4. Fraction of true members as a function of �rp and �z to the central galaxy. The figure is for Rand (55 per cent).

simulation (grey shaded regions). Here, we only show results for
three sampling cases since the results of the other two cases fall in
between Rand (55 per cent) and Rand (100 per cent). As one can
see, the CSMFs obtained from the identified galaxy groups match
well the input mock catalogue. However, we overestimate slightly
the amplitudes of the CSMFs at the low-mass end where the mass
functions are dominated by satellite galaxies. This happens because
we have adopted the same set of FoF parameters calibrated with ETS
(70 per cent), which is slightly different from the optimal set for other
cases of redshift sampling. The amplitudes of the CSMFs obtained
from galaxy groups are also reduced if Mh, samp is used instead of
Mh, fit.

Next, we consider the host halo mass distribution for spectroscopic
galaxies in four stellar mass bins. Different from the halo mass
comparison for groups, host halo mass distribution for galaxies
are affected by membership assignment error, and thus provides
a better quantification of halo mass uncertainties when halo masses
are used as an environment indicator for individual galaxies. The
differential and accumulated distributions of log(Mh,fit/Mh,t) for all
the spectroscopic galaxies in Mh,fit > 1012M� h−1 are presented in
Fig. 6 as the red histograms and red solid lines, respectively. We note
that there is a small tail in the distribution at high log(Mh,fit/Mh,t)
for low stellar mass bins. This is produced by galaxies which are
hosted by low-mass haloes around massive groups but identified
as satellites of the massive groups (interlopers) by the group
finder. To reduce the effects of these interlopers, one can trim the
galaxy sample by requiring the galaxies to satisfy the following
criteria:

�rp < αrRvir, (17)

�v < αvVvir, (18)

where �rp is the projected distance of a galaxy to the group centre,
and �v is the line-of-sight velocity of the galaxy relative to the group
centre. Here, the group centre is defined as the projected position
of central galaxy and mean redshift of spectroscopic members.
Rvir and Vvir are, respectively, the virial radius and virial velocity
corresponding to the halo mass of the group Mh, fit. Blue histograms
and blue solid lines in Fig. 6 show the results for the case where αr =
1 and αv = 2. In each panel, f indicates the fraction of galaxies
in the parent (untrimmed) sample that are kept after trimming.
As expected, the tail of the log(Mh,fit/Mh,t) distribution is largely
reduced, especially at low stellar masses. Indeed, using αr = 1
and αv = 1 will get rid of the tail almost completely. However,
the value of f is quite low for low-mass galaxies and is lower
when a more restrictive limit is applied, indicating that many of
the interlopers are located in the outer parts of haloes. The fact that
a substantial fraction of low-mass galaxies are located beyond Rvir

and have relative velocities larger than Vvir is because the groups
identified by the group finder are usually non-spherical, particularly
in high-density regions. Note that the log(Mh,fit/Mh,t) distributions
shown in Fig. 6 are weighted by the number of galaxies in haloes, so
that the extended tails in the distributions are dominated by a small
number of systems in high-density regions where the contamination
by interlopers is severe. In any case, for investigations where purity
of member galaxies is crucial, one should adopt restrictive limits on
�rp and �v to reduce the contamination by interlopers.

5 TH E A P P L I C AT I O N TO T H E
ZCOSMOS-BRI GHT SAMPLE

The zCOSMOS-bright is a spectroscopic galaxy survey obtained
with the ESO VLT (Lilly et al. 2007, 2009). It contains about 20 000
galaxies with 15.0 ≤ IAB ≤ 22.5 in an area of about 1.7 deg2 in the
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98 K. Wang et al.

Figure 5. CSMFs in five halo mass bins obtained from samples of different redshift sampling rates. Blue circles are obtained from IGs with error bars
representing variation in 20 mocks (see the text). And grey regions are obtained from model galaxies in simulated haloes, with width represents the variance
among 20 mocks. We also plot the ratio of the measurements to the mean value of the CSMF of model galaxies in simulated haloes in the small panels.

COSMOS field and in the redshift range 0.1 � z � 1.2. The redshift
completeness, defined as the product of the redshift sampling rate
and the redshift success rate (Knobel et al. 2012a), is ∼48 per cent
in the full zCOSMOS-bright area and ∼56 per cent in the central
region. As discussed in de la Torre et al. (2011), the sampling effects
for zCOSMOS, can be modelled as a function of the right ascension
(RA) and redshift. As an application of our group finding pipeline,
we will identify galaxy groups in the central region of the COSMOS
area using both spectroscopic and photometric galaxies at 0.1 ≤ z ≤
1.0.

5.1 Tests with zCOSMOS-bright mock samples

To quantify the performance of our group finding pipeline on the
zCOSMOS-bright like surveys, we constructed 20 different mock
catalogues to mimic the selection effects and incompleteness for the
central region of the real zCOSMOS-bright survey in the redshift
range of 0.1 ≤ z ≤ 1.0 (Meng et al. 2020).

The group level performance of our group finder for the
zCOSMOS-bright mock samples, which uses the optimal parameters
listed in Table 6, is shown in Fig. 7. The dashed lines are based on
spectroscopic-only galaxies, while solid lines use both spectroscopic
and photometric galaxies. Similar to the results presented above,
our group finder performs well in terms of both C1 and P (both
�90 per cent). A large deficit in the C2 index is observed when

only spectroscopic galaxies are used, especially for low-mass haloes,
but the inclusion of photometric galaxies improves the performance
dramatically.

We also estimate the halo masses using the RFR as described
above, and the performance is shown in Fig. 8. Over the entire mass
range from ∼ 1011M�/h to ∼ 1014M�/h, the standard deviation
of the estimated halo mass is about 0.2 dex. The estimated halo
mass functions are shown in Fig. 9 as data points with error bars, in
comparison with those obtained directly from 20 mock samples (grey
regions). The black solid lines are the average distribution function
of Mh,samp among 30 random samples obtained using equation (13).
For comparison, the mass limit for completeness is indicated as
vertical dashed line in each panel. As one can see, the input halo
mass functions can be well recovered; the large scatter at the massive
end among different mock samples reflects the level of the cosmic
variance expected for a sample like zCOSMOS-bright.

5.2 The zCOSMOS-bright group catalogue

We have applied our group finder to zCOSMOS-bright galaxies at
0.1 ≤ z ≤ 1.0 in the central region that covers ∼1 deg2. We also
excluded unreliable redshift measurements tagged as 0, 1.1, 2.1,
and 9.1 (Lilly et al. 2009). The final spectroscopic sample contains
11 489 galaxies. The photometric data used is adopted from the
parent photometric sample, constructed from Laigle et al. (2016) by
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Figure 6. Blue histograms: Distribution of log(Mh,fit/Mh,t) for galaxies with Mh,fit > 1012M� h−1. Red histograms: Distribution of log(Mh,fit/Mh,t) for galaxies
with log(Mh,fith/M�) > 12, and with �rp/Rvir < 1.0 and �v/Vvir < 2.0 (see the text). The solid lines are the corresponding accumulated distribution. The f
indicates the number ratio of galaxies in the blue histogram with that in the red.

Table 6. Optimal parameters of FoF group finder in the central
region for zCOSMOS-bright survey.

Parameters b l max(Mpc h−1) R

Values 0.08 0.30 17.00

Meng et al. (2020). The spectroscopic groups are identified using the
FoF group finder with optimal parameters calibrated by the mock
samples (see Table 6). Starting from the spectroscopic groups, we
identify both isolated centrals and group centrals that are missed in
the spectroscopic sample based on the parent photometric sample,
using the RFC method described in Section 2.2. Finally, we calibrate
the halo masses for the final group catalogue using the RFR described
in Section 4.4.

Fig. 10 shows the spatial distribution of the IGs in the (Y, Z)
plane (the two middle panels), where Z is in the radial (redshift)
direction and Y is one of the two directions perpendicular to Z. As
illustrations, the four square panels in the upper and lower rows show
the distribution in the X–Y plane for groups in four redshift slices with
�z= 0.01(1 + z), as indicated by the four red rectangles. Only groups
with Mh ≥ 1012M� h−1 are plotted, and each of them is shown as a
blue circle with radius proportional to its halo radius. For comparison,

we also show spectroscopic galaxies as black points, and photometric
galaxies as red points. We can see clearly, as expected, that galaxy
groups trace the large-scale structure in the galaxy distribution, and
that massive groups reside preferentially in high-density regions.

We plot the redshift (z) distribution of our IGs in Fig. 11, in
comparison with that obtained by Knobel et al. (2012a). Despite
of the different methods used to identify galaxy groups, the two
distributions match well with each other. Fig. 11 also shows the
richness and halo mass distributions of our group catalogue, again in
comparison with those obtained from the catalogue of Knobel et al.
(2012a). Both group catalogues give a similar distribution in the
richness of spectroscopic members. This is expected, as we are using
a similar method to identify groups in the spectroscopic sample.
However, our catalogue contains many more low-mass systems,
because we include isolated systems and our halo mass estimator
provides reliable mass estimates even for low-mass haloes. There
is also discrepancy between the two catalogues at the massive end,
where our group catalogue contains smaller number of groups. We
believe that this owes to the galaxy number density re-calibration
used by Knobel et al. (2012a), as described below. As a demonstra-
tion, the circles with error bars in Fig. 11 show the result obtained
by applying our group finder to the 20 zCOSMOS-bright mock
catalogues, in comparison to that obtained directly from the mock
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Figure 7. Performance of our group finder on the zCOSMOS-bright mock catalogue in terms of C1, C2, and P (see Table 2 for definitions). The dashed lines
are for the spectroscopic only sample and the solid lines are the performance including photometric data. Error bars show the standard deviations among 20
different mock samples.

Figure 8. Performance of the group finder on halo mass for zCOSMOS-
bright mock catalogues, shown as the relationship between the true halo
mass, Mh, t, and the predicted halo mass, Mh, fit. The standard deviations of
true halo mass for a given predicted mass are shown in the lower panel as
circles, with error bars representing the variances among 20 mock samples.

catalogues, shown by the grey regions. The fact that these two results
match well with each other indicates that our group finder is reliable.
The discrepancy between our zCOSMOS-bright results and the mock
results then suggests that the zCOSMOS-bright is not a fair sample,
particularly for massive groups.

Knobel et al. (2012a) published a galaxy group catalogue based on
the spectroscopic galaxies from zCOSMOS 20k, using the FoF group
finding algorithm in a ‘multirun scheme’, and using photometric
galaxies to make improvements on group membership and group

center. They calibrated their FoF parameters and halo mass estimator
using mock catalogues that are scaled so that the average density
distribution of galaxies matches that in the real sample. Thus, their
results are, in a sense, corrected for cosmic variance. This may
explain why their group mass function matches the expected mass
function better at the massive end (see the right-hand panel of
Fig. 11). In this paper, we decide to provide a group catalogue that is
based on the data itself, while leaving the correction for the cosmic
variance to specific applications of the catalogue. In addition, our
group finding algorithm is different from that of Knobel et al. (2012a)
in the following aspects. First, we use the state of the art random
forest algorithm to incorporate photometric galaxies and to improve
the completeness and purity of our group catalogue. Secondly, we
use a halo mass estimator, calibrated with realistic mock catalogues
and the random forest method, so that we are able to provide accurate
halo mass estimates for groups over a large mass range.

5.3 Catalogue contents

The group catalogue constructed and the galaxy sample used for
the construction are available through https://github.com/wkcosmo
logy/zCOSMOS-bright group catalogue. The group catalogue lists
the properties of individual groups, while the galaxy sample provides
information about individual galaxies as well as their links to groups.
In what follows, we explain the contents of these catalogues in more
detail.

5.4 The group catalogue

The following items are provided for individual groups:

(1) groupID: a unique ID of each group in the group catalogue;
(2) cenID: galaxy ID of the central galaxy of a group;
(3) cenID2015: central galaxy ID in Laigle et al. (2016);
(4) RA avg: RA (J2000) of the group centre in degrees, defined

as the average RA of member galaxies weighted by the stellar mass;
(5) Dec avg: declination (J2000) of the group centre in degrees,

defined as the average Dec. of member galaxies weighted by the
stellar mass;

(6) z avg: redshift of the group, defined as the average redshift of
member galaxies with spectroscopic redshift weighted by the stellar
mass;

(7) HaloMass: 10-based logarithm of the halo mass of a group
in units of M�;
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Figure 9. Halo mass functions for IGs in zCOSMOS-bright mock samples. The Grey shaded regions are the ranges covered by the halo mass distribution by
the 20 mock samples. The data points with error bars are for IGs with estimated halo masses. The solid lines are for Mh,samp. The vertical dashed lines are the
mass limits reached by the catalogue. The lower panels show the same functions but normalized by the mean of the 20 mock samples.

(8) GroupTag: 0 for groups with only spectroscopic members, 1
for groups with photometric central and spectroscopic member, and
2 for groups with only one photometric member;

(9) Richness: number of member galaxies in a group.

5.5 The galaxy catalogue

The following items are provided for individual galaxies:

(1) ID: unique ID of galaxies, which can be used to match galaxies
across the galaxy and group catalogues;

(2) surveyID: ID of galaxies from the original survey data
release. This can be used to match galaxies across our catalogues
and the original survey data release;

(3) ID2015: galaxy id in Laigle et al. (2016);
(4) groupID: ID of the group of which a galaxy is a member;
(5) RA: RA (J2000) in degrees;
(6) Dec: declination (J2000) in degrees;
(7) z: redshift;
(8) StellarMass: 10-based logarithm of the galaxy in units of

M�;
(9) tag: 1 for central, 0 for satellite;
(10) CC: redshift confidence class, −1 for photometric redshift,

others see Lilly et al. (2007).

6 SU M M A RY

In this paper, we have developed a group finder that is suitable
for identifying galaxy groups from incomplete redshift samples
combined with photometric data. A machine learning method is
adopted to assign halo masses to IGs. To test the impact of redshift
sampling effects, we have constructed realistic mock samples with

different redshift sampling schemes and applied our group finder to
them. Our main results are summarized as follows:

(i) We find that our modified version of the FoF group finder based
on a local, incompleteness-corrected linking-length can identify most
of the galaxy systems correctly from an incomplete spectroscopic
sample (Fig. 1), even with a sampling rate that is as low as 55 per cent
and is spatially in-homogeneous.

(ii) We find that an incomplete redshift sampling can cause the loss
of galaxy groups from a spectroscopic sample. For random sampling
cases, many of the low-mass groups are lost although the massive
ones can still be identified due to their high richness. However, with
realistic fibre assignments, such as the one to be adopted by the
up-coming PFS galaxy survey, massive galaxy systems can also be
missed because of the lower sampling rates in higher density regions
caused by fibre collisions (Fig. 1).

(iii) With the use of the state-of-the-art random forest algorithm,
we find that it is possible to retrieve most of the lost groups
using a combination of spectroscopic and photometric data. The
final completeness and purity that can be achieved can reach to
�85 per cent (Fig. 1) even for a sampling rate as low as 55 per cent
and for an in-homogeneous sampling.

(iv) We calibrate the host halo mass for identified galaxy groups
with the RFR algorithm. We find that the estimated halo masses
are un-biased relative to the true masses, with an uncertainty of
about 0.15–0.25 dex over a wide range of halo masses (Fig. 2). The
estimated halo mass distribution matches the input mass function
well after the statistical bias caused by the mass uncertainty is taken
into account.

(v) We find that the CSMFs of galaxies in haloes of different
masses can be well recovered from the IGs with estimated halo
masses (Fig. 5).
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Figure 10. The projected distributions of galaxies and IGs in four redshift slices. The black dots are spectroscopic galaxies and the red dots are photometric
galaxies. The blue circles represent the galaxy groups with Mh > 1012M� h−1, with radius proportional to the halo radius.
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Figure 11. Comparison between our group catalogue with that of Knobel et al. (2012a). Left-hand panel: redshift distribution; middle panel: richness distribution;
right-hand panel: halo mass distribution. Our results are shown by red histograms, while those of Knobel et al. (2012a) by blue histograms. The red solid curve in
the right-hand panel is the distribution of Mh,samp obtained from our catalogue. Circles with error bars are the mean and variance obtained by applying our group
finder to the 20 zCOSMOS-bright mock catalogues, while the grey regions cover the ranges obtained directly from the 20 mock catalogues. The vertical dashed
line in the right-hand panel indicates the completeness limit. Note that the halo masses are available only for groups that contain at least two spectroscopic
members in the catalogue of Knobel et al. (2012a).

(vi) We find that the groups identified by our group finder provide
an accurate link between individual galaxies and the masses of their
host haloes (Fig. 6). Although there are some interlopers with high
log(Mh,fit/Mh,t), we have shown that these outliers can be eliminated
by cutting out members in the outer parts of groups.

(vii) We have applied our group finding algorithm to the
zCOSMOS-bright spectroscopic redshift survey and constructed a
new catalogue of galaxy groups in 0.1 ≤ z ≤ 1.0. Our tests using
mock catalogues show that most of the galaxy groups are identified
correctly (Fig. 7) with reliable halo masses (Fig. 8). Compared with
the previous group catalogue selected from the zCOSMOS-bright
survey, our catalogue is more complete, extending the halo mass
range to much lower masses. Our halo mass estimates are reliable
over the entire mass range covered by our catalogue, as shown by
our tests based on realistic mock catalogues.

Identifying galaxy groups from redshift surveys of galaxies plays
an important role in connecting galaxies with the underlying dark
matter distribution. Our results demonstrate clearly that such in-
vestigations can also be carried out for current and future high-z
spectroscopic surveys. This opens a new avenue to connect galaxies
to their dark matter haloes at high z, thereby to study galaxy evolution
in different environments. Furthermore, the success of our method to
construct highly complete group samples covering large halo mass
ranges demonstrates that galaxy groups properly identified at high
z can be used to represent the dark halo population in the early
Universe. One can thus use them to reconstruct the cosmic density
field and to study the large-scale structure in the early Universe, as
was done in low z (Wang et al. 2009). One can also use the galaxy
groups as tracers to investigate the properties of dark matter haloes at
high z through, e.g. their gravitational lensing effects and Sunyaev–
Zel’dovich effects.
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A P P E N D I X A : TH E I M P O RTA N C E O F
DI FFERENT FEATURES U SED FOR HALO
MASS ESTIMATE

We employ the RFR to predict the halo mass for galaxy groups
(Section 4.4), using several group properties as input features. RFR
also provides a way to quantify the contribution of each individual
feature to the prediction in terms of feature importance. Recall that
the random forest is assembled by many decision trees, each of which
is constructed by iteratively bi-partitioning the sample into left and
right children with one feature, and each bi-partition is to minimize
a certain goal function (like Gini impurity for RFC, and the mean
squared error for RFR). Heuristically, if a feature is always chosen to
bi-partition the tree and the bi-partitions can dramatically decrease
the goal function, this feature must be important in predicting the
target value. The importance of feature-i can thus be calculated for a
decision tree though

Impi =
∑

j :nodes splitted according to feature−i �MSEj∑
j :all nodes �MSEj

, (A1)

where the summation j is for the internal nodes. The quantity �MSEj

is the MSE decrement for each jth internal node, defined as

�MSEj =
|Dj |∑

l

(yl − ȳj )2 (A2)

−
|Dj,L|∑

l

(yl − ȳj ,L)2 −
|Dj,R|∑

l

(yl − ȳj ,R)2, (A3)

where ȳj is the target mean of data points in node j; ȳj ,L, and ȳj ,R are
the target means for the left and right children, respectively; |Dj |,
|Dj,L|, and |Dj,R| are the numbers of data points in node j and in its
left and right children, respectively. Fig. A1 shows the importance
of different features adopted in the main text to determine the halo
mass, with the total importance normalized to unity. As one can
see, the total stellar mass, central stellar mass, richness and velocity
dispersion are the four features dominating the contribution, while
other features contribute little.
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Figure A1. Feature importance (dashed lines) and the corresponding cumulative distribution (solid lines) for different sampling cases.
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