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ABSTRACT
The growth rate and expansion history of the Universe can be measured from large galaxy redshift surveys using the Alcock–
Paczynski effect. We validate the Redshift Space Distortion models used in the final analysis of the Sloan Digital Sky Survey
(SDSS) extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 quasar clustering sample, in configuration
and Fourier space, using a series of halo occupation distribution mock catalogues generated using the OuterRim N-body
simulation. We test three models on a series of non-blind mocks, in the OuterRim cosmology, and blind mocks, which have
been rescaled to new cosmologies, and investigate the effects of redshift smearing and catastrophic redshifts. We find that
for the non-blind mocks, the models are able to recover fσ 8 to within 3 per cent and α� and α⊥ to within 1 per cent. The
scatter in the measurements is larger for the blind mocks, due to the assumption of an incorrect fiducial cosmology. From this
mock challenge, we find that all three models perform well, with similar systematic errors on fσ 8, α�, and α⊥ at the level of
σf σ8 = 0.013, σα‖ = 0.012, and σα⊥ = 0.008. The systematic error on the combined consensus is σf σ8 = 0.011, σα‖ = 0.008,
and σα⊥ = 0.005, which is used in the final DR16 analysis. For baryon acoustic oscillation fits in configuration and Fourier
space, we take conservative systematic errors of σα‖ = 0.010 and σα⊥ = 0.007.

Key words: methods: data analysis – catalogues – large-scale structure of Universe.

1 IN T RO D U C T I O N

The �CDM model of cosmology has been extremely successful in
describing the expansion history and formation of structure in our

� E-mail: alexander.smith@cea.fr

Universe. Measurements covering a wide range of redshifts, from
the temperature fluctuations in the cosmic microwave background
at z ∼ 1100 (Planck Collaboration VI 2020) to galaxy clustering
measurements at late times (e.g. Eisenstein et al. 2005; Alam et al.
2017; Abbott et al. 2018), are all remarkably consistent with a flat,
�CDM Universe. In the standard �CDM model, gravity follows
general relativity, dark matter is composed of a collisionless, cold
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dark matter (CDM), and dark energy is described by the cosmological
constant, �. However, this dark energy, which makes up the largest
component of the energy density (≈70 per cent) of the Universe
(Planck Collaboration VI 2020) and is responsible for driving the
present-day accelerated expansion, is poorly understood. Constraints
can be placed on theories of dark energy and modifications to general
relativity by measuring the expansion history and growth rate of
structures from surveys of galaxies in large cosmological volumes.
Reaching the high-precision measurements that are needed to tighten
current constraints requires surveys covering even larger volumes.

One of the primary measurements that is taken to constrain the
nature of dark energy is of the baryon acoustic oscillation (BAO;
e.g. Cole et al. 2005; Eisenstein et al. 2005). In the early Universe,
acoustic waves in the hot plasma propagate outwards from overdense
regions until they are frozen out at recombination, when the baryons
and photons decouple. These small enhancements in the density
field can be seen in the distribution of galaxies at later times. A BAO
feature can be seen in measurements of the two-point statistics of
galaxies, at a characteristic comoving length scale of ∼100 h−1Mpc,
which can be used as a standard ruler for measuring distances
throughout cosmic time.

Redshift space distortions (RSD) can be used to measure the
growth of structure. Since we measure the redshift for each galaxy,
the apparent position along the line of sight depends on its peculiar
velocity. The infall of galaxies towards overdense regions, and the
motion of galaxies within virialized haloes, leads to anisotropic
distortions in the spatial distribution of galaxies in redshift space
(Kaiser 1987). RSD measurements can be used to measure the linear
growth rate, f, which in the �CDM model is related to the matter
content of the Universe through f � �γ

m. In general relativity, γ

� 0.55, and, therefore, measurements of the growth rate allow
constraints to be placed on theories of modified gravity (e.g. Guzzo
et al. 2008).

The extended Baryon Oscillation Spectroscopic Survey (eBOSS;
Dawson et al. 2016) is a survey of luminous red galaxies (LRGs),
emission line galaxies (ELGs), and quasars, which is an extension of
the previous BOSS survey (Dawson et al. 2013). Between 0.8 < z

< 2.2, quasars are ideal tracers of the matter density field, since they
are the brightest objects, and can be observed more easily than other
types of galaxies. This was first done in Ata et al. (2018), filling in
this redshift range.

Two-point statistics, which are commonly used in cosmology,
provide a way to quantify the distribution of galaxies in a given
volume. They measure the excess probability of finding pairs of
galaxies, as a function of spatial separation, compared to a random
distribution (e.g. Landy & Szalay 1993). Measurements of the two-
point statistics of galaxies in the survey can be used to probe the
growth rate and expansion history (e.g. Blake et al. 2011b; Beutler
et al. 2012; Alam et al. 2017). However, calculating cosmological
distances from measurements of redshift requires a fiducial cosmol-
ogy to be chosen. If this choice is incorrect, it will produce incorrect
distance measurements, resulting in a distortion of the BAO peak,
which is known as the Alcock–Paczynski effect (Alcock & Paczynski
1979). By measuring the distortion of the BAO feature, which is
quantified by the parameters α� and α⊥ (parallel and perpendicular
to the line of sight, respectively), constraints can be placed on the
transverse comoving distance, DM(z)/rdrag, and the Hubble distance
DH(z)/rdrag, where rdrag is the sound horizon at the drag epoch.

In order to extract cosmological information from the survey, we
need to be able to model the two-point statistics of quasars, also
known as Quasi-Stellar Objects (QSOs). Our models, which are
based on using perturbation theory to calculate cosmological power

spectra or correlation functions (e.g. Crocce & Scoccimarro 2006;
Taruya et al. 2012; Carlson, Reid & White 2013), are for dark matter
and neglect the formation and evolution mechanisms of quasars.
On large scales, this complicated non-linear, baryonic and strong
gravity physics is expected to decouple and be modelled using a
few nuisance parameters (Hou et al. 2018; Zarrouk et al. 2018). It
is therefore crucial to test the limits of such models, with realistic
simulated quasar catalogues.

To validate the models used, we run our analysis on a set of N-body
mock catalogues in which the true cosmology is known. Measuring
the scatter in the best-fitting parameters obtained with mocks
produced using different halo occupation distributions (HODs),
cosmologies, and including the effects of redshift smearing and
catastrophic redshifts, allows us to estimate the systematic uncer-
tainties in these measurements. Previously, quasar mock catalogues
for the first year of eBOSS analysis were created in Rodrı́guez-
Torres et al. (2017), and multitracer mocks were created in Alam
et al. (2020a). The aim of this mock challenge is to firstly validate
the RSD models on a set of non-blind N-body mocks, with a wide
variety of HOD models, where the true cosmology is known, and
also on a set of mocks where the cosmology is blinded. Secondly,
we use these mocks to measure the systematic uncertainties on fσ 8,
α�, and α⊥.

The mock challenge presented in this paper is similar to what
was previously done for the BOSS survey, where N-body mocks,
generated using a range of HOD models and also in different
cosmologies, were analysed blindly (Beutler et al. 2017). For the
WiggleZ survey (Drinkwater et al. 2010), the RSD analysis was
performed using a range of existing models without explicitly testing
them on mocks (Blake et al. 2011a). In the cosmological analysis
of the Dark Energy Survey Year 1 data (Abbott et al. 2018), the
parameter measurements were validated using N-body mocks that
simulated galaxy clustering and lensing observables (MacCrann et al.
2018). For future surveys, such as DESI (DESI Collaboration 2016a,
b), LSST (Ivezić et al. 2019), and Euclid (Laureijs et al. 2011), much
effort will be required in producing many accurate mock catalogues
to ensure that the model systematics can be reduced to the required
levels.

The quasar mock challenge is part of the final release of BAO
and RSD measurements from eBOSS. The construction of the data
catalogues is described in Ross et al. (2020) and Lyke et al. (2020),
and the configuration-space and Fourier-space analysis of the quasar
sample is presented in Hou et al. (2020) and Neveux et al. (2020),
respectively. In addition, cosmological measurements are made using
the sample of luminous red galaxies (LRGs; Bautista et al. 2020;
Gil-Marı́n et al. 2020) and emission line galaxies (ELGs; Raichoor
et al. 2017; de Mattia et al. 2020; Tamone et al. 2020), with mock
catalogues and mock challenges described in Alam et al. (2020b),
Avila et al. (2020), Lin et al. (2020), Rossi et al. (2020), and Zhao
et al. (2020). At high redshifts, the BAO analysis of Ly α forest
measurements is found in des Mas du Bourboux et al. (2020).
The final cosmological implications of these results are presented
in eBOSS Collaboration (2020).1

This paper is outlined as follows. In Section 2, we give an overview
of the eBOSS QSO clustering sample and observational effects.
In Section 3, we describe the RSD models used in the clustering

1A summary of all SDSS, BAO, and RSD measurements with accompanying
legacy figures can be found at https://sdss.org/science/final-bao-and-rsd-m
easurements/. The full cosmological interpretation of these measurements
can be found at: https://sdss.org/science/cosmology-results-from-eboss/.
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analysis. Section 4 describes the HOD models and methodology
for creating the mocks. Results are discussed in Section 5 for the
non-blind mocks and in Section 6 for the blinded mocks. Our
conclusions are summarized in Section 7.

2 QUA SA R SA M PLE

The eBOSS survey was performed as part of SDSS-IV (Blanton et al.
2017), the fourth phase of the Sloan Digital Sky Survey (SDSS; York
et al. 2000). The survey, which began in 2014 July and completed
observations in 2019 March, was carried out using the 2.5-m Sloan
Foundation Telescope at Apache Point Observatory in New Mexico
(Gunn et al. 2006). The survey is the successor of the previous BOSS
survey (Dawson et al. 2013, which was part of SDSS-III) and utilizes
the two BOSS spectrographs (Smee et al. 2013), which are able to
measure a total of 1000 spectra per observation.

In order to make cosmological measurements covering a wide
range of redshifts, the eBOSS survey targeted several different types
of tracers. These tracers are luminous red galaxies (LRGs; Prakash
et al. 2016), covering the redshift range of 0.6 < z < 1.0, emission
line galaxies (ELGs; Raichoor et al. 2017), over the redshift range of
0.6 < z < 1.1 and quasars (QSOs; Myers et al. 2015). The quasars
can be split into a lower redshift sample (0.8 < z < 2.2), which can
be used as direct tracers of the matter field, and a higher redshift
sample, which can be utilized for measurements of the Ly α forest (z
> 2). In this work, we focus on the sample of quasars in the redshift
range of 0.8 < z < 2.2, which can be used as direct tracers.

In the total sample, there are ∼330 000 quasars, with ∼60 per cent
in the northern galactic cap, and ∼40 per cent in the south. The
effective redshift of the quasar sample is zeff = 1.48, covering a total
area of 4700 deg2. See Ross et al. (2020) for details of the large-
scale structure catalogue, and Lyke et al. (2020) for details of the
quasar catalogue, including the procedure for determining redshifts.
The number of quasars in the DR16 sample is approximately doubled
from the earlier DR14 sample. For the previous DR14 QSO analyses,
see Gil-Marı́n et al. (2018), Hou et al. (2018), and Zarrouk et al.
(2018).

Cosmological information can be extracted from the two-point
clustering of the quasar redshift catalogue. However, it is difficult to
measure a precise redshift for quasars. There is some uncertainty
in the redshift measurements, due to astrophysical outflows. In
addition, a small fraction of quasars have ‘catastrophic’ redshift
measurements, where the redshift estimate is very far from the true
redshift. It is essential that our models can deal with the impact
this has on the clustering measurements in order to obtain unbiased
cosmological measurements. We outline these effects below.

2.1 Redshift smearing

There is a wide range of behaviour in the width of the emission lines
in the spectra of quasars. Often, the optically selected quasars show
broad emission lines, which is due to the fast rotation of hot gas close
to the central black hole. The gas is also affected by radiation-driven
winds, which leads to offsets in the position of the emission lines in
the spectra. This results in systematic uncertainties in the measured
quasar redshifts.

Several methods are used to estimate the redshift of quasars in the
eBOSS survey. The pipeline redshifts are the result of fitting four
eigenspectra to each spectrum. The redshift can also be estimated
from the MgII line, from a principle component analysis of the full
quasar spectrum, or from visual inspection. The uncertainties in the
measured redshifts, i.e. redshift smearing, can be measured using the

distribution of �z, where �z is the difference between two of these
different redshift estimates (for details of the redshift estimates, see
Lyke et al. 2020; Ross et al. 2020).

The quantity �z can equivalently be thought of as a velocity
difference, �v, where �v = c�z/(1 + z). The distribution of �v is
approximately a Gaussian but with wide tails extending to large
velocities (see e.g. fig. 4 of Zarrouk et al. 2018). In the survey
requirements document, the distribution of �v is a Gaussian with
mean 〈�v〉 = 0, and rms given by

σv(z) = 300 km s−1 z < 1.5

σv(z) = 450(z − 1.5) + 300 km s−1 z > 1.5.
(1)

The requirement of 300 km s−1 is relaxed for z > 1.5, since it is
more difficult to obtain accurate redshifts. We use this distribution as
an initial model for the redshift uncertainties that are applied in the
mocks (see Section 4.2) and then improve the modelling of redshift
smearing by looking at the distributions seen in the data.

While the distribution of �v is approximately Gaussian, a Gaus-
sian distribution is unable to model the wide tails that extend to high
velocities. We investigated the distribution of �v by looking at the
set of quasars that have duplicate observations and found that the
distribution can be better modelled by the sum of two Gaussians (see
fig. 4 of Lyke et al. 2020). This double-Gaussian distribution can be
written as

dN

d(�v)
= 1√

2π(1 + F )

[
F

σ1
exp

(−�v2

2σ 2
1

)
+ 1

σ2
exp

(−�v2

2σ 2
2

)]
,

(2)

where both Gaussians are centred on zero, with rms σ 1 and σ 2, and
F sets the fraction of the two Gaussians. For objects that have been
re-observed, the distribution of �v is fit well by a double Gaussian
probability distribution with σ1 = 150 km s−1, σ2 = 1000 km s−1,
and F = 4.478 (Lyke et al. 2020).

2.2 Catastrophic redshifts

Measurements of quasar clustering are also affected by catastrophic
redshifts, where an incorrect redshift is measured for a small fraction
of objects, e.g. due to line confusion or contamination from sky
lines. The catastrophic redshift failure rate is low; for DR16, this is
about 1.5 per cent. This is estimated from a set of 10 000 spectra that
are randomly chosen for visual inspection. A catastrophic redshift
is defined as having a pipeline redshift that differs from the visual
inspection redshift by �v > 3000 km s−1. For more details, see Lyke
et al. (2020). The inclusion of catastrophic redshifts will impact the
measurements of fσ 8, since the clustering signal is being diluted.

2.3 Effective redshift

There is also some uncertainty on the effective redshift of the QSO
sample, as there is some ambiguity in the definition of zeff (see
appendix A of Hou et al. 2020). Changing the definition shifts the
effective redshift of the QSOs from zeff = 1.48 to zeff = 1.52. As
shown in Hou et al. (2020), the impact this has on the cosmological
measurements is small compared to the statistical error. The effect
of redshift smearing and catastrophic redshifts of zeff is negligible.

3 MODELS FOR TWO -POI NT STATI STI CS

In this section, we describe the RSD and BAO models that we test
in this mock challenge. Section 3.1 gives an overview of two-point
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statistics in redshift space, and Section 3.2 describes the Alcock–
Paczynski effect. The full-shape RSD models in Fourier space that
we consider are described in Section 3.3, with configuration-space
models in Section 3.4. Finally, the BAO-only models, in both Fourier
and configuration space, are described in Section 3.5.

3.1 Two-point statistics

The galaxies and quasars observed in large cosmological surveys are
biased tracers of the underlying matter density field. The density
contrast of tracers, δt(x), at position x is related to the matter
overdensity, δm(x), by the linear bias, b1,

δt(x) = b1δm(x). (3)

The two-point correlation function, ξ (r) is defined as

ξ (r) = 〈δ(x)δ(x + r)〉, (4)

where the angled brackets indicate an ensemble average, and its
Fourier transform is the power spectrum, P (k).

Galaxies and quasars are observed in redshift space (Sargent &
Turner 1977), and their apparent position along the line of sight is
shifted by the peculiar velocity,

s = x + uz ẑ, (5)

where uz is the component of velocity along the line of sight of
the observer, expressed in units of the Hubble velocity, uz = vz/aH.
The effect of velocity is that it imparts anisotropies on the redshift-
space two-point correlation function, due to two effects. The coherent
infall of galaxies towards large overdensities leads to a flattening in
the clustering measurements on large scales, which is the Kaiser
effect (Kaiser 1987), while the motion of galaxies within virialized
haloes leads to Finger-of-God distortions (Jackson 1972). In redshift
space, the 2D correlation function, ξ (s, μ), can be decomposed into
Legendre multipoles,

ξ (s, μ) =
∑

�

ξ�(s)L�(μ), (6)

where L�(μ) is the �th-order Legendre polynomial, and μ is the
cosine of the angle between the line of sight and the pair separation
vector. The multipoles ξ�(s) are evaluated through

ξ�(s) = 2� + 1

2

∫ 1

−1
ξ (s, μ)L�(μ)dμ. (7)

In linear theory, only the monopole, ξ 0(s), quadrupole, ξ 2(s), and
hexadecapole, ξ 4(s), are non-zero.

3.2 Alcock–Paczynski effect

On large scales, a BAO peak can be seen in the correlation function of
galaxies (or alternatively oscillatory features in the power spectrum),
which is shifted if an incorrect fiducial cosmology is assumed
(Alcock & Paczynski 1979). The BAO peak position is scaled by
s ′
‖ = α‖s‖ and s ′

⊥ = α⊥s⊥ parallel and perpendicular to the line of
sight, respectively, where

α‖ = H fid(z)rfid
drag

H (z)rdrag
and α⊥ = DM(z)rfid

drag

Dfid
M (z)rdrag

. (8)

H(z) is the Hubble parameter, DM(z) is the transverse comoving
distance, and rdrag is the sound horizon at the drag epoch. Quantities
labelled ‘fid’ are in the fiducial cosmology, while the true quantities
that we aim to measure have no label. Therefore, constraining the α�

and α⊥ parameters from the two-point clustering measurements can
be used to place constraints on DM(z)/rdrag and DH(z)/rdrag, where the
Hubble distance DH(z) = c/H(z).

3.3 Fourier-space RSD models

In the linear approximation, the power spectrum in redshift space
can be described using the well-known Kaiser formula,

P lin
t (k, μ) = (

b2
1 + 2f b1μ

2 + f 2μ4
)
Pm(k), (9)

where f is the linear growth rate, which is defined as

f (a) = d ln D(a)

d ln a
. (10)

D is the linear growth function, and a is the expansion factor (Kaiser
1987). This is valid only in the linear regime, where the density
perturbations are small (δm � 1), and non-linear terms in the fluid
equations describing the density and velocity of the matter field are
negligible. This corresponds to large physical scales (�50 h−1Mpc),
where the density of the galaxies is related to matter density by
a constant linear bias (equation 3), and there is a linear coupling
between the matter velocity and density fields (θm = fδm). Haloes
and galaxies form in high-density regions on physical scales much
smaller than 50 h−1Mpc, where the non-linear terms in the fluid
equations are important, and the assumptions of linear theory break
down. To predict the two-point statistics on small scales, it is therefore
important to model RSD in the non-linear regime.

The non-linear matter power spectrum for biased tracers, Pt(k, μ),
is given by

Pt(k, μ) = Pδδ,t(k) + 2f μ2Pδθ,t(k) + f 2μ4Pθθ (k)

+ b3
1A(k, μ) + b4

1B(k, μ), (11)

where Pδδ, t(k), Pδθ , t(k), and Pθθ (k) are the density, density–
velocity, and velocity–velocity power spectra, respectively, for trac-
ers, and θ = ∇ · u is the divergence of the velocity field (Taruya,
Nishimichi & Saito 2010). The first three terms in this expression
are the non-linear Kaiser formula, b1 is the linear bias, and A(k,
μ) and B(k, μ) are correction terms. These correction terms arise
from the non-linear coupling between the velocity and density fields
and depend on the cross-bispectrum, Pδθ , t(k), and Pθθ (k). The power
spectrum and correction terms in equation (11) can be calculated
using perturbation theory models.

On even smaller scales (� 10 h−1Mpc), the motion of galaxies
within haloes becomes important, giving rise to Finger-of-God
distortions. This can be modelled as

P s
t (k, μ) = FFoG(k, μ)Pt(k, μ) exp

[−(kμσzerr)
2
]
. (12)

The first term, FFoG(k, μ), is a damping function that models the
Finger-of-God effect and usually takes the form of a Gaussian or
Lorentzian function. We use a function of the form

FFoG(k, μ) = 1√
1 + μ2k2a2

vir

exp

( −μ2k2σ 2
v

1 + μ2k2a2
vir

)
, (13)

where avir is the kurtosis of the velocity distribution, and σ v is the
velocity dispersion (Grieb et al. 2017; Sánchez et al. 2017b; Hou
et al. 2018).

The final term in equation (12) is an exponential function that
models the effect of redshift uncertainty, where σ zerr is the redshift
error (Hou et al. 2018). In the case of the double-Gaussian redshift
smearing of equation (2), the parameters σ v , avir and σ zerr are able
to pick out the different Gaussian components (see Section 5.3.2).
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Table 1. Parameters of the RegPT (Section 3.3.1), RESPRESSO (Sec-
tion 3.3.2), and CLPT (Section 3.4.1) models. Prior ranges are indicated
for the free parameters.

RegPT RESPRESSO CLPT

b1 (0,5) b1 (0.25,6) b (0,3)
b2 (−8, 8) b2 (−2, 3) F

′′
(0,10)

bs2 Fixed γ 2 Fixed
b3nl Fixed γ −

3 (−2, 2)

Ag (−1, 5)

σv (0,15) σv Fixed σ (0,20)
avir (0,15) avir (0.2,10)

σ zerr (0,6)

In the next subsections, we briefly outline the specific Fourier-
space models we use.

3.3.1 RegPT

In the first model that we consider, the power spectra Pδδ(k),
Pδθ (k), and Pθθ (k), and the correction terms A(k, μ) and B(k, μ) of
equation (11), are calculated using Regularized Perturbation Theory
(RegPT) at two-loop order (Taruya et al. 2012).

The effect of redshift errors is treated as a velocity dispersion.
The parameter σ v in the Finger-of-God term is a free parameter to
take into account the effect of redshift errors, while the additional
parameter σ zerr is set to zero. This choice implies that there is no
additional damping due to redshift errors.

In the bias expansion, b1 and b2 are the linear and second-order
bias, and the local biases bs2 and b3nl are kept fixed assuming local
Lagrangian bias. There is also an additional shot noise parameter, Ag

(Neveux et al. 2020). In addition to α�, α⊥, and fσ 8, there are five
free parameters (b1, b2, Ag, avir, and σ v), and their priors are given
in Table 1.

The model we have described here has previously been used in
the analysis of BOSS LRGs (Beutler et al. 2014, 2017). At z = 1,
the power spectrum prediction using RegPT is within per cent-level
agreement of N-body simulations up to k ∼ 0.23 hMpc−1 (Taruya
et al. 2012).

In the final eBOSS DR16 quasar analysis, the same model is fit
to measurements of the power spectrum multipoles in Fourier space
(Neveux et al. 2020), and they are therefore able to use the systematic
uncertainties quoted in this study. This model is additionally used in
the Fourier-space analysis of the eBOSS ELGs (de Mattia et al. 2020).
Throughout this paper, we will refer to this model, which combines
RegPT with the specific FoG prescription described above, as simply
‘RegPT’.

3.3.2 RESPRESSO + Fitting formula

In the second model we consider, the power spectrum Pδδ, t(k) is
computed using the code RESPRESSO (Nishimichi, Bernardeau &
Taruya 2017). RESPRESSO is based on the response function, which
characterizes how the non-linear power spectrum varies in response
to small perturbations of the initial power spectrum. Pδθ , t(k) and
Pθθ , t(k) are calculated from the fitting functions of Bel et al. (2019),
which are based on measurements from N-body simulations.

In the Finger-of-God term of equation (13), σ v is kept fixed to the
linear theory prediction. However, σ v and avir are defined differently
than in the RegPT model described in Section 3.3.1, differing by

a factor of f in their normalization. The effect of redshift errors is
modelled by the parameter σ zerr, which is kept free.

The bias expansion of Chan, Scoccimarro & Sheth (2012) is used
(see equation 22 of Hou et al. 2020), with first- and second-order
bias parameters b1 and b2, and non-local bias parameters γ 2 and γ −

3 .
γ 2 is fixed assuming local Lagrangian bias. In total, there are five
free parameters (b1, b2, γ −

3 , avir, and σ zerr), with priors in Table 1.
While this model gives a prediction of the redshift-space power

spectrum, the two-point correlation function can be calculated from
its Fourier transform. A similar model to this has previously been
used in the DR14 QSO analysis in configuration space of Hou et al.
(2018) (and also in the analysis of the BOSS wedges Grieb et al.
2017; Sánchez et al. 2017b), but this differs in that the power spectra
were calculated using Galilean-invariant Renormalized Perturbation
Theory (gRPT). The RESPRESSO prediction of the matter power
spectrum is in good agreement with N-body simulations, within
2 per cent up to k = 0.3 hMpc−1, and shows a slight improvement
compared to gRPT (see fig. 4 of Hou et al. 2020). In addition, Hou
et al. (2018) showed that cosmological parameter estimates are less
biased with the parameter zerr included.

The full model as presented here, which we measure the systematic
errors of, is used in the configuration space DR16 quasar analysis of
Hou et al. (2020). We will refer to this model as ‘RESPRESSO’.

3.4 Configuration-space RSD models

An alternative approach is to model the two-point correlation
function in configuration space.

3.4.1 CLPT

In the Lagrangian approach, particles (or tracers) are moved from
their initial Lagrangian coordinates, q, to their final coordinates x,
by a displacement field, ψ ,

x(q, t) = q + ψ(q, t). (14)

The displacement field can be written as a perturbative expansion,
ψ = ψ (1) + ψ (2) + ψ (3) + · · · , where the first-order term is the
Zel’dovich approximation. In the Convolution Lagrangian Pertur-
bation Theory (CLPT) model, more terms are summed together in
this expansion, which provides a good description for the real space
correlation function (Matsubara 2008; Carlson et al. 2013).

The real space correlation function can then be transformed into
redshift space using the Gaussian streaming model,

1 + ξ (s⊥, s‖) =
∫

dr‖(1 + ξ (r))G(s‖ − r‖, v12, σ12), (15)

where G is a Gaussian function centred on μv12, which describes
the probability that a pair of galaxies with separation r� in real space
have a separation s� in redshift space,

G(s‖ − r‖, v12, σ12) = 1√
2πσ 2

12(r, μ)
exp

(
(s‖ − r‖ − μv12)2

2σ 2
12(r, μ)

)
.

(16)

This probability depends on the velocities of galaxies; v12 is the
pairwise infall velocity, and σ 12 is the pairwise velocity dispersion.

In total, there are three nuisance parameters, which are the linear
and second-order bias, b and F

′′
, respectively, and σ , which takes

into account the Finger-of-God effect and redshift smearing. Their
priors are given in Table 1.

MNRAS 499, 269–291 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/1/269/5908387 by guest on 20 April 2024



274 A. Smith et al.

The CLPT prediction for the redshift-space correlation function
is fit to measurements of the correlation function in real space.
Previously, this model was used in the eBOSS DR14 quasar analysis
of Zarrouk et al. (2018) in configuration space and also in Icaza-
Lizaola et al. (2019) for the LRGs. CLPT was also used in the BOSS
LRG analysis of Satpathy et al. (2017). At the redshift of the QSOs,
the model provides accurate correlation function predictions, which
agree with N-body simulations down to small scales of ∼20 h−1Mpc
(Zarrouk et al. 2018).

The CLPT model is used in the eBOSS DR16 LRG analysis of
Bautista et al. (2020) but is not used in the final analysis of the
QSOs. For the analysis of the DR16 quasar sample, the RegPT model
(Section 3.3.1) and the RESPRESSO model (Section 3.3.2) are used
in Fourier and configuration space, respectively. As we show in this
paper, the three models work equally well, and there is no reason why
the CLPT model should be chosen to be used in the final analysis
over any of the other models that we consider. In this work, we use
the CLPT model as an additional check to verify the rescaling of the
blinded mocks (Section 4.3) independently of the other models.

3.5 BAO models

In addition to the RSD models described in the sections above,
as part of the mock challenge, we also verify the BAO fitting
procedure, which provides another way to measure α� and α⊥ from
the two-point statistics of the data. BAO modelling aims to isolate
cosmological information from the BAO only, which differs from
RSD modelling, which predicts the two-point statistics over a wide
range of scales. In Neveux et al. (2020), BAO fits are performed
in Fourier space on measurements of the power spectrum, while
in Hou et al. (2020), the fits are done to the correlation function
measurements in configuration space. We describe the BAO models
below.

3.5.1 Fourier-space analysis

The linear power spectrum can be decomposed into two parts (e.g.
Kirkby et al. 2013): a ‘smooth’ (or ‘no-wiggles’) broad-band term,
Psm(k), and ‘peak’ term, Ppeak(k), which isolates the oscillations of
the BAO feature,

Plin(k) = Psm(k) + Ppeak(k). (17)

In the first BAO model we consider, the redshift-space power
spectrum, which models non-linear effects, is given by

P (k, μ) = b2(1 + βμ2)2

1 + (kμ�s)2/2

[
Psm(k, μ) + Ppeak(k, μ)e−k2�2

nl

]
, (18)

where b is the bias, and β = f/b is the RSD parameter (Bautista et al.
2018). The factor of (b2(1 + βμ2)2)/(1 + (kμ�s)2/2) is a Lorentzian,
which models the Finger-of-God effect and redshift smearing on
small scales, with the damping parameter �s. The factor of b2(1 +
βμ2)2 comes from the Kaiser formula (equation 9). In equation (18),
Ppeak(k, μ) is multiplied by an exponential term, which models the
anisotropic, non-linear damping of the BAO feature (Eisenstein,
Seo & White 2007). This anisotropic damping parameter, �nl, is
defined as

�2
nl = (1 − μ2)�2

⊥/2 + μ2�2
‖/2. (19)

The mock catalogues are used to obtain values of the damping
parameters. For mocks that do not contain redshift smearing, the
damping parameters are kept fixed in the fitting procedure to the

values �s = 1 h−1Mpc, �⊥ = 3 h−1Mpc, and �� = 8 h−1Mpc. These
values are obtained from fits to the mocks with no redshift smearing
(see Section 4.2). For mocks that do contain redshift smearing, the
value of �s is increased to �s = 4 h−1Mpc. This value of �s is
obtained from mocks with realistic smearing, with the values of ��

and �⊥ fixed.
The broad-band component of the power spectrum multipoles,

which does not contain BAO information, is fit by a polynomial,
P

f

� (k) = P�(k) + a0,�/k + a1,� + a2,�k, where ai, � are the polyno-
mial coefficients (Bautista et al. 2018). In total, there are 10 nuisance
parameters in this BAO model (the bias, and three broad-band terms
for each multipole).

The BAO model described in this section has previously been
used in the analysis of the eBOSS DR14 LRGs (Bautista et al.
2018). In Neveux et al. (2020), this model is fit in Fourier space
to measurements of the power spectrum of the DR16 QSOs.

3.5.2 Configuration-space analysis

In the second BAO model we use, the power spectrum in redshift
space is given by

P (k, μ) =
(

1 + βμ2

1 + (kμ�s)2/2

)2 [
Psm(k, μ) + Ppeak(k, μ)e−k2�2

nl

]
,

(20)

which differs from equation (18) by the Lorentzian function, which
models the Fingers-of-God distortions, being squared (Ross et al.
2017). The anisotropic damping parameter, �nl, is defined the same
way (equation 19).

Plin is calculated using CAMB (Lewis, Challinor & Lasenby 2000),
while the smooth ‘no-wiggles’ power spectrum is calculated from the
fitting formulae of Eisenstein & Hu (1998). The damping parameters
�s, �⊥ and ��. are kept fixed to the same values as are used for the
Fourier-space BAO model.

The broad-band parts of the correlation function monopole and
quadrupole are each modelled as a cubic polynomial, with two
additional parameters that adjust the BAO feature (for details, see
Section 5 of Hou et al. 2020). In total, there are eight nuisance
parameters.

The model P(k, μ) is Fourier transformed to obtain the correlation
function. BAO fits using this model in configuration space were
previously done in the analysis of the BOSS LRGs (Ross et al. 2017).
The same model is used in the DR16 QSO correlation function BAO
fits of Hou et al. (2020).

4 MO C K C ATA L O G U E S

In this work, we construct the mock catalogues using the OuterRim N-
body simulation (Habib et al. 2016; Heitmann et al. 2019a, b), which
contains 10,2403 particles of mass mp = 1.85 × 10 9 h−1M
 in a box
of side length 3000 h−1Mpc. Haloes are identified using a friends-of-
friends (FOF) algorithm (Davis et al. 1985) with linking length b =
0.168. The OuterRim simulation uses a flat �CDM cosmology with
�cdmh2 = 0.1109, �bh2 = 0.02258, h = 0.71, σ 8 = 0.8, and ns =
0.963, which is consistent with the WMAP7 measurements (Komatsu
et al. 2011). Mock catalogues are constructed from the simulation
snapshot at z = 1.433. This snapshot is chosen as it is closest in
redshift to the effective redshift of the eBOSS quasar sample (zeff =
1.48). Using a single snapshot allows the accuracy of the models
to be tested at a single redshift, without evolution. However, in the
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mocks we construct, we also add in evolution in the velocities, testing
our models with f that evolves with redshift.

Quasar clustering measurements can be interpreted using the halo
model, in which quasars reside within dark matter haloes. The
clustering on large scales is described by a two-halo term, from
pairs of quasars that occupy different haloes, while the one-halo
term on small scales is from pairs residing within the same halo.
This link between quasars and their host haloes can be modelled
using an HOD. Recent work has aimed to measure the HOD and
satellite fraction of quasars, from both observations and simulations
(e.g. Leauthaud et al. 2015; Powell et al. 2018; Georgakakis et al.
2019; Oogi et al. 2020). Precise measurements of the small-scale
quasar clustering (Mohammad et al. 2020), which is dominated by
the 1-halo term, will help to further constrain the models. In this
mock challenge, in order to place a conservative upper bound on
the systematic error in the measurements from the RSD models, we
create mock catalogues covering a wide variety of different HODs.

We also aim to test the models on a range of different cosmologies,
since the true cosmology is also not known. The OuterRim simulation
is a single N-body simulation, which was run in a cosmology that is
consistent with the WMAP7 cosmological parameters. To generate
mocks in different cosmologies, it is not feasible to run many N-body
simulations with the volume and resolution of OuterRim. Instead, the
halo catalogue of the original OuterRim simulation can be modified
in order to mimic a catalogue of a different cosmology.

In this section, we describe the HOD models used and methodol-
ogy for creating mocks in different cosmologies.

4.1 HOD modelling

The HOD describes the average number of central and satellite
quasars residing in haloes as a function of the halo mass, M. The
total number of quasars per halo is given by the sum of central and
satellite quasars,

〈Ntot(M)〉 = 〈Ncen(M)〉 + 〈Nsat(M)〉. (21)

Since quasars are rare, the probability that more than one quasar
resides within the same dark matter halo is low.

We construct mock catalogues using five different functional forms
for the HODs. This allows us to explore a wide range of HODs and
test the impact of the HOD on the model fits.

4.1.1 Smooth step and power law

The first HOD model we consider is the same as was used for the
quasar mocks in Zarrouk et al. (2018) and uses a 5 + 1 parameter
HOD (e.g. Tinker et al. 2012), which is motivated by a monotonic re-
lation between quasar luminosity and host halo mass, with the bright-
est quasars residing in the most massive haloes. The probability that
a halo contains a central quasar is given by the smooth step function

〈Ncen(M)〉 = τ
1

2

[
1 + erf

(
log M − log Mcen

log σm

)]
, (22)

where the position of this step is set by Mcen. The probability that
a halo with mass M � Mcen hosts a central quasar is zero, which
transitions to a probability of τ for M � Mcen. τ is the quasar duty
cycle, which takes into account that not all central black holes are
active. This is defined as the fraction of haloes that host an active
central galaxy and sets the height of the step function. In our HOD
models, the duty cycle is assumed to be constant, while observations
show a dependence on redshift and stellar mass of the host galaxy
(e.g. Bongiorno et al. 2016; Georgakakis et al. 2017). The width

of the transition is set by the parameter log σ m. This softening of
the step function accounts for scatter in the relation between quasar
luminosity and halo mass.

The number of satellite quasars in each halo is Poisson distributed,
with mean given by a power law,

〈Nsat(M)〉 =
(

M

Msat

)αsat

exp

(
−Mcut

M

)
, (23)

where αsat is the slope of the power law, Msat sets the normalization,
and Mcut is a cutoff at low masses.

4.1.2 Gaussian

This HOD model is the same as was used in Kayo & Oguri (2012)
and Eftekharzadeh, Myers & Kourkchi (2019), in which the total
HOD for all quasars is given by a Gaussian

〈Ntot(M)〉 = τ√
2π log σm

exp

[
− (log M − log Mcen)2

2(log σm)2

]
. (24)

This model is motivated by haloes in a narrow mass range hosting a
wide range of quasar luminosities. The parameter that sets the mean
of the Gaussian, log Mcen, is the halo mass that is most likely to
host quasars, and log σ m sets the width of the Gaussian. As with the
previous HOD model, τ is the quasar duty cycle. The parameters Mm,
fN, and �m in equation (6) of Eftekharzadeh et al. (2019) are related
to the parameters in equation (24): Mm = Mcen, fN = √

ln(10)τ , and
�m = ln (10)log σ m.

The satellite fraction, fsat, is an additional parameter used to
split the total occupation distribution into the central and satellite
HODs. For central quasars, 〈Ncen(M)〉 = (1 − fsat)〈Ntot(M)〉, while
for satellites, 〈Nsat(M)〉 = fsat〈Ntot(M)〉.

4.1.3 Gaussian and power law

We also consider an HOD model where the occupation function for
central quasars is given by a Gaussian but with a power law for
satellites. The central HOD has the same form as equation (24),
and the satellite occupation function is given by equation (23). This
model and the remaining HOD models we consider are not physically
motivated but are included in order to test our models over a wide
range of different HODs.

4.1.4 Sharp step and power law

In this HOD model, the central occupation function is given by a
sharp step function,

〈Ncen(M)〉 = τ�(M − Mcen), (25)

where �(x) is the Heaviside step function, Mcen sets the position of
the step, and τ is the quasar duty cycle. For satellites, the occupation
function is the same power-law function as in equation (23).

4.1.5 Top hat and power law

The final HOD uses a top-hat function for the central quasars, given
by

〈Ncen(M)〉 = τ�(log σm − |M − Mcen|), (26)

where �(x) is the Heaviside step function, Mcen sets the central
position of the top hat, log σ m is the width, and τ is the duty cycle.
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Table 2. HOD parameters used for each of the mock catalogues. The shape of the HOD for central quasars is a smooth step function (Sm),
Gaussian (G), top-hat (TH) function, or a sharp step (Sh), while satellites follow either a power law (PL) or a Gaussian (G) distribution.
Satellites are also positioned in the halo using dark matter particles from the simulation (Par), or following an NFW profile. The parameter
fsat is the satellite fraction, and τ is the quasar duty cycle. log Mcen is the central position of the HOD function for central quasars. log σM

sets the width of smooth step function, or Gaussian HODs, while �log M is the width of the top-hat HOD. Msat is the low mass cutoff in the
power law for satellites, and αsat is the power-law slope. ‘Sat. cut’ indicates whether the central HOD was used to add the low mass cutoff in
the HOD of satellites. The final column, n, is the number density of quasars in units 10−5(h−1Mpc)−3.

HOD Cen. Sat. Sat. fsat τ log Mcen log σM �log M Msat Mcut αsat Sat. n/10−5

HOD HOD pos. cut (h−1Mpc)−3

HOD0 Sm PL Par 0.19 0.012 12.13 0.2 – 15.29 11.61 1.0 No 2.185
HOD1 G G NFW 0.07 0.074 12.75 2.0 – – – – – 2.186
HOD2 TH PL NFW 0.60 0.022 12.80 – 0.6 15.03 10.57 1.0 No 2.183
HOD3 G PL Par 0.21 0.020 12.80 0.3 – 15.47 10.57 1.0 No 2.183
HOD4 Sm PL NFW 0.08 0.014 12.13 0.2 – 15.64 11.61 1.0 No 2.195
HOD5 Sh PL NFW 0.17 0.016 12.20 – – 15.57 10.57 1.0 No 2.184
HOD6 G PL NFW 0.56 0.021 13.00 0.3 – 15.05 10.57 1.0 No 2.201
HOD7 TH PL Par 0.24 0.023 12.60 – 0.6 15.41 10.57 1.0 No 2.202
HOD8 G G NFW 1.00 0.074 12.75 2.0 – – – – – 2.186
HOD9 Sh PL NFW 0.42 0.015 12.30 – – 15.18 10.57 1.0 No 2.197
HOD10 Sh PL Par 0.002 0.017 12.15 – – 15.36 10.57 1.0 Yes 2.181
HOD11 G G NFW 0.10 0.060 12.60 1.6 – – – – – 2.184
HOD12 G PL NFW 0.05 0.014 12.55 0.2 – 15.61 10.57 1.0 Yes 2.188
HOD13 Sm PL NFW 0.73 0.016 12.80 0.4 – 14.89 10.57 1.0 No 2.183
HOD14 TH PL Par 0.17 0.031 12.40 – 0.3 15.09 10.57 1.0 Yes 2.174
HOD15 G G Par 0.50 0.060 12.60 1.6 – – – – – 2.185
HOD16 TH PL NFW 0.12 0.033 12.40 – 0.3 15.23 10.57 1.0 Yes 2.186
HOD17 Sh PL NFW 0.04 0.014 12.10 – – 13.93 10.57 1.0 Yes 2.198
HOD18 Sm PL NFW 0.36 0.018 12.50 0.4 – 15.12 10.57 1.0 No 2.182
HOD19 G PL Par 0.07 0.012 12.50 0.2 – 15.49 10.57 1.0 Yes 2.187

As with the previous HODs, the satellite occupation function is
given by the power law of equation (23).

HOD parameters for the 20 HOD models we use are given in
Table 2. When using the HODs to populate haloes, we assume that
the probability that a halo contains a central or satellite quasar is
independent, making it possible for a halo to contain satellite quasars
with no central. In the HODs described above, the power law for
satellites can extend to low masses, below any cutoff in the centrals.
For some of the HOD models we use, the power law is continued
to low masses. For others, we multiply the satellite HOD by the
central HOD, so the satellites have the same cutoff as the centrals.
The various HOD models described above are illustrated in Fig. 1.
For each of the five HOD models, four sets of HOD parameters are
used to give a total of 20 HODs.

We have considered a wide range of HOD models, some of which
are not physically motivated (the models with sharp cuts). While this
could potentially inflate the final uncertainties that we measure for
the different RSD models, we find that there is no strong dependence
in our results on the particular HOD model (see Section 5.3).

The 20 chosen sets of HOD parameters are tuned to produce
approximately the same large-scale clustering and quasar number
density. This tuning of the HOD parameters is done so that the cluster-
ing on scales s > 20 h−1Mpc is in agreement with the DR16 clustering
measurements, and the number density of quasars in all mocks is
approximately the same, which is close to 2 × 10−5(h−1Mpc)−3.

In the following sections, we describe the methodology for creat-
ing the non-blind and blind mocks for this mock challenge. Table 3
summarizes all the mocks that have been produced in this work.

4.2 Non-blind mocks

The mock catalogues for the non-blind part of the mock challenge
are constructed by populating the OuterRim simulation snapshot at

z = 1.433 with quasars using the 20 HOD models outlined in the
previous section. The effects of redshift smearing and catastrophic
redshifts are then applied to the mocks. These observational effects
are described in Section 4.2.1, and the full methodology for creating
the mocks is given in Section 4.2.2.

4.2.1 Observational effects

To test that the models are robust against the effects of redshift
smearing (Section 2.1) and catastrophic redshifts (Section 2.2), we
consider four different cases of mocks.

The ‘no smearing’ mocks do not contain the effects of redshift
smearing or catastrophic redshifts.

The ‘Gaussian smearing’ mocks include the effect of redshift
smearing, where the redshift of each quasar is shifted by a random �z,
which corresponds to a velocity shift, �v (Section 2.1). �v is drawn
from the redshift-dependent Gaussian distribution (equation 1),
which is defined in the survey requirements document.

We also create mocks with ‘realistic smearing’, where for each
quasar, �v is randomly drawn from a double-Gaussian distribution
(equation 2). This distribution includes the wide tails, extending to
high velocities, which are seen in the data. We keep the shape of this
distribution fixed with redshift. Including this double-Gaussian red-
shift smearing in the mocks will test whether the models can recover
the expected parameters with a realistic redshift smearing distribu-
tion. The mocks with Gaussian redshift smearing will test the models
for the effect of the degradation of redshift accuracy at high redshifts.

The ‘catastrophic redshifts’ mocks are identical to the ‘realistic
smearing’ mocks but, in addition, include the effect of catastrophic
redshifts. A random 1.5 per cent of objects (which matched the
catastrophic redshift failure rate of the data) are assigned a new
redshift, which is drawn from a uniform distribution in z, such that
the object remains inside the cubic box.
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Figure 1. The total halo occupation function for all 20 HOD models used to
construct the non-blind quasar mock catalogues. For clarity, the models are
split into four panels, where the HOD model is indicated by the colour, given
in the legend.

4.2.2 Methodology for creating non-blind mocks

To construct mocks from the OuterRim simulation, the z = 1.433
snapshot is populated with quasars using our HOD models. For each
halo, with mass M, a uniform random number 0 < x < 1 is drawn, and
the halo is chosen to contain a central quasar if x < 〈Ncen(M)〉. The
number of satellites in each halo is drawn from a Poisson distribution
with mean given by 〈Nsat(M)〉. The central and satellite HODs are

independent of each other, so it is possible for a halo to contain a
satellite quasar with no central.

Central quasars are positioned at the centre of each halo and are
assigned the same velocity. Satellite quasars are positioned around
the centre of the halo using one of two methods, depending on the
HOD (see Table 2). For some of the HOD models, the satellites
are assigned the position and velocity of dark matter particles,
which are randomly chosen from the FOF group belonging to that
halo. For other HOD models, the haloes are positioned randomly,
following a Navarro, Frenk & White (1997) (NFW) density profile,
using a concentration-mass relation from Ludlow et al. (2014). The
satellites are assigned a random virial velocity, where the component
in each direction is drawn from a Gaussian distribution with variance
σ 2(M) = GMvir/2Rvir. The virial radius is determined from the halo
mass using a relation measured from the MDPL2 simulation (Klypin
et al. 2016).

The method used to position satellite quasars affects the clustering
measurements on very small scales (on the order of a few h−1Mpc),
which are smaller than the scales used in the analysis.

For each of the 20 HOD models, we generate 100 independent
random realizations. Since the quasar duty cycle is of the order of
1 per cent, it is expected that each halo would appear once in the full
ensemble (on average). Since the same N-body simulation is used,
the 100 realizations of each HOD are not independent. However,
we have measured the cross-correlation between pairs of mocks and
found that each pair of individual realizations is uncorrelated to
within the statistical precision, due to the low duty cycle.

To convert to redshift space, the velocity of each halo is projected
along the line of sight of the observer. Before converting to redshift
space, the periodic box is first replicated, which takes into account
any objects that move in or out of the box. The box is then cut back
to the original volume.

The observer is positioned at a distance of 2800 h−1Mpc from
the centre of the box in the positive or negative direction along one
of the simulation axes. This places the observer so that it is facing
one of the six box sides. Since the observer is not at infinity, the
lines of sight are not parallel. The choice of observer affects the
clustering measurements and particularly impacts the quadrupole
and hence the best-fitting values of fσ 8 (see Section 5.3.1). This
is a statistical effect, which is due to cosmic variance in the finite
simulation box. In order to mitigate the impact of observer position
on the fσ 8 measurements, we alternate between which of the six box
sides the observer is placed it. As is shown in Smith et al. (2020),
there is an anticorrelation between measurements of the quadrupole
with different lines of sight. Therefore, the reduction in the error
when averaging over all the box sides is greater than what would be
gained by tripling the simulation volume.

The comoving position to each QSO is then converted to a
cosmological redshift, zcos. The observed redshift, which takes the
line-of-sight velocity, vlos, into account, is calculated from (1 +
zobs) = (1 + zcos)(1 + vlos/c), which adds evolution of velocity (and
hence f) to the mocks. For each mock, to test the effects of redshift
smearing and catastrophic redshifts, we create a ‘no smearing’,
‘Gaussian smearing’, ‘realistic smearing’, and ‘catastrophic redshift’
version, as described in Section 4.2.1.

4.3 Blind mocks

In addition to the non-blind mocks, we also create mocks in rescaled
cosmologies, which are analysed blindly, using the OuterRim cos-
mology as the fiducial cosmology. We describe the method for
rescaling the cosmology of the simulation in Sections 4.3.1–4.3.3,
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Table 3. Summary of all the mock catalogues constructed for the quasar mock challenge. This includes the non-blind mocks,
the blind mocks with fixed HOD, and the blind mocks where the HOD is varied. For each, Ntot is the total number of sets of
100 mocks, NHOD is the number of unique HODs used, and Ncosmo is the number of unique cosmologies. We also indicate
whether observational effects (redshift smearing and catastrophic redshifts) are included, the location of tables where more
information about the individual mocks can be found, and the sections that describe the construction of the mocks and discuss
the results.

Mocks Ntot NHOD Ncosmo Obs. effects Table Construction Results

Non-blind 20 20 1 Yes Table 2 Section 4.2.2 Section 5.3
Blind (fixed HOD) 8 1 8 No Table 4 Section 4.3.5 Section 6.2.1
Blind 24 7 8 No Table 5 Section 4.3.5 Section 6.2.2

which is validated in Section 4.3.4. In Section 4.3.5, we apply this
method to the OuterRim simulation to construct the blind mocks.

4.3.1 Changing the cosmology

In order to rescale the halo catalogues, we use the methodology of
Mead & Peacock (2014a, 2014b). This is an extension of the method
of Angulo & White (2010), where the rescaling was applied to the
dark matter particles. Scaling the halo catalogue makes it easier
to modify the cosmology of large simulations, such as OuterRim,
since the halo catalogue is much smaller in size, and particle data
are not always available. Recently, an alternative method of warping
the simulation cosmology was outlined in Garrison & Eisenstein
(2019), which requires a set of N-body simulations in different
cosmologies. However, since there is only one OuterRim simulation,
in one cosmology, we use the method of Mead & Peacock (2014a).
In this section, we give a brief overview of the rescaling procedure.
Our PYTHON implementation is publicly available.2

The aim of the rescaling procedure is to take a snapshot of the
OuterRim simulation at redshift z and scale the halo properties to
a new ‘target’ cosmology at redshift z

′
. Quantities in the target

cosmology are denoted with a prime, while quantities without a
prime are in the original OuterRim cosmology. To create our blind
mocks, we rescale the simulation to a target cosmology z

′ = 1.433,
which is the same redshift as the unblind mocks, and close to the
effective redshift of the quasar sample.

4.3.2 Global rescaling of simulation units

The first stage aims to modify the halo mass function for the new
cosmology. This is done with a global rescaling of the units of the
simulation. Comoving position vectors, x, in units h−1Mpc are scaled
by a factor s,

x′ = sx, (27)

which as a result also scales the box size to L
′ = sL. For masses, M,

in units h−1M
, the scaling is

M ′ = smM ≡ s3 �′
m

�m
M, (28)

where �m is the matter density parameter. Finally, velocities v, in
proper km s−1, are scaled as

v′ = svv ≡ s
H ′(z′)f ′(z′)

1 + z′
1 + z

H (z)f (z)
v, (29)

where H(z) is the Hubble parameter and f(z) is the growth rate.

2https://github.com/amjsmith/rescale-cosmology

The values of s and z are found such that the rms linear density
fluctuation in the rescaled cosmology, σ (R/s, z), matches that of the
target cosmology, σ

′
(R, z

′
) [by minimizing equation (2) of Mead &

Peacock 2014a]. Simple models of the halo mass function depend
only on σ (R, z) (e.g. Press & Schechter 1974; Sheth & Tormen 1999),
so if σ (R, z) is correctly reproduced, the halo mass function will also
be correct. This is not strictly true for the mass function of an N-body
simulation, but deviations in the mass function are expected to be of
the order of a few per cent (Mead & Peacock 2014a).

For many potential target cosmologies, the value of z found will
not correspond to a simulation snapshot. We therefore choose only
cosmologies where the input redshift, z, matches the redshift of one of
the OuterRim snapshots. This places a constraint on the combinations
of cosmological parameters that are allowed. Despite this, it is
still possible to rescale the simulation to a wide variety of new
cosmologies.

4.3.3 Modifying the power spectrum

The scaling of comoving positions by a factor s also shifts the BAO
scale to a new position srbao. However, this is not necessarily the
correct BAO scale, r ′

bao, for the target cosmology. This can be seen in
Fourier space as residual wiggles when taking the ratio of the rescaled
power spectrum to the target power spectrum. In addition, the overall
shape of the scaled power spectrum, while close to the target cos-
mology, is not necessarily correct. To correct the shape of the power
spectrum, small displacements are applied to the rescaled positions
and velocities of each halo, using the Zel’dovich approximation.

The Lagrangian displacement field, ψ (see equation 14), is related
to the matter density field, δ. In Fourier space, this can be written as

ψk = −i
δk

k2
k. (30)

Therefore, the displacement field can be obtained from the Fourier
transform of the density field. The density field can be determined
from the halo catalogue, after the first stage of rescaling, by
computing the overdensity of haloes on a grid and debiasing using
the effective bias of the sample of haloes. We use a grid with 7503

cells, which corresponds to a cell size of ∼4h−1Mpc (the exact cell
size depends on the size of the rescaled box).

The differential displacement, due to the difference between the
original and target cosmologies is given by

δψ ′
k′ =

[√
�′2

lin(k′, z′)
�2

lin(sk′, z)
− 1

]
ψ ′

k′ , (31)

where

�2
lin(k, z) = 4π

(
k

2π

)3

Plin(k, z) (32)
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is the dimensionless linear power spectrum. Each halo is then
displaced so that the final position vector is

x′′ = x′ + b′(M ′)δψ ′, (33)

where b
′
(M

′
) is the halo bias. The displacement is multiplied by the

halo bias to ensure that the final rescaled snapshot has the correct
mass-dependent bias. A similar differential displacement is also
applied to the velocity field (see equation 32 of Mead & Peacock
2014a).

The full halo catalogue is used to compute the displacement field,
so that the displacement field is not noisy. To ensure that the mass-
dependent bias is correct, the halo bias b(M) is used when displacing
the halo positions. This means that different haloes are displaced by
different amounts, which is unphysical, e.g. a massive halo would be
displaced a greater distance than a smaller satellite halo, and therefore
the large halo could ‘overtake’ the satellite. Since the typical halo
displacement is very small,3 any effect on the halo clustering would
be on scales much smaller than are used in our analysis.

In the Mead & Peacock (2014a) method, the halo bias is calculated
using the peak background split. However, since haloes in the Outer-
Rim simulation are identified as FOF groups with linking length b =
0.168, and not the more standard b = 0.2, the Sheth & Tormen (1999)
halo bias differs with the halo bias measured from the simulation. We
therefore measure the halo bias directly from the simulation, from
the clustering of haloes in the original OuterRim simulation in five
mass bins at four different redshifts, and modify the parameters of
the Sheth–Tormen halo bias to match the measurements of the bias.

4.3.4 Validation

To validate the rescaling procedure, we rescale one of the snapshots
of the Multidark Planck 2 (MDPL2) simulation (Klypin et al. 2016)
to the cosmology of the Millennium-XXL (MXXL) simulation
(Angulo et al. 2012). This allows us to compare the halo-clustering
measurements of the rescaled snapshot to the MXXL simulation,
which was run in the target cosmology. These two simulations are
chosen since they both have the same halo mass definition (FOF
groups with linking length b = 0.2), enabling a direct comparison.
This is different to the OuterRim simulation, which uses b = 0.168.

The MDPL2 simulation has a box size of 1 h−1Gpc in a Planck
cosmology with �m = 0.3071, �b = 0.0482, h = 0.6777, σ 8 =
0.8228, and ns = 0.96 (Planck Collaboration XVI 2014). The MXXL
simulation is a 3 h−1Gpc box, in a WMAP1 cosmology with �m =
0.25, �b = 0.045, h = 0.73, σ 8 = 0.9, and ns = 1 (Spergel et al. 2003).
The MDPL2 snapshot at z = 1.425 is rescaled to z = 1.67,4 which is
very close to the redshift of one of the MXXL simulation snapshots
(z = 1.63). Comoving positions, halo masses, and velocities are
scaled by the factors s = 1.049, sm = 0.940, and sv = 0.993,
respectively.

The mass function of the MDPL2 snapshot, after rescaling, is
shown in Fig. 2, in comparison with the target mass function of the
MXXL simulation. The scaling of halo masses is able to reproduce
the target mass function to a level of a few per cent, which is in
agreement with Mead & Peacock (2014a).

The clustering of the MDPL2 snapshot, measured at each stage
of the rescaling procedure, is shown in Fig. 3, in comparison with

3The distribution of halo displacements peaks at ∼0.2 h−1Mpc, with only
∼0.04 per cent of haloes being displaced by greater than 1 h−1Mpc.
4The rescaled redshift is not arbitrary and is determined by the initial and
target cosmologies.

Figure 2. Top panel: Halo mass function of the MDPL2 simulation snapshot
at z = 1.425 before (black dotted curve) and after (black dashed curve)
rescaling the simulation to the MXXL cosmology at z = 1.67 The blue curve
shows the mass function of the MXXL simulation, where the shaded region
indicates the 1σ scatter between 8 subvolumes with the same volume as the
rescaled MDPL2 snapshot. Bottom panel: Ratio to the MXXL mass function.
The grey shaded region indicates 10 per cent.

the MXXL simulation, where both catalogues have a mass cut of
M > 1012 h−1M
 applied. For the MDPL2 snapshot, this mass cut
is applied to the rescaled mass, M

′
. The shaded regions indicate

the cosmic variance, estimated from the 1σ scatter between eight
sub-cubes of MXXL, which have the same volume as the rescaled
MDPL2 snapshot. Clustering measurements from MDPL2 are the
average of six measurements, with the observer placed at each of
the six box sides (see Section 5.3.1). In the MDPL2 simulation, the
BAO length scale is smaller than for the MXXL simulation, due
to the differences in cosmology. The first stage of the rescaling
procedure shifts the MDPL2 BAO peak to larger scales, by the
factor s, but this is not enough to reproduce the monopole of the
MXXL simulation. The second step of displacing the halo positions
is necessary and brings the BAO position into excellent agreement
with the measurements from the MXXL simulation. The shape of
the monopole on smaller scales is also in good agreement, within
the expected cosmic variance. The amplitude of the quadrupole
is also shifted during the rescaling procedure. Scaling velocities
by the factor sv has the largest effect on the quadrupole, with a
smaller shift when the velocities are displaced. After the scaling
and displacements, the quadrupole is in good agreement with the
MXXL simulation and is within the expected cosmic variance.
This validates that the rescaling of halo positions is working as
expected. For velocities, this is less clear, since the cosmic variance
is large compared to the shift in the quadrupole when displacing the
velocities. As an additional check, after creating the blind OuterRim
mocks, we fit the clustering measurements using the CLPT model in
the true rescaled cosmology of the mock (Section 6.1). Recovering
α� = α⊥ = 1 and the value of fσ 8 expected for that cosmology will
validate the position and velocity scaling.

4.3.5 Methodology for creating blind mocks

Blind mocks are constructed by applying the rescaling procedure
outlined in Section 4.3.1 to snapshots of the OuterRim simulation.
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Figure 3. Top panel: Correlation function monopole (blue), quadrupole
(green), and hexadecapole (red) of the MXXL simulation snapshot at z =
1.63. Black curves show the clustering of the MDPL2 simulation snapshot
at z = 1.425, which has been rescaled to the Millennium cosmology at z =
1.67, at each stage of the rescaling procedure. The dotted curves indicate
the clustering in the original MDPL2 snapshot before scaling. The dashed
curves show the clustering after the global scaling of positions, masses, and
velocities (S). Solid curves indicate the clustering after scaling and additional
position and velocity displacements (S + D). For the MXXL simulation, the
shaded regions indicate the scatter between eight subvolumes with the same
volume as the rescaled MDPL2 simulation. For both simulations, a mass
cut of 1012 h−1M
 is applied. Lower panels: ratio of the monopole and the
quadrupole to MXXL.

The snapshots at z = 1.494 and z = 1.376 are rescaled to eight
new cosmologies at z

′ = 1.433, which is the same redshift as the
snapshot used to create the non-blind mocks. The new cosmologies
are chosen by randomly modifying the fiducial OuterRim values of
�b, �cdm, h, and σ 8 by multiplying by a random number generated
from a Gaussian distribution. The parameter ns is then fixed by
requiring the redshift to match the snapshot redshift when rescaling.
Cosmological parameters are shown in Table 4.

The dimensionless linear power spectrum, �2(k), defined in equa-
tion (32) is shown in Fig. 4 for each of the eight new cosmologies,
compared to the original OuterRim cosmology, at z = 1.433. The
second panel shows the ratio between each of these cosmologies and
OuterRim, highlighting the differences between them. The bottom
panel shows the ratio of each of the power spectra, after the initial
rescaling of positions, masses, and velocities by the factors s, sm,
and sv, respectively, to the target cosmology. While this scaling
brings the power spectra close to the target cosmology, there are still
differences in the shape, and residual BAO wiggles can be seen. This
is corrected for in the second part of the rescaling procedure, where
the halo positions and velocities are displaced using the Zel’dovich
approximation.

The methodology for populating the blind mocks with quasars is
the same as for the unblind mocks. Quasars are added to each halo

by re-using some of the HODs, unchanged, from Section 4.1. While
the used HODs were tuned to give the same number density for the
non-blind mocks, this is no longer true for the blind mocks, since
the underlying halo mass function changes when the cosmology
is changed. The largest change in number density is by a factor
of ∼20 per cent. As before, central quasars are positioned at the
centre of each halo, but since particle data are not available for these
snapshots, satellites must be positioned following an NFW profile.
Since the cosmology has been modified, the halo concentrations
should also be modified to reflect this change in cosmology. The
positioning of satellites within their host haloes affects only the
clustering on very small scales, which are smaller than the scales
we consider in the RSD analysis. This is shown with the non-
blind mocks, where the recovered parameters are unaffected by the
method used to position the satellites. Therefore, we use the same
concentration–mass relation as was used for the non-blind mocks.

For the first part of the blind mock challenge, we create eight
sets of mocks, where each of the eight rescaled OuterRim boxes
is populated using the exact same HOD (HOD0 from the non-blind
challenge). As before, 100 realizations are generated for each of the
cosmologies. Since the HOD is the same, this can be used to assess
the effect of changing the cosmology on the recovered parameters.

For the second part of the mock challenge, we create 24 sets of
mocks. These mocks use the same eight rescaled snapshots, which
are each populated using three different HODs. In some of these
mocks, an additional scaling is applied to the velocities, where all
the velocities are increased or decreased by a few per cent. This has
the effect of modifying the expected value of fσ 8 by the same factor.
The cosmology, choice of HOD, and velocity scaling factors are
given in Table 5.

5 N O N - B L I N D C H A L L E N G E

In this section, we present the analysis and results of the non-blind
part of the mock challenge. These mocks have been constructed using
the HOD models and methodology described in Section 4.2.

5.1 Clustering measurements

The correlation function and power spectrum multipoles are mea-
sured for each of the individual mock catalogues. Correlation func-
tions are measured using the publicly available correlation function
code CUTE (Alonso 2012), in evenly spaced bins of width 8 h−1Mpc,
up to a maximum separation of 168 h−1Mpc. A random catalogue
is used, which contains 20 times of the number objects that are in
the mocks. While the mocks are generated in a cubic box where n̄

is known, we use a random catalogue. This is because the lines
of sight are not parallel for our choice of observer position, so
periodic boundary conditions cannot be used. For each object in the
random catalogue, a uniform random value is drawn for its x, y, and z

coordinate in the cubic box. In all correlation function calculations,
an OuterRim fiducial cosmology is used. Since the volume of the
OuterRim box is much larger than the effective volume of the quasar
sample (Veff = 1.7 h−3Gpc3), and there are 100 realizations for each
HOD, precise measurements can be made of the clustering and hence
the systematic offsets in the cosmological parameter measurements.
Uncertainties in the measurements from each HOD model can be
estimated from the scatter between realizations.

The average correlation function multipoles of the 20 sets of
mocks, without redshift smearing, are shown in Fig. 5, in comparison
with the DR16 measurements. This shows that the clustering of the
mocks is in good agreement with the data. There is a small amount
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Table 4. Cosmologies of the rescaled OuterRim snapshots, which are used to construct the blinded mocks. zorig is the redshift of the original snapshot, which
is rescaled to the new cosmology at z = 1.433. s, sm, and sv are the factors used to scale positions, masses, and velocities, respectively. Values of α� and α⊥ are
calculated using a fiducial cosmology, which is the same as the cosmology of the original OuterRim simulation. fσ 8 is evaluated in each of the cosmologies at
the target redshift of z = 1.433.

�b �cdm h σ 8 ns zorig s sm sv fσ 8 α� α⊥

OR 0.0448 0.2200 0.7100 0.8000 0.9630 1.433 1.0000 1.0000 1.0000 0.3820 1.0000 1.0000
cosmo0 0.0461 0.2205 0.7228 0.7742 0.9628 1.494 0.9827 0.9555 0.9734 0.3694 0.9988 1.0000
cosmo1 0.0426 0.2360 0.6967 0.7981 0.9384 1.494 1.0175 1.1085 1.0308 0.3795 0.9911 1.0002
cosmo2 0.0410 0.2331 0.7405 0.7380 0.9594 1.494 0.9087 0.7766 0.9129 0.3514 0.9745 0.9805
cosmo3 0.0447 0.2408 0.6882 0.7903 0.9436 1.494 0.9950 1.0624 1.0208 0.3750 0.9966 1.0102
cosmo4 0.0467 0.2202 0.6964 0.7991 0.9815 1.376 0.9628 0.8997 0.9788 0.3812 1.0090 1.0105
cosmo5 0.0382 0.1973 0.7197 0.8526 0.9606 1.376 1.1049 1.1992 1.0535 0.4103 0.9926 0.9719
cosmo6 0.0541 0.2295 0.7275 0.7910 0.9671 1.376 0.9327 0.8688 0.9779 0.3756 1.0113 1.0238
cosmo7 0.0475 0.1844 0.7239 0.7783 1.0280 1.376 0.9603 0.7756 0.9086 0.3749 1.0220 0.9981

Figure 4. Top panel: Dimensionless linear power spectra of the eight new
cosmologies at the target redshift z

′ = 1.433 (coloured curves, as indicated
in the legend), compared to OuterRim (black). Middle panel: Ratio of the
power spectra to the OuterRim power spectrum. Bottom panel: Ratio of the
power spectrum, rescaled by the factor s, to the target power spectrum.

of scatter between the mocks, but this is much smaller than the DR16
error bars, which are estimated using the EZmocks (Zhao et al. 2020).

Power spectra are computed using the NBODYKIT package (Hand
et al. 2018), which uses the Yamamoto estimator (Yamamoto et al.
2006). A random catalogue is also used when measuring the power
spectrum, since the distance to the observer is not infinite, and
periodic boundary conditions cannot be assumed. The computation
of the power spectrum is corrected for the effects of the window
function (Wilson et al. 2017), using the implementation of de Mattia
et al. (2020).

Table 5. Table summarizing the second set of blind mocks. Cosmological
parameters are summarized in Table 4, and HOD parameters in Table 2. The
velocity scaling is an additional scaling applied to velocities, in which all
velocities are scaled by this parameter.

Mock Cosmology HOD Velocity scaling

mockb0 cosmo1 HOD17 + 5%
mockb1 cosmo4 HOD11
mockb2 cosmo0 HOD11 + 5%
mockb3 cosmo1 HOD11
mockb4 cosmo0 HOD17
mockb5 cosmo4 HOD2
mockb6 cosmo1 HOD2 −5%
mockb7 cosmo0 HOD2
mockb8 cosmo4 HOD17
mockb9 cosmo3 HOD9 + 2%
mockb10 cosmo7 HOD16
mockb11 cosmo5 HOD3
mockb12 cosmo7 HOD9 + 3%
mockb13 cosmo6 HOD9 −8%
mockb14 cosmo3 HOD16
mockb15 cosmo2 HOD16 −5%
mockb16 cosmo2 HOD3 + 3%
mockb17 cosmo5 HOD9 + 8%
mockb18 cosmo6 HOD3
mockb19 cosmo6 HOD13 −2%
mockb20 cosmo3 HOD13 −3%
mockb21 cosmo5 HOD13
mockb22 cosmo2 HOD13
mockb23 cosmo7 HOD3

5.2 Fitting the models

The RSD models described in Section 3 are fit to the correlation
function or power spectrum multipoles measured from each of the
non-blind OuterRim mocks. The RegPT model is fit in Fourier
space to the power spectrum multipoles in the range of 0.02 <

k < 0.3 hMpc−1 The covariance matrix used is estimated from the
EZmocks (Zhao et al. 2020). Fits are done using the MINUIT algorithm
(James & Roos 1975) to minimize χ2.

The RESPRESSO model is fit in configuration space in 19 evenly
spaced bins of separation, in the range of 16 < s < 168 h−1Mpc.
An analytical Gaussian covariance matrix is used, following the
prescription of Grieb et al. (2016). Best-fitting values of each
parameter are found from the MCMC chains by taking the median.

CLPT is also fit to the correlation function multipoles in 16 evenly
spaced bins in s between 24 < s < 152 h−1Mpc. The same binning
was used as for the RESPRESSO model but with a different minimum

MNRAS 499, 269–291 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/1/269/5908387 by guest on 20 April 2024



282 A. Smith et al.

Figure 5. The average clustering of each of the 20 sets of non-blind mocks,
showing the monopole (blue), quadrupole (green), and hexadecapole (red),
with no redshift smearing. Points with error bars show the eBOSS DR16
quasar clustering measurements, assuming an OuterRim cosmology, where
the errors are estimated from the EZmocks.

and maximum scale. Fits were done to the mean clustering of each
set of mocks, using MINUIT, with Gaussian covariance matrices.

BAO fits in Fourier space are done in the k range of 0.02 < k
< 0.23 hMpc−1, using the covariance matrix estimated from the
EZmocks. The fits are done using MINUIT. BAO fits in configuration
space are done with the monopole and quadrupole, using the
same correlation function binning as the RESPRESSO model, and a
Gaussian covariance matrix.

5.3 Results

Model fits are shown in Fig. 6 to the power spectrum and correlation
function measurements of Mock3 (i.e. the mocks constructed using
HOD3). For the RegPT and RESPRESSO models, the fits are done with
each of the different cases of redshift smearing. For the CLPT model,
the fit is done only with no redshift smearing. This figure highlights
the impact of redshift smearing on the clustering measurements.

The impact of redshift smearing on the correlation function is
most noticeable in the shape of the quadrupole on small scales, but
it also has the effect of increasing the amplitude of the monopole
on small scales by a small amount, and also affects the shape of the
hexadecapole. The difference between the two models of redshift
smearing is small, with the most noticeable difference being in
the hexadecapole on small scales. Including catastrophic redshifts
reduces the amplitude of the clustering by a small fraction.

Differences in the power spectrum are much more apparent. In-
cluding redshift smearing lowers the amplitude of the monopole and
the quadrupole at large k, and a larger difference is seen in the shape
of the monopole and the quadrupole between the two kinds of redshift
smearing. The two-point clustering statistics measured from the
mock are well fit by all models, with and without redshift smearing.

The results for all 20 sets of mocks for all redshift smearing cases
are shown in Fig. 7. The points in the plot depict the mean values of
fσ 8, α�, and α⊥ measured from each of the 20 sets of 100 mocks, and
the error bars indicate the error on the mean from the 100 individual
mocks. The shaded areas indicate 3 per cent in fσ 8 and 1 per cent
in α� and α⊥. This range represents ∼ 30 per cent of the statistical
error, which we consider as the limit that would be acceptable for the
systematic error.

For the case in which there is no redshift smearing (indicated by
the blue shading in Fig. 7), the models are able to recover values
of fσ 8 within 3 per cent and α� and α⊥ to within 1 per cent for
almost all of the mocks. The results obtained using the RegPT and
CLPT models are mostly in agreement with each other. However,
there is a small offset between these and the results from RESPRESSO.
The RESPRESSO model, on average, measures values of fσ 8 and α⊥,
which are systematically smaller, by ∼ 2 per cent and ∼ 0.5 per cent,
respectively, and the values of α� are ∼ 0.5 per cent larger. This
difference is explained by the parameter σ zerr in the FoG prescription
used in the RESPRESSO model, which models the redshift error.
This is a free parameter, but since these mocks do not contain
redshift smearing, fitting the value σ zerr leads to a small bias in
the measurements of fσ 8, α�, and α⊥. We tested the effect of fixing
σ zerr to σ zerr = 0, and this has the effect of increasing the best-fitting
values of fσ 8 and α⊥, and reducing α�, bringing the results of all
three models into agreement.

The results for the case of Gaussian redshift smearing are indicated
by the yellow shading in Fig. 7. Again, all the results are within the
target ranges for each of the parameters. With Gaussian smearing, the
best-fitting α� and α⊥ parameters from the RegPT and RESPRESSO

models are mostly in close agreement. For fσ 8, there is a small offset
between the two, with the RESPRESSO model measuring values that
are systematically slightly higher by ∼ 2 per cent. Since these mocks
contain redshift smearing, which is modelled in the RESPRESSO model
by the parameter σ zerr, the best-fitting parameters measured by the
RESPRESSO model are closer to the true values, compared to the no
smearing case.

With the redshift smearing modelled as a more realistic double-
Gaussian, the results obtained are shown by the green shading in
Fig. 7. Again, the results are within 3 per cent for fσ 8 and 1 per cent
for α� and α⊥ for all models. However, now the fσ 8 is in agreement
between the models, with a small difference of ∼ 0.5 per cent in α�.
Compared to the case of Gaussian smearing, there is very little change
in the results using RESPRESSO. The fσ 8 from the RegPT model is, on
average, ∼ 1 per cent larger, with a ∼ 0.5 per cent lower value for α�.

Finally, the effect of including catastrophic redshifts is shown
by the red shading in Fig. 7. The mocks here are the same as the
mocks with realistic redshift smearing, but 1.5 per cent of objects
are assigned a random redshift, from a uniform distribution. This has
only a small effect on α� and α⊥ but leads to values of fσ 8 that are
systematically lower by ∼ 3 per cent. This effect on fσ 8 is expected,
since assigning objects random redshifts will dilute the clustering,
reducing the amplitude of the correlation function quadrupole,
resulting in smaller values of fσ 8. Despite this shift in fσ 8, the
best-fitting values are still within 3 per cent of the expected fiducial
value.

In addition to the full-shape analyses, the BAO-only fits in
configuration and Fourier space are also shown in Fig. 7 for the
different redshift smearing cases. For most mocks, the best-fitting
values of α� and α⊥ are within 1 per cent. The best-fitting values
of α⊥ from the two BAO models are in good agreement, while
there is an offset of ∼ 0.5 per cent in α�, with the Fourier-space
fits measuring values that are systematically larger. The inclusion of
redshift smearing or catastrophic redshifts does not strongly affect
the BAO results.

5.3.1 Observer position

To mitigate the effect of observer position on the average results,
we alternate between which of the six box sides the observer is
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Figure 6. Left-hand panel: Power spectrum multipoles measured from Mock3, and the best-fitting RegPT model, for the cases of no smearing (blue), Gaussian
smearing (yellow), realistic smearing (green), and catastrophic redshifts (red). Points indicate the average measurement from the 100 mocks, where the error bar
is the 1 σ scatter. The best-fitting model is shown by the curves, where the solid, dashed, and dotted curves are the monopole, quadrupole, and hexadecapole,
respectively. Right-hand panel: Correlation function multipoles and the best-fitting RESPRESSO model (top) and CLPT model (bottom).

positioned at. If the observer is kept fixed, this can lead to offsets in
the measurements of fσ 8, α�, and α⊥.

The impact of observer position is shown in Fig. 8 for Mock0,
which shows the offset in the best-fitting parameters for the subset
of mocks with observer at each box side, compared to the mean
of all mocks. For the α parameters, the shifts are small and within
1 per cent. Since the choice of observer position has only a small
impact on the monopole, it is expected that the shifts in the α

parameters will be small. However, for fσ 8, the shifts can be larger
than 5 per cent for certain observer positions.

The impact of varying the observer position on the quadrupole, and
how this propagates through to the fσ 8 measurements, is investigated
in Smith et al. (2020). The offsets seen in the fσ 8 measurements
depend on the box size and also on the bias of the tracer. For the
QSOs, which are highly biased, large offsets of this magnitude are
expected. Averaging together the different lines of sight mitigates
this effect, reducing the variance by a factor better than 1/3.

5.3.2 Stability of the models

The results of the non-blind mock challenge show that all models are
able to recover the expected value of fσ 8 to within 3 per cent, and α�

and α⊥ to within 1 per cent, even for mocks that are constructed using
extreme HOD models, which are not motivated by quasar physics.
RSD in the mock catalogues are impacted by the choice of HOD and
also the prescription of redshift smearing. However, the nuisance
parameters that enter our models are able to absorb these effects in
terms of the redshift uncertainty. In this section, we give examples of
how the FoG parameters in the models respond to the HOD (in terms
of satellite fraction) and redshift smearing. We note that the other
nuisance parameters also show some sensitivity to these effects.

In the model that we refer to as ‘RegPT’ (which combines RegPT
with the specific RSD prescription described in Section 3.3.1), the
free parameters are avir and σ v , while for the ‘RESPRESSO’ model
(Section 3.3.2), the parameters are avir and σ zerr.

The different HOD models we consider cover a wide range of
satellite fractions, some of which are very high (e.g. HOD13 and
HOD8, where the satellite fractions are 73 per cent and 100 per cent,
respectively). The parameters that model the RSDs all show trends
with the satellite fraction. In the upper panel of Fig. 9, we show
the best-fitting values of σ zerr as a function of satellite fraction,
measured by the RESPRESSO model, for the mocks with Gaussian
smearing. The values of σ zerr follow a linear trend, which increases
with the satellite fraction. Satellite quasars are assigned a random
virial velocity (Section 4.2.2), which is similar to satellites having
a larger redshift uncertainty. However, the satellite fraction and
redshift smearing impact the clustering measurements on different
scales. The quadrupole is impacted by the satellite fraction on scales
∼40 h−1Mpc, while redshift smearing has an impact on larger scales,
up to ∼90 h−1Mpc.

The bottom panel of Fig. 9 shows the best-fitting values of
avir and σ v from the RSD prescription of the RegPT model, and
also avir and σ zerr of the RESPRESSO model, for different cases of
redshift smearing. The treatment of the FoG factor is very similar
between the two models, but the RESPRESSO model contains a velocity
dispersion ‘offset’.5 The parameters respond to the redshift smearing
schemes, but their behaviours differ between the redshift smearing
implementations. The velocity dispersion offset in the RESPRESSO

5In the FoG prescription used in the RESPRESSO model, σv is kept fixed to a
non-zero value. This results in a k and μ dependence, which does not vanish
when avir = σ zerr = 0.
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Figure 7. Best-fitting values of fσ 8 (upper panels), α� (middle panels), and α⊥ (lower panels), measured from the 20 sets of 100 non-blind mocks, for all
redshift smearing prescriptions. The results from the RegPT model are shown in blue, RESPRESSO in red, and CLPT in yellow. The BAO fits in Fourier and
configuration space are shown in green and brown, respectively. Points show the mean of the best-fitting parameters of the 100 mocks, and the error bars show
the standard error on the mean. Shaded regions indicate 3 per cent for fσ 8, and 1 per cent for α� and α⊥. The colour of the shaded region corresponds to the
redshift smearing included in the mocks. No smearing is indicated in blue, Gaussian smearing in yellow, realistic smearing in green, and realistic smearing with
1.5 per cent catastrophic redshift errors in red.

Figure 8. Shift in the best-fitting values of fσ 8 (blue), α� (yellow), and α⊥
(green), measured from Mock0 using the CLPT model, with an observer at
each of the six box sides, compared to the average value. Error bars indicate
the error on the mean. Grey shaded regions indicate 1 per cent and 3 per cent.

model lowers the values of σ zerr. In both models, the parameter avir

never vanishes, which demonstrates that the FoG factor cannot be
modelled by a pure Gaussian function. Using a pure Gaussian or a
pure Lorentzian FoG factor leads to a biased measurement of fσ 8.

Figure 9. Top panel: Best-fitting values of σ zerr from the RSD prescription
used in the RESPRESSO model, plotted as a function of satellite fraction, for
the 20 sets of non-blind mocks with Gaussian redshift smearing. The dotted
line shows a linear fit. Bottom panel: Average values of the avir (blue) and σv

(yellow) parameters, from the RSD prescription of the RegPT model, and avir

(green) and σ zerr (red) of RESPRESSO for the cases of no smearing, Gaussian
smearing, and realistic smearing. Error bars indicate the 1σ scatter between
mocks.
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Figure 10. Results from the non-blind mock challenge, averaged over all
20 sets of mock catalogues, for the cases of no redshift smearing, Gaussian
smearing, realistic double-Gaussian smearing, and 1.5 per cent catastrophic
redshifts. Points show the average values measured using RegPT (blue),
RESPRESSO (red), and BAO fits in Fourier space (green) and configuration
space (brown), where error bars show the 1σ scatter between all mocks. Grey
shaded regions indicate 3 per cent for fσ 8 and 1 per cent for α� and α⊥.

We also checked that our results are stable for different choices of
binning in the two-point clustering measurements. For the RESPRESSO

model, for five sets of mocks, we re-measure the correlation function
multipoles in bins of separation 5 h−1Mpc and fit the model to these
correlation function measurements. We find that reducing the bin
separation from 8 h−1Mpc to 5 h−1Mpc has a very small effect on our
results and does not change our picture of the modelling systematics.

5.3.3 Non-blind systematics

The results from all the non-blind mocks are summarized in Fig. 10.
The points are the average of all 20 sets of mocks, for each of the
different cases of redshift smearing, where the error bars show the
standard deviation. In order to calculate a systematic error, we also
calculate the rms, defined as

rms =
√√√√ N∑

i

(xi − xtrue,i)2

N
, (34)

where xi is the value of a parameter measured from mock i, xtrue, i is
the true value, and N is the number of mocks. In the case of the non-
blind mocks, xtrue, i is constant, and the rms is equivalent to adding the
offset from the true value, and the standard deviation, in quadrature.
The average, standard deviation, and rms of fσ 8, α�, and α⊥ for the
non-blind mocks are given in Table 6 for all models.

6 B L I N D C H A L L E N G E

6.1 Validation of blind mocks

Before analysing the blind mocks in the OuterRim fiducial cos-
mology, we first analyse the clustering using CLPT in the target
cosmology to ensure that the rescaling of the cosmology is correct.
This is done with the initial set of eight mocks, which were
constructed using the same HOD. Since we use the target cosmology
as the fiducial cosmology, the expected value of α� and α⊥ is 1,
while fσ 8 varies between the different cosmologies. These results

Table 6. Results from the non-blind mock challenge using the RegPT,
RESPRESSO, and BAO models, averaged over all 20 sets of mocks, for the
cases of no smearing, Gaussian smearing, realistic smearing, and catastrophic
redshifts. 〈fσ 8〉 is the mean of the 20 values of fσ 8, σ (fσ 8) is 1 standard
deviation, and rms(fσ 8) is defined in equation (34). The same values are
provided for α� and α⊥.

RegPT No Gaussian Realistic Catastrophic
smearing smearing smearing redshifts

〈fσ 8〉 0.3836 0.3786 0.3840 0.3746
σ (fσ 8) 0.0029 0.0028 0.0034 0.0031
rms(fσ 8) 0.0033 0.0044 0.0039 0.0081
〈α�〉 0.9994 0.9999 0.9969 0.9986
σ (α�) 0.0040 0.0040 0.0038 0.0033
rms(α�) 0.0041 0.0040 0.0049 0.0036
〈α⊥〉 1.0037 1.0021 1.0049 1.0036
σ (α⊥) 0.0027 0.0025 0.0023 0.0021
rms(α⊥) 0.0046 0.0033 0.0054 0.0042

RESPRESSO

〈fσ 8〉 0.3767 0.3853 0.3864 0.3751
σ (fσ 8) 0.0030 0.0040 0.0040 0.0038
rms(fσ 8) 0.0060 0.0052 0.0060 0.0078
〈α�〉 1.0031 0.9996 1.0010 1.0015
σ (α�) 0.0039 0.0036 0.0036 0.0040
rms(α�) 0.0050 0.0036 0.0037 0.0043
〈α⊥〉 0.9983 1.0027 1.0013 0.9995
σ (α⊥) 0.0029 0.0025 0.0022 0.0024
rms(α⊥) 0.0033 0.0036 0.0026 0.0025

BAO
(Fourier)
〈α�〉 1.0065 1.0037 1.0048 1.0046
σ (α�) 0.0034 0.0045 0.0031 0.0037
rms(α�) 0.0073 0.0058 0.0058 0.0059
〈α⊥〉 1.0003 1.0007 1.0011 1.0014
σ (α⊥) 0.0028 0.0026 0.0020 0.0021
rms(α⊥) 0.0028 0.0027 0.0023 0.0025

BAO
(Config.)
〈α�〉 0.9990 0.9960 0.9983 0.9982
σ (α�) 0.0050 0.0055 0.0049 0.0053
rms(α�) 0.0051 0.0068 0.0052 0.0056
〈α⊥〉 1.0015 1.0020 1.0021 1.0021
σ (α⊥) 0.0028 0.0026 0.0029 0.0030
rms(α⊥) 0.0032 0.0033 0.0036 0.0037

are shown in Fig. 11. For all the mocks, the measured values of
fσ 8 are within 3 per cent, and α� and α⊥ are within 1 per cent. On
average, the measured values of fσ 8 and α⊥ are higher than the
true values by ∼1 per cent and ∼0.5 per cent, respectively, while
α� is ∼0.5 per cent low. The same offsets are seen when analysing
the non-blind mocks using CLPT (Fig. 7). This validates that the
rescaling method is working as expected, and we now go on to
analyse the mocks blind, using the RegPT and RESPRESSO models,
with OuterRim as the fiducial cosmology.

6.2 Results

6.2.1 Blind mocks with fixed HOD

The results, when analysing the mocks with an OuterRim fiducial
cosmology, are shown in Fig 12. Since the fiducial cosmology no
longer matches the true cosmology of the simulation, the expected
values of the α parameters vary from 1 by up to 3 per cent, but the
values of fσ 8 are unaffected. The best-fitting parameters are now in
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Figure 11. Results from analysing the eight sets of blind mocks, with fixed
HOD, with the CLPT model, using the target cosmology as the fiducial
cosmology. Points with error bars are the results from CLPT, while the true
values are shown in black. The grey shaded regions indicate 3 per cent for
fσ 8 and 1 per cent for α� and α⊥.

Figure 12. Results from the blind mocks, with fixed HOD, using an
OuterRim WMAP7 fiducial cosmology. Points show the results from the
RegPT model (blue), RESPRESSO model (red), and CLPT (yellow), with error
bars showing 1σ . The expected values are shown by the black lines, with
shaded regions indicating 3 per cent for fσ 8 and 1 per cent for α� and α⊥.

less good agreement with the expected results than when the fiducial
cosmology was the true cosmology of the rescaled simulation. For
many of the mocks, the measured values are outside the ranges of
3 per cent for fσ 8 and 1 per cent for the α parameters. For example,
the measurements of fσ 8 are approximately 5 per cent too high for
mock 3 and 5 per cent too low for mock 7. The variation between the
measured and expected values is similar for all of the models.

The origin of these differences is not due to the models themselves,
since they are able to recover the expected parameters when the
correct fiducial cosmology is used, and we have validated that there
is no systematic due to the rescaling procedure. The larger scatter in
the results is due to the fiducial cosmology used.

When the galaxy clustering is measured using an incorrect fiducial
cosmology, this has the effect of shifting the BAO position by the
factors α� and α⊥, parallel and perpendicular to the line of sight,
respectively. It has been shown that BAO fitting can recover unbiased

Figure 13. Top panel: correlation function calculated from the linear power
spectrum of the OuterRim simulation (black dashed curve) and for the eight
new cosmologies (solid coloured curves, as indicated in the legend). Correla-
tion functions have been shifted vertically so that they match OuterRim at r =
40 h−1Mpc. Bottom panel: same as the top panel, but with a rescaling of r so
that the BAO peaks align. Black dotted lines indicate the maximum change
in the OuterRim ξ (r) when varying the cosmological parameters within the
1σ errors from Planck.

measurements of α� and α⊥, over a range of different choices of
fiducial cosmology (e.g. Vargas-Magaña et al. 2018; Carter et al.
2020). However, in order to also measure fσ 8, it is necessary to
perform full shape fits to the correlation function and power spectrum
multipoles. While the position of the BAO peak in the data will be
shifted by the expected α parameters, compared to the template,
which is calculated in the fiducial cosmology, the shape of the
correlation function on smaller scales will not necessarily match the
template, leading to biased measurements of fσ 8, α�, and α⊥. The
overall shape of the measured correlation function does not change
when a different fiducial cosmology is used, but the shape of the
template does change.

Correlation functions are shown in the top panel of Fig. 13 in the
cosmologies of the eight blind mocks, compared to the OuterRim
cosmology. These curves are calculated from the linear power
spectrum and have been normalized to have the same amplitude
as OuterRim at r = 40 h−1Mpc to emphasize the differences in
shape. The templates used in the model fitting also show the same
differences in shape. In the lower panel of Fig. 13, the distances
have been rescaled to align the position of the BAO peaks, further
emphasizing the differences. For most of the cosmologies, the change
in shape, compared to OuterRim, is within the range expected
when modifying cosmological parameters within the 1σ errors of
Planck. The most extreme cosmologies are cosmology 7, which has
a high amplitude at the BAO scale, and cosmology 2, where the
slope on small scales is much steeper than OuterRim. If there is a
large mismatch in the slope on small scales, this leads to biased
measurements of α� and α⊥. For example, it is not possible to
rescale the black OuterRim correlation function curve in Fig. 13
to match both the slope on small scales and the BAO peak position,
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Figure 14. Ratio of the measured values of fσ 8, α�, and α⊥ from the blind
mocks with fixed HOD to the expected value, as a function of �m. Points are
the results using the RegPT model (blue), RESPRESSO model (red), and CLPT
(yellow). Dotted lines show a linear fit to the results from each model, as a
function of �m. Grey shaded regions indicate 3 per cent for fσ 8 and 1 per cent
for the α parameters.

of cosmology 2, so in the best-fitting model, there will be a systematic
offset in the BAO position.

The precise shape of the correlation function is affected by each
of the cosmological parameters chosen (except σ 8, which changes
only the normalization). The parameter that has the largest effect on
the shape is �m. Fig. 14 shows the ratio between the measured and
expected values, as a function of �m, for the three RSD models. This
reveals a correlation with �m: for cosmologies with low values of �m

compared to the fiducial cosmology, the best-fitting values of all the
parameters are systematically low, while for the mocks with larger
values of �m, the measured parameters tend to be higher than the
expected values. For each of the parameters, the dependence on �m is
approximately linear for the changes in cosmology considered here,
as indicated by the linear fits in Fig. 14. The best-fitting values of
fσ 8 are within 3 per cent of these linear fits, and the α parameters are
within 1 per cent, with the exception being the mock with cosmology
2. This is the cosmology that has the largest difference in the shape
of the template, with a steep slope on small scales (the green curve
in Fig. 13).

6.2.2 Blind mocks with varying HOD

Clustering measurement from the set of 24 blind mocks (with varying
HOD and additional velocity scaling) is fit using the RegPT and
RESPRESSO models. Results are shown in Fig. 15, with the ratios to
the true values shown in Fig. 16. For most of the mocks, the measured
value is within 3 per cent for fσ 8 and 1 per cent for α�, but there are
some outliers, which come from the mocks with the largest changes
in cosmology (cosmology 2 and 7, see Tables 4 and 5), and hence
have the largest difference in the shape of the template (Fig. 13).

The mean, standard deviation, and rms from this set of blind
mocks are shown in Table 7 for all models. There is a small
offset in the best-fitting values from the RESPRESSO model: fσ 8 is
systematically ∼2 per cent low, and values of α� are 0.7 per cent
high, when compared to the true values for each of the cosmologies.
This is because these mocks do not contain redshift smearing, while
the parameter σ zerr, which models the redshift smearing, is a free
parameter in the RESPRESSO model. As was shown in the case of the

non-blind mocks with no smearing, this leads to a systematic offset
in the measurements of these parameters.

The BAO fits are less affected by the assumption of fiducial
cosmology. Compared to the full-shape fits, the scatter in the ratios
of α� between the 24 mocks is smaller, leading to smaller values of
the rms in Table 7. For α⊥, the rms is comparable to the full-shape
fits.

The distributions of the measurements of fσ 8, α�, and α⊥ from
the blind mocks in Fig. 16 are shown in Fig. 17. The mean, standard
deviation, and rms are indicated by the vertical lines (for fσ 8, the
rms is divided by the average true value of fσ 8 from all the blind
mocks). For models where the mean value is close to 1, the standard
deviation and rms are very close. The value of the rms is primarily
driven by the standard deviation but is slightly increased for models
with the largest offsets.

6.3 Systematic errors

The aim of the mock challenge is to estimate the systematic error
in the measured values of fσ 8, α�, and α⊥ in the analysis of the
eBOSS QSO clustering sample, using the RSD models of RESPRESSO

and RegPT. This systematic error needs to encompass the effects of
different HODs, redshift smearing, catastrophic redshifts, and an
incorrect assumption for the fiducial cosmology. To calculate the
total systematic error, we therefore combine the results of the set of
20 catastrophic redshift non-blind mocks, with the set of 24 blind
mocks.

For the blind mocks, in order to estimate the systematic from
different cosmologies, we calculate the rms of the 24 sets of mocks
(defined in equation 34). However, the RESPRESSO model is affected
by an additional systematic from having the parameter σ zerr free
when the mocks do not contain redshift smearing.6 To remove this
systematic offset, and to measure only the systematic due to the
fiducial cosmology, we use the results from the non-blind mocks
with no redshift smearing to apply a correction. For fσ 8, the corrected
value is

f σ corr
8 =

(
f σ

nb,true
8

f σ nb
8

)
f σ8, (35)

where f σ nb
8 is the average value of fσ 8 measured from the non-blind

mocks (given in Table 6), and f σ
nb,true
8 = 0.382 is the true value

of fσ 8 in the non-blind mocks. A similar correction is made to α�

and α⊥. The RegPT model is unaffected, by this, so no correction is
needed. The results, after the correction, are given in the third column
of Table 7. The values of rms are slightly larger for RESPRESSO than
the RegPT model, but both are at a level of ∼0.01 for fσ 8 (which is
∼2.5 per cent for a value of fσ 8 = 0.382), ∼1 per cent for α� and
∼0.6 per cent for α⊥. Since the BAO fits are affected less by the
fiducial cosmology, the rms values of α� and α⊥ are smaller than for
the full-shape fits.

To measure the effect of different HODs, redshift smearing, and
catastrophic redshifts, we calculate the rms from the ‘catastrophic
redshift’ set of non-blind mocks, which include all these effects.
These values are given in the final column of Table 6 for each model.
Compared to the blind mocks, the rms values from the non-blind
mocks are all smaller.

6To test the flexibility of the model, σ zerr is left as a free parameter during the
blind analysis. Afterwards, we compared the difference between varying and
fixing σ zerr, and we found systematic shifts of ∼1 per cent, ∼0.3 per cent,
and ∼0.2 per cent in fσ 8, α�, and α⊥, respectively.
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Figure 15. Results from the blind mock challenge, for the 24 sets of blind mocks in which the HOD was varied, and additional velocity scalings were also
applied. Points show the average results from the RegPT model (blue), RESPRESSO model (red), combined consensus (black), and BAO fits in Fourier space
(green), and configuration space (brown) of fσ 8, α�, and α⊥. Black lines indicate the true values, with the shaded regions showing 3 per cent for fσ 8 and
1 per cent for the α parameters.

Figure 16. Same as Fig. 15, but showing the ratio to the true values.

The total error is calculated by adding the rms from the blind and
non-blind mocks in quadrature. These are given in Table 8. These are
conservative estimates for the total systematic errors. First, adding
the errors in quadrature assumes that they are uncorrelated, which

is not necessarily true, and results in a slight overestimate of the
total error. Also, the blind mocks cover a wide range of different
cosmologies. For the non-blind mocks, the scatter between the many
HODs has the largest effect on the measured rms, while for the blind
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Table 7. Results from the blind mock challenge for the RegPT and RESPRESSO models, and BAO fits
in Fourier and configuration space, averaged over the 24 blind mocks. For each of the parameters fσ 8,
α�, and α⊥, we calculate the mean, standard deviation, and rms of the ratios to the true values. In the
third column, the results of the non-blind mocks have been used to correct the systematic offsets in the
RESPRESSO model due to having the parameter σ zerr free.

RegPT RESPRESSO RESPRESSO BAO BAO
(corrected) (Fourier) (Config.)

〈f σ8/f σ true
8 〉 0.9904 0.9820 0.9957 – –

σ (f σ8/f σ true
8 ) 0.0230 0.0265 0.0269 – –

rms(fσ 8) 0.0093 0.0123 0.0105 – –

〈α‖/αtrue
‖ 〉 0.9992 1.0066 1.0035 1.0029 0.9992

σ (α‖/αtrue
‖ ) 0.0089 0.0104 0.0103 0.0074 0.0083

rms(α�) 0.0091 0.0122 0.0109 0.0079 0.0085

〈α⊥/αtrue
⊥ 〉 1.0017 1.0006 1.0022 0.9980 0.9995

σ (α⊥/αtrue
⊥ ) 0.0048 0.0071 0.0071 0.0045 0.0057

rms(α⊥) 0.0051 0.0072 0.0072 0.0049 0.0056

Figure 17. Distributions of the measured values of fσ 8 (left column), α�

(middle column), and α⊥ (right column) from the 20 sets of blind mocks for
the RegPT model (blue), RESPRESSO model (red), and the BAO fits in real
space (green) and Fourier space (brown). The vertical lines indicate the mean
(black solid line), σ (coloured dotted line), and rms (coloured solid line).

Table 8. Final systematic errors in fσ 8, α�, and α⊥, from the RESPRESSO and
RegPT models, combined consensus, and BAO fits.

fσ 8 α� α⊥

RegPT 0.0123 0.0098 0.0066
RESPRESSO 0.0131 0.0117 0.0078
Consensus 0.0106 0.0079 0.0048
BAO (Fourier) – 0.0098 0.0055
BAO (Configuration) – 0.0102 0.0067

mocks, the main effect is from the different cosmologies. However,
there is also an additional effect in the blind mocks from changing
the HODs.

The RegPT and RESPRESSO models both perform well, with similar
systematic errors. For both RSD models, we take conservative

systematic errors of σf σ8 = 0.013, σα‖ = 0.012, and σα⊥ = 0.008.
These errors are small compared to the errors in the data, and are, at
most, expected to be 30 per cent of the statistical error. The BAO fits
in configuration and Fourier space also both perform well, and we
take conservative systematic errors of σα‖ = 0.010 and σα⊥ = 0.007.

In addition to calculating a systematic error for the individual
models, the results using the RegPT and RESPRESSO models are
combined into a single consensus result. The results from the two
models are combined using the method of Sánchez et al. (2017a).
Despite the results of the two analyses being highly correlated, by
combining the results, further constraints are placed on the allowed
parameter space, resulting in the combined results having a smaller
uncertainty than each individual analysis. The systematic error in
the consensus result is shown in Table 8. The systematic errors
of the combined consensus result are reduced to σf σ8 = 0.011,
σα‖ = 0.008, and σα⊥ = 0.005. These systematic errors are included
as part of the quoted errors in the final eBOSS DR16 consensus
results.

7 C O N C L U S I O N S

The eBOSS quasar sample, in the redshift range of 0.8 < z < 2.2,
can be used as a direct tracer of the matter density field, enabling
measurements to be taken of the growth rate, Hubble distance, and
transverse comoving distance at this redshift. These measurements
can be used to place constraints on theories of dark energy and
models of modified gravity. The aim of the quasar mock challenge
is to validate the RSD and BAO models used in the analysis of Hou
et al. (2020) and Neveux et al. (2020), in configuration and Fourier
space, and estimate the systematic uncertainties.

Mock catalogues are generated using the OuterRim N-body
simulation, which has a box size of 3 h−1Gpc and was run in a
WMAP7 cosmology. The box is populated with quasars using 20
different HODs, which are tuned to give approximately the same
clustering measurements as the eBOSS DR16 quasar sample and the
same number density. We populate the snapshot at z = 1.433, which
is closest to the effective redshift of the data, zeff = 1.48.

For the non-blind part of the mock challenge, 100 individual mocks
are generated from the OuterRim box for each of the 20 HODs,
which are analysed using the OuterRim cosmology as the fiducial
cosmology. For each mock, we create a version with no redshift
smearing, with Gaussian redshift smearing, and a more realistic
double Gaussian redshift smearing. We also create a set of mocks that

MNRAS 499, 269–291 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/1/269/5908387 by guest on 20 April 2024



290 A. Smith et al.

contains realistic smearing and 1.5 per cent catastrophic redshifts,
which are generated from a uniform redshift distribution.

For the non-blind mocks with no smearing, the RegPT, RESPRESSO,
and CLPT models all perform equally well, and there is no reason
to choose any particular model over any other. In the Fourier-space
analysis of Neveux et al. (2020), the RegPT model is used, while
RESPRESSO is used for the configuration-space analysis of Hou et al.
(2020). These models are able to measure the parameters fσ 8 within
3 per cent, and α� and α⊥ to within 1 per cent, with and without
redshift smearing. The inclusion of catastrophic redshifts dilutes the
clustering signal, leading to the measured fσ 8 being biased towards
smaller values, but this is still within the limit of ∼3 per cent.

Blind mocks are generated from the OuterRim simulation, using
the method of Mead & Peacock (2014a) to rescale the halo positions,
velocities, and masses, in order to mimic a simulation that was run
in a different target cosmology. We rescale the OuterRim simulation
to eight new cosmologies, and generate eight sets of 100 mocks,
using the same HOD for each. The CLPT model is used to validate
the rescaled cosmologies by recovering the expected values of fσ 8,
α�, and α⊥. When the OuterRim cosmology is used as the fiducial
cosmology, the scatter in the measured values of the parameters is
larger for all models, due to the incorrect assumption of the fiducial
cosmology. While the BAO peak position is scaled by the expected
α parameters, the incorrect assumption of the fiducial cosmology
distorts the clustering on small scales, leading to clustering measure-
ments that do not match the shape of the template. This results in a
biased measurement of fσ 8, α�, and α⊥, which is correlated with �m.
We also generate a set of 24 blind mocks, using the same rescaled
OuterRim snapshots, but with the HOD varied, and an additional
scaling applied to velocities.

To calculate the systematic error, we combine the results from
the 24 blind mocks, with the 20 non-blind mocks with catastrophic
redshifts, to take into account the effects of the incorrect assumption
of the fiducial cosmology, different HODs, redshift smearing, and
catastrophic redshifts. We calculate the rms of the blind and non-
blind mocks, which are added in quadrature to estimate the total error.
We use the non-blind mocks with no smearing to correct the results
from the RESPRESSO model for having the parameter σ zerr free, which
biases the results when the mocks do not contain redshift smearing.

The RegPT and RESPRESSO models perform equally well, and we
take systematic errors for both models of σf σ8 = 0.013, σα‖ = 0.012,
and σα⊥ = 0.008. For the BAO fits, we take systematic errors of
σα‖ = 0.010 and σα⊥ = 0.007. These results are a conservative upper
bound, since they assume that the errors in the blind and non-blind
mocks are uncorrelated, and that the blind mocks cover a wide range
of cosmological parameters. The results of the RegPT and RESPRESSO

models are combined into a single consensus result, which tightens
the constraints on the parameters, compared to the individual analy-
ses. The consensus systematic errors are σf σ8 = 0.011, σα‖ = 0.08,
and σα⊥ = 0.005. These errors are combined with the errors in the
final consensus results from the analysis of the eBOSS DR16 quasar
sample. The tests that we have performed in this work show that the
measurement of the BAO scale is very robust, despite the effects of
redshift uncertainty and the wide range of HOD models we have used.
We can therefore be confident that using such methods will enable
accurate cosmological distance measurements in future surveys.

The mock challenge presented in this paper is similar to what has
been done previously in the BOSS survey. Future surveys, such as
DESI, LSST, and Euclid, will cover much larger volumes and aim to
very precise, sub-per cent-level cosmological measurements. In order
to achieve this precision, it will be essential that systematics in the
models can be reduced as much as possible. Using mock catalogues

based on a single N-body simulation, as was done in this work,
will not be good enough, and assessing the systematics will require
large numbers of N-body simulations, with different cosmological
parameters, both within �CDM and also extending to models beyond
�CDM. For the DESI survey, many of the simulations and mock
catalogues required have already been produced, and work on the
mock challenge is currently under way.
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