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ABSTRACT
LINESTACKER is a new open access and open source tool for stacking of spectral lines in interferometric data. LINESTACKER is
an ensemble of CASA tasks, and can stack both 3D cubes or already extracted spectra. The algorithm is tested on increasingly
complex simulated data sets, mimicking Atacama Large Millimeter/submillimeter Array, and Karl G. Jansky Very Large Array
observations of [C II] and CO(3–2) emission lines, from z ∼ 7 and z ∼ 4 galaxies, respectively. We find that the algorithm is very
robust, successfully retrieving the input parameters of the stacked lines in all cases with an accuracy �90 per cent. However,
we distinguish some specific situations showcasing the intrinsic limitations of the method. Mainly that high uncertainties on
the redshifts (�z > 0.01) can lead to poor signal-to-noise ratio improvement, due to lines being stacked on shifted central
frequencies. Additionally, we give an extensive description of the embedded statistical tools included in LINESTACKER: mainly
bootstrapping, rebinning, and subsampling. Velocity rebinning is applied on the data before stacking and proves necessary when
studying line profiles, in order to avoid artificial spectral features in the stack. Subsampling is useful to sort the stacked sources,
allowing to find a subsample maximizing the searched parameters, while bootstrapping allows to detect inhomogeneities in the
stacked sample. LINESTACKER is a useful tool for extracting the most from spectral observations of various types.

Key words: methods: data analysis – techniques: interferometric – galaxies: high-redshift – galaxies: statistics – radio lines:
galaxies – submillimetre: galaxies.

1 IN T RO D U C T I O N

One of the great challenges in astronomy, and more especially in the
field of galaxy evolution, comes from the tendency to look primarily
at the brightest sources of a given galaxy population. The further
we look the fewer intrinsically faint objects are observable, posing
a real difficulty in studying faint, low-mass, galaxy properties, or
faint tracer of physical and chemical processes. In order to draw an
accurate description of a galaxy population it is necessary to study
representative samples, including the faint/undetected sources. One
method that can be used for this purpose is stacking.

Stacking was first developed for optical data (Cady & Bates 1980)
to determine the average properties of otherwise undetected sources
and has, since then, been frequently used for studies at many different
wavelength ranges (e.g. Knudsen et al. 2005; Hickox et al. 2007,
2009; Karim et al. 2011; Chen et al. 2013; Lindroos et al. 2015, 2016;
Stanley et al. 2017). While radio and mm wavelengths observations
are essential to study the gas content of high-redshift galaxies,
arcsecond and sub-arcsecond angular resolution can only be obtained
when doing interferometric observations. However, interferometry is
not a direct imaging technique, but instead samples the Fourier trans-
form of the brightness distribution of the sources being observed.
Therefore, the produced images are a model representation of the
actual data (see e.g. Thompson, Moran & Swenson 2001). While
these models are well understood they often lead to the generation
of artefacts, making stacking analysis of interferometric data less
straightforward (Lindroos et al. 2015).

� E-mail: jean.jolly@chalmers.se

Stacking of radio and mm wavelength interferometric data has
mainly been done for continuum data (e.g. Karim et al. 2011; Decarli
et al. 2014; Ikarashi et al. 2015; Lindroos et al. 2016, 2018; Stanley
et al. 2017), it has occasionally been done for spectral lines as well
(e.g. Murray et al. 2014; Decarli et al. 2018; Bischetti et al. 2019;
Fujimoto et al. 2019; Stanley et al. 2019). However, no general open
access tool nor any thorough study of the spectral stacking method
has yet been published.

In this paper, we describe the functionalities and performances of a
new tool for stacking spectral lines: LINESTACKER. LINESTACKER is an
ensemble of CASA tasks and it allows stacking of spectral cubes in the
image-plane. Its main contribution is the stacking algorithm, but also
includes embedded statistical tools for further analysis of the stacked
data and optimization of the stacked signal. We also demonstrate
the performances and capabilities of LINESTACKER, by testing it on
increasingly complex simulated data sets, that mimic mm- and radio
observation of emission lines from high-redshift galaxies. The tests
are performed on both high and low signal-to-noise ratio (SNR)
cases. The high SNR data sets test the reliability of the algorithm in
a near-ideal case, while the low SNR data sets are used to verify the
efficiency of noise reduction.

In Stanley et al. (2019), we used LINESTACKER to perform a spectral
stacking analysis to search for faint outflow signatures in a sample
of z ∼ 6 quasars. We used the main algorithm and accompanying
tools presented in this paper, on a sample of 26 quasars with detected
[C II] emission. Our work demonstrated the utility of LINESTACKER

as a spectral stacking tool, when searching for faint emission at high
redshift.

In Sections 2 and 3, we give a complete description of LINES-
TACKER, fully characterizing both the main algorithm and the
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embedded tools. In Section 4, we describe each simulated data set
in detail. In Section 5, we give the results from our stacking analysis
on the simulated data sets. We discuss the results of the analysis, and
review possible outlooks in Section 6. Finally, Section 7 outlines the
conclusions of this study.

2 L I N E S TACK E R

LINESTACKER is an assembly of CASA tasks allowing stacking of
data cubes, specifically cubes with two spatial dimensions and a
frequency/velocity dimension. It has been developed specifically to
stack spectral lines, with the capability to take into account varying
redshift/central-velocities across the sample. In addition, embedded
analysis tools are included within LINESTACKER, for further analysis
of the stack results and sample. LINESTACKER is an extension of
STACKER (Lindroos et al. 2015), a tool built for stacking continuum
interferometric data. While STACKER allowed direct visibility stack-
ing, the visibility stacking extension of LINESTACKER is still under
construction.

2.1 Main algorithm

When stacking cubes, every source is stacked pixel to pixel, spectral
bin to spectral bin. Spatial stacking positions as well as observed
central frequency – or rest-frame frequency and redshift – of the
sources are needed prior to stacking. The position of the source
can typically be obtained through continuum observations, or, more
generally, through prior observations at other wavelength. Subimages
of N × N pixels are stacked, centred on the stacking position.
Similarly only a subset of the total number of spectral bins, centred
on the estimated central frequency of the line in the observer frame,
are stacked (note that all the spectral channels can be stacked if
required by the user). A good prior knowledge of the observed central
frequency of the line, i.e. of the redshift of the source, is needed in
order to stack the spectra reliably and thus maximize the amplitude
of the reconstructed line (see Section 5.2.1). Both median based
(similar to Pannella et al. 2009) and weighted mean based (similar
to Decarli et al. 2014) stacking have been developed. Both methods
induce a theoretical rms noise reduction by a factor ∼ √

N , where N
is the number of sources stacked (if measurements are independent
and outliers are symmetric).1

Required user inputs to the algorithm are a list of data cubes, the
spatial coordinates of the target sources, and the spectral coordinate
of the associated line (i.e. either observed central frequency, or
redshift of the source and the rest line frequency or central channel
index). The spatial and frequency sizes of the subimages are specified
by the user prior to stacking. For each target source, data is extracted
from its associated cube, and filled into the associated empty
subimage. All subimages are then buffered to facilitate access to
data, this is especially relevant when using statistical tools implying
numerous iterations of stacking. Finally, all stamps are stacked
together, according to the user specified method (mean, median,
or weighted-average). If weighted-average stacking is used, weights
can be automatically calculated through a set of embedded methods

1It should be noted that, while rms noise level goes down by a factor ∼ √
N in

both mean and median stacking, the SNR may behave differently when using
either. This would be the case if, for example, the studied sample is composed
of many dim low SNR sources, and a few brighter high SNR sources. The
brighter sources would not contribute to the median stack while they would
be driving the SNR improvement in the mean stack.

or input by the user. See Section 2.4 for a complete description of
the automated weighting methods. The main steps taken by the main
stacking algorithm can be seen in Fig. 1.

It should be noted that a difference between the results from
median and mean stacking would imply a skewed distribution of the
sources in the studied sample: while mean results would be driven
by a few, brighter, outliers, they should have a lesser impact on the
median results. Using multiple stacking methods can hence be a good
diagnostic of a skewed distribution of the sample.

See Appendices A1 and A2 for examples using of LINESTACKER.

2.2 Edge treatment in spectra

When observing it is possible that the emission line of the target
source is not centred within the observed spectral window, but
falls near the edge. This results in only partial line coverage, and
could inhibit the inclusion of such sources in stacking. In order to
still include these sources, for each source, channels outside of the
observed window are omitted from the stack. This will result in a
certain range of spectral channels in the stack containing less sources.
In such a situation, the noise will have higher values near the edges
of the stacked spectrum. When stacking with LINESTACKER, the user
gets, as an additional output, the number of sources used in every
spectral bin, in order to take this effect into account when interpreting
stacked data.

2.3 Estimating noise level

In order to calculate noise level in the data, two methods are
available. The first computes the noise on the entire spectrum
(through collapsing all frequency channels), while the second handles
the noise channel by channel, allowing to account for noise variation
with frequency (e.g. Bischetti et al. 2019). In addition, and in both
cases, noise levels can be computed either through a user-defined
region around the target sources, or across the entire cubes. Typically,
noise levels are used as weights for sources in the stack. Calculating
the noise across the entire cubes is therefore more relevant if there
is only one source per cube, or at least if the dimensions of the
cubes are comparable to the size of the sources. This is, however,
left to the user to choose. Noise is calculated by computing the
standard deviation of the data across the selected region. Computing
noise levels across the entire cubes can be useful if, for example,
cubes are obtained from different observations, as some may present
much higher noise values (due to a lower integration time or varying
observing conditions) and should therefore hold a lower weight in
the stack. However, doing so leads to the inclusion of pixels far from
the centre which will hold intrinsically higher noise level due to the
reduction of the primary beam response. Computing the noise solely
in more compact regions, centred around the target sources, allows
to take the source position on the cube into account: sources closer
to the phase centre should have lower noise and should hence have
higher weights.

2.4 Automated weightings

If using weighted-average stacking the user can input customized
weights for all sources individually or use the automated methods
included in LINESTACKER. Automated methods include the following:

(i) Weights inversely proportional to the noise of the cubes:

Wi = 1

σ 2
i

,
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Figure 1. Flow chart showing the main steps taken by the main stacking algorithm of LINESTACKER.

with Wi the weight of source i, and σ i the standard deviation
associated with source i. As stated in Section 2.3, noise can be
computed across the entire cube. In which case Wi is the weight of
cube i, and σ i the standard deviation across cube i.

(ii) Alternatively different weights can be used for each frequency
bin (depending on the individual noise values in that frequency bin),
in this case, Wi,j, weight of source i at spectral channel j is defined as
(Fruchter & Hook 2002):

Wi,j = 1

σ 2
i,j

,

where σ 2
i,j is the standard deviation associated with source i at spectral

channel j.
Following this, one can define W ′

j , the total weight on stack channel
j as

W ′
j =

n∑

i=1

Wi,j =
n∑

i=1

1

σ 2
i,j

= 1

σ ′2
j

,

where n is the total number of sources and σ ′
j the summed standard

deviation at spectral channel j. Similarly to above, noise computation
can be extended to the entire cube or restricted to regions around the
target sources.

(iii) If the lines are individually distinguishable before stacking,
weighting can be set proportionally to properties of the source, for
example:

Wi = 1

Ai

,

with Wi the weight and Ai the amplitude of line i (e.g. Stanley et al.
2019).

2.5 Linewidth change in frequency due to redshift: resampling

If the spectral cubes are not sampled in velocity space but in
frequency (or wavelength) space instead , the width of the lines
emitted by sources at different redshifts will change (getting narrower
in frequency with increasing redshifts). In order to take this effect
into account an option is included into LINESTACKER to resample
sub-cubes according to their redshift, before stacking. Two options
are available: to either use the line with the highest or lowest redshift
as a reference – using the lowest redshift will lead to oversampling
while using the highest implies undersampling, see below. The sub-
cube associated with the line of reference is kept identical while the
other are resampled such that

�νnew = �νold

zratio
,

which is equivalent to

Nnew = Nold ∗ zratio ,

where �νnew, �νold, Nnew, and Nold are the channel size and number of
channels after and before resampling, respectively. And zratio = 1+z

1+zref
where z is the redshift of the source being resampled, and zref is the
redshift of the line chosen as reference. Once the new channel size is
computed the resampling is performed through linear interpolation.
Because such a treatment implies modification of the data – and may
not be relevant if the sources stacked have similar redshifts – it is
optional when using LINESTACKER. To avoid oversampling the data,
we would advise against using the smallest redshift as reference.

However, because both methods imply linear interpolation of the
data, it is advised to work directly with cubes binned in velocity
when working with a sample with a very large redshift range. Most
tools for imaging interferometric data, such as CASA, can produce
cubes binned in velocity. Such algorithms used for regridding the
cubes take into account extreme cases like a very sharp line that may
be missed with our method due to the use of linear interpolation.

2.6 1D-STACKER

In addition to the cube stacker, a module allowing 1D stacking is also
included in LINESTACKER. The required user inputs are the spectra
and the corresponding line centres. The line centres can also be
identified automatically, through Gaussian fitting, if the lines are
detectable before stacking. Similarly to cube stacking, individual
weights for weighted-average stacking can be input by the user or
automatically calculated (see Section 2.4 for a detailed description
of the different weights). Median stacking is also available.

The 1D module of LINESTACKER can be used on spectra extracted
from cubes beforehand, allowing individual custom spectra extrac-
tion for each source. This can be useful if, for example, sources are
known to have different spatial extent.

Unlike cube stacking, 1D-STACKER does not require CASA func-
tions, and can be run in a PYTHON session. See Appendix A3 for an
application example of 1D-STACKER.

3 STATI STI CAL ANALYSI S TOOLS

Here, we present the statistical tools included in LINESTACKER to
assist with the analysis of the stack spectra. Some tools are meant to
be applied after stacking (post-stacking), to determine the robustness
of the stack. Other tools can be used before stacking (pre-stacking)
to get a better insight of the distribution of the stacked population.

3.1 Estimating the significance of the stack result

In order to estimate the significance of the stack result one can stack
source-free positions and compare the result to the initial stack. For
every source, a random position on the map excluding the region
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around the source is chosen to be stacked. The new set of source-
free targets is then stacked, similarly to the original target sources
(same weighting scheme, etc.). This process is performed a large
number of times (user defined, typically of the order of 104–105),
as a Monte Carlo process, to reach a good statistical significance
of the empty positions (homogeneously probing the field and thus
avoiding peculiar or peak noise values). Comparing the distribution
of the results from the source-free stacks to the result of the source
stack, allows for a good estimate of the significance of the stack. This
method shows to what extent the result obtained from stacking the
original target sources could be reproduced by stacking only noise.

3.2 Bootstrapping

When coupled to stacking bootstrapping can be used to probe the
distribution of the parameters of the lines (amplitude of the stacked
line, width of the line or integrated flux) in the original sample.

In statistics, bootstrapping methods are methods of statistical
inference that allow estimation of the distribution of the sample
parameters, through randomly resampling the original sample with
replacement. Each source added to the new sample is randomly cho-
sen from the entire pool of sources, allowing for multiple selections
of the same source. The total number of possible combinations of
resampling N elements is �N

N = (2N−1)!
N!(N−1)! which, for N = 30, is of the

order of 1016. Therefore, bootstrapping methods are most commonly
combined with stochastic methods such as Monte Carlo analysis. See
Appendix A3 for an example use of bootstrapping.

3.3 Subsampling

Subsampling consist in choosing a new, smaller sample of sources
from the original target sources. This method is performed by
randomly choosing a new sample size (between 1 and N, where
N is the total number of sources), and randomly filling it with
any of the target sources (without replacement2). The stack is then
performed again, using this new set of sources. A grade is assigned to
sources present in the subsample, depending on how well their stack
compares to the original/full stack (the grading system depends on
what specific characteristics the user is trying to probe, and hence
what kind of test is applied to the data set). Performing this procedure
a high number of times allows to identify if some specific subset of
sources exhibit an average higher grade. Similarly to bootstrapping,
this aims at studying the sample’s distribution, but subsampling could
allow individual identification of outliers. A good example of the use
of subsampling can be found in Stanley et al. (2019), where we used
it to identify sources more likely to show an outflow component
out of a sample of high-redshift quasars. See Appendix A3 for an
example use of subsampling.

3.4 Spectral rebinning

Spectral rebinning consists in changing the size of the spectral
bins of each cube/spectra depending on the width of the line. As
shown in Section 5.1.5 stacking lines with different widths will
impact the stacked line profile: even if all lines have Gaussian
profiles initially, the resulting stacked line will not be Gaussian.
This can be a source of bias if trying to give a diagnostic of lines
profile (e.g. while looking for outflow signatures). If the linewidth

2Once picked the source is removed from the pool, preventing sources to be
placed twice in the same sample.

is identifiable pre-stacking, it is possible to change the bins size,
individually for each source, so that all lines span the same number
of spectral channels. The resulting stacked line will then retain a
Gaussian shape. It should be noted that, after such treatment, the
channel size of each spectrum can be defined as in Stanley et al.
(2019): cwrebin = cworigin × FWHMorigin/FWHMmin, where cwrebin is
the channel width after rebinning, cworigin is the original channel
width, FWHMorigin is the full width at half-maximum (FWHM) of the
line before rebinning, and FWHMmin is the FWHM of the narrowest
line (used as a reference to rebin all the spectra). After stacking
the channel width of the stacked spectrum can be thought of as the
mean channel width of all rebinned spectra. See Decarli et al. (2018)
and Stanley et al. (2019) for example use of spectral rebinning. See
Appendix A2 for an example use of spectral rebinning.

4 SI MULATI ONS

To evaluate the performances of LINESTACKER on different observable
cases, we simulate data sets mimicking interferometric data. We con-
centrate on two different data types: the full spectral cubes (3D data
cubes), and extracted spectra (1D spectra). While stacking simulated
3D data sets allows us to characterize the general performances
of LINESTACKER’s main algorithm, stacking 1D spectra permits the
study of the effect of complex line profiles on the stack. Every set
of simulations and the associated analysis is performed 100 times
in the case of the 3D data sets and 1000 times for the 1D data
sets to increase statistical significance. While multiple weighting
schemes are available in LINESTACKER all data sets are stacked using
a weighting of w = 1 for all sources. Characteristics of the simulation
sets are given in Tables 1 and 2. Throughout we assume H0 =
70 km s−1 Mpc−1, �M = 0.3, and �� = 0.7.

4.1 3D simulated data sets: general characteristics

All 3D simulated data sets but two are generated using the CASA task
SIMALMA (a task performing simulations of ALMA observations3)
simulating ALMA cycle 6, configuration C43–2 – a short baseline
configuration: max baseline = 314 m, corresponding to an angular
resolution ∼1 arcsec at 230 GHz4 and a primary beam FWHM of
∼25.2 arcsec. This ALMA configuration has been chosen because
most studied cases focus primarily on the frequency signature
of sources and less on the spatial distribution. We hence favour
faster computing time over better spatial resolution. If not specified
otherwise, we simulate band 6 observations: with a central frequency
of 230 GHz and a bandwidth of 4 GHz. Unless specified otherwise,
all simulations have a velocity resolution of 100 km s−1 which
corresponds to a frequency resolution of ∼80 MHz. Furthermore,
we simulate VLA observations, using CASA task SIMOBSERVE (a
more general simulation task in CASA), simulating configuration C,
corresponding to an angular resolution of 0.95 arcsec and a FOV of
120 arcsec. The central frequency is set to 22 GHz, falling in the
middle of the K band. The total bandwidth is 500 MHz with a res-
olution of 100 km s−1, which corresponds to a frequency resolution
of ∼ 7.3 MHz. We set the total integration time to 20 min for each
pointing, corresponding to typical ALMA/VLA pointing time. When
the channel width is set in frequency instead of velocity (data set7
and data set8b), we chose to divide the bandwidth in 60 channels,

3https://casa.nrao.edu/docs/TaskRef /simalma-task.html
4https://almascience.nrao.edu/tools/proposing/proposers-guide#section-53
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Table 1. Characteristics of 3D simulated data sets.

Data seta
Number of
sourcesb

Number
of cubesc Line peakd Linewidthe Velocityf Positiong FOVh Source sizei Simulationj Redshiftk Foregroundl

per cube randomization FWHM resolution type range source
(km s−1) (km s−1) (arcsec)

1a 1 30 No 400 100 Centre 6 PS ALMA 7.19 < z < 7.32 No
1b 1 30 No 400 10 Centre 6 PS ALMA 7.19 < z < 7.32 No
2a 1 30 Yes 400 100 Centre 6 PS ALMA 7.19 < z < 7.32 No
2b 3 10 Yes 400 100 Random 28 PS ALMA 7.19 < z < 7.32 No
3 1 30 No 200–1000 100 Centre 6 PS ALMA 7.19 < z < 7.32 No
4 3 10 Yes 200–1000 100 Random 28 PS ALMA 7.19 < z < 7.32 No
5a, 5b, 5c 1 30 No 400 100 Offset 28 PS ALMA 7.19 < z < 7.32 Yes
6a 1 30 No 400 100 Centre 6 0.1–1.5 arcsec ALMA 7.19 < z < 7.32 No
6b 1 30 No 400 100 Offset 6 0.1–1.5 arcsec ALMA 7.19 < z < 7.32 No
7 3 10 Yes 400 ∼80 Random 28 PS ALMA 5.89 < z < 7.99 No
8a 3 10 Yes 200–1000 100 Random 120 PS VLA 4.12 < z < 4.36 Yes
8b 3 10 Yes 200–1000 ∼120 Random 120 PS VLA 3.34 < z < 5.40 Yes
9 1 30 No 400 100 Centre 6 PS ALMA 7.19 < z < 7.32 No

aData set number ID. bNumber of stacking target sources on each cube. cTotal number of cubes stacked for each stack iteration. dIs the [CII] peak value randomized (‘Yes’) or fixed
(‘No’). eFWHM of the simulated Gaussian emission lines. fVelocity resolution (i.e. size of the spectral channels) of the simulated cubes. gSpatial position of the sources on the cubes:
on the centre, randomized, or offset. hTotal spatial extent of the simulated cube. iPhysical source size, ‘PS’ stands for point source. Corresponding sizes once convolved with ALMA
beam are ∼1 arcsec for the point sources (and ∼0.95 arcsec in the VLA case), from ∼1 to ∼1.8 arcsec in the case of extended sources. jInterferometer simulated for the observations.
kRedshift range of the target sources. lPresence of bright foreground sources.

Table 2. Characteristics of 1D simulated data sets.

Data seta Number of sourcesb Linewidthc Velocity resolutiond Spectral signaturee �z (f )

(km s−1) (km s−1)

10 30 400 100 Gaussian True
11a 30 100–700 100 Double peaked False
11b 30 400 100 Double peaked True
12 30 400 100 Two Gaussian components False
13 30 400 100 Gaussian False

aData set number ID. bTotal number of stacked spectra for each stacking iteration. cFWHM of the simulated emission
lines. dVelocity resolution (i.e. size of the spectral channels) of the simulated spectra. eSpectral shape of the simulated
emission lines. fUsage, or not, of uncertainties on the observed redshift, resulting in uncertainties in the central line
position.

meaning that the average channel width in frequency may slightly
differ from the constant 100 km s−1 of the other sets (see Table 1).

Every source’s image is generated through a component list (a list
of functional representation of the sky brightness) which serves as a
skymodel (model image of the observing field) whose observation is
then simulated with the CASA task SIMALMA (or SIMOBSERVE
in the case of VLA data). From this simulation we get the visibilities
(i.e. the interferometric data), which are then imaged using the CASA

task CLEAN,5 the images being the final product that will be stacked.
In the absence of bright foreground sources the number of CLEAN

iterations is set to 0 (i.e. solely imaging), otherwise CLEAN is per-
formed down to a given threshold (∼10 times fainter than the bright
foreground source). For every source the spectrum consists of an
emission line with noise, the noise being directly generated through
the SIMALMA or SIMOBSERVE task depending on the data set.

Every pointing position is selected randomly within a circle of 10
arcmin radius, centred at J2000 3h31m00.00–27d40m00.00.6

Every sky model consists of 30 sources, distributed on either 30
or 10 images (either 1 source per image in the centre, or 3 sources
at random positions, see Table 1). The sample size was chosen such
that it is small enough to be representative of most stack cases and

5The CLEAN algorithm was originally described in Högbom (1974).
6Corresponding to the Extended Chandra Deep Field South field (ECDFS;
Arnouts et al. 2001) it has been chosen arbitrarily and does not have any
impact on the produced data and its analysis.

large enough to present a relevant noise reduction.7 When only one
source is simulated in the middle of each image, the data cubes are
produced with a size of 6 arcsec × 6 arcsec, which is a sufficient size
as we are interested in the central source and not the edges. When
multiple sources are generated on one image, sources are randomly
distributed within the primary beam of the simulated data, which is
25.2 arcsec, and the cubes are imaged to a larger size of 28 arcsec ×
28 arcsec. This allows to test for effects that may arise with sources
far from the centre. In both cases the angular resolution is set to
0.25 arcsec pixel−1, the synthesized beam having a size of ∼1 arcsec.

We create 15 × 2 different simulated data sets: 15 data sets, with
specific characteristics, are tested in both a high and a low SNR.
Each version serves a different purpose. The high SNR (≈200) sets
allow for a near-ideal test of the algorithm, where noise is almost
negligible, and shows the best result one can expect. Low SNR
(≈1) sets test the reduction of noise through stacking, but also the
limitations when applied to a case where noise levels are important.
We mostly concentrate on point like sources but we also examine
cases with extended sources. For flux conservation near the edges of
the map every simulation has been primary beam corrected. We note
that primary corrections should be done by the user as it is not a part
of the image stacking routine of LINESTACKER.

7When stacking, noise goes down as
√

N where N is the number of stack
positions; 30 sources corresponds to an average noise reduction of

√
30 ∼ 5.5

(see Section 6.1.2 and Fig. 8).
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4.2 Spectra

For our simulated data sets we assume a sample of high-redshift
galaxies. We chose two scenarios: [C II] emission lines, at z ∼ 7,
observed with ALMA in band 6 and CO(3–2) at z ∼ 4 observed
with VLA in band 4. In both cases, the spectra consist solely of the
emission line and noise. These lines have been chosen arbitrarily,
as typically observed emission lines at high redshift. The lines and
redshift choice should have no impact on the produced data and
hence on the conclusions drawn in this article. The high SNR samples
are generated simulating emission lines peaking at 100 mJy, versus
0.5 mJy for the low SNR samples; 100 mJy is typically brighter than
what would be expected, this value is picked in order to have near-
ideal, very high SNR values.

In some sets (see Table 1), the amplitude is not fixed, but
randomized uniformly over a given range (i.e. top hat distribution).
The ranges: from 50 to 150 mJy and from 0.1 to 0.9 mJy for the
high and the low SNR sets, respectively, are chosen such that the
mean amplitude reaches the same value as the fixed one, to allow
easier comparison between sets. When fixed, the line FWHM is
set to 400 km s−1 (which is typically for high-redshift galaxies, e.g.
Bothwell et al. 2013; Gullberg et al. 2015, 2018; Decarli et al.
2018). When random, the FWHM is randomized uniformly from
200 km s−1 to 1000 km s−1. Exact values do not have a big impact
and are chosen to be representative of observed values where large
variations in line widths are seen (e.g. Bothwell et al. 2013; Decarli
et al. 2018). Throughout the text line width will refer to the FWHM of
the line.

4.3 Simulated data sets: 3D

In Table 1, we give the characteristics of each 3D simulated data set,
and here we provide further information on each data set

4.3.1 Most basic case – set1a

To test the performance of LINESTACKER in a near-ideal, fully
controlled simulation, we start with the simplest [C II] line
simulation, using a realistic spectral resolution. It consists of a point
source in the centre of every image, with all the same spectrum
which is simply a [C II] emission line with a width of 400 km s−1 A
total of 30 cubes are simulated, with a channel width of 100 km s−1,
which is typical of stacked data where the channels are collapsed
together beforehand in order to maximize the amplitude of the signal
to the detriment of frequency resolution. This set will be considered
as a reference, to be compared to the following sets to see the impact
of the tested parameters.

4.3.2 Most basic case, high spectral resolution – set1b

When the emitted line is observed, it is binned to a finite number
of channels. When the number of channels across the line is small
(of the order of ∼5 across the line FWHM) the line’s amplitude
will be systematically underevaluated. To test this effect, and show
that the amplitude loss is due to the finite spectral resolution and
not to some other intrinsic bias, we repeat data set1a with a much
better spectral resolution. The number of channels is 10 times
higher than in set1a for the same bandwidth. Even though such
a spectral resolution is better than the one typically expected,
the goal here is to build a near-perfect reference set, estimating
the signal loss that can be expected due to the finite number of
channels.

4.3.3 Random amplitude – set2a

Data set2a is designed to check the effect of a given distribution of the
lines amplitude on the stack. Amplitudes of each line are randomized
uniformly on a range of 50–150 and 01–0.9 mJy for the high and low
SNR sets, respectively. The width of every line is kept at 400 km s−1.

4.3.4 Random amplitude and position set2b

Stacking can be expected to be used on individual cubes containing
multiple sources. Because LINESTACKER performs stacking on sub-
cubes the effect coming from such configuration should be limited.
However, such a case of configuration is likely to be a common user
case, and therefore is relevant to test. Here, unlike set2a the number
of sources per image is set to 3, with positions uniformly randomized
across the whole field. Amplitudes of each line are still randomized
uniformly on a range of 50–150 and 0.1–0.9 mJy for the high and low
SNR sets, respectively. The width of every line is kept at 400 km s−1.

4.3.5 Random linewidth – set3

Data set3 aims at quantifying the effect on the stacked line when
including lines with a range of line widths. This situation is expected
in real data since galaxies exhibit a range of line width due to different
masses, orientation and level of turbulence. In order to properly
evaluate the consequence of such an inhomogeneous distribution
this data set will be based on set1a but with a FWHM randomly
picked from a uniform top-hat distribution from 200 to 1000 km s−1.

4.3.6 Random amplitude, linewidth, and position – set4

Data set4 is a combination of data set2b and 3, with randomized
positions on the field as well as randomized amplitude and width of
the line.

4.3.7 Bright foreground source in the centre – sets 5a, 5b, and 5c

These data sets aim at quantifying the effect that could arise from
stacking faint sources from a map containing a bright central point
source. Such a case can be expected when stacking faint peripheral
sources present in a field centred on a bright source. The presence
of bright sources (continuum or spectral line) affects the quality
of the interferometric image products, as imperfect modelling of the
bright source can leave artefacts in the final data cubes; such artefacts
increase the noise and could potentially affect the stacking result. In
the simulations, the central bright source has a continuum flux density
of 1 and 0.1 Jy for high and low SNR simulations, respectively. While
1 Jy is higher than typically expected values, the foreground source
has to be brighter than the amplitude of the line of the target sources
– which are already very bright in the high SNR sets. The target
sources have the same properties as sources from data set1a. To
properly diagnose the impact of the bright foreground source we
created three type of data sets. In data set5a the target source is
located at a distance of 2.5 arcsec from the bright source, 5 arcsec
in data set5b and 10 arcsec in data set5c. The bright foreground
source was removed using the CASA task CLEAN, and the stacking
was performed on the residual image.

4.3.8 Extended sources – set6a

Data set6a is composed of extended sources, to test cases where
sources are resolved. We investigated such a case by simulating
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a data set similar to data set1a, but containing extended sources.
Sources have Gaussian shape, with their orientation and size taken
at random. The length of the major and minor axes are randomized
uniformly between 0.1 and 1.5 arcsec (this is the physical extent of
the sources and corresponds to a size range of ∼1.00–1.80 arcsec
after convolution with the ALMA beam). The orientation and size
of the sources will have an important impact since different sources
will not be spanning the same area. Each source is simulated with a
spatially integrated peak flux value of 100 and 0.5 mJy for high and
low SNR sets, respectively.

4.3.9 Extended sources with an offset – set6b

Typically, the stacking positions of sources are defined based on
observations at other wavelength. This can induce an offset between
stacking position and source position at the observed wavelength. In
the case of the observation of emission lines the region of interest
may be offset from the position defined at a different wavelength (e.g.
[C II] may be distributed differently on the studied galaxy than dust or
the stellar population e.g. Rybak et al. 2019; Fujimoto et al. 2019). In
order to reproduce and quantify such an effect, we produced another
data set, similar to data set6a, but where the stacking position is offset
compared to the source position. This offset is taken at random within
a uniform distribution between 0 and 1 arcsec. This will impact the
stack results since sources will not be properly aligned when stacked.
It should be noted that point sources are of course also subject to
potential offset. However, due to the nature of the observations, their
observed size will be equal to size of the synthesized beam. The
effect coming from the offset of point sources is hence comparable
to the effect tested in this data set.

4.3.10 Random central frequency, larger redshift range – set7

Data set7 is based on data set2b but studies sources spanning a
larger redshift range and thus a larger observational central frequency
range. The redshifts are drawn randomly from a uniform distribution
in the range 5.89 < z < 7.99 (corresponding to a range of possible
observed central frequencies covering the entire band 6). The bin
width is set to a fixed frequency size of ∼ 67 MHz, 60 channels over
the 4 GHz bandwidth, corresponding to ∼ 80 km s−1 for the average
frequency. Trying to stack observations done on a large frequency
range will have different implications, one of the most direct is the
shape and size of the beam, which changes with frequency and could
hence be different from one observation to the other. In addition,
because of the large redshift range, it is necessary to take into account
the change of width of the lines when working in frequency. Each
sub-cube is therefore resampled before stacking according to the
method described in Section 2.5. The highest redshift is used as
reference for resampling, leading to a reduced number of channels
after resampling.

4.3.11 VLA type simulation – set8a

We simulate CO(3–2) observations with VLA. To both showcase that
the tool is not solely usable on ALMA type data and also to study
cases with a larger field of view and more polluting bright sources.
On each cube we simulate three target sources with characteristics
similar to data set4. Additionally, we add: one very bright foreground
point source with a line amplitude of 1 Jy in both the high and
low SNR sets, as well as two ‘medium bright’ foreground point
sources with amplitude 100 and 10 mJy in the high and low SNR sets,

respectively. All sources positions are uniformly randomized across
the whole field. The frequency coverage for this set corresponds to
a redshift range of 4.12 < z < 4.36. It should be noted that since the
line amplitudes of the target sources are kept the same as in the other
sets, the SNR will be slightly reduced (due to the lower sensitivity
of simulated VLA data): SNR ∼ 1 in our simulated ALMA data
corresponds to SNR ∼ 0.8 in our simulated VLA data.

4.3.12 VLA type simulation, larger redshift range – set8b

Set8b is an extension of set8a to the entire K band, the central fre-
quency is chosen at random so that the entire bandwidth is contained
between 18 and 26.5 GHz. Bandwidth is kept the same as in set8a but
channel size is kept constant in frequency at ∼ 8.3 MHz: 60 channels
over the 500 MHz bandwidth, corresponding to ∼ 112 km s−1 for the
average frequency. The goal is similar to set7: to study the impact of
the large redshift range on the stack, but with a larger redshift range:
from 3.34 < z < 5.4. Similarly to set7 a resampling is applied to
each sub cube to take into account the redshift of the sources.

4.3.13 1D stack of spectra extracted from cube – set9

To allow easy comparison between the 3D and the 1D data sets, we
built a data set where the spectra are extracted from individual cubes
and then stacked using the 1D module of LINESTACKER. The sources’
properties are the same as set1a and the spectra are extracted from
the central pixel.

4.4 Simulations data sets: 1D

The 1D simulated data sets allow us to test some specific spectral
signatures more easily than when using full 3D simulations: we
examine cases of double peaked line profiles, outflow signatures, the
effect of redshift uncertainties on the stack, and the effect of stacking
lines located on the edge of the observed spectral window. The data
sets are generated with a bandwidth of 3000 km s−1, and a resolution
of 100 km s−1. These spectral only simulations are not generated
through CASA, allowing faster computing time. Individual spectra are
generated by creating individual Gaussian components and adding
randomly generated Gaussian noise on top of each channel. Similarly
to the 3D sets two SNR configuration: one with high (pre-stacking)
SNR (∼200) and one with an SNR of order unity. Lines are generated
with an amplitude of 200 mJy in the high SNR data sets and 1 mJy
in the low SNR data sets. The noise follows a Gaussian distribution
centred at 1 mJy. Linewidths differ from simulation to simulation,
see Table 2 for a complete description of the characteristics of each
simulated data set.

4.4.1 Diagnostic of redshift uncertainties – set10

One of the biggest challenges when stacking lines of distant galaxies
arises from redshift uncertainties. Every simulation performed pre-
viously has been computed expecting a perfectly good knowledge
of the redshift. But, realistically, redshift is never known with
100 per cent accuracy, and redshift uncertainties can cause lines not
to be stacked on the same central frequency.

Consequently, the amplitude and width of the stacked line will be
washed out and potentially become indiscriminate from the noise.
In order to quantify this problem we construct spectra data sets, and
test different levels of redshift uncertainties (�z). The linewidths are
all set to a velocity of 400 km s−1. The redshift uncertainties, �z, are
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set to values of 0, 0.001, 0.005, 0.01, 0.05, and 0.1 (corresponding
to velocity shifts of ∼ 0, 36, 180, 360, 1800, 3600 km s−1) and the
observed redshifts of the sources in each simulated data set are chosen
randomly between ztrue ± �z, where ztrue is the real redshift of the
line. For every �z, 1000 data sets are created.

4.4.2 Double peaked spectrum – set11a

Rotational signatures from galaxies can be seen as double peaked
line profile. In order to study such case we create a simulated 1D
sample with such properties. The spectra were designed to have a
distance, D, between the two peaks ranging uniformly from 200 to
600 km s−1, and an amplitude of 10 mJy, while the width of the line
ranges from 100 to 700 km s−1 (with the same linewidth for both
components). The central frequency for stacking is taken as the
centre of the two peaks.

4.4.3 Double peaked spectrum with redshift uncertainties – set11b

This data set, like the previous one, shows spectra with double
peak line profile. This time all lines are simulated with the same
characteristics, a width of 400 km s−1 and a distance between the
peaks of 400 km s−1. An uncertainty on the redshift is added. Like
data set10 the �z values of 0, 0.001, 0.005, 0.01, 0.05, and 0.1 are
tested. Hence, trying to quantify the distortion of this specific spectral
signature when confronted to redshift uncertainties, and the extent to
which one can recover such spectral characteristics when stacking.

4.4.4 Outflows – set12

In cases where outflows are present, the galaxy’s emission lines could
include a second, fainter and broader, component (see Stanley et al.
2019). In many cases observation will not be deep enough to detect
this signature, and therefore stacking is a useful tool. From a testing
perspective, studying outflows allows us to use line stacking in a
different fashion: to look for specific spectral signatures below the
noise, while the main line is visible: using the main line not as a source
but as a reference to stack signal below it. All the lines are simulated
with a width of 400 km s−1, and a broad component with a width of
1000 km s−1. The amplitude of the broad component is one-tenth of
the amplitude of the main line. The two SNR configurations (200 and
1) are based on the broad component amplitude. The amplitude of
the main lines will be 2 Jy in the high SNR configuration and 10 mJy
in the low SNR regime – corresponding to an amplitude of the broad
component of 200 and 1 mJy in the high and low SNR configuration,
respectively.

4.4.5 Lines on the edge – set13

One of the strengths of LINESTACKER is its ability to stack lines
located on the edge of the observed spectral window. To showcase
this capability and test its performance we produced a data set where
all lines are located on the edge. While it is unrealistic to have a data
set where all lines are so far from the centre, we decided to test such
an extreme case to demonstrate the expected result in the worst-case
scenario. All simulation parameters are similar to data set10 with
a redshift uncertainty �z = 0, but lines are centred at a distance
uniformly randomized between 0 and 200 km s−1 from either of the
spectral edges. This means that a significant part of the line will be
outside of the observed spectral window – in the worst case where
the line is centred exactly on the edge, 50 per cent of the line will not

be observed, in the best case, when the line is centred at a distance
of 1

2 FWHM =200 km s−1, roughly 30 per cent of the line is outside
of the observed window.

5 R ESULTS

We used LINESTACKER on the simulated data sets described in
Section 4. From our stacking analysis we extract the amplitude and
the width of the line as well as the integrated flux and compare them
to the mean input values. Stacking is performed with subimages
of size 16 × 16 pixels and 32 spectral channels. To retrieve the
amplitude and width we fit the resulting stacked line with a Gaussian
and extract the fit’s parameters. The integrated flux is computed by
summing the flux in each channel covering the detected line and
multiplying by the channel width. The spectral area of integration
has a size of two times the input line FWHM, centred on the line
central frequency. When the amplitude and/or width are simulated
at random we calculate their average and use this average for
comparison with stack values. Presented reconstruction fractions are
the ratio (1 − |1 − measured

expected |) × 100 for each parameter in both low
and high SNR configurations (chosen such that the reconstruction
rate is always < 100 per cent).

The results, average of all the stacks, are presented in Table 3.
Presented standard deviations are the standard deviations of the
stack results across the studied simulation set. In the case of 1D
simulations, different parameter reconstruction are tested for every
simulation, results from stacking analysis of each one-dimensional
data sets are shown in Tables 4–6.

5.1 Stacking results from 3D simulated data sets

We first present the results from stacking the 3D simulated data sets.
For every data set we analyse separately the average results from the
two SNR cases and compare them to the average input parameters.
The presented results, for a given data set and a given SNR, are
average of 100 stacks. Each studied parameters (amplitude, width
and integrated flux) are discussed individually.

5.1.1 Most basic case – set1a

After stacking, and fitting our result with a Gaussian, we find a
reconstruction fraction of 94.0 ± 0.22 per cent, 92.7 ± 0.23 per cent,
and 99.6 ± 0.16 per cent for the amplitude, width and integrated flux
of the line in the high SNR configuration. Similar results are found
for the low SNR sets: 95.4 ± 5.2 per cent, 97.4 ± 5.21 per cent,
and 97.1 ± 2.36 per cent. As it will be shown in the next section
the missing 6 per cent in the amplitude reconstruction are systematic
errors due to the low velocity resolution. Even though line amplitude
is at the same level as the noise in the faint sets, the reconstruction
is extremely accurate. One should note that reconstruction of the
integrated flux has a stronger dependence to SNR than the amplitude
of the line does. This is due to the fact that, to have a proper integrated
flux reconstruction, one will need proper reconstruction in every bin
containing the line, meaning also the channels containing the outer
part of the line profile, which, if the SNR is low, will be under the
noise level. The reconstruction rates obtained from this data set will
be used as references when rating success of following data sets,
as data set1a has been designed to be the simplest data set, and will
hence yield the best results. Example results from stacking data set1a
can be seen in Fig. 2.
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Table 3. Stacking results from all 3D simulations. Presented results are obtained by averaging 100 stacks. Amplitude and linewidth are
obtained through Gaussian fitting, while integrated flux is obtained by integrating a given number of channels (see Section 5). Presented errors
are computed standard deviation of the given parameter in the 100 stacks.

Data seta Mean line amplitudeb Mean linewidthc Mean integrated fluxd

(mJy) (km s−1) (Jy km s−1)
Stack Simulated Stack Simulated Stack Simulated

Value Std dev Value Std dev Value Std dev

1a Bright 93.98 0.22 100.0 429.1 0.91 400.0 42.38 0.07 42.57
1a Faint 0.477 0.026 0.5 410.5 20.82 400.0 0.206 0.005 0.212
1b Bright 99.92 0.025 100.0 403.8 0.25 400.0 42.58 0.021 42.57
1b Faint 0.496 0.019 0.5 408.3 20.93 400.0 0.213 0.010 0.212
2a Bright 93.38 4.630 99.33 429.2 0.971 400.0 42.12 2.081 42.29
2a Faint 0.478 0.046 0.498 411.0 22.95 400.0 0.205 0.017 0.212
2b Bright 93.92 5.71 99.85 429.5 4.59 400.0 42.39 2.60 42.51
2b Faint 0.472 0.042 0.500 429.1 32.35 400.0 0.211 0.018 0.213
3 Bright 90.20 1.59 100.0 637.0 47.87 592.1 60.33 5.18 63.03
3 Faint 0.462 0.020 0.5 599.9 51.05 601.6 0.293 0.023 0.320
4 Bright 90.49 5.34 100.3 645.1 41.73 596.4 61.31 5.85 63.71
4 Faint 0.452 0.038 0.500 636.6 68.10 593.8 0.301 0.033 0.316
5a Bright 92.84 0.308 100.0 430.4 0.861 400.0 42.52 0.082 42.57
5a Faint 0.464 0.026 0.5 429.6 25.16 400.0 0.210 0.014 0.212
5b Bright 92.43 0.266 100.0 430.6 1.156 400.0 42.33 0.065 42.57
5b Faint 0.467 0.024 0.5 433.7 30.83 400.0 0.213 0.012 0.212
5c Bright 92.04 0.273 100.0 430.4 0.932 400.0 42.14 0.098 42.57
5c Faint 0.468 0.025 0.5 421.0 29.11 400.0 0.206 0.016 0.212
6a Bright 95.51 2.66 100.0 428.6 1.006 400.0 41.33 1.14 42.57
6a Faint 0.446 0.054 0.5 356.4 32.79 400.0 0.164 0.015 0.212
6b Bright 92.04 1.63 100.0 428.6 1.095 400.0 39.83 1.05 42.57
6b Faint 0.405 0.052 0.5 332.2 35.11 400.0 0.138 0.015 0.212
7 Bright 95.40 4.776 99.44 415.6 1.698 400.0 42.13 2.087 42.34
7 Faint 0.496 0.052 0.507 410.7 32.31 400.0 0.214 0.025 0.216
8a Bright 90.88 4.353 99.81 633.5 46.20 596.3 63.05 5.564 63.35
8a Faint 0.438 0.087 0.507 629.7 87.33 611.0 0.289 0.040 0.330
8b Bright 90.77 4.788 100.8 639.0 48.93 599.8 63.58 6.389 64.39
8b Faint 0.411 0.061 0.497 651.6 111.1 608.0 0.286 0.044 0.322
9 Bright 94.00 0.21 100.0 429.3 0.92 400.0 42.86 0.07 42.57
9 Faint 0.475 0.021 0.5 410.5 17.98 400.0 0.205 0.006 0.212

aData set number ID. bAverage line amplitude from all the 100 simulations of the studied set, and from their corresponding stacks. cAverage
FWHM of the emission lines, from all the 100 simulations of the studied set, and from their corresponding stacks dAverage integrated flux
from all the 100 simulations of the studied set, and from their corresponding stacks.

Table 4. Stacking results from 1D simulated data set10. Presented results are obtained by averaging 1000 stacks.
Parameters are obtained through fitting. Presented errors are computed standard deviation of the given parameter in the
1000 stacks.

Data set �za Mean line amplitudeb Mean linewidthc Mean integrated fluxd

(mJy) (km s−1) (mJy km s−1)
Value Std dev Value Std dev Value Std dev

10 Bright 0 200.01 0.13 400 2.1 83289 53
10 Faint 0 1.02 0.13 400 64 416 52
10 Bright 0.001 195.66 1.11 408 2.3 83027 151
10 Faint 0.001 1.01 0.13 407 67 416 51
10 Bright 0.005 138.91 9.71 579 44 75592 2219
10 Faint 0.005 0.72 0.12 581 123 381 50
10 Bright 0.01 87.73 10.63 924 127 57866 4905
10 Faint 0.01 0.47 0.14 910 289 292 57
10 Bright 0.05 – – – – – –
10 Faint 0.05 – – – – – –
10 Bright 0.1 – – – – – –
10 Faint 0.1 – – – – – –
13 Bright 0 200.0 0.11 399.99 0.30 85155 158
13 Faint 0 0.99 0.42 398 74 421 168

aAverage redshift uncertainty, leading to uncertainty of the line-centre position. bAverage resulting stacked line amplitude.
cAverage resulting stacked line FWHM. dAverage resulting stacked line integrated flux.
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Table 5. Stacking results from 1D simulated data sets with double peak profiles (set11a and set11b). Presented results are obtained by averaging 1000 stacks.
Parameters are obtained through fitting. Presented errors are computed standard deviation of the given parameter in the 1000 stacks.

Data seta �zb Mean line amplitudec Mean peak distanced Mean linewidthe Mean integrated fluxf

(mJy) (km s−1) (km s−1) (mJy km s−1)
Stack Simulated Stack Simulated Stack Simulated Stack Simulated

Value Std dev Value Std dev Value Std dev Value Std dev Value Std dev

11a 0 182.4 7.2 200.0 413.7 23.9 400.0 428.2 36.7 400.9 168 778 9490 172 595 8841
11a 0 0.91 0.21 1.0 414.3 334.7 400.0 427.4 157.4 399.9 768 263 805 47
11b 0 199.9 0.13 200.0 400.0 0.15 400.0 400.0 0.28 400.0 169 689 64 170 301 –
11b 0 1.007 0.170 1.0 400.0 419.7 400.0 397.8 97.62 400.0 850 65 851 –
11b 0.001 195.6 2.33 200.0 400.0 0.16 400.0 408.9 4.77 400.0 169 566 71 170 301 –
11b 0.001 0.98 0.17 1.0 400.7 337.3 400.0 409.7 99.19 400.0 849 66 851 –
11b 0.005 136.9 29.21 200.0 399.9 3.99 400.0 584.2 90.00 400.0 164 482 1604 170 301 –
11b 0.005 0.68 0.216 1.0 399.6 336.0 400.0 586.4 154.8 400.0 822 66 851 –
11b 0.01 84.72 46.83 200.0 400.2 114.4 400.0 944.4 221.8 400.0 145 492 5947 170 301 –
11b 0.01 0.41 0.26 1.0 337.3 336.5 400.0 985.0 247.7 400.0 726 73 851 –
11b 0.05 – – 200.0 – – 400.0 – – 400.0 – – 170 301 –
11b 0.05 – – 1.0 – – 400.0 – – 400.0 241 92 851 –
11b 0.1 – – 200.0 – – 400.0 – – 400.0 – – 170 301 –
11b 0.1 – – 1.0 – – 400.0 – – 400.0 124 88 851 –

aData set number ID. bAverage redshift uncertainty, leading to uncertainty of the line-centre position. cAverage line amplitude, from the stack and from
simulations. dAverage distance between the two peaks, from the stack and from simulations. eAverage single line FWHM (both lines have the same width),
from the stack and from simulations. fAverage line integrated flux, from the stack and from simulations.

Table 6. Stacking results from 1D simulated containing an outflow component (data set12). Presented results are obtained by averaging 1000 stacks. The
characteristics of both components are obtained through Gaussian fitting with two Gaussian. Presented errors are computed standard deviation of the given
parameter in the 1000 stacks.

Mean main line amplitudea Mean outflow amplitudeb Mean main line widthc Mean outflow widthd

(mJy) (mJy) (km s−1) (km s−1)
Stack Simulated Stack Simulated Stack Simulated Stack Simulated

Value Std dev Value Std dev Value Std dev Value Std dev

1999. 0.46 2000.0 200.0 0.47 200 399.9 0.07 400.0 999.9 1.086 1000.0
10.00 – 10.0 0.99 0.13 1.0 401.5 10.9 400.0 984.5 131.1 1000.0

aAverage main component amplitude, from the stack and from simulations. bAverage second component amplitude, from the stack and from simulations.
cAverage main component line FWHM, from the stack and from simulations. dAverage second component line FWHM, from the stack and from simulations.

Figure 2. Two example stack of 30 sources from data set1a and the
corresponding Gaussian fit. Top: High SNR configuration. Bottom: Low SNR
configuration.

5.1.2 Most basic case, high-frequency resolution – set1b

This data set aimed at simulating a near-perfect configuration, differ-
ing from set1a with a velocity resolution of 10 km s−1, 10 times higher
than previously. As expected we reach reconstruction fractions of
99.9 ± 0.02 per cent, 99.0 ± 0.06 per cent, and 100.0 ± 0.05 per cent;

and 99.4 ± 3.8 per cent, 97.7 ± 5.23 per cent, and 96.5 ± 4.72 per cent
for the amplitude, width, and integrated flux of the line compared to
the input of the high and low SNR sets, respectively. Showing, as
mentioned in the previous section, that the missing 6 per cent, when
reconstructing the amplitude of the line in the set1a, were systematic
errors due to the channels width. The almost perfect reconstruction
in the low SNR case shows that random errors should be negligible
in our stacking setup.

5.1.3 Random amplitude – set2a

This set has a uniform distribution of amplitude between 50–150
and 0.1–0.9 mJy in the high and low SNR sets, respectively. Here
again we find a good reconstruction fraction of 94.0 ± 4.66 per cent,
92.7 ± 0.24 per cent, and 99.6 ± 4.92 per cent of the amplitude, width,
and integrated flux in the high SNR case, and 95.9 ± 9.24 per cent,
97.2 ± 5.74 per cent, and 96.7 ± 8.02 per cent in the low SNR case.

5.1.4 Random amplitude and position – set2b

This set has a uniform distribution of amplitude between 50–150 and
0.1–0.9 mJy in the high and low SNR sets, respectively, with three
sources per image at random positions. Here again we find a good
reconstruction fraction of 94.1 ± 5.72 per cent, 92.6 ± 1.15 per cent,
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4002 J.-B. Jolly, K. K. Knudsen and F. Stanley

Figure 3. Average stacked line from the 100 realizations of set3, high SNR.
Here it is clear – by comparing with the fit – that, even if all input lines are
Gaussian, the output stacked line is not anymore. One direct consequence of
such behaviour is the underevaluation of the amplitude of the line, if done
through fitting.

and 99.7 ± 6.12 per cent of the amplitude, width, and integrated flux
in the high SNR case, and 94.4 ± 8.4 per cent, 92.7 ± 8.09 per cent,
and 99.1 ± 8.45 per cent in the low SNR case, respectively. While
flux loss could have been expected with sources far from the pointing
centre, it is not observed here due to the use of primary beam
correction.

5.1.5 Random width – set3

Here, amplitudes and positions are fixed. The linewidth however
is randomized, drawn from a flat distribution, between 200 and
1000 km s−1. When stacking Gaussian lines with different linewidth
the resulting stacked line will not conserve a Gaussian shape, and can
introduce what could be interpreted as a second component to the
line. Fitting the stacked line with a Gaussian to extract parameters
will hence give slightly biased results. As shown on Table 3, the
amplitude is still well reconstructed – at 90.2 ± 1.59 per cent and
92.4 ± 4.0 per cent for the high and low SNR simulation sets,
respectively. Such a difference with set1a is due to the use of Gaussian
fitting to extract parameters. As a result the fitted amplitude is lower
than expected (see Fig. 3). It is, however, interesting to note that,
if, instead of fitting, we look at the maximum bin value, it shows
∼96 per cent reconstruction in both SNR cases (see Section 6.3).
The width and mean integrated flux are well reconstructed, with a
92.4 ± 8.08 per cent and 95.7 ± 8.22 per cent reconstruction for the
high SNR case, and 99.7 ± 8.49 per cent and 91.7 ± 7.19 per cent
for the low SNR one, respectively.

5.1.6 Random amplitude, width, and position – set4

This set includes random amplitudes, random positions, and random
width, it is a combination of data sets 2 and 3 and has similar results.
Similarly to set3 the reconstructed amplitude is only reconstructed at
90.2 ± 5.32 per cent and 90.4 ± 7.6 per cent in the high and low SNR
setup. This is again due to the intrinsic bad fit, due to a non-Gaussian
shaped stack line. Width and integrated flux are reconstructed at
91.8 ± 7.0 per cent and 96.2 ± 9.18 per cent in the high SNR case,
and 92.8 ± 11.47 per cent and 95.2 ± 10.44 per cent in the low SNR
one.

5.1.7 Bright foreground source in the centre – sets 5a, 5b, and 5c

These sets aimed at studying cases where target sources are faint and
at a fixed distance from a central bright foreground continuum source.
Sources’ characteristics are similar to set1a (but target sources are
not in the cube centre). The amplitude, width and integrated flux
are reconstructed at 92.8 ± 0.31 per cent, 92.4 ± 0.22 per cent,
and 99.9 ± 0.19 per cent, respectively, in the high SNR case, and
92.8 ± 6.2 per cent, 94.2 ± 5.12 per cent, and 97.6 ± 8.02 per cent,
respectively, in the low SNR one for set5a. Set 5b shows re-
construction rates of 92.4 ± 0.27 per cent, 92.4 ± 0.29 per cent,
and 99.4 ± 0.15 per cent for the amplitude, width, and integrated
flux, respectively, in the high SNR case and 93.4 ± 4.8 per cent,
91.6 ± 7.71 per cent, and 99.5 ± 5.66 per cent, respectively, in
the low SNR one. Finally, set 5c shows reconstruction rates of
92.0 ± 0.27 per cent, 92.4 ± 0.23 per cent, and 99.0 ± 0.23 per cent
for the amplitude, width, and integrated flux, respectively, in the
high SNR case and 93.6 ± 5.0 per cent, 94.8 ± 7.28 per cent, and
97.2 ± 7.55 per cent, respectively, in the low SNR one. The presence
of the bright source is well handled through CLEANING and seems
to have close almost no impact on the stack.

5.1.8 Extended sources – set6a

For the cases where sources are extended (set 6a and 6b), the
stacked sources are fitted with a two-dimensional Gaussian and
the stacked spectra are extracted from an ellipsoidal region centred
on the stacked source, where the size of each axis is set to
two times the corresponding FWHM. Fluxes values are converted
from Jy beam−1 to Jy pixel−1. This set shows good reconstruc-
tion fractions: 95.51 ± 2.66 per cent, 92.85 ± 0.25 per cent, and
97.08 ± 2.67 per cent in the high SNR case and 89.2 ± 10.8 per cent,
89.10 ± 8.20 per cent, and 77.36 ± 7.1 per cent in the low SNR case,
for amplitude, width, and integrated flux, respectively. Indicating
that, if the stacking position is well known, stacking extended sources
should yield similar results as stacking point sources. It should be
noted however, in the low SNR case, the line width is underestimated,
leading to an even worse estimate of the integrated flux. This issue
arises in extended sources because the outer pixels of the source
have a lower line amplitude (by construction), leading to a worse
reconstruction of the associated spectra. In addition, the region from
which the spectra are extracted can be more easily underestimated
in the low SNR case. Consequently, some of the extended emission
will not be successfully retrieved.

5.1.9 Extended sources with an offset – set6b

Set 6b is build similarly to set6a, but stacking positions are off by a
random factor, drawn uniformly between 0 and 1 arcsec. Similarly
to set 6a the stacked sources are fitted with a two-dimensional
Gaussian and the stacked spectra are extracted from a circular
region of radius one FWHM, centred on the stacked source. As
expected, amplitude reconstruction, as well as integrated flux, are
not as good as in set 6a, and this effect is even more pronounced in
the low SNR configuration. The amplitude, width, and flux being
recovered at 92.04 ± 1.63 per cent, 92.85 ± 0.28 per cent, and
93.56 ± 2.46 per cent in the high SNR case and 81.0 ± 10.4 per cent,
83.05 ± 8.78 per cent, and 65.09 ± 7.08 per cent in the low SNR
case. If the stacking positions were off by a too important factor then
the line reconstruction would eventually be impossible. It should
however be noted that, while the reconstruction fraction is inversely
proportional to the uncertainties on the stacking positions, it is
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LINESTACKER: a spectral line stacking tool 4003

also proportional to the source size. Hence, the effect coming from
position uncertainty will be mitigated by the extent of the sources.

5.1.10 Random central frequency, larger redshift range – set7

This set is similar to set2b but lines are simulated over a larger redshift
range. Bins are set to a fixed frequency size, and rebinned to take into
account the line width change due to redshift. Amplitude, linewidth,
and integrated flux are properly reconstructed in both the high and
low SNR simulations: 95.9 ± 4.8 per cent, 96.1 ± 0.42 per cent,
and 99.5 ± 4.93 per cent for the amplitude, width, and integrated
flux, respectively, in the high SNR case and 97.8 ± 10.26 per cent,
97.3 ± 8.08 per cent, and 99.1 ± 11.57 per cent, respectively, in the
low SNR one. The reconstruction rate for the amplitude and flux is
slightly better than in set 2b due to the overall smaller channel width
(see Table 1). The standard deviation is, however, higher due to the
channel width being fixed in frequency, and hence varying in velocity
space. The near perfect reconstruction shows that we properly correct
the effect coming from large redshift range.

5.1.11 VLA type simulation – set8a

In this data set we simulate VLA observations. The reconstruction
fractions are 91.1 ± 4.36 per cent, 93.8 ± 7.75 per cent, and
99.5 ± 8.78 per cent for the amplitude, width, and integrated flux,
respectively, in the high SNR case, and 86.4 ± 17.16 per cent,
96.9 ± 14.29 per cent, and 87.6 ± 12.12 per cent, respectively, in
the low SNR one. While parameters are well retrieved in the high
SNR case, a lower reconstruction fraction is observed in the low
SNR case compared to ALMA simulations. This is due to a worse
sensitivity of our VLA simulations, as mentioned in Section 4.3.11.

5.1.12 VLA type simulation, larger redshift range – set8b

Here, we are looking for potential effects that could come from
the large redshift range such as size difference in the primary
beams as well as side effects from our resampling method, needed
to stack sources with large redshift difference and not binned in
velocity. Similarly to set7, a larger redshift range does not seem
to have any substantial effect on the stacked data. While the
reconstruction fractions are slightly lower than the ones in set8a, this
is simply due to the velocity resolution which is ∼ 20 per cent higher
(see Table 1). Reconstruction fractions are 90.0 ± 4.75 per cent,
93.5 ± 8.16 per cent, and 98.7 ± 9.92 per cent for the amplitude,
width, and integrated in the high SNR case and 82.7 ± 12.27 per cent,
92.8 ± 18.27 per cent, and 88.8 ± 13.66 per cent in the low SNR one.

5.1.13 Spectra extracted from cube – set9

This data set is similar to set 1a but the spectra are individually
extracted from each cube and stacked using the 1D module of
LINESTACKER. The reconstruction fractions are very similar to the
one in set1a: 94.0 ± 0.21 per cent, 92.7 ± 0.23 per cent, and
99.3 ± 0.16 per cent for the amplitude, width, and integrated in
the high SNR case and 95.0 ± 4.2 per cent, 97.4 ± 4.5 per cent,
and 96.7 ± 2.83 per cent in the low SNR one. Which shows a good
agreement between our two stacking methods, and justifies our usage
of 1D data sets as an easier way to test specific spectral effects in
stacking.

Figure 4. Stack spectrum of 30 sources of width 400 km s−1 for different
redshift uncertainties. �z = 0.01 already shows a ∼ 50 per cent reconstruc-
tion, and rapidly dropping. We chose here a high SNR configuration (SNR
before stacking ∼200), to showcase the pure effect of redshift uncertainties
on the stack. The corresponding velocity shifts are ∼0, 36, 180, 360, 1800,
and 3600 km s−1.

Figure 5. Amplitude reconstruction ratio, for a stack of 30 noise-free sources,
as a function of redshift uncertainties for different linewidth (all stacked
sources are simulated with the same linewidth). Stacking very narrow lines
(i.e. ∼ 100 km s−1) requires a very precise redshift. Results are averaged
from 1000 realizations.

5.2 Stacking results from 1D simulations

In the coming sections, we will be analysing results from stacking
the spectra data sets presented in Section 4.4. We studied the
reconstruction of the amplitude of the line, the linewidth and the
integrated flux for all five data sets as well as some additional
parameters specific to each set.

5.2.1 Diagnostic of redshift uncertainties – set10

In this set, we simulated lines with offset redshifts in order to study
and estimate the effect of redshift uncertainties on the stacked line.
It is important to note that the results of such a study depend on
the average linewidth. Fig. 4 shows the average reconstructed line
for different �z at a given linewidth of 400 km s−1, it shows that
as soon as the redshift uncertainty becomes larger than 0.01 the
stacked line cannot be recovered. Showcasing the importance of
redshift accuracy. Fig. 5 shows the clear relation between linewidth
and goodness of the reconstruction, when confronted to redshift
uncertainties: if stacking high-velocity lines, the effect of redshift
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Figure 6. Stack spectrum of 30 sources with double peak profile for different
redshift uncertainties (both peaks are Gaussian, with a width of 400 km s−1,
and a distance of 400 km s−1 between the two peaks). An uncertainty higher
than 0.001 already dilutes the two peaks, showing that similar profiles will be
extremely hard to reconstruct through stacking. Similarly to Fig. 4 we chose
a high SNR (∼200 before stacking) to showcase the pure effect of redshift
uncertainties. Corresponding velocity shifts are ∼0, 36, 180, 360, 1800, and
3600 km s−1.

uncertainty on the reconstruction will be lowered. Alternatively
reducing the spectral resolution would also mitigate the effect
of redshift uncertainty on the reconstructed flux, at the expense
of accuracy on the line profile measurement. Results values are
summarized in Table 4.

5.2.2 Double peaked spectrum – set11a

This set studies a different spectral signature, of a double peak
spectrum. The double peaked line is described by two Gaussians
separated by a velocity difference, D, with 200 km s−1 < D <

600 km s−1. Both lines have the same width which is drawn at random
between 100 and 700 km s−1. Each stack consists of 30 spectra and
is repeated for 1000 realizations. As shown in Table 5 stacking
allows for a good reconstruction of all three parameters: 91 per cent,
97 per cent, and 94 per cent for the line amplitude, distance between
the peaks and linewidth in the high SNR case and low SNR cases.
The integrated flux is also well reconstructed at ∼95 per cent. The
standard deviation of the studied parameters is low (∼ 5 per cent)
hence one can expect a good degree of confidence when studying
similar cases with no redshift uncertainties.

5.2.3 Double peaked spectrum with a �z – set11b

Data set 11b is similar to set 11a but focuses on the effect of redshift
uncertainties on the stack. Linewidth and distance between the peaks
are kept constant, both at 400 km s−1. Results presented are the
average and standard deviation of 1000 realizations. Fig. 6 shows
that, as soon as redshift uncertainty becomes worse than 0.001 the
double peak feature is no longer distinguishable. This implies that
such spectral signatures will be very hard to observe using stacking,
and will require a very good redshift accuracy. Furthermore, the
reconstruction of such a feature will also depend on the distance
between the peaks. If the separation between the peaks is higher they
will be easier to discern. Table 5 shows the best fit of the stack, using
a double peak fit. While the reconstruction of all three parameters is
near perfect at �z = 0, from �z ∼ 0.05 the line cannot be recovered
(see Fig. 6). One should note that the integrated flux is not impacted

Figure 7. Average results from 1000 realizations of stacking 30 sources from
set13 (in the low SNR configuration). Top: Resulting average stack and the
corresponding Gaussian fit (in red). Bottom: Number of sources stacked at
each velocity bin. Due to the nature of the data stacked the number of sources
quickly drops to half of the sources when moving away from the central
channels.

as much by the redshift uncertainties as the other parameters, thus
in such cases it is advised to focus on the integrated flux rather than
other line parameters.

5.2.4 Outflows – set12

Data set12 was built to study cases with spectral signature of
outflows. Spectra consist of two components, one main line with
an amplitude of 2000 mJy and a width of 400 km s−1, and an outflow
component with an amplitude of 200 mJy and a width of 1000 km s−1

in the high SNR case. Amplitudes are set to 10 and 1 mJy for the main
and outflow component, respectively, in the low SNR case (linewidth
are the same as in the high SNR case). Results are obtained through
fitting the stacks with two Gaussian components (results are averaged
from the 1000 realizations). In the low SNR sets, the amplitude of
the main component is fixed when fitting. This is done to avoid cases
where good fitting is achieved with a brighter broad component and
a fainter main line, leading to a much higher uncertainty on the broad
component amplitude reconstruction (of the order of ∼ 80 per cent).

Once again LINESTACKER allows for a good reconstruction, with
about ∼ 99 per cent retrieval of the parameters for both components
in both SNR configuration (assuming the fitting method described
above in the low SNR configuration). It should be noted however,
that, when stacking lines of different linewidths, the variation in
linewidths needs to be accounted for, the method would otherwise
be biased in finding outflows. To do so a spectral rebinning method
can be applied to the data pre-stacking (see Section 3.4 and Stanley
et al. 2019).

5.2.5 Lines on the edge – set13

Data set13 was built to diagnose cases where all lines would lie on
the edge of the spectral window. Lines have the same properties as
data set10 when �z = 0. Fig. 7 shows an example from such a stack
product. One can see that the numbers of sources stacked rapidly
drops on both sides of the central channel. However, reconstruction
rates stay close to perfect for both noise configurations for all
parameters, see Table 4. It should none the less be noted that, while
average results are consistent with data set10 at �z = 0, the standard
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LINESTACKER: a spectral line stacking tool 4005

Figure 8. Standard deviation in the stack of empty cubes (simulated through
SIMALMA) as a function of number of cubes stacked. Red line indicates
the theoretical 1/

√
N drop off. Presented results are averaged from 100

realizations.

deviation is significantly higher than set10 in the low SNR regime (of
the order of ∼3 times higher for both the amplitude and the integrated
flux), indicating a larger spread in the expected results.

6 D ISCUSSION

6.1 Choice of parameters

In the following subsections, we justify the choice of parameters for
our simulated data sets.

6.1.1 Array configuration

Even if a specific array configuration has been chosen for most
simulations (ALMA cycle 6 configuration 2), the method has been
extensively tested in other array configurations (not presented here),
as well as with other choice of interferometer – as showed through
data sets 8a and 8b, simulating VLA observations – and neither
should have any impact on the performance of the algorithm.

6.1.2 Number of sources

For every simulation, we chose to stack 30 sources. The number 30
has been chosen as an intermediate number, allowing for both a good
noise reduction (

√
30 ∼ 5.5) and a satisfying computing time. This

number is typical for small, but statistically significant, samples. A
lower number would imply too important statistical fluctuations and,
on the other hand, a higher number of sources (samples as big as a few
thousands e.g. Dole et al. 2006, can be expected) would not change
the conclusion from our analysis, simply allowing identification of
fainter signal.

To verify the good behaviour of noise reduction as a function
of number of sources stacked, we stacked an increasing number of
empty fields (i.e. without sources, containing just noise). The fields
have similar noise properties as in the rest of our simulations. Com-
puting for each new number of stack positions the standard deviation
across the map, see Fig. 8. The noise reduction is in good accordance
with theoretical predictions (showing an 80 per cent noise reduction
for 30 sources, similar to the 82 per cent theoretically expected)
confirming the relevance of the number of sources in our stacks.

6.1.3 Number of simulations

Each data set has been simulated, stacked, and analysed 100 times
in the case of 3D data sets, and 1000 in the case of 1D data sets.
The number of realizations has been chosen for practical reasons,
limiting computation time, it should however be noted that the total
number of resulting sources is high enough to provide statistically
relevant numbers. This can be seen from the uncertainties on the
reconstructed parameters – coming directly from the spread of results
in the stacking iterations – that are small compared the found values.

6.1.4 High and low SNR sets

Every 3D simulated data set was run both in a high and a low SNR
configuration. While high SNR data sets reveal the ideal behaviour
of our algorithm and show that it performs well, stacking will be
mostly used on low SNR data. It was therefore essential to show
that our tool was successful in such cases as well. Flux values have
been chosen arbitrarily, mimicking typical values. The amplitude of
the line in low SNR sets has been chosen such that individual lines
would be of order of the noise, thus impossible to detect individually
but strong enough to be studied once 30 of such sources are stacked.

6.1.5 Source size

Most simulated data sets have been performed simulating point
sources. It is not uncommon that high-redshift galaxies are seen
as point sources because of the high resolution needed to resolve
such objects, and working with point sources allows to have a more
controlled data set. We have however studied extended sources as
well, in data sets 6a and 6b, showing that no substantial effect
would come from stacking extended sources instead of point sources.
However, only homogeneous cases have been tested (where sources
were either all point like or all extended). Furthermore, when
studying extended sources all sources had similar sizes. It may
happen that stacked sources have very different sizes, resulting in an
inhomogeneous spatial distribution in the stack product. In this case,
one should be prudent when extracting quantitative conclusions from
such an analysis (such as sizes, density, spatial distribution, etc.).
Using statistical methods like bootstrapping or subsampling should
prove useful to diagnose such cases. Furthermore, if the sources
extent is identifiable pre-stacking, extracting and stacking directly
the spectra – using the 1D stacking module of LINESTACKER – could
allow to get past these biases (see Stanley et al. 2019, for an example
use of combination of 1D and 3D stacking).

6.2 Impact of redshift uncertainty on stack

When stacking spectral line data, the two most important properties
to know are the position and redshift of the source. Uncertainties
in the astrometry will result in the stacked source appearing more
extended than in reality (see e.g. Lindroos et al. 2016, 2018, for
further discussion on astrometric uncertainties). In Sections 5.2.1
and 5.2.3, we have shown that uncertainties on the redshift have a
significant impact on the stacked line result as well as on the potential
reconstruction of the average line profile. The three most common
cases of high-redshift galaxies, where the uncertainties could be too
large are (i) when using photometric redshifts for a large number
of galaxies, (ii) if relying on the ultraviolet, broad emission lines of
quasars, as these can often be shifted relative to the velocity of the
quasar host (e.g. Coatman et al. 2017), and (iii) when studying Lyman
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α emitters because their peak emission is known to be offset from
the systemic redshift (e.g. Shapley et al. 2003; Rakic et al. 2011).

An uncertainty of �z = 0.05 results in the amplitude of a line
of 400 km s−1, with a spectral accuracy of 100 km s−1, to be
recovered at only ∼ 20 per cent. However, wider lines will show
a better reconstruction (see Fig. 5) at similar redshift uncertainties.
Bellagamba et al. (2012) have shown that one can typically expect
〈 σz

1+z
〉 < 0.05 from photometric redshift of weak lensing surveys,

which at z ∼ 6 corresponds to �z < 0.35. Combined with our
analysis this shows that using photometric redshift to stack lines
from high-redshift objects should not be viable.

Other examples of significant offsets can come from quasars and
powerful AGNs, where the redshift is determined by lines that are
several thousands km s−1 wide and can be offset due to outflows.
This can result in shifts that are so large that the line might be shifted
out of the interferometric bands. An example of this is W0410−0913
shown in Fan et al. (2018) where even the optical redshift was a few
thousands km s−1 offset.

6.3 Gaussian fitting to recover stacked line parameters

When stacking lines with a wide range of line widths the resulting
stacked line ends up not being Gaussian. Therefore, using Gaussian
fitting to recover the line parameters will yield biased results. This
effect is especially relevant if one is interested in retrieving the line
shape. It should be noted however that this effect can be mitigated
depending on the spread in line widths. For example, in simple
cases such as the one given in Fig. 3, fitting a single Gaussian line
profile is a good approximation for the used data sets. However, in
more complicated or realistic cases, as for example the case given
in Appendix A2 and Fig. A2, one can see that deriving parameters
using single Gaussian fitting would yield extremely biased results.
In addition, it is important to keep in mind that, even if not interested
in line shape, using Gaussian fitting to retrieve the stacked line
amplitude will lead to its systematic underestimation (see Fig. 3).

6.4 Stacking in the uv-plane

In this paper, we focus on stacking in image-plane. Lindroos
et al. (2015), conducted a systematic comparison between stacking
interferometric data in the image-plane and in the uv-plane. The
two approaches yield similar results, but the uv-stacked results are
more robust for a range of cases; in some cases the difference was
a few per cent, while in other cases the improvement was up to
15 per cent. The cases where uv-stacking has the potential to make a
difference are (i) when the uv-coverage differs between data sets: this
can affect the stacked result. For example, if stacking in the image-
plane the data should be imaged to the same resolution, however,
this might not always be easy, depending on the array configuration.
Furthermore, if the stacked sources are faint, i.e. below the few sigma
rms of the data, the sources will not have been cleaned in the imaging
and therefore the stacked image will include a stacked version of
the dirty beams. The potential complications of these effects are
avoided when stacking directly in the uv-plane as the imaging is
done afterwards. (ii) When bright sources are present in the data,
these have to be removed from the data before stacking, both for uv-
and image-plane. This is normally done using the CLEAN algorithm,
and the residuals from this can leave noise and cleaning artefacts in
the data. Often this affects only the short baselines, and can hence be
more easily identified and dealt with in uv-stacked data than in the
image-plane stacked result. (iii) When stacking extended source, it is
possible to analyse the stacked uv-data for possible cleaning artefacts

or problematic baselines that could affect size measurements, and it
is possible to estimate the extend of the emission on the visibilities.

In comparison between stacking in the uv-plane and image-plane,
the image-plane stacking is computationally faster, in particular
if also including statistical tests using Monte Carlo/resampling
methods. In addition, image stacking allows for easier masking and is
generally more intuitive to work with. It has been shown in Lindroos
et al. (2015) to yield satisfying results when the imaging can be done
reliably. Finally, future interferometers such as the SKA, will likely
not archive all visibility data after processing and imaging because
of the enormous amounts of data produced.

In this paper, we have focused on studying the stacking of spectral
line data, and this has a number of complications that are independent
of whether the stacking is done in the image- or the uv-plane. Spectral
line stacking can be carried out in both image- and uv-plane, and the
differences in performance is expected to be the same as was found
for continuum stacking in Lindroos et al. (2015).

Finally, we note that if the line width of the stacked line is known
a priori, an easy approach allowing a coarse version of line stacking
in the uv-plane could be to treat the line channels as a continuum
channel (see e.g. Fujimoto et al. 2019; Méndez-Hernández et al.
2020). Through this approach, it is the line intensity that is stacked,
while all potential information about line profile is not included.

6.5 LINESTACKER as a spectral analysis tool

While we used LINESTACKER solely to study emission lines from
high-redshift galaxies, the tool is flexible and would perform equally
well on other type of data in the range GHz to THz. It is probable
that the tool performs equally well on lower frequencies, but
has not been tested. Additionally, while all the tests focused on
stacking interferometric data, it is possible to use it to stack non-
interferometric data (this could possibly include optical integral
field spectroscopic data, though we note that performance has not
be tested). The tool could for example be used on stars, clusters,
gas clouds, local galaxies, galaxy clusters or any other object. In
principle any line data can be studied, and it would also be possible
to stack different lines from the same object together (from different
transitions for example), provided that the sub-cubes spectral size
is chosen as compact enough to avoid overlap between the different
lines. Besides, stacking absorption lines is theoretically identical and
should yield similar results. It would also be possible in principle,
using Monte Carlo methods, to find better individual redshifts of the
studied objects, by trying to optimize stacked line reconstruction.
Indeed, stacked line amplitude should be maximized when all the
target sources are stacked in phase, i.e. when all lines are stacked
perfectly all in the velocity centre. One could then look for the set of
redshifts maximizing the stacked line amplitude, recovering, in fine,
better individual redshifts while also optimizing line reconstruction.

6.6 Spectroscopic stacking in the literature

Spectroscopic stacking as a method has been used more and more in
the past decade. When presented in the literature authors typically
have not shown tests of their algorithm nor made it publicly available.
Among other, stacking has been used to study H I, both in emission
and absorption (Murray et al. 2014, 2018). H I line profiles are
usually complex, and, while the redshift precision is usually good,
such complexity will typically be diluted through stacking. Aside
from H I, other molecules have been studied, such as CO (e.g.
Decarli et al. 2016, in multiple transitions) or [C II] (e.g. Decarli
et al. 2018; Bischetti et al. 2019; Fujimoto et al. 2019; Stanley
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et al. 2019). In Decarli et al. (2016), stacking was performed
for a sample of high-z galaxies, where the optical redshifts were
uncertain by 200–1000 km s−1, yielding a low-significance detection.
This highlights the challenge of stacking spectroscopic data without
accurate redshifts or velocities. Bischetti et al. (2019) studied line
profiles through stacking without rebinning their data. None the less,
they build physically selected sub samples (depending for example
on the width of the lines) to reduce the effect of stacking sources with
different linewidth. In Stanley et al. (2019), we used LINESTACKER

to search for outflows in high-redshift quasars. In addition to the
main algorithm, we used some of tools included in LINESTACKER

to improve our analysis: spectral rebinning to properly recover line
profiles, as well as subsampling to identify the sources exhibiting the
best outflow signature. Our analysis demonstrated the efficiency and
flexibility of LINESTACKER to study faint emission at high redshift.

Murray et al. (2014) used a different technique for edge treatment
than the one presented in Section 2.2. In their algorithm they simply
added zeros to fill spectral channels, when sources’ lines were too
close to the edge of the observation window. This has a bigger,
unwanted, impact on the stacked result than the method used in
LINESTACKER, because zeros added to the stack will, once averaged
with the rest of the sources, artificially drive the edges of the stacked
spectral window to values closer to zero.

Using LINESTACKER would allow a fast, uniform and controlled
way to do spectral stacking. It would also allow the use of statistical
tools as well as data handling treatment in a more systematic and
coherent way.

7 SU M M A RY

We have carried out an extensive analysis of stacking of inter-
ferometric spectral line data using our new algorithm and tool
LINESTACKER. We have used simulations of near-ideal and realistic
cases of simulated data from two different interferometers, ALMA
and VLA. All high SNR simulations emphasized the controlled
behaviour of our algorithm while low SNR simulations focused on
noise reduction and proved the efficiency and usefulness of stacking.

We showed and justified the need for statistical tools, both pre-
stacking (e.g. rebinning) and post-stacking (e.g. bootstrapping), to
better understand stacking results as well as the distribution of
parameters of the stacked population.

We find that knowing the redshift of the sources with a good
precision is a necessary condition for a good line reconstruction. And
that, for an average linewidth of 400 km s−1, a redshift uncertainty
below 0.01 implies a line reconstruction around 60 per cent, dropping
to roughly 10 per cent at �z = 0.1. Furthermore, it has been shown
that more complex spectral signatures will tend to be smeared out by
uncertainties on the redshift, and that hence, in most cases, more
complex spectral signatures will disappear when stacked (either
through averaging with other, different, spectral shapes, or because
of the homogenization due to redshift error).

In addition, we showed that stacking Gaussian lines with different
linewidth results in a non-Gaussian shaped stack, leading to a possible
misinterpretation of the fitted result. This can be fixed by rebinning
the spectra, if individual linewidths are identifiable before stacking.
Such spectral configuration are especially problematic when trying
to identify line profiles.

With the significantly improved capabilities of modern radio and
mm interferometers in combination with deep optical and near-
infrared surveys, the use of stacking is becoming increasingly
relevant. As seen in the literature, there is a growing interest to
exploring the faint, often individually undetected sources through

stacking. However, the number of public tools available are still
limited. LINESTACKER provides the community with increased oppor-
tunity for optimal synergy between modern telescopes and the large
astronomical surveys. Enabling multiwavelength studies is necessary
also for faint sources in order to establish a complete understanding
of the chosen population.

LINESTACKER is open source and open access. It can be downloaded
at https://www.oso.nordic-alma.se/software-tools.php. The tool is
provided with examples and documentation.
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APPENDIX A : EXAMPLE U SE OF L I N E S TACK E R

All the following examples are presented in more detail in the
LINESTACKER library, including the lines of code, and the associated
data sets, required to run them.

A1 Cube basic example

The first example shows a basic use LINESTACKER. In many cases
stacking is done for sources where the target lines are not individually
detected and where the redshift or systemic velocity has been
determined through other means (e.g. in another wavelength range).
For example, this could be measuring the stacked CO line of optically
detected galaxies, where the redshift is determined from optical
spectroscopy.

The input required together with the data cubes are source
coordinates and line centre, which should be given in as a file.
The coordinates are given in J2000 RA and Dec., while the line
centre is tabulated with the source redshift and rest-frame frequency
of the line. We note that several methods for determination of the
line centre are available, for example central bin index and central

Figure A1. Results from the example of a basic stacking. Top: Spectrum
extracted from central pixel of the stack. Note that the frequency values are
arbitrary. Bottom: Moment-0 map of the mean stack.

Figure A2. Original stack, before rebinning. Fitted with one (green line) and
two (red line) Gaussians.

Figure A3. Stack result after rebinning. Shows very good agreement with
single component Gaussian fitting.

Figure A4. Median stack of the 50 spectra with non-homogeneous line
amplitude.
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Figure A5. Distribution of the results from the median bootstrap analysis.
The straight red line indicates the result from the stack of the entire sample.

velocity – full description of the line centre identification methods
are available in the LINESTACKER documentation. Here, we show an
example with 30 cubes, each containing a point source in its centre.
The sources spectra consist solely of an emission line and some noise.
The amplitude of the lines has, on average, the same amplitude as
the noise (similarly to set1a in the low SNR regime). Mean stacking
is performed on the cubes, and the result can be seen in Fig. A1.

A2 Cube extended example

Most high-z galaxies will display varying line profiles and line widths
depending on properties such as mass and orientation. Here follows
an example expanded from the previous subsection, where we use
simulated data of sources with random line widths. As discussed in
the main body of the paper, stacking sources of varying line widths
can affect the final result. The present example details the usage
of the rebinning method coupled to stacking. We note that using
rebinning requires some prior realistic knowledge of the line width,
this could for example be stacking of fainter isotopologue lines under
the assumption that the line width is similar to individually detected
main isotopologue lines (e.g. 12CO compared to 13CO; e.g. Méndez-
Hernández et al. 2020) or the search for high-velocity outflows (e.g.
Decarli et al. 2018; Stanley et al. 2019).

The data used here consists of 50 cubes, with one point source each
in their centre. The sources spectra consist of a bright (SNR ∼100)
Gaussian line with random width. The randomization of the width is
operated through Gaussian random centred around 200 km s−1, with
a minimum value of 50 km s−1.

All cubes are stacked using mean stacking. The resulting spectrum
can be seen in Fig. A2. Here, the spectrum is extracted from the
stacked cube by summing all 8 × 8 pixels of the stacked cube.
One can see that the resulting stack is better fitted by two Gaussian
line profiles, even if the lines where originally simulated with single
Gaussian profiles.

To avoid this effect spectral rebinning is performed on the cubes,
using the method embedded in LINESTACKER. The method allows
for automated fitting to estimate the line widths, which are used for
the rebinning. The rebinned cubes are stacked again, using mean
stacking. The stacking result is presented in Fig. A3, and one can see
that, after rebinning, the resulting stack spectrum is purely Gaussian,
as expected. The width of the stacked line is ∼ 242 km s−1 (to be
compared to the average line width before stacking: ∼ 231 km s−1).

A3 1D extended example

Because averaged properties of the studied population are retrieved
from stacking, the underlying assumption in stacking data is that all
sources have similar properties. In some cases, it is known that not
all sources will show similar line properties, but it is not known a
priory which sources. This can be well illustrated when searching
for outflows, where orientation could affect the projected kinematics
properties and thereby the line width (e.g. Stanley et al. 2019).

In this example, we present the use of bootstrapping and sub-
sampling. Here, we will be using the 1D module of LINESTACKER,
and hence stack spectra directly, and not whole cubes. The data set
consists of 50 spectra. The spectra are composed of a Gaussian line,
randomly centred, and some noise. The amplitude of the Gaussian
line is typically of order of the noise, however, 10 of the sources have
an average line amplitude 10 times higher. Such an inhomogeneous
distribution has been chosen to showcase the performance and usage
of both bootstrapping and subsampling. All spectra are stacked using
median stacking, the stacking result is shown in Fig. A4.

The second step is to show the usage of bootstrapping methods.
Here, we perform bootstrapping using median stacking, and iterating
100 000 times. Results can be seen in Fig. A5.

Figure A6. Results from subsampling analysis: the average grade is subtracted from each sources grade.
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The bootstrapping results show a clear skewed distribution towards
results of higher amplitude. This typically implies an inhomogeneous
distribution of the sources amplitude. While a similar conclusion
could have been drawn from looking at bootstrapping paired with
mean stacking, it would not have been as easy to display, which is
why we chose to show median stacking in this example. When using
bootstrapping paired with mean stacking, the in-homogeneity of the
results can be typically deduced from the width of the bootstrap
distribution – showing a much larger spread of the results than it
would have if the sample was homogeneous.

Since bootstrapping allowed to suspect the presence of outliers
in the data, one can now use subsampling to try to identify them.

Because the bootstrapping analysis indicated a skewed distribution
of the lines amplitude, the amplitude will be used as a criteria
to separate the subsamples (see Section 3.3 for a description of
the usage of grades in our subsampling method). The subsampling
method is performed 100 000 times and its results can be seen in
Fig. A6.

The distribution of source grade shows a clear in-homogeneity,
and it is easy here to identify the last 10 sources as having higher
amplitude.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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