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ABSTRACT
Dwarf spheroidal galaxies (dSphs) are promising targets of indirect detection experiments searching for dark matter (DM) at
present Universe. Towards robust prediction for the amount of signal flux originating in DM annihilation inside dSphs, a precise
determination of DM distributions as well as J-factors of the dSphs is particularly important. In this work, we estimate those
of Draco, Sculptor, and Ursa Minor dSphs by an improved statistical method in which both foreground stars and dSph member
stars are simultaneously taken into account. We define the likelihood function of the method as the so-called conditional one to
remove sampling bias of observed stellar data. This improved method enables us to estimate DM distributions and J-factors of
the dSphs directly from observed stellar data contaminated by foreground stars without imposing stringent membership criteria
on the measured quantities.
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1 IN T RO D U C T I O N

The existence of dark matter (DM) in our universe was strongly
confirmed by various astrophysical observations such as dynamics
of galaxy clusters (Zwicky 1933), rotation curves of galaxies (Rubin,
Thonnard & Ford 1978; Rubin, Ford & Thonnard 1980), and
gravitational lensing (McLaughlin 1999; Bradac et al. 2006; Clowe
et al. 2006). The global analysis of cosmic microwave background,
large-scale structure and supernovae observation data (Ade & others
2016) tells us that DM is responsible for a quarter of the total energy
of the present universe; however, the microscopic nature of DM
is still unknown. Weakly interacting massive particle (WIMP) is an
attractive DM candidate, which can naturally explain DM abundance
observed today by the well-established freeze-out mechanism. In
particular, WIMP with TeV scale mass is well motivated from the
viewpoint of new physics beyond the standard model of particle
physics (Moroi & Randall 2000; Hisano et al. 2007; Evans et al.
2013; Bhattacherjee et al. 2014), and the WIMP is, in fact, intensively
studied after the discovery of the Higgs boson at the Large Hadron
Collider experiment.

The most promising way to detect the WIMP is the indirect
detection searching for signal from DM rich region. Among various
targets of the detection, dwarf spheroidal galaxies (dSphs) associated
with the Milky Way are ideal ones, as they contain a large amount of
DM with small astrophysical backgrounds (Cholis & Salucci 2012;
Lefranc et al. 2016) and are located, at most, a few hundred kpc
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away from our Solar system. In fact, the gamma-ray search from
dSphs excluded a typical WIMP with the mass less than 100 GeV
(Ackermann et al. 2015). The signal flux of the detection depends
not only on the particle nature of DM but also on an astrophysical
factor concerning the dSph, namely the J-factor:

J (��) = [
∫

��

d�

∫
l.o.s.

dlρ2
DM(l, �)] . (1)

Here, we define a DM density profile at a distance l and an angle
� by ρDM(l, �), which is estimated by the comparison between
the observed velocity dispersion curve of dSph member stars and
the theoretical prediction on the dispersion curve from dSph stellar
kinematics. It is, however, known that several uncertainties are
associated with the estimation: spatially dependent anisotropy of the
dispersion (Ullio & Valli 2016; Read & Steger 2017; Read, Walker &
Steger 2018; Alvarez et al. 2020), non-spherical profile (Bonnivard
et al. 2015; Hayashi et al. 2016), size of halo truncation (Geringer-
Sameth, Koushiappas & Walker 2015), contamination of binary
stars (Koch et al. 2007; Simon & Geha 2007; Mateo, Olszewski
& Walker 2008), prior bias of Bayesian analysis (Martinez et al.
2009), and foreground contamination (Bonnivard, Maurin & Walker
2016; Ichikawa et al. 2017, 2018).

In particular, it is necessary to take care of the foreground
contamination even for the case of future observations yielding
a larger amount of observational data, because the number of
foreground stars contributing to the contamination increases along
the amount of the data. Various methods are adopted in conventional
analyses to remove contaminating stars such as simple sigma-
clipping procedure (Coleman, Da Costa & Bland-Hawthorn 2005),
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Figure 1. Flow chart of our analysis method. See Section 2 for more details.

membership selection based on the expectation-maximization (EM)
algorithm (Walker et al. 2009b), and full Bayesian analysis with
the foreground model of a single Gaussian component (Bonnivard
et al. 2016). In Ichikawa et al. (2017), hereafter KI, 2018), we
have investigated the effect of the foreground contamination on
the J-factor estimations of classical and ultrafaint dSphs. One of
the goals of our papers was to develop observational strategies
and analysis methods for future instruments such as the prime
focus spectrograph (PFS) mounted on the 8.2-m Subaru Tele-
scope.PFS is the next-generation spectrograph of the SuMIRe
project (Takada et al. 2014; Sugai et al. 2015; Tamura et al. 2016)
with a large field of view (∼1.38 deg diameter) and about 2400
fibres, which allows us to observe not only member-like stars
but also many foreground stars simultaneously. We have defined
a likelihood function based on the mixture model of a dSph
member component and three foreground components motivated
by the fitting of the Besançon model (Robin et al. 2003). Using
our constructed likelihood function, we have demonstrated that the
likelihood function can successfully reproduce the input parameters
of mock observational data thanks to large data sets yielded by
the large field of view of PFS. By contrast, membership selection
based on the EM algorithm can result in biased J-factor estimation
when the intrinsic velocity dispersion is not flat. Moreover, the
selection method sometimes suffers from the foreground contam-
ination effect because even a few contaminating stars located at
the outer region of a dSph make us overestimate the velocity
dispersion.

When we apply KI’s method to the actual data sets, we, however,
need to treat spatial sampling biases of the observed data (Martinez
et al. 2011) because the surface density of observed spectroscopic
data is not equal to the actual surface density of a dSph due to the
sampling. Therefore, in this work, we improve the mixture model
likelihood developed in KI to deal with actual stellar data with the
sampling biases. Using this improved likelihood function, we obtain
the non-biased J-factors of Draco, Sculptor, and Ursa Minor dSphs
robustly in terms of the foreground contamination.

The organization of this paper is as follows: In Section 2, we
describe our analysis method, which is separated into two parts,

photometric and spectroscopic parts. We define likelihood func-
tions for these two parts in Sections 2.1 and 2.2, respectively. In
Section 2.3, we discuss a sampling algorithm to obtain posterior
probability density functions of model parameters as well as the J-
factor. In Section 3.1, we introduce photometric and spectroscopic
data sets for each dSph used in our analysis. In Sections 3.2 and 3.3,
we explain the pre-processing for the data introduced in the previous
subsection. In Section 4, we show our results of parameter estimation
and J-factor posteriors. In Section 5, we discuss the results of our
estimation. We summarize our discussion in Section 6.

2 M E T H O D S

We first show the flowchart of our analysis method in Fig. 1. Our
method is mainly separated into two parts as follows:

(i) Photometry: We make use of up-to-date wide-field, multiband,
photometric samples that are available in the public data releases
of Sloan Digital Sky Survey (Abolfathi et al. 2018), Pan-STARRS
(Chambers et al. 2016), and Dark Energy Survey (Abbott et al. 2018).
For each dSph, we impose a colour–magnitude cut on the photometric
samples to stand out member star candidates on data. With the use
of these candidates, we select a suitable stellar density profile from
two empirical spatial profiles shown in equation (5) by comparing
their statistical evidence. We then estimate the half-light radius and
the local membership probability at this radius.

(ii) Spectroscopy: We compile the largest samples of stellar
line-of-sight velocities that are available from references Walker,
Olszewski & Mateo (2015, 2009a) and Spencer et al. (2018).
Before going to the spectroscopic analysis, we fix the number of
independent components of foreground stars by comparing velocity
distributions of the data set and of the Besançon model. Using
photometric information (i.e. magnitude of each band) taken from
the spectroscopic samples, we impose the same colour–magnitude
cut on the spectroscopic samples to avoid sampling bias in terms
of colour–magnitudes between the photometric and spectroscopic
samples. After that, we estimate the DM halo parameters, and
evaluate the posterior distribution of the J-factor based on the line-of-
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Table 1. Photometric and spectroscopic data, where rmax is the radius of the outermost star Geringer-Sameth et al. (2015). See Section 3.1 for
more details.

dSph Photometry Rphoto (deg) Spectroscopy rmax (pc)

Draco SDSS DR14 (Abolfathi et al. 2018) 1.0 MMT/Hectochelle (Walker et al. 2015) 1866
Sculptor DES DR1 (Abbott et al. 2018) 2.5 Magellan/MMFS (Walker et al. 2009a) 2673
Ursa Minor Pan-STARRS DR1 (Chambers et al.

2016)
2.0 MMT/Hectochelle (Spencer et al. 2018) 1580

sight velocities. We use the posterior parameter distributions of the
half-right radius and the local membership probability obtained from
the photometric analysis as prior distributions of the spectroscopic
analysis.

Here, it is worth emphasizing that imposing the same criteria on
the colour–magnitude for both the photometry and the spectroscopic
data means that the membership probability that is tightly fixed to be
a specific value by the photometric analysis can be directly applied to
the membership probability in the spectroscopic analysis. In addition,
we also take the other uncertainty into account in our analysis, which
is from the distance between dSph and our Solar system. As shown
in Appendix C, the value of the J-factor is scaled as JD → JkD =
k−3JD under the scaling of D → kD with D being the distance, and
hence it can cause a large uncertainty on the J-factor estimation. Note
that this scaling of the J-factor is always held whenever we adopt the
spherical Jean-analysis.

We explain each step of our analysis method in more details in the
rest of this section assuming following conditions:

(i) The foreground stars are assumed to be uniformly distributed
inside the celestial sphere around the region of interest (RoI).

(ii) The velocity distribution of the foreground stars is composed
of at most up to three components, which are corresponding to the
thin disc, thick disc, and halo components, respectively. Note again
that the number of the components for foreground stars is fixed at the
step of the model selection in the spectroscopic part (Section 2.2).

(iii) The velocity distribution of each foreground component
mentioned above is described by a Gaussian distribution.

(iv) Spectroscopic samples are randomly selected, meaning that
the photometric samples and the spectroscopic ones originate from
an identical statistical population, after the colour–magnitude cut.

(v) The velocity distribution of the member stars does not depend
on their colour–magnitudes.

For the discussion of the validity of assumption (iv) and (v), see
Appendix B.

2.1 Photometry

The purpose of this photometric part is to determine stellar profiles
(shapes and half-light radii) of the dSphs and membership probabil-
ities at the half-light radii using photometric samples, which will be
further used in the subsequent spectroscopic analysis.

2.1.1 Likelihood function

The half-light radius of the stellar distribution of a dSph and the
membership probability at this radius is estimated using the following
set-up of the likelihood function Lphoto and prior πphoto:

Lphoto(�photo) = ∏
i 2πRi[sN1�1(Ri) + (1 − s)N0�0(Ri)] , (2)

πphoto(�photo) : flat. (3)

Here, �photo is the parameter set of the photometry model (to
be mentioned later) and Ri denotes the projected radius given by
Ri = Dsin θ i, where θ i is the separation angle of the ith star
from the centre of the dSph distant by D from the Earth. �M(R)
denotes the projected stellar profile of dSph member stars (M =
1) and foreground stars (M = 0). As stated above, we take �0(R)
= const. The normalization factor NM is given by the equation
NM ≡ (

∫ Rphoto
0 dR2πR�M (R))−1 < 1 for each �M(R), where the

integration is performed from the centre (R = 0) to the maximum
radius of the photometric stars denoted by Rphoto. See also Table 1.
The coefficient s stands for the global membership probability of the
dSph, which is given by the following formula:1

s = [1 + 1

Odds(R1/2)

N1�1(R1/2)

N0�0(R1/2)
]−1 . (4)

Here, R1/2 ≡ Dsin θ1/2 denotes the half-light-radius of the dSph
with θ1/2 being the corresponding separation angle, while Odds(R1/2)
is the odds of the membership at the half-light-radius. The odds
is given by P(M = 1|R = R1/2)/P(M = 0|R = R1/2), where
P(M|R) is the local membership probability at a specific radius R.
Here, we note that the parameter D disappear in the photometric
likelihood function because D does not depend on i. As a result,
the likelihood function Lphoto has four independent parameters:
�photo = α0, δ0, θ1/2, Odds(R1/2), where α0 and δ0 are the right
ascension and declination of the centre of the dSph.

2.1.2 Stellar model selection

We consider the following two empirical stellar profiles in our
analysis; Plummer profile (Plummer 1911) and Exponential profile:

�1(R) =

⎧⎪⎪⎨
⎪⎪⎩

1

πR2
1/2

[1 + (R/R1/2)2]
−2

(Plummer profile)

1

2πR2
e

exp(−R/Re) (Exponential profile)
, (5)

where R denotes the projected distance from the centre of a dSph,
and Re denotes the exponential radius scale, corresponding to R1/2

= 1.68Re. These two profiles can fit observed stellar profiles of the
dSphs very well (Irwin & Hatzidimitriou 1995; Ségall et al. 2007;
Martin, de Jong & Rix 2008). Those can be analytically de-projected
into the three-dimensional stellar number density ν1(r) as

ν1(r) =

⎧⎪⎪⎨
⎪⎪⎩

3

4πR3
1/2

[1 + (r/R1/2)2]
−5/2

(Plummer profile)

1

2π2R3
e

K0(r/Re) (Exponential profile)
, (6)

1In KI, the coefficient s is used as one of parameters of the likelihood function
even in the spectroscopic analysis. The value of s, however, depends on the
maximum radius of the photometric samples. Furthermore, the area of the
spectroscopic observation is usually not even a circle but a combination
of some irregular ones, which complicates the calculation of the global
membership probability. See Appendix A for more details.
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where r denotes the distance from the centre of a dSph. K0(x) is the
modified Bessel function of the second kind. Note also that the stellar
number density is normalized to be

∫
dr 4πr2 ν1(r) = 1, so as the

projected one, namely
∫

dR 2πR �1(R) = 1.
In our analysis, we select the most probable model among the

two based on the Bayes factor, namely the ratio of statistical
evidences. The statistical evidence of a specific model is defined
by the integral of the likelihood function times the prior distribution∫

d�L(�)π (�), which corresponds to the mean likelihood value
of the hypothesis for a given data set. Although the integration of∫

d�L(�)π (�) is difficult due to large dimensions of �, several
techniques are developed to evaluate this integration. In this work, we
use the Markov Chain Monte Carlo (MCMC) technique to evaluate
statistical evidences, as discussed in Section 2.3.

2.2 Spectroscopy

The purpose of this part is to determine DM density profile and
J-factor of a dSph using the results of the previous part as priors.

2.2.1 Foreground model selection

We assume up to three Gaussian components for the Milky Way
contamination (the foreground contribution) as already mentioned,
namely the thin disc, thick disc, and halo components. In the actual
data sample, however, not all of those components are appreciable
due to the contribution from a dSph. Hence, in order to determine the
number of foreground components in advance, we refer the Besançon
model2 (Robin et al. 2003). We first generate the mock stars according
to the model, where the number of generated stars is determined, so
that it becomes compatible with the actual data. Then, we compare
the statistical evidences of N-component foreground models (N = 1,
2, 3) and adopt the most likely one.

2.2.2 Stellar velocity dispersion and DM density profile

DM density profiles of dSphs are estimated by comparing observed
data of line-of-sight velocity dispersion with theoretical predictions.
Assuming that dSphs are spherical and steady systems, dispersion
curves of the dSphs are predicted by the following spherical Jeans
equation (Binney & Tremaine 2008):

1

ν1(r)

∂ν1(r)σ 2
r (r)

∂r
+ 2βani(r)σ 2

r (r)

r
= −GM(r)

r2
. (7)

Here, G is the gravitational constant and M(r) is the enclosed mass
within r, which is given by M(r) = ∫ r

0 dr ′4πr ′2ρDM(r ′) for the
case of a dSph due to the fact that the mass is dominated by DM
contribution. The velocity dispersion of member stars are defined
by σ r, σ θ , and σφ in general, which denote the dispersion along the
radial, polar, and azimuthal directions, respectively. Now, we can take
σ θ = σφ because of the spherical symmetry, while the anisotropy
parameter βani is defined to be βani ≡ 1 − (σ 2

θ + σ 2
φ )/(2σ 2

r ).
We obtain the line-of-sight velocity dispersion σ 2

los(R) of dSph
member stars by solving the Jeans equation under the assumption of
a constant anisotropy parameter βani(r) = βani,

σ 2
los(R) = 2

�1(R)

∫ ∞

R

dr(1 − βani
R2

r2
)

ν1(r)σ 2
r (r)√

1 − R2/r2
, (8)

2https://model.obs-besancon.fr/modele simuls.php

where the velocity dispersion along the radial direction σ r is

σ 2
r (r) = 1

ν1(r)

∫ ∞

r

ν1(r ′)(
r ′

r
)2βani

GM(r ′)
r ′2 dr ′ . (9)

Here, we assume the generalized NFW halo profile (Hernquist
1990; Dehnen 1993; Zhao 1996) for the DM density profile,

ρDM(r) = ρs(r/rs)
−γ (1 + (r/rs)

α)−(β−γ )/α, (10)

where parameters ρs and rs are the scale density and the scale radius
of the DM density profile, respectively, while other parameters α, β,
and γ determine the shape of the profile. For instance, (α, β, γ ) =
(1, 3, 1) gives the famous Navarro–Frenk–White (NFW) profile
(Navarro, Frenk & White 1997), while (α, β, γ ) = (1.5, 3, 0)
(approximately) gives the Burkert profile (Burkert 1995).

2.2.3 Likelihood function and prior

In KI, the likelihood function is defined by the mixture model of
dSph member stars and foreground stars, as explicitly shown in
Appendix A, which is based on the simultaneous probability density
P(v, R) with v and R being the stellar line-of-sight velocity and
the radius from the centre of the dSph, respectively. The likelihood
function is indeed proved to successfully reproduce original input
parameters by analysis using mock data, as was shown in KI.

To analyse actual observed data, however, we should consider the
spatial sampling bias of observed stars (Martinez et al. 2011). We
therefore use a improved likelihood function for spectroscopic sam-
ples based on the conditional probability P(v|R) = P(v, R)/

∫
dRP(v,

R) rather than P(v, R) itself:

Lspec(�spec) =
∏

i

[
s(Ri)G[vi ; v1,

√
σ 2

1 (Ri) + δσ 2
i ]

+ [1 − s(Ri)]
∑

c

πcG[vi ; v0,c,

√
σ 2

0,c + δσ 2
i ]

]
,

(11)

where G[v; μ, σ ] is the Gaussian function whose mean and standard
deviation are given by μ and σ , respectively. Here, δσ i is the
observational error of the ith star.3 The mean velocity of member
stars are denoted by v1, while the velocity dispersion of the stars
is σ 1(R), which is nothing but σ los(R) defined in equation (8). On
the other hand, v0, c, σ 0, c, and π c denote the mean velocity, velocity
dispersion, and weight of the cth foreground component, respectively,
where the coefficients π c are normalized to be

∑
cπ c = 1. At last,

sR denotes the local membership probability of stars at the radius R
(see also Appendix A), which is given as follows:

s(R) = [1 + 1

Odds(R1/2)

�1(R1/2)/�1(R)

�0(R1/2)/�0(R)
]−1 . (12)

Parameters of the spectroscopic likelihood function are
�spec = �photo ∪ rs, ρs, α, β, γ, βani,D, v1 ∪c πc, v0,c, σ0,c. Here,
we should note that the number of independent parameters are |�spec|
− 1 due to

∑
cπ c = 1, e.g. we have 4 + 8 + 3 × 3 − 1 = 20

independent parameters for the three-component foreground model.
We introduce Gaussian, flat, log-flat priors for these parame-

ters: We consider Gaussian priors, π (�photo) = G[�; μ�, σ�] and

3In KI, we ignored this observational error because it does not cause
significant difference in J-factor estimation. However, we find that this term
improves the performance of the MCMC because the singularity of the
likelihood function at σ 0, c → 0 can be removed by introducing δσ i.
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π (D) = G[D; μD, σD], for �photo and D, respectively. Here, μ�

and σ� is the median and the half of the 68 per cent quantile of
the posterior distribution obtained by the statistical analysis in the
photometry part mentioned in the previous subsection, while μD

and σ D are the observed distance and its error of a dSph taken from
McConnachie (2012). For the DM halo parameters and the anisotropy
parameter, we use the flat and log-flat priors over following ranges:

−4 ≤ log10(ρs/[M
pc−3]) ≤ 4 ,

0 ≤ log10(rs/[pc]) ≤ 5 ,

0.5 ≤ α ≤ 3 ,

3 ≤ β ≤ 10 ,

0 ≤ γ ≤ 1.2 ,

−1 ≤ − log10(1 − βani) < 1 ,

which are the same as those adopted in Geringer-Sameth et al. (2015).
We impose the flat prior for v1 over the following range:

−103 < v1/[km s−1] < 103 .

For the foreground spectroscopic parameters (π c, v0, c and σ 0, c), we
impose flat priors over the following ranges:

0 ≤ πc ≤ 1 with π1 > π2 > π3 (see also Section 2.3),

− 104 ≤ v0,c/[km s−1] ≤ 104 ,

0 ≤ σ0,c/[km s−1] ≤ 104 .

2.3 Sampling algorithm

Our likelihood functions and posteriors have many parameters. In
particular, the spectroscopic one has more than 10 parameters. The
MCMC method is known to enable us to generate parameter samples
whose distribution satisfies such a multidimensional function. For
example, the Metropolis–Hastings algorithm (Metropolis et al. 1953;
Hastings 1970) is known as a simple MCMC algorithm. It requires,
however, the tuning of hyperparameters, such as the step width and
correlation matrix of the random walk in the parameter space. In
our study, we use more sophisticated MCMC sampler, the Affine
Invariant Ensemble Sampler implemented by emcee (Foreman-
Mackey et al. 2013), which provides us easy interfaces to make an
MCMC code in PYTHON without any hyperparameter tuning except
for the step number and the number of walkers (parallelized MCMC
sampler). We perform parameter samplings with O(106) steps using
this sampler.

It is important to point out here that the spectroscopic likelihood
function has a permutation symmetry that exchanges the foreground
components with their parameters (mean, dispersion, and weight).
Such a symmetry is known to cause the label-switching problem
(Jasra, Holmes & Stephens 2005) by the multimodality of the
likelihood function corresponding to the symmetry. Although an
additional ordering condition (e.g. π1 > π2 > π3, μ1 > μ2 >

μ3, or σ 1 > σ 2 > σ 3) can break the symmetry, these procedures
yield accidental local maxima as by-products due to the hard cut-
off the parameter space. These local maxima trap a part of the
MCMC samplers in low-likelihood regions and distort the shape
of the posterior distribution functions. To resolve the problem,
we impose the weight ordering condition (π1 > π2 > π3) as
denoted above and remove MCMC samples trapped around local
maxima having significantly small (by the factor of <10−5) posterior
values.

To evaluate the statistical evidence of each model, we adopt the
widely applicable Bayesian information criterion (WBIC) as an
approximation of the (minus-log) evidence. The WBIC can be easily

computed by MCMC samples and it is valid even for singular model
such as Gaussian mixture model (GMM) and our spectroscopic
likelihood function (see Appendix D for more details). To evaluate
the WBIC, we perform MCMC samplings with O(106) steps.

3 DATA

In this section, we discuss the sources of data sets used in our analysis
for photometric and spectroscopic samples. We also explain the pre-
processing of these data sets, which is also shown in Fig. 2.

3.1 Data sources

The sources of photometric and spectroscopic samples for each dSph
are summarized in Table 1. Photometry: For Draco, Sculptor, and
Ursa Minor, we have referred to SDSS DR14 (Abolfathi et al. 2018),
DES DR1 (Abbott et al. 2018), and Pan-STARRS DR1 (Chambers
et al. 2016), respectively, to obtain the position (right ascension,
declination) and the magnitudes (g, r, i, z, and y bands) of stars.
Spectroscopy: For Draco, we have used stellar-kinematic samples
of MMT/Hectochelle observation (Walker et al. 2015), which provide
positions and line-of-sight velocities of the stars. For Sculptor, we
have referred to the result of Magellan/MMFS survey (Walker et al.
2009a) to obtain the positions, line-of-sight velocities and V- and I-
band magnitudes of the stars. For Ursa Minor, we have obtained the
position and velocity data from the observation of MMT/Hectochelle
telescope (Spencer et al. 2018).

We have used samples (stars) within the radius R < Rphoto, where
Rphoto = 1.0 deg, 2.5 deg, and 2.0 deg for Draco, Sculptor, and Ursa
Minor, respectively. We have decided these radii to include both the
outermost likely member stars of each dSph and the foreground stars
that are sufficient to carry out the multicomponent analysis described
in the previous section. Note also that the radii are specifically
optimised to ensure that the spatial and velocity distribution of the
foreground stars can be assumed to be uniform.

3.2 Cross-matching among photometric and spectroscopic data

To determine the magnitudes of spectroscopic stars, we looked
for the closest photometric star on the equatorial coordinates for
each spectroscopic star and regard the two stars identical. If the
spectroscopic star is located much away from the nearest photometric
star (farther than 5 arcsec), it is removed in the spectroscopic
analyses.4

We note that our spectroscopic samples of Sculptor have the
information of colour–magnitudes measured in the Johnson–Morgan
system. In order to cross-check our identification, we have used
conversion formula of the DES DR15 between the DES system
and the SDSS system and that of Abbott et al. (2018) and
Drlica-Wagner et al. (2018) between the SDSS system and the
Jhonson–Morgan system. Then, we have confirmed the consis-
tency between the original magnitudes of the spectroscopic sam-
ples and converted magnitudes of the corresponding photometric
samples.

4Almost all of the spectroscopic star samples can be matched to the
photometric samples with a separation angle less than 0.2 arcsec. For each
dSph, only a few per cent of the samples are removed from data used in
subsequent spectroscopic analyses.
5https://des.ncsa.illinois.edu/releases/dr1/dr1-faq
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J-factor estimation with the mixture model 3325

Figure 2. Photometric and spectroscopic samples of Draco (top row), Sculptor (middle row) and Ursa Minor (bottom row). The grey and red dots on scatter
plots correspond to the photometric and spectroscopic samples, respectively. Left column: Spacial distribution of stars in the equatorial coordinate system.
Centre column: Colour–magnitude diagram (CMD) with corrections of the reddening. The magnitudes of the spectroscopic samples are obtained from the
photometric samples through the catalogue matching. We use the stars in the black polygons for the CMD cut. Note that we use different colour–magnitude
systems among the dSphs (SDSS g and i band for Draco, Johnson V and I band for Sculptor, Pan-STARRS g and i band for Ursa Minor, respectively). Right
column: The histogram of the velocity distribution of the spectroscopic samples we have before the CMD cut (the red points in left and centre columns).

3.3 Colour–magnitude cut

When we estimate membership probabilities of different sample
sets such as photometric and spectroscopic ones, we should keep
in mind that the membership probability generally depends on the
choice of colour–magnitude cuts because the colour–magnitudes
of member stars are different from those of foreground stars. In
order to guarantee the population of stars to be equal between the
photometric and the spectroscopic samples, we impose the same
cuts on the colour–magnitude diagram (CMD) in our analysis as
shown in Fig. 2. The CMD cut for the Draco dSph is based on that
of Walker et al. (2015), which includes red giants and horizontal
branch stars. For the Sculptor and Ursa Minor dSphs, we define
our cuts with simple polygons including most of the spectroscopic
samples.

4 R ESULTS

As the result of the stellar density profile selection, the Plummer
model is accepted for all the dSphs, though the Bayes factors do not
vary much as ln BF � 2 ∼ 6 among the dSphs. It is noteworthy that
this selection process will be more important when we consider a
stellar model out of more complicated ones because our procedure
gives a systematic approach to choose the best one. To confirm the
validity of our photometry analysis, we show in Fig. 3 the comparison
between the observed surface density and the prediction of the
adopted stellar model (obtained by the posterior probability density
of the photometry analysis) for each dSph. The grey histograms
in the panels of the figure show the binned surface densities of
the photometric samples integrated over a ring with a radius R,
while the coloured lines shows those obtained by the result of our
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Figure 3. Result of fitting for Draco (left), Sculptor (centre) and Ursa Minor (right) dSphs in the photometric analysis. The grey histograms in the panels
show the normalized surface density profile of photometric stars. On the other hand, the coloured lines in the panels show the number density �(R) times 2πR
of member stars (blue), foreground stars (orange), and all stars (green), respectively, based on the maximum a posteriori (MAP) parameters, which are identical
to those obtained by maximum-likelihood estimation because we are using flat priors for the photometric parameters �photo in our analysis.

analysis. Because of a sufficient number of the photometric samples
of O(104), their probability density functions (PDFs) converge into
Gaussian-like distributions without any prior dependence, which
indicates that the result of our photometric analysis with Bayesian
statistics is also expected to be achieved even by the analysis with
the frequentist statistics. The lines shown in the figure are from
estimated number densities computed at the maximum a posteriori
parameters, which is nothing but the counterpart of the maximum-
likelihood estimation (MLE) or chi-square fittings of the samples in
the frequentist statistics.

In the spectroscopic analysis, the WBIC test for the foreground
model selection shows that only two foreground components based
on the Besançon model are sufficient to fit foreground star distribu-
tions of the dSph candidates (Draco, Ursa Minor and Sculptor). This
is partially because the foreground stars belonging to the thin disc
component have much different colour–magnitude properties from
those of the member stars, and thus our cut on the CMD can remove
the thin disc stars. Hence, we use the two components model in the
spectroscopic analysis.6

Posterior PDFs and their correlations are shown in Figs 4, E1 and
E2 for Draco, Sculptor and Ursa Minor, respectively. In these figures,
for illustration, we convert the velocity dispersion parameters σ i

into log10σ i, odds parameter Odds(R1/2) into logit1 ≡ ln [Odds(R1/2)]
and π i into logit0, i ≡ ln [π i/(1 − π i)]. In Fig. 5, we compare
the observed stellar number density in velocity space, denoted by
histograms, with those estimated by PDF of spectroscopic analysis,
shown by their median values (dashed lines) with their uncertainties
(coloured-bands). Similarly, Fig. 6 shows the comparison between
observed and estimated velocity dispersion of the member stars,
obtained by the PDF of the spectroscopic analysis. Here, blue points
with error bars are the observed velocity dispersion calculated by
binned samples with the median membership probability 〈PM〉 ≥ 0.5
(member-like stars), while corresponding error bars are obtained by
a bootstrap sampling of the stars in the bins. Dashed lines denote
the median values of the estimated velocity dispersion, while green
and yellow bands are Bayesian credible intervals of 68 per cent and
95 per cent, respectively. We also show maximum a posteriori (MAP)
lines by the red line as an analogy of the MLE or simple chi-square
fitting.

6It is worth notifying that the foreground model selection has the CMD cut
dependence as well as the membership probability because each foreground
component has its typical magnitudes and velocity distribution. The model
selection procedure therefore should be repeated each time in future analyses
whenever we use a different sample set with a different CMD cut.

We show our result of J-factor estimation in Table 2 and Fig. 7
as numbers and posterior probability density functions, respectively.
Here, the value of the J-factor for each dSph is obtained by integrating
the factor within 0.5 deg solid angle, which is nothing but the standard
choice of the J-factor estimation (Ackermann et al. 2015). Note also
that we take the radius of the outermost star shown in Table 1, which
is given by Geringer-Sameth et al. (2015) as a truncation radius of
the J-factor estimation to make the estimation the most conservative
for the indirect DM detection.7

We compare our result to those of other studies in Fig. 8 adopting
different methods to treat the contamination effect. The dots and the
error bars in the figure denote median values and 68 percent (1σ )
Bayesian credible intervals of the posterior probability densities.
Our result is shown by the black bars. The red, green, and blue
bars show results of Hayashi et al. (2016), Bonnivard et al. (2015),
and Geringer-Sameth et al. (2015), respectively, where they adopted
the membership selection based on the EM algorithm to remove
contaminated stars: Hayashi et al. (2016) considered axisymmetric
stellar and DM distributions assuming the generalized NFW profile.
In Bonnivard et al. (2015), generalized stellar and DM density distri-
butions are assumed with partially taking the uncertainties of dSph
triaxiality into account. Geringer-Sameth et al. (2015) performed
similar analysis to ours except the treatment of the contamination
effect. The yellow bars are from Ackermann et al. (2015), where the
NFW profile is assumed. Authors also assumed a linear relationship
among the total luminosity, the maximum circular velocity, and the
radius corresponding to the maximum circular velocity, as inferred
by Martinez (2015). We summarize these five studies in Table 3.

Finally, Figs 9, E3, and E4 show various correlations between the
estimated the J-factor and the model parameters �spec for Draco,
Sculptor, and Ursa Minor dSphs, respectively.

5 D ISCUSSION

We consider implication of our result presented in the previous
section, and discuss the impact of the contamination effect on J-
factor estimation. First, we discuss the advantage or our mixture
model to estimate proper DM density distributions as well as J-
factors of dSphs. Next, we compare our J-factor estimation with
those of other studies, and figure out common features among them.
Finally, we address characteristics of the J-factor for each dSph.

7See Fig. F1 for the impact of the truncation choice on J-factor values.
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J-factor estimation with the mixture model 3327

Figure 4. Posterior probability density and correlation matrix for Draco parameters. The upper right triangle corresponds to photometric parameters �photo as
well as a spectroscopic parameter D, while the lower left triangle corresponds to the spectroscopic ones �spec except D. For illustration, we convert the velocity
dispersion parameters σ i into log10σ i, odds parameter Odds(R1/2) into logit1 ≡ ln (Odds(R1/2)) and π i into logit0, i ≡ ln (π i/(1 − π i)).

Figure 5. Comparison between observed and estimated velocity distribution of stars for Draco (left), Sculptor (centre), and Ursa Minor (right). The grey
histograms are binned number density of observed stars in velocity space. Bayesian credible intervals of 68 per cent and 95 per cent are shown by the green and
yellow bands. Maximum a posteriori (MAP) lines are also shown by the red lines.
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3328 S. Horigome et al.

Figure 6. Comparison between observed and estimated velocity dispersion of the member stars for Draco (left), Sculptor (centre), and Ursa Minor (right).
The blue points are observed dispersion with error bars obtained by a bootstrap sampling. The dashed lines denote the median values of the estimated dispersion
associated with Bayesian credible intervals of 68 per cent and 95 per cent shown by the green and yellow bands. MAP lines are also shown by the red lines.

Table 2. Result of J-factor estimation. The median value of the posterior
probability density function is shown for each dSph. Lower and upper errors
correspond to the 1σ range of the PDF (16th and 84th percentiles).

dSph ν, � log10(J(0.5◦)/[GeV2cm−5])

Draco Plummer 18.96+0.21
−0.17

Sculptor Plummer 18.53+0.12
−0.11

Ursa Minor Plummer 18.75+0.17
−0.13

Figure 7. The posterior density function (PDF) of the J-factor for each
dSph, obtained by the MCMC calculation. The blue, orange, and green lines
correspond to the PDFs for Draco, Sculptor, and Ursa Minor, respectively.
Here, the vertical axis is normalized to satisfy

∫
d(log10J)p(log10J) = 1.

5.1 Common features

The result in Fig. 6 suggests the importance of properly taking an
uncertainty from membership probability into account. It shows
that line-of-sight velocity dispersion predicted by our method has
a large uncertainty at the outer region, where the most observed
stars are indeed from foreground stars. In terms of the Bayesian
statistical estimation, data points at the region have more importance
than those at regions with many data points. In the conventional
analysis, many foreground stars at the outer region are likely to
be misidentified as ‘member’ stars even if we impose a rigor-
ous membership selection. Hence, parameter estimation based on
the membership selection is often affected by the contamination
effect, and it induces an additional systematical uncertainty. In
contrast, the mixture model can deal with this uncertainty by the

statistical analysis in a straightforward way because the model
includes the contamination effect in the definition of the likelihood
function.

On the other hand, Figs 9, E3, and E4 show that estimated J-factors
are correlated with the distance parameter D. The correlation between
the J-factor and the distance D is fitted by the linear regression,
log10(J/GeV2cm−5) = alog10(D/pc) + b, with regression coefficients
being a = −3.23 and b = 34.73. As discussed in Appendix C, the
coefficient a takes a value of a ∼ 3, where the small difference from
the exact expectation (a = 3) comes from other uncertainties such
as the contamination effect. Indeed, the coefficient is closer to the
expected value for the Sculptor case (a = −2.93) due to a lower
contamination (logit1 ∼ 4.2 or sR1/2 ∼0.99). The uncertainty of the
distance between dSph and Solar system causes a non-negligible
uncertainty on J-factor estimation, especially for the case of dSph
with low contamination such as Sculptor.

Figs 9, E3, and E4 also show that the J-factor can be correlated with
the DM profile parameter γ (inner slope). It indicates that the analysis
adopting the generalized NFW profile (or some other analyses that
allow the DM profile having an enough freedom to change the inner
slope) is important rather than analyses with the profile having a
fixed inner slope from the first beginning.

Fig. 8 shows that J-factors obtained in our analysis are more or less
consistent with those obtained by other studies, however, their means
and errors are slightly different from our result. These differences can
be used to discuss validity of assumptions made in each study. For
instance, the error bars of Hayashi et al. (2016) are larger than other
studies, and it suggests that the uncertainty from the axisymmetricity
of dSph is underestimated by assuming the sphericity of dSph.
Indeed, (log-)Bayes factors complied by Hayashi et al. (2016) take
large values (>10), which is larger than those obtained by analyses
assuming the sphericity.

5.2 Draco

The value of the J-factor for the Draco dSph reported by Geringer-
Sameth et al. (2015) is slightly smaller than ours, and it must be from
the contamination effect because their analysis is almost the same as
ours except the treatment of the contamination (and some prior set-
ups). Indeed, in contrast with the fact that our ‘member’ stars in Fig. 6
are located within R � 500 pc, their ‘member’ stars shown in fig. 1 of
Geringer-Sameth et al. (2015) are distributed as far as R ∼ 1000 pc.
The stars and their velocity dispersion with a somewhat suppressed
value at the outer region are expected to be from the flatting bias
of their EM algorithm. This suppressed dispersion profile is then
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J-factor estimation with the mixture model 3329

Figure 8. Comparison among various J-factor estimations. Our result is shown by the black dots error bars. We also show results estimated by other studies
(Ackermann et al. 2015; Bonnivard et al. 2015; Geringer-Sameth et al. 2015) with the blue, green, and yellow ones, respectively. For the red ones, we present
our (previous) result obtained by performing a more generalized fitting (adopting the generalized NFW profile) than the original one in Hayashi et al. (2016).

Table 3. Comparison of analysis methods in Fig. 8. Note that the stellar and anisotropy models of Ackermann et al. (2015) are not specified in the table because
they adopt the Bayesian hierarchical modelling, where the Jeans equation appears as an integrated form without explicit dependence on stellar and anisotropy
models. We also note that Bonnivard et al. (2015) takes the uncertainty coming from the triaxiality into account to estimate J-factor uncertainties.

Work Symmetry ν1, �1 ρDM βani FG contami.

Our study Spherical Plummer/exp. Generalized NFW Constant Mixture model
Hayashi et al. (2016) Axisymmetric Plummer Generalized NFW Constant PM cut
Geringer-Sameth et al. (2015) Spherical Plummer Generalized NFW Constant PM cut
Bonnivard et al. (2015) Spherical (triaxial) Generalized NFW Generalized Einasto Baes & Van Hese (2007) PM cut
Ackermann et al. (2015) Spherical - NFW - Hierarchical modelling

fitted by a more radial anisotropy.8 The suppressed profile, on the
other hand, also requires a more concentrated DM profile (smaller
rs with ρ(r) being enough large at the inner region). As a result, the
J-factor in their analysis is predicted to be smaller than what we have
obtained. Geringer-Sameth et al. (2015) reported less J-factor error
than ours, and this is partially because they utilize information of
metallicity for the stellar membership calculation.

5.3 Sculptor

The value of the J-factor for Sculptor dSph is not sizeably different
from each other. This is because the contamination rate of the
Sculptor is quite small as mentioned in Section 5.1, and the PM

cut procedure works very well. Fig. 8 also shows that the error bar of
Geringer-Sameth et al. (2015) is smaller than ours, which is partially
because they imposed additional kinematical and cosmological con-
straints on DM profiles, namely, the criteria on truncation radius and
central density. It is also worth notifying that the J-factor of Sculptor
is significantly dependent on its distance to the Solar system due
to the low contamination uncertainty, as mentioned in Section 5.1.

8Geringer-Sameth et al. (2015) reported − log10(1 − βani) = 0.54+0.27
−0.29, while

our result is more isotropic, − log10(1 − βani) = 0.06+0.16
−0.14.

This strong correlation suggests that the major uncertainty of the
J-factor is from the uncertainty of the distance D, and it means that
further study of the distance determination is required to obtain a
more precise J-factor for the Sculptor dSphs.

5.4 Ursa Minor

In contrast to the Draco case, Geringer-Sameth et al. (2015) obtained
a slightly larger value of the J-factor than ours.9 This fact is expected
to be from the contamination as in the case of the Draco, though it
affects the dispersion profile in a different way. Our dispersion profile
has its maximum at R � 1000 pc, while the maximum of their profile
is at R � 200 pc. The maximum at smaller R in their analysis requires
more compact DM profile (smaller rs and larger ρs) than ours. On the
other hand, the compact DM profile also induces the increase of the
profile at inner region, and it must be compensated by more tangential
anisotropy.10 As a result, the J-factor value of Geringer-Sameth et al.

9Bonnivard et al. (2015) also obtained a significantly larger J-factor than ours.
This is because that they adopted a larger truncation radius than the outermost
radius, which is motivated from the tidal radius of the Ursa Minor.
10Indeed, Geringer-Sameth et al. (2015) obtained tangential
anisotropy, − log10(1 − βani) = −0.47+0.28

−0.32, and compact DM profile,
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Figure 9. Correlation between the J-factor PDF and various model parameters for Draco dSph.

(2015) becomes larger than our result. Here, it is worth notifying that
the compact DM profile contributes to the J-factor values conversely
compared to the Draco case. This difference comes from the fact that
the flattened dispersion profile of the Draco requires the compact
DM profile and radial anisotropy, while that of the Sculptor requires
the compact DM profile and tangential anisotropy. Moreover, we
obtained less J-factor error than what Geringer-Sameth et al. (2015)
reported, and this is partially because our estimate of rs is larger
than the truncation radius of the J-factor, so that the uncertainty
of the DM profile does not contribute the J-factor uncertainty so
much.

6 C O N C L U S I O N S

We have estimated the J-factors of Draco, Sculptor, and Ursa Minor
dSphs, which are known to be promising targets for the indirect
DM detection utilizing various gamma-ray observations. We have
adopted a mixture model for member and foreground star distribu-
tions based on a conditional likelihood function for a given projected
distance from the dSph centre, which is obtained by improving the
likelihood function proposed in KI and useful to remove sampling
bias that we often suffer in spectroscopic observation.

We introduced a new parameter Odds(R1/2) concerning the mem-
bership ratio, which allows us to have a well-determined prior
function of the parameter from photometric observation. J-factors
obtained in our analysis are consistent with those of previous
studies, but we saw some small differences among the studies at the
same time, which is in particular apparent for higher contaminated
dSphs such as Draco and Ursa Minor. Moreover, we found that the
uncertainty of the distance measurement gives a sizeable uncertainty

log10(ρs/M
 pc3) = −0.50+0.60
−0.64 & log10(rs/pc) = 2.60+0.40

−0.38, while we

obtained less tangential anisotropy, − log10(1 − βani) = −0.20+0.18
−0.24,

and more diluted DM profile, log10(ρs/M
 pc3) = −1.55+0.69
−1.07 &

log10(rs/pc) = 3.42+0.91
−0.50.

on J-factor estimation in some cases. It is thus important to determine
the distance accurately to estimate J-factor precisely.

Spectroscopic observation with a large field of view in the near
future such as the PFS will enable us to observe thousands of stars
simultaneously and to estimate J-factors for various dSphs more
precisely. Proper treatment of the foreground contamination hence
becomes more and more important, for the number of contaminated
foreground stars increases in the data set. In particular, we can expect
that the method developed in this paper will be a powerful tool to
estimate J-factors of ultrafaints dSphs in near future, as they suffer
the contamination more seriously.
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Table A1. Probabilities and probability density functions used in our
likelihood function. Note that we always put random variables on the left-
hand-side of the bracket, ( | ), while conditions are put on the right-hand
side.

Notation Description

p(v, R) Simultaneous probability to find a star at the
radius R and at the velocity v.

p(v, R|M) The same as above but for member stars (M = 1)
and foreground stars (M = 0).

p(R|M) Normalized stellar density profile for member and
foreground stars (

∫
dRp(R|M) = 1).

p(M|R) Local membership probability at radius R.
p(M) Global membership probability. It depends on the

CMD cut criteria and RoI selections.

A P P E N D I X A : IM P ROV I N G K I 1 7 L I K E L I H O O D

We derive our likelihood function from that of KI based on the
assumptions made in Section 2. 12 Here, the likelihood function L
for the spectroscopic data is defined as follows:

LKI17 =
∏

i

[sf1(vi, Ri) + (1 − s)f0(vi, Ri)] . (A1)

This is based on the PDF p(v, R) ≡ ∏
i

∑
Mi=1,0 p(Mi)p(vi, Ri |Mi),

where p(M = 1) = s and p(v, R|M) = fM(v, R).13 In order to obtain
a likelihood that is free from sampling bias, we use the conditional
probability p(v|R) instead of p(v, R) as a new likelihood function
as follows:

Lspec ≡ p(v|R), (A2)

=
∏

i

∑
Mi

p(M = Mi |Ri)p(vi |Ri, Mi), (A3)

≡
∏

i

[s(Ri)G1(vi) + [1 − s(Ri)]G0(vi)] , (A4)

where the local membership probability s(R) is given by the formula

s(R) ≡ p(M = 1|R) = p(M = 1)
∫

dvp(v, R|M = 1)∑
M p(M)

∫
dvp(v, R|M)

, (A5)

= [1 + (
s
∫

dvf1(v, R)

(1 − s)
∫

dvf0(v,R)
)−1]−1. (A6)

Here, it is worth pointing out that the integral
∫

dvfM(v, R) are
proportional to the projected stellar density function �M(R) when∫

dv = ∫ ∞
−∞ dv, because we assume that the distribution function

fM(v, R) has the velocity dependence only through the Gaussian
function, whose integral is given by

∫ ∞
−∞ dvG(v; vM, σM (R)) = 1.14

In this case, sR is simplified as follows:

s(R) = [1 + 1

Odds(R1/2)

�1(R1/2)/�1(R)

�0(R1/2)/�0(R)
]−1 , (A7)

where the ratio �0(R)/�0(R1/2) is always one in our analysis because
we have assumed uniform stellar density for foreground stars. Then,
the local odds Odds(R1/2) is given as follows:

Odds(R1/2) ≡ p(M = 1|R = R1/2)

p(M = 0|R = R1/2)
(A8)

12The validity of the assumptions are discussed in Appendix B.
13We summarize definitions of the probabilities in Table A1.
14In the case of the finite-ranged integration,

∫
dvfM(v, R) gives another R-

dependent factor, which comes from
∫

dvG(v; vM, σM (R)).

= s

1 − s

∫
dvf1(v, R1/2)∫
dvf0(v, R1/2)

. (A9)

Hence, we adopt Odds(R1/2) as an alternative parameter of s.
The advantage of this parametrization is that we can define the
membership probability of a specific dSph without sampling bias,
allowing us to utilize several data sets from different observations,
for example, the photometry data and the spectroscopy data in this
work.15

A P P E N D I X B: G E N E R A L I Z E D L I K E L I H O O D

We discuss the validity of our assumptions (iv) and (v) in Section 2
using a generalized likelihood function, which is defined by

Lgen ≡
∏

i

∑
Mi

p(vi, Ri, Mi, Zi), (B1)

where Zi ≡ Wi, Ci, ··· denotes additional observable such as
metallicity Wi, colour–magnitude Ci, etc. Our likelihood function
equation (A3) and (11) is derived by: 1. conditionalizing this
likelihood function by position Ri, and 2. marginalizing it over Z
space;

Lspec ≡
∏

i

∫
dZiLgen∫

dvi

∫
dZiLgen

, (B2)

=
∏

i

∑
Mi

∫
dZip(vi |Ri,Mi, Zi)p(Mi |Ri, Zi)p(Zi |Ri) , (B3)

= ∏
i

∑
Mi

p(vi |Ri, Mi)p(Mi |Ri) , (B4)

where

p(Mi |Ri) =
∫

dZip(Mi |Ri, Zi)p(Zi |Ri), (B5)

p(vi |Ri, Mi) =
∫

dZip(vi |Ri, Mi, Zi)
p(Mi |Ri, Zi)p(Zi |Ri)

p(Mi |Ri)
.

(B6)

Our assumption (v) (colour–magnitude independence of the member
distribution) corresponds to

p(vi, Zi |Ri, Mi = 1) = p(vi |Ri, Mi = 1)p(Zi |Ri,Mi = 1) , (B7)

which is equivalently written by

p(vi |Ri, Mi = 1, Zi) = p(vi |Ri, Mi = 1) . (B8)

Based on this assumption, we have constructed a concrete likelihood
function, as shown in the main text. For the verification of this
assumption, we have checked the goodness of fit of our spectroscopic
estimation by computing χ2 ≡∑

i(vi − v1)2/σ 2(Ri) for member-like
stars. As a result, obtained minimum χ2 values satisfy χ2 � O(N1),
where N1 denotes the number of member stars, which validate this
assumption for present data sets.

It has been reported that Sculptor and Ursa Minor have colour–
magnitude dependent stellar kinematics (Tolstoy et al. 2004;
Battaglia et al. 2008; Pace et al. 2020). Further analysis including
such dependencies might help us to obtain more accurate DM
distribution, especially when larger spectroscopic data sets are
available in future.

15Moreover, the use of s causes another trouble: when we observe all stars
from the dSph centre to the radius R that is much away from the centre, s
becomes almost 0 because the number of member stars are finite at R → ∞,
while that of contaminating foreground stars is proportional to R2.
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Figure B1. Comparison of the posterior distribution of the membership
probability, Odds(R1/2), of the photometric analysis with that of the spectro-
scopic analysis without using the photometric posterior distribution as a prior
distribution in the case of Ursa Minor. The horizontal axis represents logit1
≡ ln (Odds(R1/2)). The orange correspond to the prior distribution, while the
blue one denotes the posterior distribution.

The assumption (iv; randomness of spectroscopic samples) as-
sumes that the photometric and the spectroscopic samples have the
same probability distribution p(vi, Ri, Mi, Zi) in equation (B1). If
the spectroscopic samples are biased in colour–magnitude space,
it affects the membership probability through the Zi integration in
equation (B5). To validate the assumption (iv), we compare the
posterior distribution of the membership probability, Odds(R1/2),
of the photometric analysis with that of the spectroscopic analysis
without using the photometric posterior distribution as a prior
distribution. We show the comparison in Fig. B1 in the case of Ursa
Minor as an example. Here, the orange line correspond to the prior
distribution, while the blue one denotes the posterior distribution
obtained from the spectroscopic analysis without the prior. It can be
seen that the prior distribution from the photometric analysis is well
contained in the posterior distribution.

A P P E N D I X C : D I S TA N C E D E P E N D E N C E O F
J-FAC TO R

J-factor depends strongly on the distance to a dSph. Ullio & Valli
(2016) shows that, for a given distance D, a spherical dSph with the
DM density profile ρDM(r) has the following dependence:

JD � 4π

D2

∫ rmax

0
drr2ρ2

DM(r) . (C1)

The DM density profile ρDM(r) also depends implicitly on D due to
the invariance of the observed line-of-sight velocity dispersion σ 2

�(R)
(�: parameters). Namely, for a distance D

′ = kD, a observed radius
of a star R is also scaled by the factor k because of R = Dsin θ , and
the re-scaled line-of-sight velocity dispersion σ 2

�′ (R′) with different
parameters �

′�D
′
and a radius R

′ = kR must be equal to the original
one as σ 2

�(R) = σ 2
�′ (R′). Here,

� = ρs, rs, R1/2, D , (C2)

�′ = ρ ′
s, r ′

s, R′
1/2, D′ = k−2ρs, krs, kR1/2, kD . (C3)

This relationship can be confirmed as follows: The stellar number
densities and the DM density profile are in general defined as

�1(R) = R−2
e f1(R/Re) , (C4)

ν1(r) = R−3
e f2(r/Re) , (C5)

ρDM(r) = ρsf3(r/rs) , (C6)

M(r) = ρsr
3
s f4(r/rs) . (C7)

Substituting them into equations (8) and (9) leads to

σ 2
�′ (R′) = 2

k−2�1(R)

∫ ∞

kR

dr√
1 − (kR)2/r2

(1 − βani
(kR)2

r2
)

×
∫ ∞

r

k−3ν1(r ′)(
r ′

r
)2βani

k−2+3GM(r ′)
r ′2 dr ′, (C8)

= 2

k−2�1(R)

∫ ∞

R

kdr√
1 − R2/r2

(1 − βani
R2

r2
)

×
∫ ∞

r

k−3ν1(r ′)(
r ′

r
)2βani

k−2+3GM(r ′)
k2r ′2 kdr ′ (C9)

= σ 2
�(R) . (C10)

It means that our likelihood function has a degeneracy, and we obtain
the J-factor for a different input distance D

′ = kD as

JD′ � 4π

k2D2

∫ krmax

0
drr2ρ2

DM(kr)|rs=krs , (C11)

= 4π

k2D2

∫ rmax

0
kdrk2r2k−2×2ρ2

DM(r) = k−3JD . (C12)

As a result, estimation on the J-factor is non-negligibly affected by
the uncertainty of the distances D. For instance, 10 per cent error of
the distance k = 1.0+0.1

−0.1 gives log10 J ′
D = (log10 JD)+0.12

−0.14.

APPENDI X D : W I DELY A PPLI CABLE
BAY E S I A N I N F O R M AT I O N C R I T E R I O N

Due to the difficulty of the multidimensional integration appeared
for the statistical evidence, several approximations for the evidence
have been developed. The Bayesian Information Criteria (BIC)
(Schwarz 1978) is a well-known approximation, but it is valid only for
Gaussian-like posterior probabilities. The WBIC (Watanabe 2012)
is a more generic and easily computable approximation, which is
defined by

WBIC =
∫

d�(− lnL(�))L(�)βπ (�)∫
d�L(�)βπ (�)

. (D1)

Here, β is called the inverse temperature, with is given by β = 1/ln N
with N being the number of samples. We can easily calculate the
WBIC by MCMC sampling of −L(�)βπ (�). The WBIC gives a
good approximation of the minus log-evidence (or the free energy in
the statistics) even for singular statistical models, such as the GMM.
Our spectroscopic likelihood function contains the GMM, namely
the foreground model, hence we adopt the WBIC to approximate the
evidence.

APPENDI X E: PDFS O F SCULPTOR AND U RS A
M I N O R

Here, we show the result of parameter estimation for Sculptor and
Ursa Minor: Figs E1 and E2 are posterior PDFs, while Figs E3 and
E4 are correlations between their J-factors and other parameters.
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Figure E1. Posterior probability density and correlation matrix for the Sculptor. Multimodal distribution that we can see on the PDF is due to the fact that the
contamination level of the dSph is very low (logit1 ∼ 4.2 or sR1/2 ∼ 0.99), so that the model cannot resolve foreground stars into two Gaussian distributions.
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Figure E2. Posterior probability density and correlation matrix for the Ursa Minor.
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Figure E3. J-factor PDFs of the Sculptor dSph with respect to some other parameters.

Figure E4. J-factor PDFs of the Ursa Minor dSph with respect to some other parameters.
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A P P E N D I X F: TRU N C AT I O N

Dependence of the truncation radius Rtrunc on the value of the J-
factor for each dSph (Draco, Sculptor, Ursa Minor) is shown in

Fig. F1. The radius that we used in our analysis is shown as a
vertical dotted line. It can be seen that the value of the J-factor
is not very sensitive to the choice of the truncation radius if it is large
enough.

Figure F1. The value of the J-factor as a function of the truncation radius Rtrunc. The blue, orange, and green lines are the median values of J-factor for Draco,
Sculptor, and Ursa Minor dSphs, respectively. On the other hand, the shaded area with the same colour code corresponds to the 68 per cent percentile of the
Bayesian credible interval. The vertical dotted lines are the truncation radii that we used in our analysis, and exactly the same as those shown in Table 1.
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