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ABSTRACT
Cosmic variance is the intrinsic scatter in the number density of galaxies due to fluctuations in the large-scale dark matter density
field. In this work, we present a simple analytic model of cosmic variance in the high-redshift Universe (z ∼ 5–15). We assume
that galaxies grow according to the evolution of the halo mass function, which we allow to vary with large-scale environment. Our
model produces a reasonable match to the observed ultraviolet (UV) luminosity functions in this era by regulating star formation
through stellar feedback and assuming that the UV luminosity function is dominated by recent star formation. We find that
cosmic variance in the UV luminosity function is dominated by the variance in the underlying dark matter halo population, and
not by differences in halo accretion or the specifics of our stellar feedback model. We also find that cosmic variance dominates
over Poisson noise for future high-z surveys except for the brightest sources or at very high redshifts (z � 12). We provide a
linear approximation of cosmic variance for a variety of redshifts, magnitudes, and survey areas through the public PYTHON

package GALCV. Finally, we introduce a new method for incorporating priors on cosmic variance into estimates of the galaxy
luminosity function and demonstrate that it significantly improves constraints on that important observable.
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1 IN T RO D U C T I O N

Extragalactic astronomy is closing in on arguably the most important
era of galaxy evolution: the formation of the first galaxies. These
galaxies will allow us to probe the processes that drove the first
emergence of complexity in our Universe.

The most fundamental observations for studying this era have
been (and will continue to be) deep galaxy surveys. These surveys
measure many important features of the galaxy population, most fun-
damentally the ultraviolet luminosity function (UVLF) of galaxies.
The UVLF is a measure of the number of galaxies at each luminosity,
and its shape and evolution through cosmic time has important
implications for the physics behind galaxy formation and growth,
and much more (see e.g. Bouwens et al. 2015; Finkelstein et al.
2015; Livermore, Finkelstein & Lotz 2017; Atek et al. 2018; Oesch
et al. 2018; Behroozi et al. 2019). Unfortunately, these deep galaxy
surveys will have very small volumes, which will be a key limitation
in measuring the UVLF due to the effects of ‘cosmic variance’: not
all regions of the Universe contain the average number of galaxies,
and those galaxies did not all grow up in an average environment.
We must understand how cosmic variance affects the UVLF in order
to inform and correctly interpret future deep galaxy surveys.

Cosmic variance in the UVLF (and other measures) has been
modelled in a variety of ways in the past. For example, analytic
models typically start with the linear halo bias function and then
connect haloes to galaxies with a halo mass–luminosity relation, or by
matching abundances (see e.g. Newman & Davis 2002; Somerville
et al. 2004; Stark, Loeb & Ellis 2007; Moster et al. 2011). These
models conclude that cosmic variance is a significant source of
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uncertainty when studying galaxies at high redshifts. However, such
models do not allow cosmic variance to affect the halo mass to
luminosity connection itself; they assume galaxies are the same in all
environments. Also, the linear halo bias function does not accurately
predict cosmic variance in extreme environments.

Cosmic variance can also be estimated using mock observations
of galaxy simulations. The early implementations of this method
(see e.g. Kitzbichler & White 2007; Trenti & Stiavelli 2008) were
very powerful, but also assumed galaxies are the same in all environ-
ments. Recently, substantial improvements in computing power have
allowed for much higher volume N-body simulations that also treat
star formation in a more complex way (e.g. Bhowmick et al. 2020;
Ucci et al. 2020). These studies take into account the difference
in environment on individual galaxy growth, and are a major step
forward in predicting cosmic variance in the first galaxies. However,
these studies (1) are still limited by their volume, as a complete
picture of cosmic variance requires extremely large volumes to
calculate cosmic variance on all relevant scales and magnitudes;
(2) cannot explore how cosmic variance depends on their specific
implementation of mass accretion, star formation, feedback, and
other parameters, without rerunning simulations many times, which
would be prohibitively expensive; and (3) can be limited in their
redshift or magnitude ranges.

Simulations lack large volume and flexibility, while existing
analytic models rely on linear theory and lack a fully self-consistent
connection between cosmic variance and galaxy growth and star
formation.

Quantitative interpretations of high-z data require corrections for
cosmic variance, especially because most planned surveys subtend
relatively small volumes. Such corrections are particularly important
when multiple independent surveys are combined, as each such
survey contains its own (unknown) intrinsic density. The standard
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method to account for cosmic variance when fitting a UVLF,
originally developed by Sandage, Tammann & Yahil (1979) and used
by e.g. Efstathiou, Ellis & Peterson (1988) and Bouwens et al. (2015),
fits a universal shape of the UVLF to all fields, ignoring the normal-
ization parameter of the fit in each individual field. After the shape
has been optimized, the overall normalization is determined by de-
manding that it reproduces the correct total number of galaxies across
all surveys. This method cannot account for a change in shape of the
UVLF between fields, and it does not include a prior for the amount
of variance allowed in the normalization parameter of the UVLF.

In this paper, we use a simple, flexible analytic model of high-z
galaxies to study the effects of cosmic variance on galaxy surveys. We
begin in Section 2 with a close examination of large-scale variations
in the dark matter halo population in the context of excursion set
models of halo formation. This provides the fundamental basis for
the cosmic variance of the galaxy population, and with it we capture
some non-linear aspects of these fluctuations. Next, in Section 3, we
describe a ‘minimalist’ model of galaxy evolution (Furlanetto et al.
2017) that fits observed luminosity functions reasonably well but is
sufficiently flexible to examine how a large range of assumptions
about the physics of these sources affects cosmic variance. We use
this model to determine which of the many uncertain parameters of
galaxy formation have the most impact on cosmic variance, and we
account for changes in galaxy growth and star formation in different
environments. We combine our treatments of dark matter haloes and
galaxy physics in Section 4, where we also provide a linear approxi-
mation to the cosmic variance of galaxies as a function of redshift and
absolute magnitude. Unlike other such functions derived from simu-
lations, our results apply across any mass or redshift, and we quantify
how uncertainties in galaxy evolution parameters affect the results.

In Section 5, we then describe the importance of our cosmic
variance results for future surveys of high-z galaxies with the James
Webb Space Telescope (JWST) and the Nancy Grace Roman Space
Telescope (hereafter, the Roman Space Telescope; Spergel et al.
2015; Akeson et al. 2019; Dore et al. 2019). We show how cosmic
variance limits inferences about the average UVLF of the Universe.
Additionally, we introduce a method that fully incorporates cosmic
variance into UVLF estimates, essentially treating our estimates for
cosmic variance as a prior on the measurements. Most commonly,
UVLF estimates allow for an arbitrary amount of cosmic variance
between fields, by ignoring the normalization of the UVLF in each
field (e.g. Bouwens et al. 2015; Finkelstein et al. 2015, though see
Livermore et al. 2017 for a contrasting case). We show that our
method provides tighter constraints in mock surveys. Finally, in
Section 6, we summarize our results.

We take the following cosmological parameters: �m = 0.308,
�� = 0.692, �b = 0.0484, h = 0.678, σ 8 = 0.815, and ns = 0.968,
consistent with recent Planck Collaboration XIII results (Planck
Collaboration XIII 2016). We give all distances in comoving units.

2 DA R K M AT T E R H A L O E S

We follow the methods described in Furlanetto et al. (2017) to model
dark matter haloes. In this section, we give a brief summary of those
methods and also describe some additions.

2.1 Conditional halo mass function

We define the dark matter halo mass function as nh(m, z) dm: the
comoving number density of dark matter haloes between masses (m,

m + dm) at redshift z. By convention,

nh(m, z) = f (σ )
ρ̄

m
d ln

(1/σ )

dm
, (1)

where ρ̄ is the comoving average matter density, σ (m, z) is the linear
rms fluctuation of the matter density field at redshift z smoothed
over a spherical region of mass m [see Section 2.3 for the calculation
of σ (m, z)], and f(σ ) is a dimensionless function that modifies the
shape of the mass function. Following Furlanetto et al. (2017), we
use fTrac(σ ) from a fit to the average mass function of a high-z
cosmological simulation (Trac, Cen & Mansfield 2015):

fTrac(σ ) = 0.150
[
1 +

( σ

2.54

)a]
eb/σ 2

, (2)

with a = −1.36 and b = −1.14.
The key aspect of this model is allowing the halo mass function

to depend on its environment. This environmental dependence is
introduced via the conditional mass function (CMF). The CMF
ncond(m, z, δb, R) describes the number density of haloes in a
spherical region of mass M, with a corresponding Lagrangian radius1

R3 = 3M/(4πρ̄), and relative density δb = (ρ − ρ̄)/ρ̄, where ρ is
the linearly extrapolated matter density in that region at redshift z.
The CMF is what adds cosmic variance into the model.

We determine ncond(m, z, δb, R) using a coordinate transfer
method described in Tramonte et al. (2017) that we will call ‘ν-
scaling’ applied to equation (2),2

σ 2(m, z) → [σ 2(m, z) − σ 2(M, z)]

[
δcrit

δcrit − δb

]2

, (3)

where M is the mass corresponding to the region R, and δcrit ≈ 1.69
is the linear halo collapse threshold (see Loeb & Furlanetto 2013,
equation 3.13). The resulting CMF is Lagrangian in that it assumes
all regions of fixed mass have the same volume. To convert into a
real-space (Eulerian) CMF, we calculate the real-space radius Re of
a region of mass M and density δb assuming spherical collapse: Re =
R/(1 + δr)1/3, where δr is the real-space (non-linear) relative density3

(Mo & White 1996, see Appendix A for more details). Applying this
adjustment to the radius of each region results in an Eulerian CMF,
ncond(m, z, δb, Re) = ncond(m, z, δb, R) (1 + δr).

Tramonte et al. (2017) justify ν-scaling by noting δcrit enters into
f(σ ) only through the variable ν = δcrit/σ in previous parametriza-
tions. They then apply the ‘standard’ coordinate transfer,

δcrit → δcrit − δb,

σ 2(m, z) → σ 2(m, z) − σ 2(M, z), (4)

to the variable ν, giving equation (3). Tramonte et al. (2017) validate
this method using an N-body simulation by Tinker et al. (2008),
finding that this scaling technique accurately describes the CMF
except for the most underdense regions (δb � −1.5), where it
overestimates halo abundance.

We note that while we consider halo masses down to m ∼ 108 M�,
Tramonte et al. (2017) test their prescription only down to a mass
of m ∼ 3 × 1010 M�, leaving it untested for the lowest masses we

1Note that the radius R is really a mass scale, as it does not correspond to the
real radius of a region except for regions that happen to be at cosmological
average density.
2We construct the CMF this way because simulations of dark matter haloes
(e.g. McBride, Fakhouri & Ma 2009; Goerdt et al. 2015; Trac et al. 2015) do
not provide a full CMF.
3In practice, δr and δb are very similar, especially at the redshifts considered
in this paper.
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consider. We also note that we use a different mass function (Trac
et al. 2015), for which this method has not been explicitly tested.
Tramonte et al. (2017) also test ‘local scaling’, a more rigorous
method for constructing a CMF developed in Patiri et al. (2006) and
expanded in Rubiño-Martı́n, Betancort-Rijo & Patiri (2008), and find
that method produces a slightly better CMF. We do not test our model
using local scaling as it cannot be easily applied to the Trac et al.
(2015) mass function.

Mo & White (1996) developed a method to linearly approximate
their CMF by use of a bias function bPS. We follow the same steps
to calculate a linear bias factor bTrac for the Trac et al. (2015) mass
function. We first substitute equation (3) into equation (2), and then
Taylor expand to linear order about δb = 0, and set σ (M, z) = 0. We
then make a linear volume change correction of (1 + δb), giving us

bTrac = 1 + a

δcrit

(σ/2.54)a

1 + (σ/2.54)a
− 2b

σ 2δcrit
. (5)

The CMF can then be approximated as

ncond,lin(m, z, δb) = nh(m, z)(1 + bTracδb). (6)

We will use this linear approximation of the CMF to compare to our
results when using the full CMF.

For another comparison, we calculate the CMF by scaling the
Trac et al. (2015) mass function by the ratio of the conditional to
non-conditional Press–Schechter mass functions:
n cond

nh
= nPS,cond

nPS
, (7)

where nPS is defined in Press & Schechter (1974), and represented
here as fPS(σ ) (which is plugged into equation 1),

fPS(σ ) =
√

2

π
ν e−ν2/2

. (8)

The Press–Schechter CMF nPS, cond(m, z, δb, R) is obtained with the
‘standard’ coordinate transfer in equation (4). We then multiply by
the same (1 + δr) factor to obtain an Eulerian CMF. We note that
this scaling, which was introduced in the high-z context by Barkana
& Loeb (2004), is commonly used in analytic, semi-analytic, and
seminumeric calculations of galaxy populations at this time (e.g. in
Mesinger, Furlanetto & Cen 2011).

At these high redshifts, we ignore the effects of assembly bias (e.g.
Gao & White 2007) on the CMF, as it is a small effect compared to
the other uncertainties in our model.

2.2 Dark matter density fluctuations

As stated above, σ (M, z) is the linear rms fluctuation of the matter
density field at redshift z smoothed over a spherical region of mass
M (and corresponding R). Thus, the probability distribution of dark
matter density for a given scale R and redshift z, p(δb|R, z), is by
definition equal to a zero-mean Gaussian with variance σ 2(M, z).
However, galaxy surveys measure Eulerian volumes, so to make
predictions for them we must convert this distribution to that system.
A fixed Eulerian volume will correspond to a range of masses,
because each has a different density. In Appendix A, we convert the
probability distribution of densities at fixed region mass p(δb|R, z) to
fixed real-space volume p(δb|Re, z). While p(δb|R, z) is a Gaussian,
p(δb|Re, z) is closer to an inverse Gaussian. Fortunately, these two
distributions are very similar to one another at the region sizes and
redshifts we consider in this paper.

However, we do find that p(δb|Re, z) predicts that underdense
regions occupy a larger volume fraction of the Universe than

Figure 1. The CMF ncond and its 2σ scatter due to cosmic variance on
various scales (identified with their radius Re) at three redshifts. The scatter
increases at high mass and for smaller scales of the Universe (widest shaded
area corresponds to the smallest scale).

overdense regions at all scales, by as much as ∼12 per cent when
considering very small scales. This result indicates that surveys
will be slightly more likely to probe underdense regions (see
Appendix A for more details). Using different methods, Muñoz,
Trac & Loeb (2010) also found that surveys are more likely to probe
an underdense region because of those regions’ more rapid cosmic
expansion.

With the distribution of densities p(δb|Re, z) and the CMF
ncond(m, z, δb, Re), we can compute the scatter in halo number density
on various scales Re and redshifts. Fig. 1 shows some example results.
Cosmic variance in the mass function is substantial for the haloes
in which high-z galaxies form. For example, at redshift z = 9 on a
50 Mpc (radius) scale, massive haloes (∼1012 M�) have a typical
relative standard deviation of ∼65 per cent, while haloes at the atomic
cooling limit (see Section 3.1) have a relative standard deviation of
∼10 per cent. At fixed halo mass, these relative standard deviations
increase at higher redshifts and decrease when considering larger
volumes.

2.3 The CMF in realistic survey volumes

The CMF presented in Section 2.1 assumes a spherical region of
radius Re. However, real surveys subtend elongated regions pointing
away from the Earth, commonly referred to as pencil beams. Here,
we describe a method for building a CMF for a pencil-beam region.

We start with the variance in the dark matter density field σ 2 in
a pencil-beam region (following e.g. Newman & Davis 2002; Stark
et al. 2007; Muñoz et al. 2010; Robertson 2010). For an arbitrarily
shaped volume V,

σ 2(V ) = Fg(z)

(2π)3

∫
P (k)|ŴV (k)|2 dk, (9)

where Fg(z) is the growth function (nearly equal to 1/(1 + z)), k
is wave vector, P(k) is the power spectrum of dark matter (we use
the transfer function from Eisenstein & Hu 1998), and ŴV (k) is the
Fourier transform of a real-space top hat in the shape of the region V,
normalized such that its integral in real space is equal to unity. In the
case of a rectangular pencil-beam volume with side lengths ax, ay,
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az, ŴV (k) = Ŵ (kx)Ŵ (ky)Ŵ (kz) with Ŵ (ki) = sin(aiki/2)/(aiki/2).
When constructing a survey volume, we define az as the radial
distance corresponding to some 	z centred at z. We define ax and ay

such that the physical area ax∗ay at z gives the survey area A as seen
from the Earth.

We then make the simple approximation that a pencil-beam
region has the same CMF as a (larger) spherical region of radius
Reff, such that σ sphere(Reff) = σ PB(ax, ay, az). This prescription is
analogous to how pencil-beam volumes are treated in other analytic
studies of cosmic variance. In such studies, σ PB is multiplied by a
halo bias function to find cosmic variance (e.g. Stark et al. 2007;
Muñoz et al. 2010; Robertson 2010; Moster et al. 2011). The halo
bias functions used in these studies come from CMFs determined
assuming spherical regions, so that pencil-beam volumes are treated
as spherical volumes with equivalent σ .

2.4 Accretion rates

We now consider how dark matter haloes accrete matter. This
accretion will be used in the next section to determine the rate of
star formation.

Many simulations provide similar predictions of halo mass ac-
cretion rates (e.g. McBride et al. 2009; Fakhouri, Ma & Boylan-
Kolchin 2010; van den Bosch et al. 2014; Goerdt et al. 2015; Trac
et al. 2015). However, these rates have not been tested at the very
high redshifts and very low masses relevant to our model. For this
paper, we calculate the accretion rates using the method described in
Furlanetto et al. (2017), which is analogous to abundance matching
(Vale & Ostriker 2004): haloes maintain a constant number density
as they evolve according to the mass function of the region they are
in. That is, we require that at any two nearby redshifts z1 and z2, a
halo has masses m1(z1) and m2(z2) such that∫ ∞

m1

dm ncond(m, z1, δb, R) =
∫ ∞

m2

dmncond(m, z2, δb, R), (10)

where ncond(m, z, δb, R) is the Lagrangian CMF from equation (7).
We define the accretion rate of haloes ṁh in a region such that they
satisfy equation (10) at all masses over a small redshift interval (	z

∼ 0.1).
In practice this accretion method means that in a given region, the

most massive halo at one time step is also the most massive halo
at the next time step, and the same goes for the second and third
most massive haloes, etc. In this treatment, accretion is continuous
and smooth, increases monotonically with halo mass, and has zero
scatter at a fixed mass. This treatment is obviously not entirely
correct, but it is in line with our goal of simplicity and has the
added benefit maintaining the CMF across cosmic time in a way
that conserves mass. Furlanetto et al. (2017) show that accretion
rates obtained using this method are similar to the simulation
accretion rates mentioned above in the redshift and mass ranges
they probe. We do neglect mergers in this model, which will provide
an additional source of scatter (see the discussion in Furlanetto et al.
2017).

This method allows haloes in over- and underdense regions to
accrete at different rates. However, we find that this is actually a
small effect. The shaded areas in Fig. 2 show how the accretion rates
depend on large-scale environment. For most masses, redshifts, and
scales, the variation in accretion is less than 5 per cent. A 5 per cent
difference in accretion can be significant over a Hubble time, but we
will show it has a small effect on the UVLF, which is most sensitive
to instantaneous star formation.

Figure 2. Accretion rate scatter (shaded areas) due to cosmic variance
compared to the average accretion rate of haloes (solid black line) for
various scales (identified with their radius Re). Adding cosmic variance to
our models changes accretion rates by <5 per cent for most haloes; smaller
regions have larger variance in accretion. The dot–dashed lines show the
accretion of a 1σ overdense region, and the opposite end of the shaded
regions show the 1σ underdense region. Higher mass haloes overaccrete in
overdense environments and underaccrete in underdense environments. For
lower mass haloes, the opposite is true. The threshold mass where haloes in
all environments accrete nearly equally evolves to lower mass with redshift.
The top axes show the approximate apparent magnitude of the haloes ‘mAB’
(we assign haloes their magnitudes in Section 3).

3 FEEDBACK-REGULATED STAR FORMATIO N

In this section, we transform the mass accretion rates of haloes
into UV luminosities. Furlanetto et al. (2017) provide a detailed
explanation of our star formation model; we briefly summarize it
here. We intentionally choose this simple, ‘minimalist’ model so
as to make our assumptions about the mass–luminosity relation
transparent. Estimates of cosmic variance must necessarily account
for the many uncertainties about high-z galaxies, and a simple,
flexible model allows us to estimate how important the specifics
of galaxy formation are for the variance.

3.1 Models of feedback

We assume that haloes only form stars when they exceed a threshold
mass mmin. This mass corresponds to a halo virial temperature Tvir

= 104 K, when atomic line cooling becomes efficient enough for
gas clouds to collapse and fragment for star formation (Loeb &
Furlanetto 2013). This mass is typically mmin ∼ 108 M�. At the
redshifts considered in this paper, haloes at the threshold are always
far below the detection limit of next generation telescopes.

Gas accreting on to a galaxy can be turned into stars. When stars
form, they expel baryons from their host galaxy through radiation
pressure, supernovae, or some other process like grain heating (e.g.
Faucher-Giguère, Quataert & Hopkins 2013; Hayward & Hopkins
2017; Krumholz et al. 2018). Balancing this stellar feedback with
accretion provides a simple estimate of the star formation rate ṁ∗ of
a galaxy via

ṁ∗ = ṁb − ṁw, (11)

where ṁb is the mass accretion rate of the halo times the baryon
fraction ṁb = [�b/�m]ṁh, and ṁw is the rate of baryon loss through
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feedback. The fraction of accreting baryons that are converted into
stars is defined as f∗ = ṁ∗/ṁb. Finally, we write the mass ejection
rate as a multiple of the star formation rate ṁw = η(m, z) ṁ∗,
yielding

f∗ = 1

1 + η(m, z)
. (12)

Many models suggest that massive haloes accrete gas more slowly
than our simple argument suggests, because of the heating at the
virial shock. Furlanetto et al. (2017) show that virial shock heating
only has a modest effect on the results of this model, but we include
it because it helps match the observed densities at large luminosities.
Faucher-Giguère, Kereš & Ma (2011) show the fraction of gas that
can cool on to a galaxy in the presence of a virial shock is4

fshock = 0.47

(
1 + z

4

)0.38 (
m

1012 M�

)−0.25

. (13)

Because we only include stellar feedback, which limits star
formation at small masses, we also impose a maximum efficiency
f∗, max that limits star formation when η(m, z) → 0 at large halo
masses. We impose it in a way that keeps f∗ smoothly differentiable.
Combining fshock and f∗, max with equation (12) gives

f∗ = fshock

f −1∗,max + η(m, z)
. (14)

Finally, we parametrize the strength of stellar feedback, η(m, z),
as

η = C

(
1011.5 M�

m

)ξ (
9

1 + z

)σ

. (15)

For energy-driven supernova feedback: C = 1, ξ = 2/3, σ = 1, and
f∗, max = 0.1. We will also consider a redshift-independent version
(C = 2, ξ = 2/3, σ = 0, and f∗, max = 0.1) and a momentum-driven
version (C = 5, ξ = 1/3, σ = 1/2, and f∗, max = 0.2) for comparison
(for more details on η and its parametrization, see Sun & Furlanetto
2016; Furlanetto et al. 2017; Mirocha, Furlanetto & Sun 2017). These
alternate parametrizations of η will allow us to test how cosmic
variance depends on our galaxy formation model.

This simple model undoubtedly ignores many important elements
of galaxy formation, but it suffices to consider a wide range of
possible halo mass–luminosity relations. For example, we do not
take into account that gas should cycle through the interstellar
medium (ISM) before forming stars. However, in the ‘bath tub’ model
of galaxy formation, galaxies evolve towards a quasi-equilibrium
state between mass accretion and star formation such that the ISM
maintains roughly constant mass (Dekel & Mandelker 2014). Once
this equilibrium is reached, our model more accurately describes star
formation.

3.2 From star formation to luminosity

We now convert star formation rate to UV luminosity. UV luminosity
is a good tracer of star formation because it is produced only by
massive, short-lived stars. We take the standard conversion,

ṁ∗ = KUV × LUV, (16)

4We require fshock ≤ 1, and we smooth the function near where fshock → 1 in
order to ensure that it is smoothly differentiable.

where LUV
5 is the rest-frame continuum (1500–2800 Å)6 intrinsic

luminosity (without extinction). KUV is a conversion from luminosity
to star formation rate, and it is dependent on the initial mass function,
metallicity, star formation history, binaries, etc. We take KUV =
1.15 × 10−28 M� yr−1/(erg s−1 Hz−1) from Madau & Dickinson
(2014). We will show that KUV will not substantially affect our
predictions for the relative cosmic variance of the UVLF, even though
it can have significant effects on the UVLF itself.

We do ignore dust in our fiducial model, because the extinction
in these sources is only poorly constrained. Models suggest that it is
modest, and most importantly is not a strong function of halo mass
(Mirocha, Mason & Stark 2020). We do however test the effects
of dust on our results at z < 8 using an empirical dust correction
(Vogelsberger et al. 2020, ‘Model A’). In order to match the data
when applying this dust correction to our energy-driven model,
we set C = 2 and f∗, max = 0.3, making the galaxies intrinsically
brighter at fixed halo mass. For simplicity, we ignore fshock in
this case, because it also affects the bright end of the luminosity
function.

We also ignore scatter in the halo mass–luminosity relation, which
would have the effect of flattening out the exponential drop off of
the UVLF, as upward scatter in the luminosity has a larger relative
effect on the luminosity function in that regime. While we expect this
effect to be small (at least on population-level statistics such as the
UVLF), we plan to explore it in the future by introducing a scatter in
the accretion rates and/or star formation rates.

4 C O S M I C VA R I A N C E I N T H E U V L F

In this section, we present the conditional UVLF generated by our
model. We provide a fit to the conditional UVLF with a simple
Gaussian approximation. We then test the robustness of our results
against model choices. Finally, we compare our results to recent
works.

We show the conditional UVLF φcond(MAB, z, δb, Re) and its 2σ

scatter due to cosmic variance in Fig. 3. As in the CMF, cosmic
variance increases with increasing galaxy luminosity and also with
increasing redshift. The data points shown in Fig. 3 are from Bouwens
et al. (2015, 2016); for a more in-depth analysis of this model’s
agreement with current data, see Furlanetto et al. (2017).

The mapping from halo mass to luminosity in our model is
nearly independent of environment because accretion is also nearly
independent of environment (see Fig. 2). Thus, nearly all of the
cosmic variance of the UVLF comes directly from the variance in
the CMF (see Fig. 1). Similarly, simulations by Lovell et al. (2020)
find the star formation rate of a galaxy is independent of the dark
matter environment, although, they compare star formation rates at
fixed stellar mass, not halo mass.

4.1 Calculating cosmic variance

As shown in Fig. 3, the amount of cosmic variance in a given galaxy
formation model will depend on luminosity, redshift, and the survey
characteristics. In this section, we provide a simple descriptor of
cosmic variance across all these parameters. We quantify cosmic
variance εcv as the relative standard deviation of the conditional

5For the remainder of the paper, we will display luminosity as absolute and
apparent AB magnitudes (MAB and mAB).
6This wavelength range corresponds to H band in the redshift range of z ≈
5–9, and K band for z ≈ 8–12.
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2406 A. C. Trapp and S. R. Furlanetto

Figure 3. The UVLF and its 2σ scatter from cosmic variance for three
selections of survey area at three redshifts (z = 6, 9, and 12; z = 9 and 12
are off-set in log space by −0.5 and −1 dex, respectively). The scatter in the
UVLF increases at the bright end and for smaller survey areas, similar to the
CMF in Fig. 1. The survey areas A = 40, 400, 4000 arcmin2 have volumes
equivalent to spheres with radii Re ≈ 29, 63, 135 Mpc at z = 6 (redshift bin
	z = 1). The data points are from Bouwens et al. (2015, 2016).

UVLF at fixed redshift, apparent magnitude, survey area, and redshift
bin width7:

ε2
cv = 〈φ2

cond〉 − 〈φcond〉2

〈φcond〉2
, (17)

with 〈φn
cond〉 defined as

〈φn
cond〉 =

∫
φn

cond(mAB, z, δb, Re) p(δb|Re, z) dδb, (18)

where Re is determined from the survey area and redshift bin width
as described in Section 2.3. Fig. 4 shows εcv as a function of survey
area for various redshifts and apparent magnitudes (all with 	z = 1).
This definition of εcv uses φcond at fixed z, but applies it to the entire
volume defined by A and 	z. This approximation breaks down if
cosmic variance evolves significantly over the range defined by 	z.
Thus, the choice of 	z should be made with care, especially at lower
z where εcv evolves most rapidly in a relative sense (εcv evolves more
rapidly in an absolute sense at high z). Over 	z = 1, εcv evolves 10–
30 per cent (at z = 14 and 5, respectively). Choosing 	z < 0.5 keeps
the change in εcv below 10 per cent for most cases.8

Fig. 4 shows that the relative importance of cosmic variance varies
widely across the galaxy population, with a strong dependence on
survey parameters. Using a redshift bin width 	z = 1, εcv is low at
the faint end of the UVLF (mAB = 32), ranging from ∼5 per cent
at large survey area (1000 arcmin2) to ∼15 per cent at small survey
area (1 arcmin2) at z = 6. As redshift increases, so does εcv; at z =
12 and mAB = 32, εcv ranges from ∼12 per cent at large survey area
(1000 arcmin2) to ∼35 per cent at small survey area (1 arcmin2).

Cosmic variance also increases significantly at the bright end of
the UVLF. At mAB = 26, εcv ranges from ∼15 per cent at large survey
area (1000 arcmin2) to ∼40 per cent at small survey area (1 arcmin2)

7Our definition of mAB assumes the galaxy is at the specified ‘fixed redshift’,
regardless of redshift bin width.
8Our public PYTHON package GALCV can be used to explore the evolution of
εcv over any desired parameter.

Figure 4. The relative cosmic variance of the UVLF εcv as a function of
survey area for various apparent magnitudes with a redshift bin width of 	z

= 1 (black lines; shown from apparent magnitude mAB = 32 on the bottom,
decreasing by 	mAB = 2 towards the top).

at z = 6. At z = 12 and mAB = 26, εcv ranges from ∼30 per cent
at large survey area (1000 arcmin2) to ∼90 per cent at small survey
area (1 arcmin2).

Cosmic variance flattens out at small survey areas, which is largely
due to the effects of the pencil-beam shape of surveys. Even at small
survey areas, such a geometry still contains a relatively large range
of environments due to its elongated shape. This effect keeps cosmic
variance much lower than what one would obtain with a spherical
region of the same volume.

We approximate εcv with a simple functional form; a polynomial
in log10(εcv) fits well,

log10(εcv) ≈ �Aγ + b, (19)
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Table 1. Parameters for fits to εcv (equation 19). We provide εcv on a much
wider range of parameters via our public PYTHON package GALCV (see Data
Availability section).

Redshift App. UV mag. Fit parameters
z mAB � γ b

6 32 − 0.223 0.167 − 0.608
30 − 0.189 0.184 − 0.529
28 − 0.174 0.192 − 0.410
26 − 0.161 0.200 − 0.235
24 − 0.165 0.199 0.070

9 32 − 0.198 0.184 − 0.399
30 − 0.190 0.188 − 0.298
28 − 0.178 0.194 − 0.175
26 − 0.173 0.197 − 0.002
24 − 0.197 0.188 0.353

12 32 − 0.195 0.188 − 0.240
30 − 0.188 0.191 − 0.137
28 − 0.184 0.193 − 0.001
26 − 0.185 0.193 0.182
24 − 0.202 0.189 0.533

where A is in arcmin2, and �, γ , and b are fit parameters.9 Table 1
displays the parameter fits at a selection of redshifts and magnitudes.
These fits have a typical/maximum fractional error of 3/5 per cent.
We provide εcv for a wider range of parameters via a public PYTHON

package GALCV (see Data Availability section for more details).
With εcv, we define a linear approximation of the conditional

UVLF in a region with density δb, angular extent A, and redshift bin
width 	z:

φcond(mAB, z, δb, A, 	z)

= 〈φ(mAB, z)〉
[

1 + εcv(A, mAB, z,	z)
δb

σPB

]
,

(20)

where 〈φ(mAB, z)〉 is the average UVLF and δb/σ PB is the density
of the region relative to a 1σ fluctuation. This conditional UVLF is
similar in construction to that in Livermore et al. (2017), used to fit
to lensed high-z galaxy survey data.

4.2 Parameter dependence of εcv

Our calculations so far have assumed our fiducial choices for the
galaxy model (assuming the minimalist energy-regulated prescrip-
tion) and mass function parameters. Here, we explore how sensitive
our results are to variations in these assumptions.

First, we consider how cosmic variance depends on the star
formation model. Fig. 5 shows the difference in εcv when using
our fiducial energy-regulated feedback (solid lines) versus a redshift-
independent version of feedback (dotted lines, see Section 3.1). There
is little difference in the predictions for εcv. We find a similarly small
difference when using momentum-regulated feedback and when
using the dust correction from Vogelsberger et al. (2020) for z< 8 (the
effects of these two are similar to the dotted lines; so are not plotted
to reduce clutter). Also, our choice of KUV (see equation 16) will
not significantly affect our results, as εcv is not a particularly strong
function of magnitude. These results suggest that cosmic variance is
not strongly dependent on the details of star formation or dust.

Second, we explore if cosmic variance is strongly affected by large-
scale galaxy environment, namely through differences in accretion.

9Note that our fit assumes the survey subtends a square area on the sky.

Figure 5. The relative cosmic variance of the UVLF εcv as a function of
survey area for various apparent magnitudes (solid lines, same as Fig. 4).
The dotted lines show the effects of switching to a z-independent version
of star formation. The faded solid lines show the linear bias method for
estimating cosmic variance (equation 21). The dashed lines show the effects
of using a different method for creating the CMF, specifically the ‘Press–
Schechter scaling’ approach applied to the Trac et al. (2015) mass function
(see equation 7). The three sets of lines correspond to magnitudes 32, 28, and
24 (bottom to top).

With the linear halo bias function from equation (5), we approximate

εcv ≈ bTracσPB, (21)

and show it in Fig. 5 (faded solid line).10 While our full model allows
for galaxies to have an environment-dependent accretion and thus
luminosity, this linear method does not. However, it provides very
similar results to the full method, though it slightly underpredicts
cosmic variance at the bright end and overpredicts at the faint end
due to the variance in accretion for those haloes (see Fig. 2). This
result suggests that approximating the CMF via a simple bias factor
is sufficient to capture the effects of cosmic variance (at least to linear
order; large density excursions are discussed later in this section).

We conclude that the level of cosmic variance is not sensitive to the
particulars of the galaxy formation model. Rather, cosmic variance
is dominated by the underlying conditional halo mass function. In
Section 2.1, we described an alternate method of creating a CMF:
scaling the Trac et al. (2015) mass function by the conditional Press
& Schechter (1974) mass function (equation 7). In Fig. 5, we show
εcv when using that CMF (dashed lines). This change results in

10We connect the bias function bTrac to galaxies using our model’s average
halo mass–UV luminosity relation.
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2408 A. C. Trapp and S. R. Furlanetto

Figure 6. The relative excursion from the average UVLF 〈φ〉 for a 3σ underdense region (left) and a 3σ overdense region (right) at redshift 9. We compare the
full treatment (solid lines) and the linear approximation in equation (20) (dashed lines). In the left-hand panel, the linear approximation predicts there will be
fewer galaxies than the full approach, and can even predict unphysical negative galaxy number densities (when above the horizontal black line). In the right-hand
panel, again the linear approximation underpredicts the expected number of galaxies. The black ’x’ marks the survey area where our model predicts there to be
∼1 source in the corresponding magnitude bin. The solid and dashed lines show apparent magnitudes 32, 29, and 26 (bottom to top).

Figure 7. Comparison of cosmic variance predictions at z = 9 (with a redshift
window of 	z = 1). The lower set of lines (thick) is at an apparent magnitude
of mAB = 30, while the upper set of lines (thin) is at mAB = 27. The dashed
red lines show our cosmic variance predictions with Poisson noise added, for
comparison with Ucci et al. (2020).

∼25 per cent more cosmic variance across the board, the largest effect
of any model choice. Thus, in our model, the biggest uncertainty in
εcv is in our understanding of the CMF.

While equation (20) provides a good approximation to the con-
ditional UVLF for δb/σ PB � 2, the assumption of a Gaussian bias
distribution breaks down at larger density excursions. Fig. 6 shows
(at z = 9) the difference between using equation (20) (dashed lines)
and our full treatment (solid lines) for the conditional UVLF (φ) for
a 3σ density excursion. Equation (20) underestimates the number of
galaxies in very underdense regions (even giving unphysical negative
densities at the smallest survey areas), and it also underestimates
the number of galaxies in very overdense regions. Equation (20)
underpredicts the number of galaxies in both wings, even though
it is more reliable near δb = 0, because the true bias distribution
(at fixed magnitude) is closer to a lognormal. However, where the

deviation from the Gaussian approximation is most pronounced,
Poisson shot noise usually dominates the error. Thus, for most
applications, equation (20) (εcv) adequately captures the behaviour
of the conditional UVLF.

4.3 Comparison to other works

Here we compare our predictions of cosmic variance to those from
two recent models in the literature: Bhowmick et al. (2020) and Ucci
et al. (2020).

Bhowmick et al. (2020) provide public estimates for cosmic
variance in a redshift range z = 7–14 and for apparent H-band
magnitudes between mAB = 25 and 30. They determine cosmic
variance first by calculating the two-point correlation function of
galaxies in their simulation box. They then fit the correlation function
to a power law and integrate it in a pencil-beam volume (see their
equation 2) to estimate the relative cosmic variance. They provide
estimates of cosmic variance for all sources brighter than the listed
magnitude, rather than for sources at the listed magnitude. This
choice means their estimates of cosmic variance are higher than
they would be at fixed magnitude, as cosmic variance increases for
brighter sources. However, when we mimic this cumulative method,
we find the effect is relatively small (cosmic variance �10 per cent
larger than fixed magnitude method).

Ucci et al. (2020) provide public estimates for cosmic variance
in a redshift range z = 6–12 and for apparent magnitudes mAB =
24–38 (at z = 9). Ucci et al. (2020) calculate cosmic variance as
the relative standard deviation of galaxy number counts in many
pencil-beam subvolumes of their simulation box. They have a slightly
more limited survey area coverage, providing estimates between A
= 1 and 1000 arcmin2. We compare to the predictions from their
‘photoionization’ model. These predictions include Poisson variance,
making them an estimate of the total variance rather than just cosmic
variance.

Fig. 7 shows our predictions compared to those of Bhowmick et al.
(2020) (blue dotted lines) and Ucci et al. (2020) (yellow dashed lines)
at z = 9, with a redshift window of 	z = 1, at apparent magnitudes
of mAB = 30 (lower, thick curves) and mAB = 27 (upper, thin curves).

As Ucci et al. (2020) report total variance, their predictions should
be compared with the red dashed lines (our prediction plus Poisson
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noise). Our predictions agree closely with those of Ucci et al. (2020)
at mAB = 30, and agree within ∼50 per cent at mAB = 27 (though
worsening towards low survey area). Our predictions diverge more
significantly at a survey area of 100 arcmin2, where Ucci et al.
(2020) have the fewest independent volumes in their simulation.
Also, note that differences in the underlying UVLF can strongly
affect the strength of Poisson noise; when Poisson noise begins to
dominate, our results should not be too closely compared with those
of Ucci et al. (2020).

Our results (red solid lines) are systematically lower than those
from Bhowmick et al. (2020) (dotted blue lines). However, our
predictions remain within ∼25 per cent of each other except at
smaller survey areas. At mAB = 30, our predictions diverge at an
area of ∼10 arcmin2. At mAB = 27, our predictions diverge for
survey areas where Poisson noise begins to dominate.

Numerical simulations have the benefit of being able to capture
the non-linear bias of haloes. This effect, along with differences in
Poisson noise from differing mass functions, could help explain the
discrepancy between our predictions and those of the simulations at
small survey areas.

In comparison to estimates with numerical simulations, the prin-
cipal benefit of our model is its flexibility. We can test our model
with any mass function or star formation and feedback prescription.
Simulations must also subtract their intrinsic Poisson noise (which is
not known perfectly) to estimate the cosmic variance, while analytic
models can easily separate the two effects. Finally, we cover a wider
range of redshifts (z = 5–15) and magnitudes (mAB = 22–38), and
we can study larger volumes than simulations.

Our results agree quite well with those of Ucci et al. (2020), over
the range to which we can compare, especially at faint luminosities.
For bright sources, our estimates are slightly below theirs, but the
discrepancy is comparable to the apparent uncertainty in the CMF
(∼25 per cent; see Section 4.2). We agree reasonably well with
Bhowmick et al. (2020) on large scales as well.

5 IMPAC T O N FUTURE SURV EYS

Cosmic variance will provide an unavoidable source of error for
next generation telescopes, especially at the highest redshifts. It will
dominate over Poisson noise for all but the brightest sources, and it
is not easily avoided with deeper observations. Instead, it can only
be minimized by probing larger volumes (at the cost of missing the
more numerous faint sources) or by splitting up surveys into multiple
independent pointings (at the cost of missing large-scale structure and
making clustering measurements more difficult).

In this section, we perform a case study of the effects of cosmic
variance on two upcoming instruments, JWST and the Roman Space
Telescope. We consider two potential high-redshift surveys: a JWST
ultradeep (UD) survey (following Mason, Trenti & Treu 2015) along
with a much wider-field Roman Space Telescope survey (similar to
their planned supernova survey, and which we refer to as our SN
survey). The UD survey has a detection limit of mAB ≈ 32.0 and
survey area of A = 40 arcmin2, while the SN survey has a detection
limit of mAB ≈ 28.3 and a survey area of A = 9 deg2. To begin,
we assume that both are performed over a single contiguous area,
requiring at minimum four and 30 separate pointings (neglecting
overlap between the pointings).

Additionally, we present a method of fitting an average UVLF to
data from the UD and SN surveys simultaneously. Our method makes
use of our model effectively as a ‘prior’ on the cosmic variance in
each survey field. The fitting process also accounts for the difference
in shape between the local UVLF in each field and the average UVLF
that we wish to fit.

5.1 Effects of cosmic variance on UD and SN surveys

We show the effects of cosmic variance on the UVLF of the UD
and SN surveys in Fig. 8. The upper panels show the 1σ and 2σ

fluctuations of the UVLF at z = 6 and 12. The lower panels show
εcv for these surveys (lines) and Poisson shot noise (shaded bands).11

The vertical lines denote the magnitude limit of the surveys.
A given survey has access to the UVLF over a limited magnitude

range, bound on the faint side by the magnitude limit and on the
bright side by Poisson noise. In between, the noise floor of cosmic
variance determines the maximum accuracy one can achieve in
measuring the average UVLF over the accessible magnitude range
if using just the one survey.

Splitting up a survey into independent pointings can improve the
measurement of the average UVLF. While each individual pointing
has higher cosmic variance than a large mosaic, they may be com-
bined, which results in a reduction by the square root of the number
of fields. The effect of splitting the UD survey into four pointings
is represented by the dashed lines in Fig. 8. Robertson (2010) found
a similar improvement in cosmic variance when splitting surveys
into independent volumes. See Section 5.4 for more details on the
benefits/drawbacks of splitting up surveys.

When interpreting survey results, it is crucial to note that cosmic
variance is correlated across all magnitudes. If a survey probes a 1σ

underdense region, the expected number counts in each magnitude
bin will be below the average by 1σ . In contrast, Poisson noise is
uncorrelated between each magnitude bin, depending only on the
expected number of sources in that bin.

5.2 Measuring the average UVLF

Here we introduce a method to account for cosmic variance in
measuring the average UVLF of the Universe given data from
multiple independent survey volumes. As an example of this
method, we simulate mock UD and SN surveys of the UVLF and fit
a model that extracts the average UVLF parameters; we then repeat
this many times and compare those fits to the ‘true’ parameters
predicted by our model.

In this section, we model the average UVLF as a modified
Schechter function:

φ(L) dL = φ∗

L∗

(
L

L∗

)α

e−(L/L∗)� dL, (22)

where φ(L) dL is the number density of galaxies with luminosities
in the range (L, L + dL), φ∗ is a normalization constant, L∗ is the
location of the exponential cut-off, α is the faint-end slope, and � is
a parameter that governs the strength of the exponential cut-off. �

= 1 corresponds to a normal Schechter function. Our models are fit
best with � = 0.5, so we will use that value for this paper. We note
that our use of � = 0.5 predicts a higher number of bright galaxies
than a normal Schechter function. This effect is reminiscent of recent
studies of very high-z surveys, which have found that the UVLF can
be better fit by a double power law due to an excess of bright galaxies
(Bowler et al. 2014, 2020). We do not use a double power law as our
models are better fit by the modified Schechter function.

We explore four possible methods to measure the average UVLF
of the Universe.

11Poisson shot noise is model dependent, so we represent it as a band that
encompasses the predictions from the three different feedback prescriptions
described in Section 3 and the variety of number counts predicted from cosmic
variance itself.
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Figure 8. The effects of cosmic variance on the UVLFs of two high-redshift surveys (UD and SN). In the upper panels, the width of the curves represents the
1σ and 2σ (inner and outer shading) ranges of intrinsic UVLFs that could be found in that survey’s volume. In the lower panels, the lines show εcv (upper set of
lines are at z = 12, lower set at z = 6). If the UD survey is broken up into four independent pointings of JWST, each smaller subpointing has a higher variance
than a large mosaic, but they may be combined for an overall reduction in measuring the average UVLF. This improvement is represented with the thin dashed
lines. The vertical black lines are the magnitude limits of the surveys. The shaded band provides an estimate of Poisson shot noise. Cosmic variance acts as a
noise floor for measuring the average UVLF, bounded on the faint end by the magnitude limit, and on the bright end by Poisson noise, except for the SN survey,
which is entirely dominated by Poisson noise at high-redshift.

(i) NoCV. We assume cosmic variance does not exist. Every region
of the Universe has the exact same underlying UVLF, so Poisson
noise is the only source of error.

(ii) Naive. Cosmic variance exists, but we fit the average UVLF
without attempting to account for it.

(iii) Standard. We fit for the average UVLF using a common
method to account for cosmic variance.

(iv) Full. Our fiducial method. We fit for the average UVLF
parameters using the conditional UVLF developed in this paper12

(equation 20).

The NoCV method assumes (unrealistically!) that cosmic variance
does not exist. We simulate galaxy counts for the UD and SN surveys
by drawing from the average UVLF that our model predicts, adding

12A similar method is implemented in Livermore et al. (2017); they consider
cosmic variance in lensed surveys, and construct a conditional luminosity
function using cosmic variance estimates from Robertson et al. (2014).

Poisson noise, and then fitting equation (22) to the combined mock
data.13 The solid curves in Figs 9 and 11 show the probability
density functions (PDFs) of the best fits of the UVLF to 2000 sets
of simulated data with no cosmic variance (for z = 9 and 12, solid
lines). Unsurprisingly, this method recovers the ‘true’ values (black
crosses) of the average UVLF parameters well, as the SN probes the
bright end and the UD the faint end, with some overlap between. Of
course, cosmic variance does exist; this method is only to be used as
a comparison to our more realistic scenarios.

For the other three methods we use our model to simulate data
for each survey, including cosmic variance. We first draw from

13We assume in this paper that the UD and SN surveys are perfect, in that
they detect every galaxy and are able to accurately place each source in a
magnitude bin of width 	mAB = 0.5 and a redshift bin of 	z = 1. These are
clearly not all accurate assumptions, especially the first one, but this treatment
may be taken as a best possible scenario.
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Figure 9. Recovered luminosity function parameters and uncertainties in the
NoCV (solid contours) and Naive (red dotted contours) methods. The contours
represent the distribution of best-fitting average UVLF parameters (see
equation 22) for 2000 simulated pairs of UD and SN surveys at z = 9. Cosmic
variance adds a large amount of uncertainty to the determination of the ‘true’
parameters (black crosses) if not treated properly in the fitting technique.
The top right-hand panel shows the emissivity of each fit (integrated down
to mmin), with the ‘true’ average emissivity shown as the vertical line. The
contours in this and all other figures are equally spaced between zero and the
peak value of each normalized distribution.

the distribution of possible density environments for the UD survey
p(δb|Re, z) (see Appendix A) and then use equation (20) to generate
the UVLF for that survey.14 We then calculate the expected number
of galaxies in each magnitude bin and apply Poisson shot noise. We
repeat these steps for the SN survey. We then repeat this process
2000 times to generate many possible pairs of surveys.

In the Naive method, we simply joint fit equation (22) to the
2000 UD+SN mock data pairs with no attempt to correct for cosmic
variance. The red dotted lines in Figs 9–12 show the resulting best-
fitting PDF for the average UVLF. The recovered parameter range
is far wider than the NoCV method because the Naive method
completely ignores the effects of cosmic variance; the measured
luminosity functions in the two surveys are not the same so cannot
easily be reconciled by a single fit.

The Standard method, originally developed by Sandage et al.
(1979) and used by e.g. Efstathiou et al. (1988) and Bouwens et al.
(2015), fits a universal shape to the UVLF, ignoring the field-to-
field normalization. Then, the normalization is fixed at the end to
reproduce the correct total number of galaxies across all surveys.
Using this method, we fit to the mock data with cosmic variance. The
blue dashed lines in Figs 10 and 12 show the PDFs of the best-fitting
parameters for the average UVLF. This method recovers the average
UVLF parameters much more accurately than the Naive method.

While the Standard method is relatively robust to cosmic variance,
it does not take into account any changes in the shape of the
UVLF due to environment. Additionally, it does not incorporate
any information about expected levels of cosmic variance, and it
can produce biased results, as seen in this example by its systematic
underprediction of the values of φ∗ and α (most noticeably in Fig. 10,
upper left-hand panel).

14For 〈φ(mAB)〉 in equation (20), we use the average UVLF predicted by our
model, fit by equation (22) to obtain the ‘true’ parameters.

Figure 10. Recovered luminosity function parameters and uncertainties
in the Full (green solid contours), Standard (blue dashed contours), and
Naive (red dotted contours) methods. The contours represent the distribution
of best-fitting average UVLF parameters (see equation 22) for 2000 simulated
pairs of UD and SN surveys at z = 9. The Full and Standard methods are
significant improvements over the Naive method, though the Full method
does the best job recovering the ‘true’ parameters (black crosses). The
Standard method is also slightly biased towards recovering a high L∗, low
φ∗, and steeper α in this case.

Figure 11. The same as Fig. 9, but at z = 12.

Finally, in the Full method, we fit equation (20) (with the modified
Schechter function in equation 22 as 〈φ(mAB)〉) simultaneously to
each of the pairs of mock surveys, allowing for different values
of δb for each survey. The green solid lines in Figs 10 and 12
show the PDFs of best-fitting parameters for the average UVLF.
Unsurprisingly (because we are fitting with the same function used
to generate the mock data), the ‘true’ parameters are recovered better
than with the Standard method.

The upper right-hand panels of Figs 9–12 show the total emissivity
of the Universe as inferred from the parameters of the best fit
(integrating down to mmin), compared to the ‘true’ average emissivity
that our model predicts (vertical line). The Full method does a
slightly better job at recovering the average emissivity of the Universe
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Figure 12. The same as Fig. 10, but at z = 12. The difference between the
Full, Standard, and Naive models is less pronounced at z = 12, though the
Full method still performs best, and with the least amount of bias.

compared to the Standard method, and both do much better than the
Naive method.

While it is certainly to be expected that the Full method performs
better than the Standard method in our calculations (given that we
use our model to generate the mock data and to fit to the data),
the Full method still has benefits. First, it provides estimates of
the dark matter overdensity δb for each survey field, while the
Standard method by design throws out field-to-field variance infor-
mation. Thus, the Full method can be used to test our understanding
of cosmic variance, because it effectively has a prior on the level
of cosmic variance allowed. It penalizes very high field-to-field
variance, unlike the Standard method that effectively uses a flat
prior on the amount of cosmic variance that is allowed during
fitting. If real data were fit with the Full and Standard methods,
and the Standard method provided a better fit, that would indicate
that our understanding of cosmic variance is flawed. We could
use our model to investigate where and why our understanding of
cosmic variance breaks down in terms of our physically motivated
inputs.

One could investigate the time evolution of UVLF parameters after
determining the best-fitting values at a variety of redshifts. However,
this experiment would need to be done with care, as Figs 9–12 show
that the UVLF parameters are highly correlated. Thus, their time
evolution must be fit jointly and with a good estimation of their
covariance. That covariance can depend strongly on the treatment of
cosmic variance.

5.3 The benefits of multiple surveys

Next, we consider the importance of measuring the UVLF with
multiple complementary surveys. Fig. 13 shows the range of best-
fitting parameters for the z = 9 UVLF when fitting to SN survey
data alone (dotted contours), the UD survey alone (dashed contours),
and with both simultaneously fit (solid contours, identical to those in
Fig. 10). The SN survey alone provides good constraints on φ∗ and
L∗, but the faint-end slope α is constrained better by the joint fit than
either survey alone.

At z = 12, shown in Fig. 14, the combination of these two surveys
is even more crucial, as neither survey can provide good constraints
on any parameter by itself.

Figure 13. The range of parameters obtained with the SN survey alone
(dotted contours), the UD survey alone (dashed contours), and with both
simultaneously fit (green solid contours, same as those in Fig. 10). The upper
right-hand panel shows the distribution of emissivities calculated from these
distributions.

Figure 14. Same as Fig. 13, but at z = 12. Each individual survey has much
lower constraining power alone.

We also investigated the effects of splitting up the UD survey
into four independent pointings and rerunning the Full and Stan-
dard methods. This method gives a significantly better determination
of the average number density of very faint sources. However, it only
results in a slightly better determination of the average UVLF param-
eters, because the faint-end slope α is not very sensitive to cosmic
variance, and the SN survey dominates the constraints of φ∗ and L∗.

We see that tiered surveys, including both wide and deep strategies,
will be essential for providing an accurate census of the high-z galaxy
population.

5.4 Time allocation and survey design strategies

One important use for our results is to identify survey design
strategies that result in the best constraints on the average UVLF
parameters (Figs 10 and 12). One could use simulations of our model
to optimize the design given constraints on telescope time, survey
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depth, and area, but here we provide a strategy for a good initial
guess.

Given a single magnitude bin and an error requirement εreq in
measuring the average number counts in that bin, there is a minimum
survey area below which cosmic variance will exceed the error
requirement. For example, say we wish to design a survey that
measures the average UVLF at z = 9 (and 	z = 1) at apparent
magnitudes of 30 and 26 with contributions from cosmic variance
at those magnitudes below 15 per cent and 10 per cent, respectively.
Reading off Fig. 4 or using our PYTHON package GALCV, we find that
these would require ∼300 arcmin2 and ∼2.8 deg2, respectively.

Alternatively, if we were willing to split each survey into indepen-
dent pointings, we could satisfy the same error requirements with
four ∼3 arcmin2 surveys down to mAB = 30 and nine ∼0.11 deg2

surveys down to mAB = 26. This observing plan requires ∼25× less
telescope time for the deep survey and ∼3× less telescope time for the
wide-field survey. Splitting up surveys is an especially efficient way
to mitigate cosmic variance for narrow surveys because the curves
in Fig. 4 are flattest at small survey area, so there is little penalty
for moving to even narrower independent pointings. However, we do
note that our model does not include non-linear clustering that may
become more important in such narrow survey fields.

Unfortunately, splitting up a survey into smaller and smaller
subpointings is not without its drawbacks. Large mosaics can be
used to measure clustering of galaxies; splitting up a survey leaves
many spatial scales inaccessible, and clustering is typically more
difficult to measure in the radial direction. Also, multiple small
fields of view can miss interesting large-scale structures such as
protoclusters. Splitting surveys also increases observing overhead
and survey design complexity. An efficient compromise would be a
tiered approach: the majority of a survey’s area is in one contiguous
location, while a smaller fraction is split into a few independent
pointings to calibrate for cosmic variance.

6 C O N C L U S I O N S

Cosmic variance will be an unavoidable source of error for next
generation telescopes when measuring average properties of the
Universe, especially at higher redshifts. Cosmic variance will dom-
inate over Poisson noise for all but the brightest sources. This
study integrates cosmic variance into the galaxy model developed
in Furlanetto et al. (2017). We first consider how star formation rates
vary with environment in the model. Next, we construct a conditional
UVLF and provide its linear approximation for a wide variety of
survey parameters with the parameter εcv via equation (20). We then
study what parts of our model are most important in determining εcv.
Finally, we propose a method for using these estimates as a prior
on cosmic variance to improve fitting luminosity functions to high-z
data.

In our model, the choice of star formation and feedback prescrip-
tions has little effect on the relative strength of cosmic variance, and
haloes of fixed mass are similar in all environments. Therefore, the
main driver of cosmic variance in the UVLF is cosmic variance in the
underlying dark matter halo population. The halo mass function is
also the main driver in the uncertainty in our model; a more accurate
conditional mass function would allow for a better prediction of
cosmic variance.

A simple dark matter halo bias function along with an average halo
mass–UV luminosity relation can adequately describe the relative
effects of cosmic variance in the UVLF, except for density excursions
exceeding ∼2σ . In those regions, cosmic variance becomes non-
Gaussian, and a full treatment is required.

We provide linear approximations of cosmic variance via εcv in
terms of apparent (rest-UV) AB magnitude, survey area, and redshift.
This approximation may be easily applied to any average UVLF via
equation (20). We provide a public PYTHON package GALCV for
easy access to our results. This package provides values of εcv over
a wide range of redshifts, magnitudes, survey areas, and redshift
bin widths. It also includes two options for the conditional mass
function used, which can be used as an estimate of the model
uncertainty in the value of εcv (see Data Availability section for more
details). We compare our results with cosmic variance predictions
from simulations (Bhowmick et al. 2020; Ucci et al. 2020) and
find good general agreement except at the smallest survey volumes
(where Poisson noise begins to dominate and non-linear halo bias
could be significant), or at volumes that are sizable fractions of their
simulations’ box size.

We also present a method for using our model as a prior on cosmic
variance when fitting a UVLF to galaxy survey data. This method can
inform our understanding of cosmic variance while also improving
the quality of and reducing the bias in fitting the UVLF. It allows
us to quantify the gains from splitting surveys into independent
pointings and combining independent observations. In particular,
we have shown that the combination of a shallow wide survey and a
deep narrow survey is essential for fully constraining the UVLF. We
also show that splitting up a survey can be an effective way to reduce
the effects of cosmic variance.

Our model treats galaxy formation in a very simple manner.
The primary simplification is in modelling only the average galaxy
population in a given environment. We also ignore the effects of
dust, mergers, scatter in the halo mass–UV luminosity relation, the
evolution of the IMF, and the spatial distribution of star formation
within a dark matter halo. Fortunately, these shortcomings pertain to
(1) the details of star formation, which we have shown hardly affect
the relative cosmic variance results εcv; and (2) individual galaxies,
which are likely averaged out (to an extent) when considering cosmic
variance in an ensemble of galaxies.

An understanding of cosmic variance is essential for quantifying
the uncertainty in future surveys with observatories like JWST and
the Roman Space Telescope. We hope that our flexible model, and the
method we have introduced to incorporate cosmic variance explicitly
into fitting multiple fields, can offer better constraints not just on the
galaxy luminosity function but also on cosmic variance itself.
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DATA AVAILABILITY

We provide a public PYTHON package GALCV that can be used to
calculate εcv for a wide range of survey parameters (redshift, apparent
AB magnitude, survey area, and redshift bin width). This package
may be installed in a PYTHON environment via ‘pip install galcv’
and then imported via ‘import galcv’. The code for this package and
instruction for its installation and use may be found online at https://
github.com/adamtrapp/galcv. Requests for bug fixes and suggestions
for additions are welcome.
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Gottlöber S., Holz D. E., 2008, ApJ, 688, 709
Trac H., Cen R., Mansfield P., 2015, ApJ, 813, 54
Tramonte D., Rubiño-Martı́n J. A., Betancort-Rijo J., Dalla Vecchia C., 2017,

MNRAS, 467, 3424
Trenti M., Stiavelli M., 2008, ApJ, 676, 767
Ucci G. et al., 2020, preprint (arXiv:2004.1109)
Vale A., Ostriker J. P., 2004, MNRAS, 353, 189
van den Bosch F. C., Jiang F., Hearin A., Campbell D., Watson D.,

Padmanabhan N., 2014, MNRAS, 445, 1713
van der Walt S., Colbert S. C., Varoquaux G., 2011, Comput. Sci. Eng., 13,

22
Virtanen P. et al., 2020, Nat. Methods, 17, 261
Vogelsberger M. et al., 2020, MNRAS, 492, 5167

A P P E N D I X A : TH E E U L E R I A N VO L U M E
C O R R E C T I O N

In this appendix, we construct p(δb|Re, z) dδb, the fraction of volume
in the Universe with linear density between (δb, δb + dδb) when
averaged over the Eulerian scale Re. This distribution is in contrast to
p(δb|R, z) dδb, the fraction of mass in the Universe with linear density
between (δb, δb + dδb) when averaging over the Lagrangian scale R.

As described in Section 2.2, p(δb|R, z) is by definition equal to a
zero-mean Gaussian with variance σ 2(M, z), where M is the mass
of a region of radius R and average density. Unfortunately, p(δb|R,
z) considers a fixed mass scale R,15 which corresponds to a density-
dependent range of different volumes.

Let us choose one fixed Eulerian scale Re. We consider that scale’s
corresponding Lagrangian radii,

R3 = R3
e (1 + δr), (A1)

where δr is the true, non-linear density of the region. Following Mo
& White (1996), the real density of a region may be related to the
linear density via the following approximation (assuming spherical
collapse):

δb = −1.35(1 + δr)
−2/3 + 0.78785(1 + δr)

−0.58661

− 1.12431(1 + δr)
−1/2 + 1.68647. (A2)

Inserting this value into equation (A1), we now have R(δb|Re),
a relation between linear density and Lagrangian radius at fixed
Eulerian radius. We convert R to σ via σ (M = 4π/3 ρ̄R3) and
convert δb to δ0 via the growth function δ0 = δb/Fg(z). That process

15R is a mass (Lagrangian) scale because it is defined as the radius of a region
of mass M if that region were at average density. In reality, regions of mass M
can have different physical volumes depending on their densities, as we will
show in Appendix A.
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Figure A1. Effects of the Eulerian correction at z = 9. The solid lines show
p(δ0|Re, z), the distribution of linear densities at fixed scale (densities are
extrapolated to z = 0 via the growth function). The dotted lines show the
Lagrangian distribution of densities p(δ0|R, z): Gaussian distributions with
standard deviation σ (Re, z). The volume of the Universe that is below average
density at each scale is indicated in each panel.

provides σ 2(δ0|Re, z), a locus in (σ 2, δ0) space of constant Eulerian
radius Re.

With σ 2(δ0|Re, z), we can use the excursion set formalism to
solve for fR(σ 2|Re, z), the distribution of mass in the Universe that is
associated with a region with σ 2 (and thus corresponding R and δ0)
at fixed Re. The excursion set formalism describes a random walk in
dark matter density δ0 as one averages over first a very large volume
(small σ ), and then successively smaller volumes (larger σ ) centred
at a single point in space (Bond et al. 1991; Lacey & Cole 1993). The
distribution of random walks that first cross the barrier σ 2(δ0|Re, z)
defines fR(σ 2|Re, z).

fR(σ 2|Re, z) has no analytic solution for an arbitrary barrier shape,
so we approximate σ 2(δ0|Re, z) as a straight line,16

B(σ 2|Re, z) = B0 + B1σ
2, (A3)

where B is the density δ0, and B0 and B1 are fit parameters
(corresponding to the y-intercept and slope, respectively).

Fortunately, the first-crossing distribution fR for a linear barrier in
(σ 2, δ0) space has been solved analytically by Sheth (1998):

fR(σ 2, |Re, z) dσ 2

= B(0|Re, z)√
2πσ 2

exp

(
−B2(σ 2|Re, z)

2σ 2

)
dσ 2

σ 2
.

(A4)

This is an Inverse Gaussian distribution.
We convert fR(σ 2|Re, z), a mass fraction distribution in σ 2, to

p(δb|Re, z), a volume fraction distribution in δb, following equa-
tion (16) of Sheth (1998):

p(δb|Re, z) dδb = 1

(1 + δr)
fR(σ 2|Re, z) dσ 2. (A5)

In principle, dividing by the non-linear function (1 + δr) can result in
a p(δb|Re, z) that is not normalized. In practice, p(δb|Re, z) remains
normalized within 1 per cent for all cases we consider.

For the range of redshifts and scales considered in this paper,
p(δb|Re, z) is near to a Gaussian with standard deviation σ (M =
4π/3 ρ̄R3

e ). However, the distribution is skewed towards negative
densities, resulting in a boost in the negative wing and suppression
in the positive wing, an effect that is most significant for volumes
with radii less than ∼10 Mpc (see Fig. A1).

At z = 9, we find that for regions with scales Re = 5, 10, and
50 Mpc, the fraction of volume in the Universe that is below average
cosmic density is 56, 54, and 51 per cent, respectively. These fractions
increase slightly at lower redshifts as underdense regions continue
to expand relative to overdense regions. This result indicates that
surveys will be slightly more likely to probe underdense regions.
Using different methods, Muñoz et al. (2010) also found that surveys
are more likely to probe an underdense region because of those
regions’ more rapid cosmic expansion.

16We approximate σ 2(δ0|Re, z) as a line by fitting it to the barrier near where
most trajectories cross the barrier: δ0 = 0.
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