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ABSTRACT
We have performed magnetohydrodynamic (MHD) simulations of relativistic jets from supermassive blackholes over a few tens
of kpc for a range of jet parameters. One of the primary aims was to investigate the effect of different MHD instabilities on
the jet dynamics and their dependence on the choice of jet parameters. We find that two dominant MHD instabilities affect the
dynamics of the jet, small-scale Kelvin–Helmholtz (KH) modes and large-scale kink modes, whose evolution depends on internal
jet parameters like the Lorentz factor, the ratio of the density and pressure to the external medium, and the magnetization and
hence consequently on the jet power. Low power jets are susceptible to both instabilities, kink modes for jets with higher central
magnetic field and KH modes for lower magnetization. Moderate power jets do not show appreciable growth of kink modes,
but KH modes develop for lower magnetization. Higher power jets are generally stable to both instabilities. Such instabilities
decelerate and decollimate the jet while inducing turbulence in the cocoon, with consequences on the magnetic field structure.
We model the dynamics of the jets following a generalized treatment of the Begelman–Cioffi relations, which we present here.
We find that the dynamics of stable jets match well with simplified analytic models of expansion of non-self-similar FRII jets,
whereas jets with prominent MHD instabilities show a nearly self-similar evolution of the morphology as the energy is more
evenly distributed between the jet head and the cocoon.

Key words: MHD – relativistic processes – methods: numerical – galaxies: jets.

1 IN T RO D U C T I O N

Relativistic jets are one of the major drivers of galaxy evolution
(Fabian 2012). Jets deposit energy over a large range of spatial
scales, from the galactic core of a few kpc (Wagner & Bicknell 2011;
Morganti et al. 2013; Mukherjee et al. 2016, 2017; Morganti 2020)
to the circum-galactic media, some extending to Mpc in length:
Dabhade et al. (2017), Dabhade et al. (2019), and Dabhade et al.
(2020). Understanding the evolution and dynamics of such jets is
thus crucial in unraveling how galaxies evolve over cosmic time.

Since the discovery of radio emission from jet-driven lobes (Jen-
nison & Das Gupta 1953), there have been significant observational
and theoretical investigations to understand the nature of these extra-
galactic objects (see e.g. Begelman, Blandford & Rees 1984; Worrall
2009; Blandford, Meier & Readhead 2019, for reviews). While it is
now a common understanding that non-thermal processes such as
synchrotron and inverse-Compton contribute to the multiwavelength
emission from the jets (Worrall & Birkinshaw 2006; Worrall 2009),
there still remain several open questions on how the evolution and
dynamics of the jet affect the above emission processes.

Several early works have attempted to describe the jet dynamics
and subsequently explain the observed emission through semi-
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analytic modelling of the jet expansion such as Begelman & Cioffi
(1989), Falle (1991), Kaiser & Alexander (1997), Komissarov &
Falle (1998), Bromberg & Levinson (2009), Bromberg et al. (2011),
Turner & Shabala (2015), Harrison, Gottlieb & Nakar (2018),
and Hardcastle (2018) to name a few. With the development of
numerical schemes to simulate relativistic flows, several papers have
investigated the dynamics of relativistic jets as they expand into
the ambient medium (Martı́ et al. 1997; Komissarov & Falle 1998;
Komissarov 1999; Scheck et al. 2002; Perucho & Martı́ 2007; Rossi
et al. 2008; Mignone et al. 2010; Perucho et al. 2014; Rossi et al.
2017; Perucho, Martı́ & Quilis 2019). In the present paper and other
subsequent follow-up publications in future, we intend to give a broad
interpretation of the dynamics and emission properties of relativistic,
magnetized jets, considering in detail the effects of instabilities and
the role played by the magnetic field on jet propagation (paper I).
This first paper, which focuses on the dynamics, provides a basis
and a reference for interpreting the radiative properties that will be
investigated in the following papers.

Magnetohydrodynamic (MHD) instabilities can play a significant
role in determining the dynamics and evolution of the jet. The two
major instabilities that can affect the jet are the current-driven modes
(Nakamura, Li & Li 2007; Mignone et al. 2010, 2013; Mizuno,
Hardee & Nishikawa 2014; Bromberg & Tchekhovskoy 2016) and
the Kelvin–Helmholtz (KH) modes (Bodo et al. 1989; Birkinshaw
1991; Bodo et al. 1996; Perucho et al. 2004, 2010; Bodo et al.
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2013, 2019). The growth of such instabilities and their efficiency
in disrupting the jet column depends on several factors intrinsic
to the properties of the jet such as its velocity, magnetization, and
opening angle, as well as the density profile of the external medium
(Porth & Komissarov 2015; Tchekhovskoy & Bromberg 2016). The
pressure in the cocoon surrounding the jet can also initiate the onset
of instabilities due to higher sound speeds that facilitate the growth
of perturbations (Hardee et al. 1998; Rosen et al. 1999).

Jets with higher velocities, stronger magnetization, and colder
plasma have slower growth of KH modes (Rosen et al. 1999; Perucho
et al. 2004; Bodo et al. 2013). Strongly magnetized, collimated
jets are, however, susceptible to the current-driven modes (Bodo
et al. 2013; Bromberg & Tchekhovskoy 2016; Tchekhovskoy &
Bromberg 2016). Thus, the relative efficiency of the different modes
depends on internal parameters of the jet. Many of the above works,
especially those involving semi-analytic linear analysis (Bodo et al.
1989; Perucho et al. 2004; Bodo et al. 2013, 2019), rely on idealistic
approximations to keep the problem tractable. In a realistic scenario
of a jet traversing through an ambient density whose radial profile is
defined by the gravitational potential of the host galaxy, several of
the above modes can occur simultaneously.

Simulations of relativistic jets expanding into an ambient medium
have been carried out in several earlier papers (such as Martı́ et al.
1997; Komissarov & Falle 1998; Scheck et al. 2002; Perucho &
Martı́ 2007; Rossi et al. 2008; Mignone et al. 2010; Perucho et al.
2014; English, Hardcastle & Krause 2016; Perucho et al. 2019).
However, very few of the above explore in a systematic way the
impact of different jet parameters on the development of various
MHD instabilities and their effect on the jet dynamics. In the present
paper, we perform a suite of relativistic MHD simulations to explore
the dynamics and evolution of the jet and its cocoon over a few
tens of kpc for a varying range of initial jet parameters such as the
jet’s power, velocity, magnetization, and contrast of the pressure (or
temperature) and density with the ambient medium.

We investigate how the jet parameters impact the growth of differ-
ent instabilities and their effect on the dynamics and morphology of
the jet by comparing with an analytic extension of the jet evolution
model proposed in Begelman & Cioffi (1989). We also present
the distribution and evolution of the magnetic field in the cocoon
and its dependence on the onset of different MHD instabilities,
which is important in predicting synchrotron emission from the jet
lobes (Hardcastle 2013; Hardcastle & Krause 2014; English et al.
2016). Some of the simulations have been performed with the new
LAGRANGIAN PARTICLE module in the PLUTO code, as described
in Vaidya et al. (2018), which computes the spectral and spatial
evolution of relativistic electrons in the jet. This enables one to make
accurate predictions of synchrotron emission expected from such
systems. In this paper, we restrict ourselves to the discussions of
dynamics of the jet: the evolution based on the fluid parameters alone.
In subsequent publications of this series, we will discuss the nature
of the observable emission and its connection to the jet dynamics
and MHD instabilities.

We structure the paper as described below. In Section 2, we
describe the initialization of the simulation parameters and the details
of the numerical implementation. In Section 3, we describe the
results of the simulations and the impact of different parameters
on the jet dynamics. In the sub-sections therein, we describe the
onset of different MHD instabilities for different jet parameters
and the relative comparison of the different simulations with an
analytic model of jet evolution. Finally, in Sections 4 and 5,
we discuss the implications of the results and summarize our
findings.

2 SI MULATI ON SETUP

2.1 The problem

We investigate the propagation of relativistic magnetized jets in
a stratified ambient medium. The relevant equations to be solved
are the relativistic magnetohydrodynamic (RMHD) equations in a
constant Minkowski metric for special relativistic flows (see e.g.
Mignone et al. 2007; Rossi et al. 2017). We assume a single-
species relativistic perfect fluid (the Synge gas) described by the
approximated Taub–Matthews equation of state (Mignone, Plewa &
Bodo 2005; Mignone & McKinney 2007). The ambient medium,
better described in sub-Section 2.2, is maintained in hydrostatic
equilibrium by an external gravitational potential. No magnetic field
is present in the initial configuration at t = 0 and a toroidal magnetic
field is injected along with the jets. The equations are solved in a 3D
Cartesian geometry with the z axis pointing along the jet direction.

2.2 Ambient atmosphere

We assume an external static gravitational field to keep the ambient
halo gas in pressure equilibrium. We take a Hernquist potential (Hern-
quist 1990) to represent the contribution of the stellar (baryonic)
component of the galaxy:

φB = − GMB

r + aH
. (1)

Here, G is the gravitational constant, MB = 2 × 1011M� is the stellar
mass of the galaxy, typical of large ellipticals that host powerful
radio jets (Best et al. 2005; Sabater et al. 2019), and aH = 2 kpc
is the scale radius, which corresponds to a half-mass radius r1/2 =(

1 + √
2
)

aH = 4.8 kpc and the half-light radius of Re = 1.8153aH

� 3.63 kpc (Hernquist 1990), typical of giant ellipticals (Kormendy
et al. 2009). The contribution of the dark matter component to the
gravitational potential is modelled by an NFW profile (Navarro,
Frenk & White 1996):

φDM = −GM200

[ln(1 + c̃) + c̃/(1 + c̃)]

(
1

r + d

)
ln

(
1 + r

rs

)

where M200 = 200ρcr
4π

3
c̃3r3

s ; rs = r200/c̃. (2)

Here, r200 is the radius where the mean density of the dark matter halo
is 200 times the critical density of the universe, c̃ is the concentration
parameter, and ρcr = 3H2/(8πG) = 8.50610−30gcm−3 is the critical
density of the universe at z = 0 with the Hubble constant H =
67 kms−1 Mpc−1 (Planck Collaboration 2016). The NFW profile is
modified with an arbitrarily chosen small core radius of d = 10−3

kpc to avoid the singularity at r = 0.
For our simulations, we assumed c̃ = 10, d = 10−3 kpc, and r200 =

1 Mpc, which gives a virial mass of M200 = 1 × 1014M�(r200/1Mpc)3.
The above are comparable to values inferred from observations of
galaxy clusters (Croston et al. 2008). Thus, the galaxy parameters
used represent a typical giant elliptical at the centre of a cluster.

The ambient atmosphere in several early-type galaxies (Paggi
et al. 2017) and centres of clusters (Leccardi & Molendi 2008) are
usually found to have radially increasing gas temperatures. For our
simulations, we model the ambient halo to have a radially varying
temperature profile (as shown in Fig. 1):

Ta(r) = Tc +
[

1 − 1

cosh(r/rc)

]
(TH − Tc) . (3)
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Figure 1. Top: Density profile of the ambient halo as a function of radius set
to be in equilibrium with the external gravitational field. Fits to the density
profile using simple analytical expressions (equations B3 and B4) have been
presented for two different regimes, 1−10 kpc in red and 15−60 kpc in blue.
Bottom: The temperature profile assumed for the halo gas, using equation (3).

Here, Tc = 107 K is the temperature at r = 0 and TH is the temperature
at radii beyond the scale radius rc. For our simulations, we assume
TH = 2Tc and rc = 10 kpc. The density and pressure are then evaluated
by considering the atmosphere to be in hydrostatic equilibrium with
the external gravitational force by solving:

dpa(r)

dr
= −ρa(r)

dφ(r)

dr
; pa(r) = ρh(r)

μma
kBTh(r)

pa(r) = (n0kBTc) exp

[
−
∫ r

0

(
μma

kBTa(r)

)
dφ(r)

dr
dr

]
, (4)

where pa and ρa = μmanh are the pressure and density of the ambient
halo gas, φ = φB + φDM is the total gravitational potential, μ = 0.6
is the mean molecular weight for a fully ionized gas (Sutherland &
Dopita 2017) with ma being the atomic weight, n0 is the number
density at r = 0, and the temperature, Ta(r), is given by equation (3).
Equation (4) is solved numerically to obtain a tabulated list of density
and pressure as a function of radius, which is then interpolated on to
the PLUTO domain at the initialization step.

2.3 Jet parameters

The jet properties are defined by four non-dimensional parameters:

(i) The density contrast: It is defined as

ηj = nj(rinj)

nh(rinj)
, (5)

which gives the ratio of the number density of the jet plasma (nj) to
the number density of the ambient halo (nh) at the radius of injection
(rinj). The typical choices in the simulations range from ∼4 × 10−5

− 10−4, similar to previous works (Scheck et al. 2002; Rossi et al.
2008; Perucho et al. 2014; Wykes et al. 2019).

(ii) The pressure contrast: It is defined as

ζp = pj(rinj)

ph(rinj)
, (6)

which sets the ratio of the pressure of the jet (pj) with respect to the
pressure of the ambient halo at the injection radius. For all of our
simulations, we assume the jet to be in pressure equilibrium with the
atmosphere at t = 0, except for simulation G (see Table 1) where
the jet is over-pressured at launch with ζ p = 5. In Appendix A, we
show that the values of pressure and density of the jet used in our
simulations are consistent with that of a proton–electron jet.

(iii) Jet Lorentz factor: The bulk Lorentz factor of the jet (γ b),
from which the magnitude of the jet speed is computed. In our
simulations, we choose a range of Lorentz factors (3−10), which are
typical values inferred from Doppler-boosted luminosity estimates
of Blazars (Cohen et al. 2007; Lister et al. 2009) or VLBA studies
(Jorstad et al. 2005). The jet is primarily directed along the z axis.
The different components of the velocity vectors are then calculated
by assuming the jet to be launched with an opening half-angle of 5◦,
as in Mukherjee et al. (2018).

(iv) Jet radius: We consider a jet radius of Rj = 100 pc for all
simulations except for G, H, and J, where the radius was increased
to Rj = 200 pc to obtain a higher jet power. For our simulations
with a resolution of 15.6 pc, this choice of jet radius ensures that
the radius of the jet inlet is resolved by at least six computational
cells and 12 cells for simulations G, H, and J. The above values of
jet radii are higher than those obtained from observations at heights
similar to our injection zone. However, our choice was restricted due
to limitations of computational resources and the need to sufficiently
resolve the jet diameter to prevent spurious numerical artefacts and
suppressed growth of instabilities and entrainment (e.g. Rossi et al.
2008; English et al. 2016; English, Hardcastle & Krause 2019).

(v) Jet magnetization: The jet magnetization parameter is defined
as the ratio of the Poynting flux (Sj) to the jet enthalpy flux (Fj):

σB = |Sj · ẑ|
|Fj · ẑ| = | (Bj × (vj × Bj)

) · ẑ|
4π

(
γ 2ρjhj − γρjc2

) (|vj · ẑ|) , (7)

where Bj is the magnetic field vector of the jet, vj is the jet velocity,
and ρ jhj is the relativistic enthalpy density of the jet per unit volume.
The contribution of the rest mass energy to the enthalpy flux is
removed while computing the jet enthalpy flux Fj. The above is
a more general definition of the magnetization parameter. For a
highly relativistic plasma where the enthalpy dominates over rest
mass energy, equation (7) reduces to σ B = B2/(4πγ 2ρh), similar
to the expressions used in earlier papers (e.g. Rossi et al. 2008;
Nalewajko 2016).
The fluxes are considered along the jet z axis, i.e. the direction of
launch of the jets. The relativistic enthalpy is computed for a Taub–
Matthews equation of state (Mignone et al. 2005) as:

ρjhj = 5

2
pj +

√
9

4
p2

j + (
ρjc2

)2
. (8)

Equation (7) can be used to derive the strength of the magnetic field of
the jet. For a toroidal magnetic field in a jet directed along the z axis,

we derive the peak field strength as B0 =
√(

4πFjσB

)
/vj, which is

used in equation (14) to define the magnetic field profile in the jet
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Table 1. List of simulations and parameters.

Simulation Physical domain Grid point ηj γ b σB rj Pj B0 Mj 
j

label (kpc × kpc × kpc) kpc (ergs−1) (m G)

A 4.5 × 4.5 × 10 288 × 288 × 640 4 × 10−5 3 0.01 0.1 1.57 × 1044 0.054 11.5 0.039
B 4.5 × 4.5 × 10 288 × 288 × 640 4 × 10−5 3 0.1 0.1 1.65 × 1044 0.171 11.5 0.039
C 4.5 × 4.5 × 10 288 × 288 × 640 4 × 10−5 3 0.2 0.1 1.73 × 1044 0.241 11.5 0.039

D 4.5 × 4.5 × 10 288 × 288 × 640 1 × 10−4 5 0.01 0.1 1.11 × 1045 0.152 30.9 0.015
Ea 6 × 6 × 18 384 × 384 × 1152 1 × 10−4 5 0.05 0.1 1.15 × 1045 0.304 30.9 0.015
F 4.5 × 4.5 × 10 288 × 288 × 640 1 × 10−4 5 0.1 0.1 1.17 × 1045 0.48 30.9 0.015

Gb 4.5 × 4.5 × 10 288 × 288 × 640 1 × 10−4 6 0.2 0.2 8.29 × 1045 0.907 17.49 0.077
H 4.5 × 4.5 × 10 288 × 288 × 640 1 × 10−4 10 0.2 0.2 1.64 × 1046 1.363 62.77 0.015
Ic 4.5 × 4.5 × 10 288 × 288 × 640 1 × 10−4 5 0.1 0.1 1.17 × 1046 1.36 30.9 0.015
J 6 × 6 × 40 384 × 384 × 2560 1 × 10−4 10 0.1 0.2 1.51 × 1046 0.964 62.77 0.015

a Simulation E is a two-sided jet with the injection zone located at the centre of the domain.
b Over-pressured jet ζ p = 5. For the rest, ζ p = 1.
cnh(rinj) = 1cm−3. For other simulation, nh(rinj) = 0.1 cm−3. Parameters: ηj: Ratio of jet density to ambient density.
γ b: Jet Lorentz factor.
σB: Jet magnetization parameter, the ratio of jet Poynting flux to enthalpy flux.
rj: Jet radius.
Pj: Jet power computed from equation (9).
B0: Maximum strength of toroidal magnetic field in milli-Gauss.
Mj: Jet Mach number defined in equation (10).

j: The temperature parameter for the jet equation of state: 
j = pj/(ρjc2).

at the injection zone. The values of B0 listed in Table 1 are similar
to the ranges of magnetic fields inferred from observational studies
of kilo-parsec scale jets (Carilli & Barthel 1996; Kataoka & Stawarz
2005; Stawarz et al. 2005; Stawarz, Kneiske & Kataoka 2006; Wu
et al. 2017), as well as field strengths inferred from smaller parsec-
scale jets (e.g. O’Sullivan & Gabuzda 2009) when extrapolated to
larger scales.

The jet power Pj is found by integrating the total enthalpy flux
(without the rest mass energy) over the injection surface, including
the contribution of the magnetic field. For a flow with a total enthalpy
wt = ρjhj + B2/(γ 24π ) + (v · B)2 /(4π ), the enthalpy flux per unit
area along the z axis, excluding the rest mass energy, is (Mignone,
Ugliano & Bodo 2009)

FT
z = (

wtγ
2 − γρjc

2
)
vz

− γ

(
v · B√

4π

)(
Bz

γ
√

4π
+ γ

(
v · B√

4π

)
vz

)

= (
γ 2ρjhj − γρjc

2
)
vz + B2

4π
vz − (v · B)

Bz

4π
. (9)

In order to get the jet power in physical units, we need to fix the
value of the jet radius Rj and the number density of the ambient halo
at the radius of injection nh(rinj). As discussed earlier, we assume
Rj = 100 pc in all cases except cases G, H and J, where Rj = 200 pc
(see Table 1). The number density of the ambient gas is nh(rinj) =
0.1cm−3 in all cases except for simulation I, where nh(rinj) = 1cm−3.

The list of simulations performed with the different choice of
parameters and other inferred quantities is summarized in Table 1.
Besides the above-described parameters, we also present the jet Mach
number defined following Rossi et al. (2008) as

Mj = γbvj

(γscs)
, γs = 1√

1 − (cs/c)2
. (10)

Here, cs is the sound speed defined in equation (12). This would
facilitate ready comparison with previous simulations where the non-
magnetic hydrodynamic Mach number has been used as an input
parameter (e.g. Hardee et al. 1998; Komissarov & Falle 1998; Rosen

et al. 1999; Rossi et al. 2008; Mignone et al. 2010; Massaglia et al.
2016). In the last column, we present the temperature parameter
defined as 
j = pj/(ρ jc2) as done in Mignone & McKinney (2007),
which gives an approximate estimate of the adiabatic index of the
gas.

2.4 Numerical implementation

We perform the simulations with the PLUTO code (Mignone et al.
2007), utilizing the RMHD module. We employ the piece-wise
parabolic reconstruction scheme (PPM: Colella & Woodward 1984),
with a second-order Runge–Kutta method for time integration and
the HLLD Riemann solver (Mignone et al. 2009). The magnetic
field components, defined on the face centres of a staggered mesh,
are updated using the constrained transport method (Balsara & Spicer
1999; Gardiner & Stone 2005). The electromotive force is defined
on the zone edges of a computational cell and reconstructed with the
upwind constrained transport technique (UCT HLL scheme of PLUTO:
Londrillo & del Zanna 2004) by solving a 2D Riemann problem.
For better numerical stability, in some simulations, we employed a
more diffusive Riemann solver (HLL) and limiter (MIN-MOD) for cells
identified as strongly shocked in the central region where the jet is
injected (Z < ±1 kpc). A computational cell was identified to be
shocked if δp/pmin > 4, where δp is the sum of the difference in
pressure between neighbouring cells in each direction and pmin is
the minimum pressure of all surrounding cell. An outflow boundary
condition was applied on all sides of the computational box with the
jet injected from a volume inside the computational box.

The jet is injected along both positive and negative Z axis from an
injection region centred at (0,0,0), as shown in Fig. 2. The vertical
extent of the injection zone is set at z = ±Rj, while the horizontal
extent is chosen to have a few computational cells larger than the jet
radius. In the jet injection zone, the fluxes of the Riemann solvers are
set to zero and hence the fluid variables (ρ, p, v) remain unchanged.
For most of the simulations, the computational box has a short
extension of ∼1 kpc along the negative z axis. This avoids the use
of a reflecting boundary condition, as has been traditionally used in
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Figure 2. A cartoon demonstrating the X−Z plane of the jet injection, centred
at the origin. The shaded regions (in blue and orange) represent the injection
zone where the fluid variables are not updated. The injection zone is initialized
with jet parameters in the central region (shaded in blue) with lateral extent up
to Rj. The injection zone is extended beyond Rj by a few computational cells
where fluid variables are set to values of the ambient medium. The velocity
vectors lie along a cone, which makes a half-opening angle of θ = 5◦ with
the Z axis.

typical jet simulations (Mignone et al. 2010; Massaglia et al. 2016;
Perucho et al. 2019), which may result in spurious features at the
lower boundary. For simulation E (see Table 1), the injection zone
was centred at the middle of the total computational domain, and the
evolution of both jet lobes was followed in full. The extent of the
computational domain and the grid resolution are detailed in Table 1.
The grid resolution is chosen in a way such that the number of points
on the jet radius is always larger than 6.

The density and pressure of the jet in the injection zone are tapered
radially with a smoothing function: Q = Q0/(cosh [(R/Rj)6]), R being
the cylindrical radius, to avoid sharp discontinuities at R = Rj. The
velocity components were strictly truncated at the jet radius (R = Rj)
so that there is no energy flux beyond Rj. This ensures that the injected
jet energy flux is not greater than the intended value calculated by
integrating equation (9) over the injection surface bounded by R =
Rj. Besides the bulk velocity defined by γ b, we additionally imposed
small perturbations on the transverse components to induce pinching,
helical and fluting mode instabilities as in Rossi et al. (2008)

(
vx, vy

) = Ã

24

2∑
m=0

8∑
l=1

cos(mφ + ωlt + bl)(cosφ, sin φ), (11)

where φ = tan −1(y/x), ωl = cs(1/2, 1, 2, 3) for l ∈ (1, 4), and ωl =
cs(0.03, 0.06, 0.12, 0.25) for l ∈ (5, 8). Here, cs is the relativistic
sound speed in the jet, which for a Taub–Matthews equation of state
is defined as (Mignone et al. 2005)

c2
s =

(
pj

3ρjhj

)(
5ρjhj − 8pj

ρjhj − pj

)
, (12)

where ρ jhj is computed from equation (8). The perturbation ampli-
tude is defined to be

Ã = 1√
2γb

√
(1 + ε)2 − 1

(1 + ε)
, (13)

which gives the Lorentz factor of the perturbed velocity field to be
γ = γ b(1 + ε). We choose ε = 0.005 for our simulations to induce
very mild perturbations in the jet flow.

The magnetic field components were assigned from a vector
potential defined by

Az = −
∫ ∞

0
B0f

(
R

Rj

)
dR (14)

where f

(
R

Rj

)
= R

Rj

(
cosh

[(
R/Rj

)6
]) for R ≤ Rj

= 0 for R > Rj. (15)

Equation (14) is numerically integrated to radii much larger than
the jet radius to obtain a tabulated list of vector potential as a
function of cylindrical radius, which is then interpolated on to
the PLUTO domain. This gives a toroidal magnetic field of peak
strength B0, as defined by the choice of the magnetization parameter
σ B in equation (7). Thus, the radial profile of the jet magnetic
field is:

Bθ (R) = B0

(
R

Rj

)
1

cosh
[(

R/Rj

)6
] for R ≤ Rj

= 0 for R > Rj. (16)

The staggered magnetic field components were not updated inside
the jet injection zone except at the faces of the outer surfaces of the
injection domain. Similarly, the components of the Electromotive
Force (EMF) were also not updated within the injection zone, except
for the edges of the injection domain. The sign of the toroidal
component of the magnetic field and z component of the velocity
was reversed for injection of jet along the negative z axis.

3 R ESULTS

We have performed a series of simulations to investigate the
difference in the dynamics of the jet for different powers, mag-
netization, jet pressure contrast with respect to the ambient gas,
and density of the ambient medium. The main focus of these
studies has been to understand the impact of these parameters on
the evolution of the jet’s morphology, the deceleration of the jet,
and the impact of instabilities such as kink and KH modes. In
this section, we summarize the results of the different simulations
and compare analytical models that predict the evolution of the jet
kinematics.

3.1 Dynamics of jet

In Fig. 3, we present the density and pressure at two different times for
simulation G (see Table 1), which represents a typical powerful FRII
jet (as per the classification of Fanaroff & Riley 1974). The density
slices show an internal cavity bounded by a contact discontinuity
and forward shock (typical of over-pressured outflows as shown
in Komissarov & Falle 1998; Kaiser & Alexander 1997). The jet
moves at bulk relativistic velocities near the axis, represented by
the contour of γ = 2 in white. The jet terminates at a hotspot with
enhanced pressure due to the strong shock with the ambient gas.
The internal cavity has low-density (∼10−4cm−3) plasma resulting
from the mixing of thermal gas due to KH instabilities at the contact
discontinuity with the jet backflow that originates from the forward
shock at the jet head.

Within the axis of the jet, there are several sites of enhanced
pressure, arising out of recollimation shocks (Norman et al. 1982;
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686 D. Mukherjee et al.

Figure 3. The top left-hand panel shows slices in the X−Z plane of the logarithm of the number density at two different times for Simulation G (see Table 1
for list of simulations). The white lines represent contours of Lorentz factor γ = 2, representing the bulk relativistic flow. The logarithm of pressure slices is on
the top right-hand panel. The bottom panels show the toroidal (left) and vertical component of the magnetic field in milli-Gauss.

Komissarov & Falle 1998; Nalewajko & Sikora 2009; Nawaz et al.
2014; Fuentes et al. 2018; Bodo & Tavecchio 2018). In the bottom
panels, we show the Y and Z components of the magnetic field.
It is evident from Fig. 3 that the jet is not collimated along the
Z axis, showing both small-scale distortions and bending near the
jet-head spread over ∼1 kpc. Such distortions arise from both
small-scale instabilities resulting shearing of the jet axis driven
by high-order KH modes and kink-type m = 1 mode instabilities
(Mignone et al. 2010; Bodo et al. 2013; Mizuno et al. 2014; Bodo
et al. 2019; Bromberg et al. 2019). It is to be noted that although
we inject a purely toroidal magnetic field, the jet magnetic field
develops a vertical component as it propagates. This results in a
helical topology of the resultant magnetic field along the jet axis,
although dominated by the toroidal component. We shall elaborate
more on the effect of instabilities on the jet dynamics in the following
sections.

3.2 Effect of magnetization on jet stability

Two different kinds of fluid instabilities affect the dynamics of the
jets in our simulations. Weakly magnetized jets have a faster onset
of KH instabilities, which deform the jet cross-section with short
wavelengths modes and promote mixing between the jet and the
surrounding medium. With a stronger toroidal magnetic field, the
magnetic tension opposes jet deformation and stabilizes the KH
modes (Mignone et al. 2010). However, stronger magnetization can
also instigate the onset of current-driven instabilities (CDI), of which
the most relevant is the m = 1 mode, which will result in large-scale
deformations and bending of the jet from its initial axis (Bodo et al.
2013). The relative growth rates of the different modes depend on
the magnetic pitch parameter, the jet velocity, and magnetization
(Bodo et al. 2013). In the following sections, we discuss the effect of
magnetization on the evolution of the jets in different power regimes.
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Dynamics of relativistic MHD jets 687

Figure 4. 3D volume rendering of the velocity in orange–blue palette with the density of the jet and cocoon in the yellow–green palette for simulations A (left)
and B (right). The magnetic field vectors are plotted in magenta with their length scaled to their magnitude.

3.2.1 Low power jets: Kink modes

Simulations A,B,C have similar jet power (∼1044ergs−1) and in-
jection speed (γ ∼ 3) while differing in jet magnetization with
σ B = 0.01, 0.1, and 0.2, respectively. Fig. 4 shows the 3D volume
rendering of the jet speed and density for simulations A and B.
The Z component of the velocity (normalized to c) is presented in
a blue–red palette with the red–orange depicting positive velocities
and velocities directed along the negative Z axis in blue. The spine of
the jet in simulation B (right-hand panel in Fig. 4) shows clear bends
and twists indicative of kink-mode instabilities. At the top, the jet
head bends sharply, almost perpendicular to its original axis, before
bending backwards to eventually form the backflow. The morphology
of the jet head is thus very different from that of usual jets where
the relativistic flow terminates in a shock, at a mach disc, symmetric
around the jet axis before flowing backwards in the cocoon (Kaiser &
Alexander 1997; Martı́ et al. 1997; Komissarov & Falle 1998; Rosen
et al. 1999).

The cocoon of the jet can be discerned from the volume rendering
of the density presented in green. The morphology of the cocoon
is highly asymmetric, with local bubble-shaped protrusions. These
correspond to the locally expanding bow shock where the jet was
temporarily directed before bending to a different direction. Over
the course of its growth, the swings of the jet head result in a
broader spread of the jet energy over a much larger solid angle. This
results in the formation of the cocoon with an over-all cylindrical
shape, as opposed to a narrow conical shape expected for stable jets.
The instabilities decelerate the jet, reducing its advance speed as
discussed later in Section 3.4.

Simulation A with lower magnetization (Table 1) on the other hand
does not show the onset of the kink modes on similar time-scales. The
jet forms a conical cocoon with stable spine along the launch axis.
The central spine broadens and shows evidence of shear, as expected
for low magnetic fields (discussed more in the next section). The
magnetic field vectors in simulation B are less ordered compared
to that in A. The randomness of the field topology arises from the
stronger interaction of the jet with the ambient gas due to the kink
modes, which also enhances turbulent motions in the cocoon.

Figure 5. 3D volume rendering of the jet and cocoon, as in Fig. 4, for
simulation E.

3.2.2 Moderate power jets: small-scale Kelvin–Helmholtz modes

Simulations D,E,F have moderate jet powers of ∼1045ergs−1, Lorentz
gamma of γ ∼ 5 but differing jet magnetization with σ B = 0.01, 0.05,
and 0.1. These jets do not show strong growth of kink modes within
the simulation run times, as was seen for lower power jets. Simulation
E shows mild bending away from the axis (as shown in Fig. 5), but
much less pronounced as compared to simulation B. Simulation D,
however, shows intermittent turbulent distribution of magnetic field
resulting from the development of small-scale KH instabilities at the
jet–cocoon interface. These instabilities develop over small scales
and are absent in simulation F with higher magnetization. The higher
strength of the toroidal magnetic field prevents deformation of the
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688 D. Mukherjee et al.

Figure 6. Top: Plots of magnetic field and density for simulations D (σB = 0.01) and F (σB = 0.1) to show difference in morphology due to high m modes
arising from Kelvin–Helmholtz instabilities.

Figure 7. Plots of the Lorentz factor in the X−Z plane for simulations D and
F. Simulation D shows deceleration at the top with irregular distribution of
flow implying onset of decollimation. Simulation F shows a steady cylindrical
spine along the Z.

inner jet spine through the increased magnetic tension and suppresses
the disruptive KH modes (Mignone et al. 2010; Bodo et al. 2013).

In Fig. 6, we show the magnitude of the magnetic field normalized
to its mean value, for simulations D and F, and their corresponding
density slices. First, we notice that simulation D has a much wider
cocoon, with an asymmetrical head. The development of KH modes
results in a stronger deceleration of the jet head, as is evident from a
comparison of the times at which the two jets reach a similar length
(t = 391.18 kyr for case D compared to t = 234.71 kyr for case F).
The cocoon in case D had therefore a longer time to expand in the
lateral direction. Simulation D shows onset of deceleration beyond
∼6 kpc with irregular flow axis, as seen in plots of the Lorentz factor
in Fig. 7. In simulation F, the jet remains collimated with a regular

cylindrical axis as seen in the plots of the Lorentz factor and density.
The Lorentz factor shows intermediate dips following recollimation
shocks whose locations are also seen in the density images in Fig. 6.

Both the magnetic field and the density plots show more structures
varying over smaller scales for simulation D than those for simulation
F. Simulation F shows a distinct spine along its axis with enhanced
magnetic field, accentuated by islands from recollimation shocks.
Simulation D lacks such a clear morphology, with the magnetic field
near the jet spine being more turbulent. The field in the cocoon of
simulation D shows intermittent structures over small scales, whereas
simulation F has fields ordered over longer scales.

KH instabilities result in the growth of unstable modes at different
spatial scales with the shorter wavelengths having faster growth rates.
This is demonstrated in Fig. 8, where we plot the length scales parallel
to the magnetic field defined as (Schekochihin et al. 2004; Bodo et al.
2011):

l‖ =
[ |B|4

|(B · ∇)B|2
]1/2

. (17)

The two left-hand panels of Fig. 8 show the distribution of
log (l�/(1kpc)) in the X–Z plane for simulations D and F. The cocoon
and jet axis of simulation D are seen to be dominated by small
length scales of ∼10−100 pc or ∼�x−10�x, �x being the grid
resolution, which for our simulations is ∼15.6 pc. For simulation
F, the jet axis and jet head have smaller length scales, whereas the
cocoon has ordered fields with typical length scales �1 kpc. Since
simulation F does not suffer from KH modes, the backflow has well-
ordered magnetic fields. The smaller length scales inside the jet axis
likely arise from recollimation shocks at different intervals from the
injection region.

In the right-hand panel of Fig. 8 is the volume-weighted probability
distribution function (PDF) of the length scales computed from
equation (17). The PDF excludes the jet axis, defined as regions
with jet tracer >0.9, and also excludes regions with z < 1 kpc to
remove artefacts that may arise from the lower boundary. It can be
seen that simulation D has a higher value of the PDF for length scales
�100 pc. The PDF of simulation F is higher for length scales 100 pc
< l� < 1 kpc. The fractional volume occupied by length scales in the
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Dynamics of relativistic MHD jets 689

Figure 8. Left: 2D slices in the X−Z plane showing the length scale parallel to the magnetic field [equation (17)] for simulations D and F. The quantity plotted
is log (l�/(1kpc)). Simulation D with smaller magnetization is dominated by smaller scale lengths. Right: The probability distribution function (PDF) of length
scales in the cocoon after excluding regions with jet tracer >0.9 and z < 1 kpc.

range �x−10�x is ∼0.42 for simulation D and ∼0.24 for simulation
F, whereas for l� in the range 10�x−100�x, simulation D has ∼0.56
by volume and simulation F has contributions from ∼0.74 of the
volume. Thus, regions with small-scale fields dominate the unstable
simulation D by over two times in terms of relative fraction of the
total volume of the cocoon as compared to the stable simulation F.

To further show the development of small-scale intermittent
magnetic field distribution in the cocoon of simulation D due to
the onset of KH instabilities, we present in Fig. 9 the plot of the
relative strength of the fluctuating magnetic field energy density. We
define this as:

ξ = (B − B̄)2

B̄2
, where:

B̄(x, y, z) =
∫ ∫ ∫

G(x, x ′, y, y ′, z, z′)B(x ′, y ′, z′)dx ′dy ′dz′,

G(x, x ′, y, y ′, z, z′) = 1

(2π )3/2(2σK )2
exp

(
−∑3

i=1(xi − x ′
i )

2

2(σK )2

)
.

(18)

Here B̄ is the local average magnetic field computed by convolving
the local field with a Gaussian kernel with a width (σ K) equal to the
diameter of the jet (σ K = 2rj). The indices i in equation (18) refer to
the three spatial dimensions (x, y, z). We see that the energy density
of the fluctuating component of the field varies over small length
scales, as also demonstrated earlier in Fig. 8. In certain areas, the
fluctuating fields are a few times stronger than the local mean.

3.2.3 High power jets

Simulations G, H, I, and J have higher jet powers ∼1046ergs−1, with
higher Lorentz gamma γ ∈ (5−10). These simulations do not show
strong growth of unstable modes as found earlier. Jets in simulations
H and J were launched with higher velocity (γ = 10) and comparable
magnetization (σ B = 0.1, 0.2, respectively) to that of simulation
F. Similar to F, the jets evolve without any appreciable onset of
instability. Simulation J was followed up to ∼40 kpc and was found to

Figure 9. A plot of ξ [equation (18)], showing the fluctuating magnetic field
energy density on varying intermittently on short length scales (∼100 pc) in
the cocoon of simulation D.

be stable with a collimated spine, as shown in Fig. 10. The difference
in magnetization between simulations H and J did not have any
significant qualitative difference. The absence of instabilities likely
results from slower growth rates of instabilities in jets with higher
Lorentz factors (Rosen et al. 1999; Bodo et al. 2013), which is
discussed in more detail later in Section 4.1.

Simulation G, which has a hotter jet with an initial pressure
five times that of H (see Table 1), shows some added structures and
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690 D. Mukherjee et al.

Figure 10. The density (top), magnetic field (middle), and Lorentz factor in the X−Z plane for simulation J. The jet with power ∼1046ergs−1 and initial Lorentz
factor of γ = 10 at injection remains fairly stable up to ∼40 kpc.

Figure 11. Plots of the pressure normalized to its mean value in the X−Z
plane for simulations G and H. The white contours denote constant Lorentz
factor with a value γ = 2. Simulation G with a higher initial pressure but lower
Lorentz factor has irregular jet axis (traced by the γ = 2 contour), bending
of the jet, and more pronounced internal structures, implying faster growth
of unstable modes (Kelvn–Helmholtz). Simulation H has a more regular jet
axis and cocoon than that in G.

shear of the jet axis, and bending of the jet head, than in simulation
H, as shown in Fig. 11. This is similar to the results of Rosen et al.
(1999), where hotter jets were found to have more structures due
to faster growth rates of unstable modes. However, these are not as

disruptive as in the low power jets. Simulation I was carried out in
an ambient medium with a central density of n0 = 1cm−3, 10 times
the value of other simulations. However, within the domain of our
simulation, we did not see any appreciable deceleration compared to
simulations G and H.

3.3 The Generalized Begelman–Cioffi (GBC) model

There are several approximate analytical models that describe the
evolution of the jet as a function of time or radius (Begelman &
Cioffi 1989; Falle 1991; Kaiser & Alexander 1997; Perucho, Quilis &
Martı́ 2011; Bromberg et al. 2011; Turner & Shabala 2015; Harrison
et al. 2018). One of the commonly used models was derived by
Begelman & Cioffi (1989) where the time evolution of the jet length
and mean cocoon pressure of a jet propagating into a homogeneous
environment of constant density was derived. The solutions do not
necessarily assume a self-similar evolution of the jet, which is often
considered as a fundamental assumption in several analytical models
(e.g. Falle 1991; Kaiser & Alexander 1997; Turner & Shabala 2015).
Later works (Scheck et al. 2002; Perucho & Martı́ 2007) extended the
Begelman–Cioffi model to account for a jet that steadily decelerates
while expanding into an external medium whose density decreases
as a power law. In other works, Bromberg et al. (2011) and Harrison
et al. (2018) have developed a semi-analytical model of the jet
evolution by duly accounting for the structure of the recollimation
shock that shapes the jet radius. However, the possible deceleration
of the jet due to MHD instabilities was not accounted for. The effect
of kink-mode instabilities on the dyanamics of highly magnetized
jets has been studied in Bromberg & Tchekhovskoy (2016) and
Tchekhovskoy & Bromberg (2016), an extension of the semi-analytic
results of Bromberg et al. (2011). However, the jet magnetizations in
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Dynamics of relativistic MHD jets 691

the simulations presented in this work are much lower than those in
Bromberg & Tchekhovskoy (2016).

In this section, we present a more generalized formulation of
the Begelman–Cioffi model (hereafter GBC) to compare with the
results from the numerical simulations. We assume a simplified
model of a jet evolution by evaluating the jet-head velocity following
momentum flux balance. We consider a deceleration factor to account
for the effect of MHD instabilities. The detailed derivations of the
equations are outlined in Appendix B. We compare the approximate
analytical results with the jet dynamics from the simulations by
evaluating advance speed of the jet head. The model is simplistic in
nature, although an update on the original Begelman & Cioffi (1989).
We do not consider the detailed nature of the recollimation shock
structure, as done in Bromberg et al. (2011). Instead, we focus on
matching the bulk energetics to approximately model the evolution
of the cocoon and jet, which may be a better approach for jets with
complicated morphologies resulting from 3D MHD instabilities.

By equating the (relativistic) momentum flux of the jet and the
ambient medium, the advance speed of the jet (vh) at the bow shock
can be expressed in terms of the pre-shock speed and density contrast
with the ambient medium as (Martı́ et al. 1997; Bromberg et al.
2011):

vM
h = γj

√
ηR

1 + γj
√

ηR
vj, ηR = ρjhj

ρaha
. (19)

Here, ηR is the ratio of the relativistic enthalpy of the jet with respect
to the ambient medium. Assuming an ideal equation of state with
adiabatic index � for simplicity, the enthalpy of the ambient gas is

ρaha = ρac
2

[
1 + 1

� − 1

( csa

c

)2
]

� ρac
2, (20)

where csa is the sound speed of the ambient medium, which for Ta ∼
107 is csa � 372 km s−1 � c. Thus ,

ηR =
(

ρj

ρa

)[
1 + �pj

(� − 1)ρjc2

]

= ηjf (r̃)−1

[
1 + �pj

(� − 1)ρjc2

]
, (21)

where ηj is the density contrast of the jet with respect to the ambient
medium at r = 0 (as in Table 1) and f (r̃) is radial dependence of
the ambient density profile. Typically, the density contrast of the jet
with the ambient medium is small for light jets. For our simulations,
ηjf (r̃)−1 � 2.8 × 10−3 for r < 10 kpc. Thus, the jet-head velocity
can be approximated as

vM
h ∼ γj

√
ηRvj

= γjvjη
1/2
j f (r̃)−1/2

[
1 + �pj

(� − 1)ρjc2

]1/2

. (22)

From equation (22), it is evident that for a jet propagating into a
medium with a decreasing density profile, the jet-head velocity may
increase with time for a constant pre-shock jet velocity. However, at
large radii, the jet density may become comparable to the ambient
density, in which case, the above approximation of ηjf (r̃)−1 � 1 is
no longer valid, and the jet will propagate with a constant speed as
vM

h � vj.
The time evolution of the jet head can be found by integrating

equation (22). However, additional factors such as MHD instabilities
or broadening of the hotspot area can lower the jet speed with time.
We thus consider the actual jet-head velocity to be modified by a
deceleration factor g(t̃), t̃ = t/τ with τ a scale deceleration time,

Figure 12. A schematic figure of a jet with an ellipsoidal cocoon whose evo-
lution for the Generalized Begelman–Cioffi model is discussed in Appendix B
and Section 3.3. The jet head, at a distance l, advances along the jet axis with
speed vh. The cocoon expands laterally in the transverse direction with speed
vc. The length of the cocoon along the semi-minor axis is considered to be
the cocoon length rc.

which accounts for a secular reduction in the advance speed of the
jet with time.

Thus, the jet will evolve as

vh = dl

dt
= vM

h(
1 + t

τ

)n , (23)

such that vh � vM
h for t � τ (no deceleration) and vh � vM

h t1−n for
t � τ . For the above assumptions, equation (22) can be integrated
under various limits to find the time evolution of the jet head [equation
(B9)–equation (B12) in Appendix B].

The energy from the jet is spread over the entire cocoon, which
tends to have nearly homogeneous pressure (as seen in Fig. 3), except
for the jet head, which has values higher by more than an order of
magnitude than the mean cocoon pressure. Assuming kinetic energy
of the motions inside the cocoon from backflows and turbulence to be
sub-dominant as compared to the thermal energy, the mean pressure
(pc) of an ellipsoidal cocoon (see Fig. 12) can be expressed in terms
of the total energy injected by the jet up to a given time as

pc = (� − 1)
Pjt

(4/3)πa3r̃2
c l̃

, (24)

where the cocoon radius (rc) and jet length (l) have been normalized
to the density scale length a. The rate of expansion of the cocoon
radius (vc = drc/dt) can be then obtained by equating the ram pressure
experienced by the ambient medium to the cocoon pressure pc =
ρa(r̃c)v2

c [as in equation (B14)]. The mean pressure of the cocoon
can then be derived for different limits of l/a and t/τ as presented in
equations (B17)–(B23).

3.4 Comparison with GBC model

3.4.1 Jet length and morphology

From the simulations, we compute the maximum length of the jet as a
function of time. In the top panel of Fig. 13, we present the evolution
of the jet height for some representative simulations. The jet length
beyond 2 kpc was fit with a function power law in time. From the fit
parameters, we derive the deceleration index n and the deceleration
time-scale τ in equations (B6) and (B12) given in Appendix B.

In the middle panel of Fig. 13, we present the axial ratio defined
as the ratio of jet length (l) to effective lateral radius rc computed
from

rc =
(

3f Vc

4πlj

)1/2

. (25)
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Figure 13. Top: Evolution of jet height with time for some representative
simulations. The red dashed line overplotted shows the power-law fit function
(see Section 3.4). For the simulation J, the blue line denotes the fit function
with α = 0.829 for the jet’s evolution beyond 15 kpc [as in equation (B4)].
See Table 1 for detailed description of parameters for different runs. The
jet power for Pj = 1045ergs−1 is abbreviated as P45 and so forth. Middle:
Plot of the axial ratio (l/rc) with time for some simulations. The axial length
of the cocoon is computed from equation (25). Bottom: The deceleration
coefficient evaluated from equation (B12) using the results of the fit function
in the top panel. For simulation J, fits to heights �10 kpc and �15 kpc have
been presented separately as JL and JU.

Here, Vc is the volume of the cocoon, computed from the simulations
by summing the volume with jet tracer >10−7. The factor f has a
value f = 2 for simulations with half-sided jets injected close to
the lower boundary. For simulation E where both lobes of the jets
are followed, the value is f = 1. The radius rc represents the lateral
radius of an ellipsoid with the volume of the cocoon, which is a close
approximation to the shape of the cocoon. From the time evolution
of the axial ratio, we find that for jets of power � 1046ergs−1, the
axial ratio steadily increases with time due to the faster expansion
along the jet axis as compared with the lateral extent.

Figure 14. Top: Evolution of mean pressure in the cocoon with time for some
simulations. The red lines show power-law fits to the pressure evolution. The
blue line shows a fit to simulation J beyond a height of 15 kpc. Bottom:
Comparison of the index of a power-law fit to the time evolution of the
pressure with that predicted from GBC model (equation B23).

For simulations showing instabilities, however (simulations A, B,
and D), the rate of increase of the axial ratio slows down with time.
For simulations A and B, the axial ratio is nearly steady with time,
indicating an approximate self-similar evolution of the cocoon. This
is also supported by the deceleration index being close to ∼0.67,
for which the GBC predicts a self-similar expansion of the jet (for
α = 1.166), as explained at the end of Appendix B. The jets showing
onset of instabilities have a slower advance speed and the bending
of jet-head results in a more uniform spread of the energy in the
cocoon. This results in an approximate self-similar expansion of the
cocoon (Komissarov & Falle 1998; Scheck et al. 2002; Perucho et al.
2019).

In the last panel of Fig. 13, we present the deceleration index
n derived from the fit coefficients. Low power jets and jets with
lower magnetization, which are more susceptible to instabilities
(simulations A–D), have a mean deceleration index of n ∼ 0.6. Faster
jets that are not affected by instabilities have a lower deceleration
index n ∼ 0.4. The deceleration index and time-scales obtained from
the fit coefficients have been presented in Table B1 in the Appendix B.
The deceleration time-scales were found to be approximately close
to the time when the jet breaks out of the central core of ∼2 kpc,
which varies for different simulations depending on the jet advance
speed. Stable jets have a slightly higher value of deceleration time
compared to unstable jets. Thus, all jets show some deceleration from
the onset, the degree of which depends on the jet stability, as inferred
from the index.

The mean pressure in the cocoon evolves as a power law in time
at late times, with a slightly shallower slope at the very early times
when the jet is just establishing a cocoon on injection. The pressure
for some simulations is presented in the top panel of Fig. 14. The
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Dynamics of relativistic MHD jets 693

pressure was fit with a function power law in, time whose coefficient
has then been compared to the value predicted by the GBC model
(equation B23), using the deceleration index n derived from the
fits to the jet length. For most of the simulations, the index for
the pressure was lower than predictions from GBC model by about
∼ 10 − 20 per cent. Thus, this demonstrates that the GBC model,
overall, approximates well the expansion of the jet cocoon, although
within ∼ 20 per cent margins. A more detailed model based on the
momentum balance at the internal shocks as done in Bromberg et al.
(2011) may provide a closer match. However, given the various other
uncertainties arising from complex development of different MHD
instabilities, we find the the present comparison with the simplified
assumptions of the GBC model to be reasonable.

Simulations A–C, with increasing σ B, show a progressively poorer
match with the theoretical values. This results from the stronger
onset of instabilities (kink) with stronger magnetization of the jet.
Similarly, simulation D shows a poorer comparison than F, as D has
more enhanced KH instabilities. Simulations with more stable jets
(E–I) show nearly identical value of the exponent, implying that the
pressure evolution is not much affected by the deceleration index
of the jet. Simulation J shows a very good match for heights lower
than ∼10 kpc. At higher heights (�15 kpc), the lateral extent of the
jet reaches the boundary of the domain with an outflow boundary
condition. This makes the comparison of the mean pressure with
the analytical models unreliable due to the loss of matter from
the outflowing boundary condition and hence excluded from the
analysis. A comparison with the GBC model by evaluating the
mean pressure will thus be misleading and hence not presented
here.

3.4.2 Jet advance speed

In Fig. 15, we present the speed of advance of the jet head, which
is obtained by taking the derivative of a sixth-order polynomial used
to fit the evolution of the jet length with time (shown in Fig. 13).
In blue is plotted the maximum advance speed attainable for a non-
decelerating jet following equation (19). To compute the speed from
equation (19), we assumed the jet parameters (velocity, pressure, and
density) to be the injected values. First, the jet speeds (both theoretical
and numerically computed) show an increase with distance. The
apparent acceleration results from the jet expanding into a lower
density medium that decreases as a power law with distance beyond
the core radius [as shown in equation (B2)].

For simulations A, B, and C with jet powers ∼1044ergs−1, the jet
advance speed mildly decreases with distance, being much lower than
the maximum attainable value. This arises from the onset of kink-
like instabilities as discussed earlier in Section 3.2.1, which result
in strong deceleration of the jet. The jet head wobbles, spreading
its energy over a much larger area and hence reducing the advance
speed substantially.

Simulations D and E show similar trend, which is distinctly
different from that of simulation F. Although all three cases have
nearly similar jet power of ∼1045ergs−1, simulations D and E with
lower magnetization (σ B = 0.01 and 0.05, respectively) have unstable
jets, which show stronger mixing at the jet boundary and flaring of
the jet axis as discussed earlier in Section 3.2.2. This causes the jets
to decelerate, which result in a flattening of the jet advance speed
with distance. Simulation F, on the other hand, shows an increase
in jet speed with a profile following more closely to the maximum
theoretical line, although still lower.

Simulations G–J show similar qualitative trends for the evolution
of the jet speed, with a gradual increase with distance. At larger

Figure 15. Speed of advance of the jet head as a function of jet height
(see Section 3.4). In blue is plotted the maximum velocity expected from a
non-decelerating jet following equation (19) (as derived in Martı́ et al. 1997).

scales, the ambient density may become comparable to the jet
density, such that the earlier approximation of ηjf (r̃)−1 � 1 used
in equation (22) (and later in Appendix B) is no longer valid. The
jet-head velocity will then become vh ∼ vj, independent of the
radial distance, as is seen in the last panel of Fig. 15, showing a
flattening of the theoretical curve for simulation J. The actual jet-head
speed computed numerically asymptotes more quickly to a constant
value of ∼0.35 c than the theoretical curve. This is likely due to a
combination of added deceleration due to small-scale instabilities
resulting in lowering of the jet speed, besides the effect of entering
into a low-density ambient medium, which results in constant jet
advance speed.

4 D ISCUSSION

In this paper, we discuss the dynamics and evolution of relativistic jets
with different initial starting parameters, evolving into a hydrostatic
atmosphere. The primary results of this work are two-fold: (a)
demonstration of the onset of different MHD instabilities for different
jet parameters that significantly affect the dynamics and growth of the
jet, and (b) comparison of the dynamics of the jets with generalized
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extension of the analytical model (GBC) for FR-II jets proposed by
Begelman & Cioffi (1989). The nature of the growth and development
of the instabilities affects the dynamics and evolution of the fluid
variables inside the jet and its cocoon, leading to deviations from the
GBC model.

We would like to note here that the results of the simulations
depend on the assumptions of some jet parameters such as jet radius,
jet magnetization (defined here as the ratio of Poynting to enthalpy
flux), and the density and pressure contrasts with the ambient
medium. Although the jet parameters are chosen to be approximately
consistent with realistic estimates inferred from observations, as
argued in Section 2.3, the absolute choices of some, such as the
magnetization, density contrast etc., were empirical. Similarly, the
need to achieve sufficient resolution of the jet injection limits our
choice of the jet radius to ∼100−200 pc, which may be unphysically
large at the given injection height. However, the qualitative results
comparing the behaviour of jet dynamics for different jet parameters
presented here are not expected to be affected by this approximation.

The primary focus of this work has been to systematically study
the difference in jet dynamics for the variation of some jet parmaters,
with others remaining constant. This highlights in a qualitative
way, the relative importance of different physical quantities when
compared to each other, with regard to the jet stability and dynamics,
even though the absolute values of the assumed parameters may
be different for specific systems. In the following sections, we
summarize the main results and discuss the implications of the
jet stability on the jet dynamics and its comparison with analytical
models.

4.1 Growth of unstable modes

The type of instabilities in our simulations can be broadly grouped
into two categories based on jet magnetization and power:

(i) Large-scale modes at higher magnetization: Low power jets
(∼1044ergs−1) in simulations B and C with stronger magnetization
were found to be susceptible to kink modes that result in substantial
bending of the jet head. The growth rate was lower for simulation
A with an order of magnitude lower magnetization, which did not
show substantial bending of the jet axis during the run time of the
simulation. However, such strongly disruptive kink modes were not
seen in more powerful jets (simulations D–J) during the run time of
the simulations. Simulation E shows some bending of the jet over
much longer length scales (∼1 kpc) but not as disruptive as in the
low power jets.
The above results are in broad agreement with the results from linear
stability analysis of the growth of m = 1 modes in relativistic MHD
jets (Bodo et al. 2013). Growth rate of CDI is higher for higher
magnetization. In relativistic jets, however, for the same central
value of the magnetic pitch parameter, the growth rate of CDI is
lower (Im(ω) ∝ γ −4, Bodo et al. 2013). Hence, the absence of
strong disruptive kink modes in faster, powerful jets can be due
to weaker growth rates of the CDI, which may manifest only for
larger size of the jet. However, even at larger distances, recent results
of Tchekhovskoy & Bromberg (2016) have demonstrated that the
jets may remain fairly stable as they propagate into steeper density
profiles beyond the galaxy core. Thus, higher power jets with faster
Lorentz factors that efficiently drill through the galaxy’s core can
remain stable up to very large distances.

(ii) Small-scale modes at lower magnetization or higher internal
pressure: In simulations with lower magnetization, velocity shear-
driven KH modes lead to a higher level of turbulence both close to

the jet axis and in the cocoon. Such KH modes are disruptive and
result in substantial deceleration of the jet with a decollimation of
the jet axis.
In Fig. 16, we present the cross-section of the jet enthalpy flux [w =
γ 2ρhvz, ρh being computed from equation (8)] along the jet launch
direction in the X−Y plane at a height of ∼5 kpc for six different
cases. The inner blue contour is for a value of the tracer equal to
0.8. In the top row, we have cases with low magnetization, while the
bottom row shows cases with high magnetization; going from left to
right, the simulations have an increase of the jet power and Lorentz
factor. We also present in each panel the ratio η, of the positive jet
enthalpy flux within a region with jet tracer ≥0.8, to the total positive
enthalphy flux (jet tracer ≥10−2). This quantity gives an approximate
estimate of the compactness of the jet. A lower value of eta would
represent a jet that is more spread out. Additionally, we also present
in each panel the jet cross-section area, defined as the area with
w/wmax ≥ 0.01, wmax being the maximum enthalpy flux at the give
height for each cross-section.
The figure displays clearly the role of magnetic field and instabilities
in determining the mixing properties for the different cases. We can
see that, in the top row, the jet cross-section is more deformed than
in the bottom row. In particular, cases A (top left-hand panel) and D
(top middle panel) show very corrugated contours of the jet cross-
section. This is indicative of the development of high m KH modes
that would favour mixing between jet and cocoon (e.g. Rossi et al.
2020). The unstable jets also contain a smaller fraction of the total
enthalpy flux within a jet tracer of 0.8, as signified by the lower value
of η for the upper panels. Similarly, the jet cross-section has a much
larger area in the upper panels. All these indicate that the jet spine
in cases with lower magnetization is prone to KH-mode instabilities
resulting in deformed non-regular jet cross-section, which is spread
over a larger area.
Case G (top right-hand panel) has a higher Lorentz factor and is
more stable than the lower γ cases. However, as discussed earlier
in Section 3.2.3, being hotter simulation G is more unstable than
the other high γ cases (e.g. simulation H in the lower panel).
Correspondingly, the jet cross-section is much less deformed than
in cases A and D, but it shows an oval-shaped deformation when
compared to H, possibly indicating higher order modes. The cases
in the bottom row have a higher magnetization and the magnetic
tension associated with the toroidal component of the magnetic field
opposes the jet deformation and stabilizes high m KH modes and,
correspondingly, the contours are less deformed.
Similar results have been presented in Mignone et al. (2010) and
Rossi et al. (2020), where the jet core for a relativistic hydrodynamic
jet was found to be more diffuse and decollimated as compared to
a jet with a magnetic field. The added magnetic field shields the
inner core of the jet by suppressing the KH modes. Linear stability
analysis (Bodo et al. 2013) suggests that for similar magnetic pitch,
KH modes have slower growth rate at higher magnetization.

4.2 Impact of instabilities on jet dynamics

The MHD instabilities described above significantly affect the
dynamics and evolution of the jet as well its morphology. We list
below the major implications:

(i) Jet deceleration: The low power jets (simulations A–C with Pj

∼ 1044ergs−1) are strongly decelerated with mean advance speeds
nearly an order of magnitude lower than the maximum possible
values predicted by analytical estimates (see Fig. 15). Although the
nature of instabilities is different for the different simulations (kink
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Figure 16. We present the cross-section of the positive jet enthalpy flux (w = γ 2ρhvz) along the direction of the jet launch, normalized to the maximum
enthalphy (wmax). The figures are at a height of ∼5 kpc. The blue contour represents a jet tracer level of 0.8. In each panel, we present the ratio (η) of the
enthalpy flux within a jet tracer contour of 0.8 to the total positive jet flux (with jet tracer value ≥10−2). We also present the jet area (in pc2), computed as
the total area with a flux value w/wmax > 0.01. The top panels depict simulations where the jets are unstable to Kelvin–Helmholtz modes due to either lower
magnetization (simulations A and D) or higher pressure (simulation G), resulting in wider and more distorted cross-section of the jet. Lower panels are jets
with stronger magnetization, where KH modes have lower growth rates with more compact jet core. Simulation B shows a shift in the peak of the flux from the
central region (0,0) due to kink-mode instabilities that bend the jet away from its initial launch axis.

modes for simulations B and C, KH for simulation A), all show
strong deceleration with a high value of the deceleration index n
(equation 23) as seen in Fig. 13. Among the moderate power jets,
simulation D with σ B = 0.01 also shows a flattening of the advance
speed and a higher deceleration index than simulations E and F with
higher magnetization.

(ii) Self-similar expansion for unstable jets: Simulations that suf-
fer strong deceleration (A–D) due to instabilities evolve more close
to a self-similar expansion. As described at the end of Appendix B for
a density profile with α = 1.166 (equation B3), a jet will evolve self-
similarly for n � 0.67, close to the deceleration index for simulations
A–D. The axis-ratio plots of simulations B, C, and D show a flattening
to a constant value beyond a certain time. A constant axis ratio is
indicative of a self-similar expansion of the jet cocoon. The self-
similar expansion likely results from the energy from the jet being
more uniformly spread to a larger volume within cocoon. For more
stable jets, the ram pressure at the jet head results in a stronger
pressure at the mach disc, which in turn leads to a larger advance
speed than expansion rate for a self-similar jet. Hence, the axial ratio
of simulations E onwards shows a steady increase with time resulting
in more conical cocoon profiles.
There has been considerable debate in the literature over the nature of
expansion of the jet cocoon. Self-similar expansion is a convenient
assumption for deriving analytical results (Falle 1991; Kaiser &
Alexander 1997). Although Komissarov & Falle (1998, hereafter
KF98) argue that for a jet with a half-opening angle of θ i, self-similar

evolution is expected for length scales larger than the characteristic
length of

lc =
(

2Pj

θiπρac3

)1/2
[

γ 2
j

(γj−1)(γ 2
j −1)

]1/2

(26)

� 85 pc ×
(

Pj

1045 erg s−1

)1/2 (
θi

5◦

)−1/2 ( na

0.1 cm−3

)−1/2

×
[

γ 2
5

(γ5 − 1)(γ 2
5 − 1)

]1/2

; with γ5 = 5, (27)

numerical simulations have not found this to be true for all cases.
KF98 find that for some simulations, a self-similar phase is estab-
lished only at late times (similar to Scheck et al. 2002; Perucho &
Martı́ 2007; Perucho et al. 2019). The intermediate phase in KF98
was characterized by a nearly constant advance speed (in an uniform
external medium) and increasing axial ratio, similar to predictions
of Begelman & Cioffi (1989), which is true for a collimated jet with
θ i = 0, implying lc = ∞ � lj. The above findings support the results
of our simulations where the self-similar phase ensues after the onset
of fluid instabilities that start to decelerate the jet, which otherwise
remains well collimated and is not self-similar.

4.3 Magnetic field of the jet and cocoon

(i) Spatial distribution of magnetic field strength: The nature of the
magnetic field distribution and its topology inside the cocoon depends
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Figure 17. PDF of magnetic fields for different heights along the jet. Turbulent and unstable jets show near-uniform distribution of magnetic fields at all
heights, approximately described by a Maxwell–Boltzmann function (equation 28) presented in black-dotted lines. The mean field strength B0 for the Maxwell–
Boltzmann function is given for each figure. Non-turbulent jets show an extended tail at heights near the hotspot. The PDF is performed at times when the jet
reaches the end of the simulation domain in the Z axis.

on the jet dynamics. Turbulence in the jet cocoons for simulations
with instabilities results in small-scale magnetic fields varying over
scales of �x−10�x, �x being the resolution of the simulation. This
is demonstrated in Figs 6 and 8 in Section 3.2.2, where simulation D
shows turbulent magnetic field over smaller length scales, whereas
simulation F has ordered magnetic field over longer scales. Besides
the intermittence in the scale of the magnetic fields, the jets with a
turbulent cocoon have a more statistically homogenous distribution
of magnetic field at different heights, as shown in Fig. 17 where the
PDF of the strength of the magnetic field is presented at different
heights.
For a powerful FRII-like jet, it is expected that the field near the jet
head will have higher values due to the strong bow shock. As the
magnetic field is carried downstream by the backflow and they fill
up the adiabatically expanding cocoon, their values would decrease.
The PDFs of simulations F and G demonstrate the above, with lower
magnetic fields near the bottom and higher field strengths near the
jet head. However, in unstable jets, the shocks at the jet head are
weaker due to the deceleration of the jet from the induced instabilities.
This also results in more homogenous distribution of magnetic field
inside the cocoon, although intermittent. Hence, the turbulent jets in
simulations A and D have nearly similar PDF at different heights,
with a slight increase to higher magnetic fields at larger heights for
simulation D.
For a magnetic field whose individual components have a random
Gaussian distribution with zero mean, the field strength is distributed
as a Maxwell–Boltzmann (MB) function (Tribble 1991; Murgia et al.
2004; Hardcastle 2013):

P (B) =
√

54

π

B2 exp
(−(3/2)(B/B0)2

)
B3

0

. (28)

Here, B0 is the field strength for the mean magnetic field energy
density (Hardcastle 2013):∫ ∞

0
B2P (B)dB = B2

0 . (29)

In Fig. 17, representative Maxwell–Boltzmann (hereafter MB) plots
have been presented in dotted-black lines, which were obtained from
approximate fits to the total magnetic field distribution inside the
cocoon. The lines are not exact fits but are seen to well represent
the PDFs of simulations A and D for B � 10 μG and similarly the
PDFs of the magnetic fields at lower heights for simulations F and G
beyond the peak. This shows that the turbulent fields in the cocoon
of the jets were well approximated by a distribution with Gaussian
random components of the magnetic fields. The PDFs at heights
closer to the jet head for simulations F and G, however, show strong
departure from the MB distribution with an extended power-law tail
for simulation F and complex features for simulation G. These arise
from the strong interaction of the jet fluid at the bow-shock where
the field strengths are likely enhanced due to compression from the
shocks.

(ii) Variation of magnetic field strength with time: The magnetic
field in the cocoon and the jet also evolve with time as the jet and
its cocoon expand. In Fig. 18, we present the evolution of the mean
magnetic field in the cocoon and jet separately. The regions with
jet tracer: 10−7 < Tracer < 0.9 are identified as cocoon and those
with Tracer > 0.9 are identified as jet material. The mean magnetic
field in the cocoon decreases as a power law with time due to the
adiabatic expansion of the jet-driven bubble. However, the rate of
decrease depends on the nature of the simulation and onset of MHD
instabilities. Simulations A and D with a lower magnetization have
a mean decay of ∝ t−0.6, whereas simulations B, the end phase
of simulation F (for t � 100 kyr and Z � 5 kpc), and simulation
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Figure 18. Top: Time evolution of the mean magnetic field in the cocoon for
selected simulations with different initial parameters listed in the legends. The
subscript to P is the logarithm of the jet power, the value of jet magnetization
σB, and pressure ratio are presented as sub-scripts as well. The beginning of
each curve is marked with the initial for the simulation from the list in Table 1.
The lines are coloured according to the colourable on the right, which denotes
the height of the jet at that time. See Section 4.3 for details. Bottom: The
mean magnetic field in the jet for the same simulations and similar legends
as in the top panel.

J (for t � 100 kyr and Z � 10 kpc) show a power-law decline
of ∝ t−1.
The less steep decline in the field strength for the simulations
with weaker magnetic fields could be due to the onset of MHD
instabilities discussed earlier in Section 3.2.2. Such instabilities
result in a slower expansion of the jet, which will result in a slower
decline of mean field strength due to adiabatic expansion. Secondly,
turbulence generated by the KH-driven modes results in small-scale
fluctuation of the magnetic field, as shown in Fig. 8. This can
result in moderate enhancement of the magnetic field, which may
counteract the decrease of field strength due to stretching of the
field lines. However, our current spatial resolution being limited,
we cannot fully ascertain if such mode of field enhancement is
dominant.
The field strength in the jet also follows a power-law evolution with
time, which, except for simulations F and A, has an index �−0.6.
Simulation A follows a steeper decline at the later stages as ∝ t−1.
The relatively steady power-law decline of the jet magnetic field
with similar indices for different simulations implies that the jet
core remains relatively steady. The rate of decline is slowest for
simulation F (∝ t−0.36), which does not show any signature of MHD
instabilities. Simulation A has a sharper decline in the jet magnetic
field as KH-driven mixing of the jet leads to strong deceleration and
decollimation of the jet (see Section 3.2.1).

4.4 Implications for synchrotron emission

The above results have several different implications for the nature
of non-thermal emission from jets, which we list below.

(i) Morphology of emission: Powerful jets stable to fluid instabil-
ities show the typical feature of a FRII jet with a strong pressure
hotspot (see Fig. 3) where the jet terminates, besides islands of
enhanced pressure along the jet axis arising from recollimation
shocks. The pressure at the hotspots is nearly two orders of magnitude
higher than the mean pressure in the cocoon. These high-pressure
regions arising from shocks are expected to accelerate the electrons
enhancing the synchrotron emission at the hotspot. Stable jets with
higher magnetization have conical-shaped cocoons with narrower
widths as the forward shock at the jet head expands much faster
due to very little deceleration. Jets with instabilities, on the other
hand, show more wider cocoons with cylindrical shapes due to the
deceleration of the jet.
The simulations showing strong development of kink modes (sim-
ulations B and C) do not have prominent terminal hotspot. Since
the jet head swivels randomly in different direction due to the kink
modes, the pressure at the jet head is spread evenly over a wider
area. This results in a much wider cylindrical-shaped cocoon with
asymmetric features near the jet head due to changing orientation of
the jet head. This may result in a wider diffuse emission at the top
as the integrated emission will probe the whole volume where the
shocked electrons are distributed. Emission at higher energies may,
however, preferentially give weight to regions of strong shocks at the
current location of the jet where the electrons are freshly accelerated.
This may lead to a complex morphology of the emitting region at
higher energies, which may differ from the emission dominated by
low-energy electrons.

(ii) Shock structures and emission profile: Jets prone to insta-
bilities have complex pressure profile at the jet head due to the
motions of the jet head, which will result in multiple oblique shocks.
This is in contrast to the standard model of an FRII jet with a
single strong shock at the mach disc (Begelman & Cioffi 1989;
Falle 1991; Kaiser & Alexander 1997), which is often employed to
calculate emission parameters and source ages (Pacholczyk 1970;
Jaffe & Perola 1973; Murgia et al. 1999; Harwood et al. 2013;
Harwood, Hardcastle & Croston 2015; Harwood et al. 2017). The
complex shock structure with varying shock strengths will result in a
wide variation of the energy distribution of the relativistic electrons
being accelerated at these sites. Besides the stronger shocks at the
hotspot, internal weak shocks develop inside the cocoon, which may
further accelerate the electrons as they flow across such shocks. Such
multiple shock crossing will result in a variation of the resultant index
of the power-law energy distribution, which is usually assumed to
have a single value at low energies (Kardashev 1962; Harwood et al.
2013, 2015).

(iii) Cocoon magnetic field and electron ageing: Models that
estimate the time evolution of the synchrotron spectra assume a
predefined distribution of the magnetic field (Harwood et al. 2013;
Harwood et al. 2015, 2017). The simplest models such as by Jaffe &
Perola (1973, hereafter JP) assume a constant magnetic field. More
recent sophisticated approaches have accounted for the turbulent
nature of the magnetic field in the cocoon (Tribble 1991; Harwood
et al. 2013; Hardcastle 2013). In our simulations, the magnetic
field in the cocoon is well described by an MB distribution for
the turbulent less powerful jets (as shown in Section 4.3), similar
to the assumptions by Tribble (1991). For more powerful jets (Pj

� 1046ergs−1), however, the PDF at heights near the jet head have
an extended tail beyond the mean MB profile. The nature of the
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field distribution significantly impacts the evolution of the spectra
of electrons when they traverse through different magnetic fields,
as demonstrated in Harwood et al. (2013). Such multiple shock
crossings will subsequently affect the estimates of radiative ages
of the synchrotron-emitting sources. Besides the spatial distribution,
our results show that the magnetic field in the cocoon shows a steady
decline with time as a power law, as discussed earlier in Section 4.3.
Such a secular decline of the magnetic field is also not considered
in the analytical models of electron ageing and will affect the break
frequency of the synchrotron spectrum.

We will discuss these in more quantitative detail in subsequent
publications (Mukherjee et al. Paper II in preparation) where we
will discuss the results of some of the simulations presented here
that have been performed with the new LAGRANGIAN PARTICLE

module of PLUTO (Vaidya et al. 2018). We will explore in detail
the spectral evolution of the non-thermal electrons and the emission
characteristics of synchrotron radiation at different wavelengths.

5 SU M M A RY A N D C O N C L U S I O N

In conclusion, we can summarize our main results as:

(i) We have performed simulations of relativistic jets of different
powers and magnetizations up to a few tens of kilo-parsec. One of
the primary aims was to check for the growth of MHD instabilities
as a function of different jet injection parameters.

(ii) MHD instabilities such as large-scale kink modes and small-
scale KH modes decelerate the jet, affecting its dynamics and
morphology.

(iii) Large-scale kink modes can result in global bending of the jet
axis and significant deformation in the morphology of the jet and its
cocoon.

(iv) Small-scale KH modes cause turbulence in the jet cocoon,
which in turn result in smaller length scales of the magnetic field.
Such modes disrupt the jet axis due to mixing with the cocoon plasma.

(v) Small-scale modes can also arise in jets with higher pressure
or temperature (e.g. simulation G) due to smaller sound crossing
times of perturbations, as predicted earlier by Rosen et al. (1999).

(vi) Low power jets (Pjet ∼ 1044ergs−1), with lower speeds and
density contrasts, are susceptible to both modes. Jets with stronger
magnetic fields (e.g. for a σ B � 0.1, which gives a peak central
field of B0 � 170 μG) are kink unstable, whereas those with lower
magnetic fields show KH modes.

(vii) Moderate power jets (Pjet ∼ 1045ergs−1) do not show appre-
ciable disruption to kink instabilities up to 10 kpc. However, weakly
magnetized jets (σ B ∼ 0.01 resulting in B0 � 150 μG) show strong
development of small-scale KH modes.

(viii) Unstable jets show a greater resemblance to self-similar
expansion of the jet and its cocoon.

(ix) Powerful jets (Pj ∼ 1046ergs−1), with higher values of Lorentz
factors and pressure or density contrasts, are less susceptible to insta-
bilities (within the simulation run-times of this work). Such jets show
a more closer match with the generalized Begelman–Cioffi (Begel-
man & Cioffi 1989) relations (within 10 per cent − 20 per cent). Jets
with instabilities show a poorer match with analytical predictions.

(x) Jets less prone to instabilities show an increase in advance
speed as they emerge into a radially falling ambient density field,
asymptoting to a fraction of the maximum speed predicted by
analytical relations. Unstable jets decelerate, resulting in either a
constant advance speed at a value much slower than the maximum
possible speeds, or show a decrease with distance and time.

(xi) The magnetic field distribution in the cocoon of unstable jets
is well approximated by turbulent field distribution given by an MB
function. For powerful stable jets, heights closer to the jet head
show strong deviation from a standard MB form. Overall, the major
volume of the cocoon shows a turbulent distribution of field strength,
favouring the Tribble model (Tribble 1991; Hardcastle 2013) for
magnetic field distribution.

(xii) The mean magnetic field in the cocoon decays with time as
the jet evolves, with unstable jets having a slower decay rate.
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APPENDI X A : C OMPARI SON O F J ET DENS ITY
A N D P R E S S U R E W I T H A NA LY T I C A L
ESTIMATES

In this appendix, we present a calculation to check for the consistency
of the assumed choice of the density and pressure. We compute the
ratio of the rest mass energy density to the sum of the internal energy
and the jet pressure for an ideal gas using the parameters of our
simulations. We compare the results to an approximate analytical
calculation of the same parameter assuming the jet to be composed of
non-thermal relativistic particles. For an ideal gas, the ratio of the rest
mass energy to the enthalpy without the rest mass can be expressed as
(Komissarov & Falle 1996; Sutherland & Bicknell 2007; Wagner &
Bicknell 2011; Mukherjee et al. 2016)

χ = ρc2

ρh − ρc2
= ρc2

ρe + p
(A1)

=
(

� − 1

�

)
ρc2

p
. (A2)
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The parameter χ gives a relative estimate of whether the jet is
enthalpy dominated or matter dominated and can be used to estimate
the density of an analogous classical jet with similar power, velocity,
and pressure as that of a relativistic jet (Komissarov & Falle 1996;
Sutherland & Bicknell 2007). For the choice of density and pressure
in our simulations, χ ranges between ∼8.66 and 44.44, which we
obtain by assuming � = 5/3 and using the values of 
j in Table 1.
For the given ranges of 
j, an ideal gas equation of state with � =
5/3 is a good approximation (Mignone & McKinney 2007).

Alternatively, χ can be also be derived by assuming the jet to
be composed of relativistic non-thermal particles (electrons) with a
distribution function, which is power law in particle energy as:

Ne(γ )dγ = Kγ −p
e γ ∈ (γ1, γ2). (A3)

The total number density (ne) and energy densities (ε) of the particles
are obtained by integrating over the distribution function as

ne � Kme

p − 2
γ

−(p−1)
1 (A4)

ε � Kmec
2

p − 2
γ

−(p−2)
1 , (A5)

where we have assumed p > 2 (Worrall 2009; Hovatta et al. 2014)
and γ 2 � γ 1, which is valid for synchrotron-emitting sources as
observations constrain the Lorentz factors to vary between γ 1 �
10−100 (Wardle et al. 1998; Godfrey et al. 2009) and γ 2 � 106−108

(Worrall 2009; Croston et al. 2009; Ghisellini et al. 2014; Migliori
et al. 2020). Following the principle of equipartition, one can assume
that the density and energy of the non-thermal particles are a fraction
(η) of the total fluid values. Thus, the parameter χ can be computed
as

χ = ρc2

ρe + p
= ηfpinem+c2

(4/3)ηε
(A6)

= fpi
3(p − 2)

4(p − 1)

m+
me

γ −1
1 , (A7)

where we have considered the fluid density to be ρ = mene + m+n+ =
fpim+ne in a net charge neutral fluid (ne = n+). The pressure and
internal energy densities of the highly relativistic non-thermal gas
are related as p = ε/3. Here, the + subscript denotes the positively
charged particles, which are positrons for a leptonic jet and ions for
a hadronic jet. The factor fpi = 1 for a hadronic jet (mp � me) and
fpi = 2 for a leptonic composition of the jet. The above equation is
similar to that derived in Nawaz et al. (2014).

For a γ 1 � 10−100 (Wardle et al. 1998; Godfrey et al. 2009) and
a spectral index value of p = 2.4 (Cotton et al. 2009), the parameter
χ for a hadronic jet is χ ∼ 4−39. The above range is close to
the values inferred from our choices of the simulation parameters.
This demonstrates that the values of densities and pressure used in
our simulations are consistent with a hadronic jet. Although many
models prefer an electron–positron jet, there are several counter
examples of dominant hadronic components in jets and the debate on
jet composition is not yet settled (Sikora & Madejski 2000; Celotti &
Blandford 2001; Scheck et al. 2002; Worrall 2009).

APPENDIX B: G ENERALIZED
BEGE LLM A N –CIOFFI (GBC) R ELATIONS

For a jet expanding into an ambient medium with a density profile

na = n0f (r̃) = n0

(1 + r̃)α
with r̃ = r

a
, (B1)

a being a scale length, the velocity of the jet head is given by
equation (23). For our simulations, the density profile obtained by

Table B1. Deceleration index and deceleration time-
scale.

Simulations n τ (kyr)

A 0.68 216
B 0.72 210
C 0.69 204
D 0.62 55
E 0.55 71
F 0.4 119
G 0.48 65
H 0.47 39
I 0.42 110
JL 0.43 204
JU 0.24 204

Note. The above have been computed from coefficients
of power-law fits to the jet length using equations (B6)
and (B12).

numerically solving equation (4) was found to be described well by
an approximate analytical expression in two different spatial regimes,
as:

na = n0f (r̃) ; r̃ = r/a (B2)

f (r̃) = 1

(1 + r̃)1.166 r < 10 kpc (B3)

f (r̃) = r̃−0.829 r > 15 kpc (B4)

with n0 = 0.103cm−3 and a = 0.63 kpc.
In the equations that follow, length scales have been normalized

with the length scale a of the density profile (e.g. l̃ = l/a) and time
with the deceleration time-scale τ as t̃ = t/τ . Thus, the evolution of
the jet length is given by:

dl̃

dt̃
= vM

h g(t̃)
( τ

a

)
= f (l̃)−1/2 L̃0(

1 + t̃
)n

where L̃0 = γjvj

( τ

a

)
η

1/2
0

[
1 + �pj

(� − 1)ρjc2

]1/2

. (B5)

Here, L̃0 = is a scale length normalized to the scale length of the
density profilea, with typical value

L̃0 = 1.53
(γj

5

)( η0

10−4

)1/2 (vj

c

)(
τ

100Kyr

)(
a

1 kpc

)−1

×
[

1 + (�/(� − 1)) 
j

1.038

]1/2

. (B6)

In the last term in equation (B6), � is the adiabatic index of the ideal
gas equation of state that we have assumed to be � = 5/3, which is
relevant for our simulations (as shown in Table 1). The temperature
parameter has typical values of 
j = pj/(ρ jc2) ∼ 0.0152 (see Table 1).
This is obtained for a jet with density contrast η = 10−4, in pressure
equilibrium with the environment, where the ambient gas has density
n ∼ 0.1cm−3, mean molecular weight μ ∼ 0.6, and temperature
T ∼ 107K. Overall, the last term contributes a value close to
unity.

Assuming a density profile as in equation (B2), equation (B5) can
be integrated for the two limiting cases as

l̃ = L̃0

(1 − n)

(
1 + t̃

)n − L̃0

(1 − n)
for l̃ � 1 (B7)

l̃
(2−α)

2 = (2 − α)L̃0

2(1 − n)

(
1 + t̃

)1−n − (2 − α)L̃0

2(1 − n)
for l̃ � 1. (B8)
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The above equations can be further simplified for the two limiting
cases of t � τ and t � τ to get

(i) l̃ � 1 and t̃ � 1:

l̃ = L̃0 t̃ (B9)

(ii) l̃ � 1 and t̃ � 1:

l̃ = L̃0

(1 − n)
t̃ (1−n) (B10)

(iii) l̃ � 1 and t̃ � 1:

l̃ =
[

(2 − α)L̃0

2

] 2
2−α

t̃
2

2−α (B11)

(iv) l̃ � 1 and t̃ � 1:

l̃ =
[

(2 − α)L̃0

2(1 − n)

] 2
2−α

t̃
2(1−n)

2−α . (B12)

Equations (B9) and (B10) refer to the jet evolution within the core
of the density profile, whereas equations (B11) and (B12) are for
larger scales where the density profile is approximately a power law
with radius. From equation (B12), we see that for a decelerating jet,
the jet evolves slower by a factor of (1 − n) as compared to a non-
decelerating jet. Equation (B12) also implies that the deceleration
coefficient n should be less than unity (n < 1) to have non-imaginary
values of l̃. From the coefficients to the power-law fit to the evolution
of jet height presented in Fig. 13 and assuming jet parameters at
injection, we find the deceleration index and the deceleration time-
scale [from equations (B6) and (B12)] presented in Table B1. JL

and JU refer to fits to the jet height of distances l ≤ 10 kpc and l
≥ 15 kpc, respectively. Since the power-law index of the density
profile changes around r ∼ 10 kpc, different values of α defined in
equations (B3) and (B4) have been used to compute the deceleration
index τ from equation (B12).

Equating the cocoon pressure in equation (24) to the ram pressure
of the ambient medium and assuming that the cocoon is over-
pressured compared to the ambient gas, the rate of expansion of
the cocoon radius can be obtained as:

pc = (� − 1)
Pjt

(4/3)πa3r̃2
c l̃

= ρa(r̃c)v2
c (B13)

r̃cf (r̃c)1/2 dr̃c

dt̃
= G

(
t̃

l̃

)1/2

; G =
[

3(� − 1)Pjτ
3

4πa5ρ0

]1/2

. (B14)

Here, G is a dimensionless constant whose typical value would be

G = 0.42

(
Pj

1045 erg s−1

)1/2 (
τ

100 Kyr

)3/2

×
(

a

1 kpc

)−5/2 ( n0

0.1 cm−3

)−1/2
, (B15)

where we have assumed � = 5/3 (ideal EOS) and μ = 0.6 for
the mean molecular weight. Equation (B14) can be integrated in the

various limits as done in equation (B9)–B12 to find the time evolution
of the cocoon radius and pressure:

(i) r̃c � 1 and t̃ � 1:

r̃c =
(

2G

L̃0
1/2

)1/2

t̃1/2 (B16)

pc = 3Pj (� − 1)τ

8πa3G
√

L̃0

t̃−1 (B17)

(ii) r̃c � 1 and t̃ � 1:

r̃c =
(

4G(1 − n)

L̃0
1/2

(n + 2)

)1/2

t̃ (n+2)/4 (B18)

pc =
[

3Pj(� − 1)(n + 2)τ

16πa3G
√

L̃0

]
t̃−(2−n)/2 (B19)

(iii) r̃c � 1 and t̃ � 1:

r̃c =
[

G

L̃0
1/(2−α)

(2 − α)(4 − α)

(4 − 3α)

(
2

2 − α

)1/(2−α)
]2/(4−α)

× t̃ (4−3α)/((2−α)(4−α)) (B20)

pc = 3Pjτ (� − 1)

4πa3

[ √
2(4 − 3α)

G
√

L̃0(2 − α)3/2(4 − α)

]4/(4−α)

×t̃−(4+α)/(4−α) (B21)

(iv) r̃c � 1 and t̃ � 1:

r̃c = G2/(4−α)

[
2(1 − n)

(2 − α)L̃0

]2/((2−α)(4−α))

×
[

(2 − α)(4 − α)

(4 + 2n − 3α)

]2/(4−α)

t̃ (4+2n−3α)/((2−α)(4−α)) (B22)

pc = 3Pjτ (� − 1)

4πa3

[
(4 + 2n − 3α)

√
2(1 − n)

G
√

L̃0(2 − α)3/2(4 − α)

]4/(4−α)

×t̃−(4+α−2n)/(4−α). (B23)

The exponent of time in equations (B12) and (B23) is identical
to that derived earlier in Perucho & Martı́ (2007). Note that for
n = (4+α)

2(5−α) , the exponent of time for jet length in equation (B12) is l̃ ∝
t3/(5−α) and cocoon pressure in equation (B23) is pc ∝ t−(4 + α)(5 − α).
This is identical to the solutions for a self-similar evolution of the
jet cocoon derived earlier in Kaiser & Alexander (1997) and Falle
(1991).
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