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ABSTRACT
We study the modelling of the halo occupation distribution (HOD) for the eBOSS DR16 emission line galaxies (ELGs). Motivated
by previous theoretical and observational studies, we consider different physical effects that can change how ELGs populate
haloes. We explore the shape of the average HOD, the fraction of satellite galaxies, their probability distribution function (PDF),
and their density and velocity profiles. Our baseline HOD shape was fitted to a semi-analytical model of galaxy formation and
evolution, with a decaying occupation of central ELGs at high halo masses. We consider Poisson and sub/super-Poissonian
PDFs for satellite assignment. We model both Navarro–Frenk–White and particle profiles for satellite positions, also allowing
for decreased concentrations. We model velocities with the virial theorem and particle velocity distributions. Additionally, we
introduce a velocity bias and a net infall velocity. We study how these choices impact the clustering statistics while keeping the
number density and bias fixed to that from eBOSS ELGs. The projected correlation function, wp, captures most of the effects
from the PDF and satellites profile. The quadrupole, ξ 2, captures most of the effects coming from the velocity profile. We
find that the impact of the mean HOD shape is subdominant relative to the rest of choices. We fit the clustering of the eBOSS
DR16 ELG data under different combinations of the above assumptions. The catalogues presented here have been analysed in
companion papers, showing that eBOSS RSD+BAO measurements are insensitive to the details of galaxy physics considered
here. These catalogues are made publicly available.

Key words: methods: analytical – methods: numerical – galaxies: evolution – galaxies: haloes – cosmology: theory – large-scale
structure of the Universe.

1 IN T RO D U C T I O N

The large-scale structure of the Universe contains a wealth of
information on cosmology. The spectroscopic galaxy surveys via
studies of galaxy clustering have measured the scale of baryonic
acoustic oscillations (BAO), redshift space distortions (RSD), and
constrained Primordial Non-Gaussianities among other cosmolog-
ical probes. Although previous wide angle surveys such as BOSS
have targeted luminous red galaxies (LRG) at low redshift (z < 0.6)
achieving unprecedented constrains on cosmology from the large-
scale structure (Alam et al. 2017), this type of galaxies becomes
harder to target at higher redshifts. That is why recently the focus
has turned to new targets such as the star-forming emission line
galaxies (ELGs) that can be targeted at higher redshifts, such as
eBOSS 0.6 < z < 1.1 (Dawson et al. 2016) and DESI 0.6 < z < 1.6
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(DESI Collaboration 2016), or observed via slit-less spectroscopy
(Euclid, 0.9 < z < 1.8 Laureijs et al. 2011).

The eBOSS survey, part of the SDSS-IV program (Blanton et al.
2017), has created the largest spectroscopic sample of star-forming
ELGs to date with a final sample of 173,736 ELGs in the redshift
range 0.6 < z < 1.1 (Raichoord et al. 2020). This was achieved after
measuring the spectra of ELG targets selected from the DECaLS
photometric survey. Additionally, eBOSS has surveyed close to half
a million of LRGs in the range 0.6 < z < 1.0 and ∼ 330 000 quasars
in the range 0.8 < z < 2 (Lyke et al. 2020; Ross et al. 2020).

N-body simulations play an important role in the large-scale
structure analysis in order to validate theoretical tools used for data
analysis. One unknown is the way a certain type of galaxies relates
to the underlying dark matter distribution. One way to explore this
relation is with semi-analytical models (SAMs) of galaxy formation
and evolution. However, these models require dark matter halo
merger trees and high-mass resolution, rarely available in simulations
able to probe beyond the (Gpc/h)3-scale volume. For the very
large-scale simulations, typically, dark matter haloes are populated
with halo occupation distribution (HOD) models (e.g. Seljak 2000;
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Berlind & Weinberg 2002; Cooray & Sheth 2002; Zehavi et al.
2005; Zheng et al. 2005) or, alternatively, with (sub) halo abundance
matching techniques (e.g. Favole et al. 2016). In the original HOD
models, galaxy properties are determined from the halo mass of
the host. More sophisticated HOD models try to encapsulate the
assembly bias, i.e. dependence of halo clustering on properties other
than halo mass by introducing secondary parameters (e.g. Hearin
et al. 2016; Zehavi et al. 2018). We defer an exploration of the
assembly bias for ELGs for future studies.

In this paper, we applied a series of ELG HOD models motivated
from previous theoretical studies to produce galaxy catalogues based
on the OUTER RIM simulation dark matter-only only simulation. We
then compare and fit the clustering statistics of these mocks to ELG
data from eBOSS.

The produced mocks are used in companion papers (Alam et al.
2020; de Mattia et al. 2020; Raichoord et al. 2020; Tamone
et al. 2020) to test the robustness of theoretical models of galaxy
anisotropic clustering against variations in the HOD model, finding
that those models can be trusted at least (with a conservative budget
computation) to within 1.8 per cent, 1.5 per cent, 3.3 per cent for,
respectively, {α�, α⊥, fσ 8} (Alcock–Paczynski and growth rate
parameters), well below the statistical errors for eBOSS.

Our baseline model takes the shape of the average HOD (〈N(M)〉)
presented in Gonzalez-Perez et al. (2018) for ELGs, which we
approximate by a stepwise Gaussian plus a decaying power law
for central galaxies, whereas we model satellites following a power
law above a certain halo mass. We complete the baseline model with
the following usual assumptions in the generation of galaxy mock
catalogues regarding the assignment of satellites (e.g. Carretero et al.
2015; Hearin et al. 2017): the number of satellites Nsat is drawn from
a Poisson distribution, their spatial distribution follows a Navarro–
Frenk–White (NFW) profile, and the velocity profiles can be inferred
from the virial theorem.

We then create alternative models by varying each of the baseline
assumptions of the HOD and studying their effect on clustering
via monopole, quadrupole, and projected correlation functions (ξ 0,
ξ 2, wp). We explore the choice of a Gaussian or a smooth step
function as an alternative for the shape of the mean HOD for central
galaxies, 〈Ncen(M)〉, options explored in other HOD studies (Zehavi
et al. 2005; Favole et al. 2016; Guo et al. 2019). Motivated by
the study in Jiménez et al. (2019), we also study non-Poissonian
probability distribution functions (PDF, P(N|〈N〉)) for populating
haloes with satellite galaxies: the nearest integer and the negative
binomial distribution.

As an alternative to NFW profiles, we also use the particle
distribution within haloes and allowed for a rescaling of the halo
concentrations. The latter is motivated by some studies predicting
ELGs should be in the outskirts of haloes (e.g. Orsi & Angulo 2018).
With respect to satellite velocities, in the case of NFW profiles,
velocities follow a Gaussian distribution with a dispersion predicted
by the virial theorem, whereas in the case of using particles, satellites
take the particle velocity. We also include a velocity bias parameter
that modulates the dispersion of satellite velocities with respect to the
halo velocity. Another ingredient for our alternative models consists
on adding a net infall velocity as motivated by Orsi & Angulo (2018).

This study is part of a coordinated release of the final eBOSS
measurements of BAO and RSD in the clustering of not only ELGs
(de Mattia et al. 2020; Raichoord et al. 2020; Tamone et al. 2020), but
also LRG (Gil-Marin et al. 2020; Bautista et al. 2020), and quasars
(Hou et al. 2020; Neveux et al. 2020). An essential component of
these studies is the construction of data catalogues (Lyke et al. 2020;
Ross et al. 2020), approximated mock catalogues (Lin et al. 2020;
Zhao et al. 2020), and N-body simulations based mock catalogues for

Table 1. The OUTER RIM simulation cosmological and setup parameters. The
cosmological parameters (Komatsu et al. 2011): �cdm, �b and �� are the
average densities of cold dark matter, baryonic matter, and vacuum energy
in units of the critical density today, H0 is the Hubble parameter, σ 8 is the
rms of the matter fluctuations at 8 h−1Mpc, and ns is the spectral index of the
primordial power spectrum. Simulation parameters: redshift of the snapshot
used in this paper, volume of the simulation box, number of particles in the
simulation, and particle mass resolution.

�cdm 0.220
�b 0.0448
�� 0.7352
h ≡ H0/(100 km s−1 Mpc−1) 0.71
σ 8 0.8
ns 0.963

zsnap 0.865
Volume (3000 h−1 Mpc)3

N 102403

mp 1.85 × 109 h−1 M�

assessing systematic errors (Alam et al. 2020; Rossi et al. 2020; Smith
et al. 2020), as the ones presented here. At the highest redshifts (z >

2.1), the coordinated release of final eBOSS measurements includes
measurements of BAO in the Ly α forest (du Mas des Bourboux
et al. 2020). The cosmological interpretation of these results in
combination with the final BOSS results and other probes is found
in Bautista et al. (2020).1

The plan of this paper is as follows. In Section 2, we introduce
the OUTER RIM simulation. In Section 3, we describe the input ob-
servational data: ELG catalogue, summary statistics, and correlation
functions. In Section 4, we describe the different halo occupation
models we use to generate mock catalogues varying the mean HOD
for central and satellite galaxies (Section 4.1), the PDF (Section 4.2),
the radial (Section 4.3), and velocity (Section 4.4) distributions of
satellite galaxies. In Section 5, we present mocks that best fit the data
under different assumptions. Finally, we conclude in Section 6 and
discuss our results and future prospects.

2 TH E OUTER RIM SI MULATI ON

The OUTER RIM simulation (Heitmann et al. 2019) was run assuming
a cosmology consistent with the 7th year release from WMAP
(Komatsu et al. 2011), as summarized in Table 1, which will be our
fiducial cosmology throughout the paper. The OUTER RIM simulation
has outputs at 99 redshifts (34 between 1 < z < 3.5). Haloes with
at least 20 particle members, were identified at 0 < z < 10 using
the friends-of-friends (FoF) algorithm (Davis et al. 1985) with a
linking length of b = 0.168. Technical properties of the OUTER RIM

simulation are summarized in the second part of Table 1, some of
these are similar to those from its predecessor, the Q Continuum
simulation (Heitmann et al. 2015).

For this study, we use a snapshot at fixed z = 0.865, close to the
effective redshift of the distribution of eBOSS/ELGs (zeff = 0.845,
Raichoord et al. 2020). Two key functions for the HOD model are the
halo mass function and the bias function of the OUTER RIM simulation
shown in Fig. 1. We will see in Section 4 how their integrals are used
to put basic constraints on the HOD parameters. When referring to the
bias in this study, we will always refer to the linear local bias, shown
to describe accurately the clustering of haloes/galaxies at large scales.

1A description of eBOSS and a link to its associated publications can be
found in https://www.sdss.org/surveys/eboss/.
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Figure 1. Top: The halo mass function from the OUTER RIM simulation
output at z = 0.865. Middle: The halo bias function, fitted for separations
20 ≤ r(h−1 Mpc) ≤ 80 for the OUTER RIM simulation dark matter haloes
as a function of the halo mass (see text), the black circles. A fourth order
polynomial fit, p4, to the bias function, b(M) is also shown. Bottom: Ratio of
the bias, b(M) to the polynomial fit, p4.

In order to compute the OUTER RIM simulation bias function, we
split the simulation box in 27 cubes of l = 1Gpc h−1 side. We further
split the halo catalogues by mass in logarithmic mass bins with
�(logM) = 0.12 for logM < 12.5, and making larger intervals at
higher masses in order to decrease the shot noise. We compute the
correlation function (details in Section 2.1) in real space ξMi

(r) for
each mass bin and subbox. Then, we compute the mean ξ̄Mi

, and
corresponding standard deviation, σ (ξMi

) for the 27 subboxes. We
find the bias bi that minimizes the χ2 defined as

χ2(bi) =
∑

r

(
ξlin(r) · b2

i − ξ̄Mi
(r)

σ (ξMi
)(r)

)2

. (1)

The summation above is done in the range 20 ≤ r ≤ 80 Mpc h−1

(with this choice we avoid non-linearities affecting small scales
and the BAO feature). We found (here, and also in Section 3.2,
equation 11) that the fits are more stable against noise and scale
cuts, when using logarithmic binning for the data/mock correlation
functions and most stable in the selected range of scales. We compute
ξ lin(r) by Hankel transforming the linear power spectrum obtained
from CAMB (Lewis & Bridle 2002):

ξlin(r) = 1

2π2

∫ ∞

0
Plin(k)j0(kr)k2dk. (2)

The bias as a function of halo mass, b(logM), is then fitted to
polynomials of orders from 2 to 5. We discard the points beyond
logM = 14.4 as they yield a poor fit. At those masses, the binning

2Throughout this paper, we use log for the decimal logarithm and take its
argument in units of M� h−1.

becomes too coarse if we want to keep low contribution from shot
noise and the definition of the bin centre becomes ambiguous as the
halo mass function decays exponentially within the bin. We find a
good fit with a polynomial of order k = 4 or larger. For the rest of
the work, we use the fourth-order polynomial fit, p4, to approximate
the bias function. This fit is shown in Fig. 1.

2.1 Correlation functions from OUTER RIM mocks

When computing 2-point correlation functions (2PCF) in the simu-
lation, we will always assume periodic conditions for the subboxes.
This will introduce a small error in the boundaries, but we expect it
to be negligible, given that our subbox size is much larger than the
maximum scale used here.

A way to correct for the boundary conditions would be to introduce
a random catalogue in order to account for the geometry of the
subbox, as we will do for the survey geometry (see Section 3.4).
However, this process would significantly slow down the 2PCF
calculations as random catalogues are typically required to have at
least 10 times more objects than the data catalogue in order to avoid
introducing extra noise.

In the cases we compute correlations in redshift space, we use

s = r + 1 + z

H (z)

v · r
|r|

r
|r| , (3)

with s representing the halo/galaxy position in redshift space, r in
real space, v its comoving velocity, and H(z) the Hubble parameter
at redshift z. We adopt the plane-parallel approximation and assume
the Z-axis as the line of sight.

Given the assumed boundary conditions, ξ (r, μ) is calculated using
simply the natural estimator: 1 + ξ (r, μ) = DD(r, μ)/(n�V), where
DD is the number of galaxy/halo pairs with separation between r
and r + �r and an orientation between μ and μ + �μ (where μ

is the cosine of the angle with respect to the line of sight) and the
denominator is the average number of galaxies found in the volume
�V of the spherical shell of radius r and thickness dr. This was
computed with a modified version of the code CUTE (Alonso 2012).3

We then compute the multipoles, integrating over the Legendre
polynomials L�:

ξ�(s) = (2� + 1)
∫ 1

0
ξ (s, μ)L�(μ)dμ. (4)

The projected two-point correlation function, wp(rp), is obtained
with the publicly available PYTHON package CORRFUNC.4 This
correlation function removes most of the effect of peculiar velocities
by integrating along the line of sight:

wp(rp) = 2
∫ πmax

0
ξ (rp, π )dπ, (5)

where we use πmax = 80 Mpc h−1. In this case, ξ is also computed
using the natural estimator, but counting pairs in bins of comoving
distance parallel (π ) and perpendicular (rp) to the line of sight.

3 THE EBOSS ELG DATA

The eBOSS survey (Dawson et al. 2016) has observed a spectroscopic
sample of star-forming ELGs (Raichoor et al. 2016, 2017) in fields
both in the North and South Galactic Caps (NGC and SGC). The

3https://github.com/damonge/CUTE
4https://github.com/manodeep/Corrfunc (Sinha & Garrison 2020).
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redshift of these galaxies has been identified using the [O II] doublet,
with rest-frame wavelengths of λ = 3727, 3729 Å.

We aim at reproducing the eBOSS ELG number density and
linear bias with the mock catalogues we generate in this work. We
describe below how these quantities are measured from the data. We
also describe the correlation functions of the data used as an input
for Section 5.

3.1 eBOSS LSS ELG catalogues

Optical and near-infrared cosmological surveys are targeting star-
forming ELGs at 0.5 < z < 2, as these galaxies can provide
a high enough effective volume to measure the BAO with high
precision (e.g. Comparat et al. 2016). Star-forming ELGs present
strong spectral emission lines that allow for a robust determination
of their redshifts in a small observing time, maximizing the volume
covered by the survey (e.g. Okada et al. 2016). Strong spectral lines
can also be produced by galaxies with nuclear activity, AGNs. These
are expected to be hosted by different average dark matter haloes than
star-forming galaxies. No broad-band lines have been found among
the eBOSS ELG sample and only a small fraction of eBOSS ELGs
are expected to be AGNs in the redshift range under study, based on
previous studies (Comparat et al. 2013).

Here, we use the data from the DR16 ELG clustering catalogue,
described in Raichoord et al. (2020), which only includes ELGs with
a good redshift determination. There are 173 736 eBOSS ELGs,
within the redshift range 0.6 < z < 1.1 and with an effective redshift
of zeff = 0.845. The effective areas in the North and South fields are
ANGC,eff = 369 deg2, ASGC,eff = 358 deg2. The catalogue also contains
the weights to correct individual galaxies for systematic errors:

wELG = wsys wno z wCP, (6)

due to the photometric target selection, wsys; redshift failures, wno z;
and wCP includes the ‘close pairs’ fiber collision correction adopted
in eBOSS cosmological analysis (Raichoord et al. 2020; Ross et al.
2020; de Mattia et al. 2020). We will not use the wCP weights in
this study as the fiber collision effect will be accounted for by the
pairwise-inverse-probability (PIP) + angular up-weighting (ANG)
weights, which are more accurate, specially at small scales (see
Section 3.4). Additionally, the standard inverse variance weights
wFKP are applied, in order to improve signal-to-noise ratio (Feldman,
Kaiser & Peacock 1994).

3.2 Number density of the eBOSS ELGs

We aim to reproduce the abundance and clustering of the eBOSS
ELGs in the OUTER RIM simulation. The number density and bias
derived from the data will need to rely in the assumed cosmology,
which in this case is that of the OUTER RIM simulation (Table 1).5

First, we compute the number density of ELGs for the NGC, the
SGC, and the combination of both:

n̄ = Neff

Veff
n̄eBOSS = 2.187 · 10−4(Mpc/h)−3

n̄SGC = 2.267 · 10−4(Mpc/h)−3, n̄NGC = 2.110 · 10−4(Mpc/h)−3,

(7)

5Note that the latter is different from the cosmology used for the main data
analysis (de Mattia et al. 2020, Tamone et al. 2020, with namely �M = 0.31).

with

V = 1

3

(
χ (zmax)3 − χ (zmin)3

)
· Aeff

(
π

180 deg

)2

(8)

giving a volume of VSGC,eff = 0.410(Gpc/h)3, VNGC,eff =
0.424(Gpc/h)3, Vtot,eff = 0.834(Gpc/h)3. Note that this Veff refers
purely to the observational volume taken into account, given the
effective area and redshift range. In other studies, Veff may refer to
the equivalent volume of a cosmic variance limited sample with the
same power spectrum variance (i.e. the shot noise being interpreted
as a reduction of the effective volume).

The eBOSS number density n̄eBOSS will be used as a reference
throughout the paper. In some occasions, we will use a factor 7 or 10
higher density in order to measure more accurately the clustering of
the mocks.

3.3 Linear bias of eBOSS ELGs

The second quantity that we want to measure from the data is the
large-scale bias b. A simple way is to compute the bias from the
monopole of the data, and fit it using the Kaiser factor (Kaiser 1987)
together with linear perturbation theory:

ξ0,lin(s) =
(

b2 + 2

3
bf + 1

5
f 2

)
ξlin(s), (9)

with f the log-derivative of the growth factor. Within the standard
assumption of General Relativity, dlogD/dloga ≈�m(a)0.545 (Peebles
1980; Linder 2005). We fix f using this approximation for the OUTER

RIM cosmology.
In earlier versions of the (data and mock) catalogues, we used the

approach described above. For the mocks presented in this paper, we
decided to fit the bias of the data by rescaling the shape of ξ 0(s) of
a mock with similar amplitude as that of the data (derived in earlier
versions of the mocks):

ξ0(b2, s) =
(
b + 2

3 bf + 1
5 f 2

)
(
bmock + 2

3 bmockf + 1
5 f 2

) ξ0,mock(s). (10)

This method encapsulates better the non-linearities, as they are
present in the simulation and are expected in the data.

To measure the large-scale linear bias, we follow a similar
approach as in Section 2 and split the simulation in 27 subboxes
of size l = 1 Gpc h−1 and comparable volume Vmock = l3 to the total
eBOSS ELG effective volume. The bmock is computed as explained in
Section 4.1 (equation 15) and validated using the same approach as
in Section 2 (equation 1) for the haloes. We compute the monopole in
each subbox and the global mean ξ0,mock, to be input to equation (10),
and standard deviation σ mock, so that we can compute

χ2(b) =
∑

s

(
ξ0(b, s) − ξ0,data(s)

σmock(s)
√

Vmock/VeBOSS

)2

, (11)

and minimize χ2 to get the best fit bias b with a 1σ confidence interval
corresponding to �χ2 = 1. The fit to the data bias is more stable
when using logarithmic binning for both the analytical approximation
and the mocks. We use the range of scales 20 < s < 55 Mpc h−1,
where the p-values are good for all cases (combining linear versus
logarithmic scale, using the linear theory or mocks for the fits, and us-
ing either or both galactic caps). Following this procedure, we obtain

beBOSS = 1.320 ± 0.014,

bSGC = 1.310 ± 0.020, bNGC = 1.330 ± 0.020. (12)
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As we find that the NGC and SGC have compatible biases, in the
remainder of this paper we use the combined data, unless otherwise
specified. Note again that this differs from bias values found in
complementary studies, where the assumed cosmology was different.

3.4 Weighted correlation functions

eBOSS measured spectra using optical fibres positioned in pre-drilled
plates at the 2.5 m Sloan Telescope (Gunn et al. 2006; Smee et al.
2013). The plates have a field of view of ∼ 7deg2 and can hold
up to 1000 fibres. Typically, 100 fibres are used for calibration and
900 for science targets. Each fibre plus its ferrule has a diameter of
62 arcsec. The fibre collision scale imposes a minimum separation
between objects that can be observed simultaneously. The eBOSS
survey repeats observations of the same regions of the sky, allowing to
observe some of the target objects, missed at previous passes, due to
fibre collision. However, not all the targets will be (spectroscopically)
observed once the survey is finished.

In this work, we find the best HOD models by fitting different
clustering statistics measured from the model catalogues to the
observed ones (details of this procedure can be found in Section 5).
The data derived from observations has been corrected for the effect
of missing spectra for photometric targets using the PIP weighting
and the ANG techniques (Bianchi & Percival 2017). When pairs of
galaxies are counted for calculating the correlation functions, these
techniques modify the standard fibre collision correction, wCP (see
equation 3.1).

The PIP weight of a given pair of galaxies is defined as the
inverse of the probability of this pair being assigned a fibre within
the ensemble set from which the survey undertaken is considered
to be randomly drawn (Bianchi & Percival 2017; Mohammad et al.
2020). This weighting scheme does not take into account the fraction
of colliding pairs of galaxies that fall in single pass regions. The
small-scale clustering, affected by fibre collisions, can be recovered
using the ANG scheme proposed by Percival & Bianchi (2017).
This scheme assumes that the set of un-observed pairs is statistically
equivalent to the observed one. The ANG scheme is applied to the
counts of pairs both of observed galaxies and observed-random ones.
This method gives a statistically unbiased estimator for the clustering
even at scales below the fibre collision.

Additionally, for large scales s > 25 Mpc h−1, there are some
photometric angular systematics in the quadrupole that are not
accounted for by any of the schemes described above. This is why
in Tamone et al. (2020) they have decided to remove the 0.6 < z <

0.7 data and use a modified correlation function that removes angular
power. This is also the reason for our work to use the quadrupole
data only for s < 25, see Section 5. Alternatively, we could used
power spectrum multipoles, where these angular systematics are
nulled with a pixelization scheme. We leave this for a future study,
as comparing data and mocks in Fourier Space requires a careful
window function treatment of the mocks. Moreover, the information
is spread differently in Fourier space, with 1-halo and 2-halo terms
more entangled (see Appendix A).

For the data we compute the correlation function from data–data,
data–random, and random–random pairs using the Landy–Szalay
estimator (Landy & Szalay 1993).

ξ (x, y) = DD(x, y) − 2DR(x, y) + RR(x, y)

RR(x, y)
. (13)

This gives us ξ (s, μ) and ξ (rp, π ) in order to obtain, respectively,
the multipoles (equation 4) and wp (equation 5). We also use this

approach when computing correlations of the EZMOCKS in Section 5,
as they also include the survey geometry.

4 TH E M O C K C ATA L O G U E S

Within the HOD Model framework, we assume that a galaxy
mock catalogue can be constructed directly from a halo catalogue
containing just the halo positions, velocities, and masses. Only in
some specified examples below (Sections 4.3 and 4.4), we will use
additional information from particles within haloes.

The HOD models used here have contributions from two galaxy
populations: centrals and satellites, with 〈Ncen(M)〉 and 〈Nsat(M)〉
their expected number of galaxies per halo of mass M. The number
density of the total galaxy sample in the model catalogues is
calculated as follows:

n̄gal =
∫

dn(M)

dM

[〈Ncen(M)〉 + 〈Nsat(M)〉]dM, (14)

with dn(M)
dM

the differential halo mass function.
The clustering of the resulting model galaxy sample has two

contributions: one coming from galaxies on the same halo, the 1-
halo term, and one coming from correlations of galaxies hosted by
different haloes, the 2-halo term. The clustering at large scales, which
is dominated by the 2-halo term, can be described almost completely
by the linear bias, which depends only on 〈Ntot(M)〉 = 〈Ncen(M)〉 +
〈Nsat(M)〉 (e.g. Berlind & Weinberg 2002):

bgal = 1

n̄gal

∫
dn(M)

dM
· b(M)

[〈Ncen(M)〉 + 〈Nsat(M)〉)]dM. (15)

The clustering at small scales is dominated by the 1-halo term,
which is affected by a range of properties beyond the linear bias of
the sample. Below, we list the modelling of a set of properties that
can have a strong impact on the 1-halo term of the clustering:

(i) The split between satellite and central galaxies, and the specific
HOD shape 〈Ncen(M)〉, 〈Nsat(M)〉 (Section 4.1).

(ii) The PDF P(N|〈N〉) (Section 4.2).
(iii) The radial profile of satellites ρsat(r) (Section 4.3).
(iv) The velocity profile of the satellites φ(vr) (Section 4.4).

In the following subsections, we describe the choices we make
about those properties, and how we vary them to explore their
influence on the clustering.

4.1 Mean halo occupation distribution for centrals and
satellites

The mean HOD, 〈Ni(M)〉, encapsulates the average distribution of
a given type of galaxy hosted per halo of a certain mass M. The
analytical description of the mean HODs has been derived from either
semi-analytical or hydro-dynamical simulations for galaxy formation
and evolution (e.g. Berlind et al. 2003; Zheng et al. 2005). The shape
of the model mean HOD depends on the properties of the selected
galaxies. When galaxies are selected by their magnitude or stellar
mass, the 〈Ncen〉 can be described as a smoothed step function (erf(x))
and a power law for satellite galaxies. This is the most commonly
used shape for the mean HOD. Here, we label this shape as HOD-1:

HOD-1 centrals:

〈Ncen(M)〉 = 1

2
Ac

(
1 + erf

(
log(M) − μ

σ

))
. (16)
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Satellites (all HODs):

〈Nsat(M)〉 = As

(
M − M0

M1

)α

. (17)

This shape has been shown to describe well the abundance of
galaxies for a magnitude-limited sample (e.g. Zehavi et al. 2011).
In a complete sample, we would have Ac = 1 and the number of
central galaxies would transition from 0 to 1 at logM ∼ μ with a
smoothing scale of σ . This means that for high enough masses all
haloes are expected to have a central galaxy. For samples that are quite
incomplete in mass, such as ELGs, QSO, or colour-selected samples,
one could have Ac < 1.0 (e.g. Geach et al. 2012; Smith et al. 2020).
Note that even if the mean HOD of model LRGs does not follow
HOD-1 exactly (Hernández-Aguayo et al. 2020), these samples have
been shown to be well described with such a parametrization (e.g.
Gil-Marin et al. 2020). Here, we define the completeness as the ratio
between the number of galaxies in a given sample and the total
number of galaxies. In a more general case, Ac could vary with mass,
changing the shape of the mean HOD. In the literature μ is usually
denoted as logMmin, but we choose this nomenclature for consistency
with models HOD-2 and HOD-3 (see below).

In equation (17), the satellite occupation follows an increasing
power law, implying that the more massive the halo, the more
satellite galaxies we expect to find, with α controlling the mass–
richness relation. For As = 1.0 and M0  M1, M1 represents the
mass at which we expect 1 satellite per halo. We note that As is
completely degenerate with M1, but we keep both parameters to
separate their physical meaning and interpret As as the completeness
of the satellites.

In equation (16), central galaxies have a constant probability to
be found in haloes above a certain mass. However, this is at odds
with the results derived for observed star-forming ELGs (Geach
et al. 2012; Cochrane et al. 2017; Guo et al. 2019) and model
ones (Cochrane & Best 2018; Gonzalez-Perez et al. 2018; Favole
et al. 2019). More generally, the soft step function shape is not
representative of samples of model galaxies selected by their age or
their star formation rate (Zheng et al. 2005; Contreras et al. 2013).
The star formation of galaxies depends in a non-trivial way on their
stellar mass and environment. Massive galaxies tend to have lower
star formation rates per stellar mass unit (e.g. Davies et al. 2019).
ELGs are on average less massive than samples such as LRGs, and
are mostly found in filaments (e.g. Darvish et al. 2014; Gonzalez-
Perez et al. 2020). Galaxy formation processes affecting star-forming
galaxies impact the expected shape of their HOD.

Fig. 2 shows the HOD for eBOSS ELGs from the SAM of galaxy
formation and evolution presented by Gonzalez-Perez et al. (2018).
Here, we fit the shape for centrals with two mean HOD models:

HOD-2 centrals:

〈Ncen(M)〉 = Ac√
2πσ

· e
− (logM−μ)2

2σ2 (18)

HOD-3 centrals (default):

〈Ncen(M)〉 =

⎧⎪⎪⎨
⎪⎪⎩

Ac√
2πσ

· e
− (logM−μ)2

2σ2 logM ≤ μ

Ac√
2πσ

·
(

M
10μ

)γ

logM ≥ μ

. (19)

The HOD-2 has a simpler expression for centrals, being a Gaussian
with amplitude Ac, mean μ, and variance σ 2. However, it fails to
describe the asymmetry at logM > μ. That is why HOD-3 introduces
a decaying power law for logM > μ. Note that all three HODs have
the same functional shape for the satellites, although their parameters

Figure 2. The mean eBOSS ELG HOD from a semi-analytical model (SAM)
of galaxy formation (Gonzalez-Perez et al. 2018) for central (×), satellites
(+), and all galaxies (circles). The SAM HOD has been fitted using HOD-2,
(equation 18, the red thick lines) and HOD-3 (equation 19, the blue thin
lines). The solid lines show the fit to the total mean HOD, the dashed lines the
contribution from centrals, and the dotted lines that from satellite galaxies.

may be different. The functional form that best describes the HOD
from the SAM is the HOD-3, which we will consider as our default
model in this work. The other two HOD shapes will be considered as
variations of our model in which we increase (HOD-1) or decrease
(HOD-2) the central galaxy occupation on the high halo mass end.

For every HOD model, we first apply the constraints of n̄gal =
neBOSS (or a multiple of it) and bgal = beBOSS, using equations (14)
and (15). Then, we set the fraction of satellites with

fsat = 1

n̄gal

∫
dn(M)

dM
〈Nsat(M)〉dM. (20)

We fix the offset between μ and the mass parameters, logM0 and
logM1. These fixed offsets and the parameters σ , α, and γ are derived
from fitting the HOD-2 and HOD-3 equations to the ELG mean HOD
derived in Gonzalez-Perez et al. (2018) and shown in Fig. 2. For
the case of HOD-1 those values are taken from Zehavi et al. (2005).
All the choices made for the different HOD parameters are shown
in Table 2. For a given HOD (of the three described above) and the
fixed choices of parameters just described, any given choice of {Ac,
As, μ} yields a a set of {n̄gal, fsat, bgal}, and vice versa.

On top left of Fig. 3, we present together the HOD shape of HOD-
1, HOD-2, and HOD-3 for n̄gal = neBOSS, bgal = beBOSS, and fsat =
0.30, as well as HOD-3 with fsat = 0, 0.15, 0.45 (and the same n̄gal,
bgal) and the original fit to the SAM with HOD-3, for comparison.
We also show the corresponding monopole ξ 0(s), quadrupole ξ 2(s),
and projected correlations wp(rp).

In order to compute more accurately the correlation functions, we
increase the number density by a factor of 10 (7 in the case of fsat

= 0 in order to avoid hitting the 〈Ncen〉 = 1 limit). The shaded area
represents the one σ eBOSS region expected for eBOSS computed as

σeBOSS =
√

1(Gpc/h)3

VeBOSS
σmock, with σ mock the standard deviation over the

27 l = 1Gpc h−1 subboxes of a mock realization with the eBOSS
number density. We will follow this approach for all other figures in
this section.

We find that the differences on the shown scales for the monopole
are negligible. This is expected as we fixed the bias and we are looking
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5492 S. Avila et al.

Table 2. List of parameters used in the three HOD models described in equations (16), (18), and (19); Ac, As, μ are free
parameters that mostly control the quantity indicated in brackets, although one has to simultaneously fit the three free parameters
to obtain the target {n̄gal, fsat, bgal}. The values shown correspond to {n̄gal = neBOSS, fsat = 0.30, bgal = beBOSS}. The rest of
mass parameters (logM0,logM1) have a fixed offset with respect to μ and the scaling parameters (σ , α, and γ ) are fixed. Both
the offsets and scaling parameters are derived from the fits shown in Fig. 2 for HOD-2 and HOD-3, whereas for HOD-1 we
take the values from Zehavi et al. (2005).

Ac As μ logM0 logM1 σ α γ

HOD-1 0.00723 (n̄gal) 0.01294 (fsat) 11.110 (bgal) μ μ + 1.3 0.15 1.0 –
HOD-2 0.01185 (n̄gal) 0.009008 (fsat) 11.707 (bgal) μ − 0.1 μ + 0.3 0.12 0.8 –
HOD-3 0.00537 (n̄gal) 0.005301 (fsat) 11.515 (bgal) μ − 0.05 μ + 0.35 0.08 0.9 −1.4

Figure 3. Top left: Mean halo occupation distribution for different models (equations 16, 18, and 19) and different fractions of satellites as indicated in the
label. All HODs have been fitted to have the same number density and bias as the data, except for the grey curve (labelled SAM) that was fitted in Fig. 2 to the
SAM, and is shown here for comparison. We use the same line styles as in Fig. 2: dashed for centrals, dotted for satellites, and solid for all. Top right: Monopole
of the 2PCF for the HODs shown in the top left subfigure. Bottom left: Projected correlation function of the different HODs. Bottom right: Quadrupole of the
2PCF of the different HODs. The mock catalogues shown here were constructed assuming that satellites follow a Poisson distribution (β = 0, see Section 4.2),
were distributed in haloes following NFW (K = 1, see Section 4.3) and that their velocities follow the virial theorem (α = 1, see Section 4.4). These choices,
together with HOD-3 and fsat = 0.3 are the default choices, and will be used unless otherwise specified. The reference model (used for the ratios and labelled
as ref) has all the default choices and is the same across Figs 3, 4, 5, and 6. For the clustering subfigures, we have used an enhanced number density whereas
the shaded area corresponds to the error expected for eBOSS data (see text for details). We use the same approach for Figs 4, 5, and 6. The legend is consistent
across the different clustering subfigures.
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at linear or quasi-linear scales, so we will not show the monopole
in the following subsections. We would also find differences if we
explored lower scales on the monopole using logarithmic binning.
However, we find more illustrative to study the projected correlation
function and the quadrupole, which offer complementary information
of the effects of positions and velocities of satellites (as we will
see along this section), respectively, whereas for the monopole on
logarithmic binning those effects appear entangled (as it happens in
Fourier space, see Appendix A).

The projected correlation shows the expected trend: a higher signal
at small scales as we increase fsat, increasing the contribution of the
1-halo term. For the quadrupole, we find differences already at s ∼
25 Mpc h−1 with lower (closer to zero, we will use this terminology
in the remainder) signal for larger fractions of satellites, due to an
increase of the finger-of-god effect (Jackson 1972; Peebles 1980).
For the lowest point, some of the mocks invert their quadrupole’s
sign.

It is remarkable that the differences introduced by the choice of
HOD shape are much less significant than the value of the satellite
fraction, or the choices detailed in the subsections below. We also note
that the clustering of the HOD-3 is approximately half way between
that of HOD-1 and that of HOD-2, confirming our interpretation of
HOD-3 being bracketed by models HOD-1 and HOD-2.

4.2 Probability distribution function

In Section 4.1, we have studied the mean HOD of satellites and
centrals. Here, we study how we go from the mean value 〈N〉 to a
given realization N, of the (integer) number of galaxies in a halo.
This is given by the PDF, P(N|〈N〉).

By definition, for central galaxies N can only be 0 or 1. If satellite
galaxy formation were a random uncorrelated process, they would
follow a Poisson distribution. However, galaxy formation could affect
their PDF, increasing or decreasing the scatter (Jiménez et al. 2019).
The three PDFs for satellites that we consider are

(i) Poisson distribution (default)

P (N |λ) = e−NλN

N !
, (21)

with λ ≡ 〈N〉 (=〈P(N|λ)〉) and σ = √〈N〉
The Poisson distribution will be used for assigning satellite

galaxies to haloes, unless otherwise stated.
(ii) Nearest integer distribution.
This function only allows two possible values for N, which are the

two closest integers to λ = 〈N〉:

P (N |λ) =

⎧⎪⎪⎨
⎪⎪⎩

1 − (λ − INT(λ)) N = INT(λ)

λ − INT(λ) N = INT(λ) + 1.

0 else

(22)

The function INT(x) represents the truncation of x to the nearest lower
integer. This distribution is always used for the centrals (for which
only the 0 and 1 values are allowed) and it will be used for the
satellites only when specified. This function has a lower scatter than
the Poisson distribution: σ = √

�(1 − �), with � = λ − INT(λ).
(iii) Negative binomial distribution.
This function allows for a larger scatter than the Poisson distri-

bution. The parameter β represents the relative increment of the
standard deviation with respect to the Poisson distribution with
λ = √

N and σ = λ(1 + β). Here, we follow a similar notation

as in Jiménez et al. (2019).

P (N |r, p) = �(N + r)

�(r)�(N + 1)
pr (1 − p)N with

p = 1

(1 + β)2
, r = λ

β(1 + 2β)
. (23)

The Poisson distribution is recovered in the limit β → 0, after solving
a few indeterminations.

In Fig. 4, we show how the different PDFs introduced here affect
the overall distribution Nsat (top subfigure) and how they affect the
galaxy clustering. Changing the PDF has a small impact on the
quadrupole, except for small scales below 10 Mpc h−1. However,
the effect on the projected correlation function is large at scales
below 1 Mpc h−1, increasing the signal as we increase the scatter.
This is expected as when the scatter is increased, the probability of
having a pair (or more) of satellites in the same halo increases.

4.3 Spatial distribution of satellite galaxies

We now study how to spatially distribute galaxies within a halo. The
central galaxies are always placed at the position of the host halo.
However, here we consider three ways to place satellite galaxies
within their host haloes:

(i) NFW profile (default)
We place satellite galaxies following an NFW profile (Navarro,

Frenk & White 1997):

ρ(x) ∝ 1

x · (1 + x)2
with x = c

r

rvir
, (24)

where c is the concentration of the halo, which we take from the
values tabulated in Klypin et al. (2016): c(M) = ckly(M). The virial
radius from equation (24), rvir, is computed following a common
approach (e.g. Carretero et al. 2015; Avila et al. 2018) based on the
spherical collapse model (Lacey & Cole 1993):

rvir =
(

3

4ρcrit�virM

)1/3

, (25)

and

�vir = 18π2 + 82(1 − �M (z)) − 39(1 − �M (z))2. (26)

(ii) Modified NFW.
Observations find star-forming galaxies preferentially in the out-

skirts of filaments (e.g. Chen et al. 2017; Kraljic et al. 2018). SAMs of
galaxy formation and evolution have found that star-forming galaxies
tend to be found in the outskirts of haloes (Orsi & Angulo 2018).
This suggests that star-forming ELGs will also be preferably located
in the outskirts of haloes. We model this effect by placing satellite
ELGs following a less concentrated profile. In this case, we modify
the halo concentration from equation (24) by a factor K < 1:

c(M) = K · ckly(M). (27)

(iii) Particles.
We pick a random particle within the halo and assign that position

to the satellite galaxy, we will denote this choice as PART. This is
computationally expensive. Additionally, since we only transferred
1 per cent of the halo particles randomly selected, with a minimum
of five particles per halo, we find a few cases in which we run out
of particles. The number of cases is really small, always fewer than
50/217 000 cases for neBOSS number density in extreme parameter
choices. When that happens, we assign an additional satellite to the
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5494 S. Avila et al.

Figure 4. Effect of PDF of satellite assignment, considering: Poisson
(equation 21), nearest integer (equation 22), negative binomial with β =
0.1 and β = 0.2 (equation 23). Top: Counts of haloes occupied by a given
number of satellite galaxies N ≥ 1 in the full ELG mock sample (with
contributions from all halo masses and their corresponding mean occupations
〈Nsat(M)〉, equation 17), divided by the total number of counts. Middle:
Projected correlation function wp for the same mocks, as indicated in the
legend, and the ratios with respect to the mocks with the Poisson distribution.
Bottom: Quadrupole and ratios. Besides the PDF specified, we take the default
choices: fsat = 0.30, NFW profile (K = 1.0, see Section 4.3) and the virial
theorem for the velocities (α = 1.0, see Section 4.4).

next halo. Since we apply the HOD to haloes ordered by decreasing
mass, the mass of the next halo is expected to be similar to that
of the previous one. In this way, the original number of galaxies is
maintained at the expense of modifying very slightly the PDF and
HOD. Since the numbers are very small, we do not expect this choice
to impact our results.

(iv) Particles with a modified profile. In this case, we use
particles positions, but also model the ELGs preference to be in the
outskirts of haloes. To accomplish this, once the satellite positions
are assigned to random particles, these are perturbed following:

rsat = rh + 1

K
(rDM − rh), (28)

with rsat, rh, rDM the position of the satellite galaxy, the halo, and
the dark mater particle, respectively. This prescription is equivalent
to the rescaling of concentrations for the NFW case, in both cases
we are rescaling the profiles by 1/K.

In the top panel of Fig. 5, we show the profile of satellite
galaxies for mock catalogues with different K values for both NFW
profiles and particle position assignments. There are clear differences
between the profiles from mocks constructed assuming either NFW
profiles or using the particle information. We can explain these
differences first, because only relaxed dark matter have profiles that
can be described analytically (e.g. Wang et al. 2019), and at z ∼
1, only half of the dark matter haloes in the OUTER RIM simulation
are relaxed (Child et al. 2018). Secondly, relaxed dark matter haloes
are better described by Einasto (1965) profiles, rather than an NFW
one (e.g. Gao et al. 2008; Child et al. 2018). Thirdly, due to reduced
access to the information, we derive the halo concentration from
their FOF mass using Klypin et al. (2016). In general, in order to
compute accurately the concentration of a halo one would fit the
distribution of particles with a given profile (for the NFW case,
equation 24).

Given that assuming NFW galaxy profiles is a common practice in
mock catalogue generation and that the concentrations are defined in
a more straightforward way in this case (e.g. Klypin et al. 2016), we
continue to use the NFW galaxy assignment and compare their results
to using particle profiles. In fact, despite the differences seen in the top
panel of Fig. 5, the differences in the projected clustering (wp, middle
panel) are much smaller. At very small scales r ∼ 0.1 Mpc h−1,
the particle profiles flattens and becomes lower than the NFW
profile, giving also a smaller correlation at those scales. However,
at r ∼ 1.0 Mpc h−1 the situation is inverted, the NFW profile (K
= 1.0) has nearly reached the tail of rvir, with rvir = 0.78 Mpc h−1

for logM = 14, having only 2.6 per cent of satellites beyond that
mass.

Finally, we note that the impact of changing the density profiles
is negligible for the quadrupole. The differences found between
the PART and NFW profiles, are mostly due to having different
velocities, as described below. This confirms our initial claim that
these two 2PCF statistics (wp and ξ 2) have very complementary
information.

4.4 Velocity distributions

The remaining choice to make is the assignment of velocities to
galaxies. For the central galaxies, we simply assume the same
velocity as the halo, whereas for the satellites we consider several
options:

(i) Virial theorem. (default) When using NFW for the position
profiles, we follow Bryan & Norman (1998) for the veolicity profiles,
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Figure 5. Similar to Fig. 4 but for the effect of the density profile of the
satellites. We consider a Navarro–Frenk–White profile, profiles following the
distribution of particles (PART), and both of them with modified concentration
profiles (K �= 1,equation 27). Top: Normalized mock ELG satellite count as
a function of the distance from the halo centres r for the mocks indicated in
the legend. The short vertical lines indicate the mean values of r. Middle:
Projected two-point correlation function and ratios to the NFW with K = 1
case. Bottom: Quadrupole and ratios. Note the legends are consistent across
subfigures.

also used in Carretero et al. (2015) and Avila et al. (2018):

σvir = 476 · 0.9[�virE
2(z)]1/6

(
M

1015M�h−1

)1/3

km s−1, (29)

with E(z) = H(z)/H0. Note that this scaling is already predicted by
the virial theorem. And, we assign

v
gal
i � N (vh

i , σvir) for i = x, y, z, (30)

with N (μ, σ ) a normal distribution with mean μ and variance σ 2

and with vh representing the velocity of the halo.
(ii) Particle velocity
When using particles for the satellite positions (Section 4.3), we

also assign the velocity of the particles to the satellite galaxies.
(iii) Velocity bias
The dispersion of velocities of dark matter particles is a priori

expected to be different than that of galaxies and subhaloes. For this
reason, we include a velocity bias αv in the velocity assignment:

vsat = vh + αv(vDM − vh). (31)

This equation is directly applicable when using particles. When using
the virial theorem, the velocity bias may be understood as a rescaling
of the velocity dispersions:

v
gal
i � N (vh

i , αv · σvir). (32)

(iv) Infall velocity
We can split the galaxy velocity with respect to the halo in two

components, radial vr (defined along the line between the halo centre
and the galaxy position) and angular vφ :

vr = (vgal − vh) · ur, (33)

vφ = (vgal − vh) − vr , (34)

with

ur = rsat − rh

|rsat − rh| . (35)

Orsi & Angulo (2018) studied the velocity distributions of star-
forming galaxies from a SAM of galaxy formation and evolution.
They found that the radial component of the velocity, vr, of star-
forming galaxies has two contributions: a Gaussian centred at 0
equivalent to that described by equation (30) (vr � N (0, σvir)) and
a net infall velocity towards the centre of the halo, that follow
approximately:

vinfall
� N (−500 km s−1, 200 km s−1). (36)

We include this contribution in the mock generation (when
specified) by adding a new component to the velocity:

v
gal
tot = vgal + vinfall · ur. (37)

In the top panel of Fig. 6, we show the radial velocity distribution of
the model ELGs generated with the velocity models detailed above.
We see on one hand how the velocity bias αv affects the width of
the velocity distribution and on the other hand how adding the infall
velocity (vinfall) shifts the centre of the distribution from vr ∼ 0 to
vr ∼ −500 km s−1. This is a more extreme case than that described
in Orsi & Angulo (2018), where they found a combination of the
two peaks (at vr ∼ 0 and vr ∼ −500 km s−1). We expect that for a
case similar to that described in Orsi & Angulo (2018), the results
on galaxy clustering will be in between the two cases presented here
(with and without vinfall).

The distribution of the particle velocities follows a distribution
with a width similar that derived from the virial theorem, although

MNRAS 499, 5486–5507 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/4/5486/5911607 by guest on 09 April 2024



5496 S. Avila et al.

Figure 6. Similar to Fig. 4, but for the effect of the velocity profile of the
satellites. We consider a distribution given by the virial theorem (NFW +
σ vir) and velocities as given by the particles (PART), adding also different
values of the velocity bias αv (only for σ vir, we keep αv = 1 for PART in this
figure) and a net infall velocity of vr = −500 ± 200 km s−1 (for both NFW
and PART). Top: Radial (from the halo centre to the satellite) velocity profiles.
The area under the curves are normalized to unity. The upper vertical lines
indicate the corresponding dispersion of satellite velocities around haloes

along the Z-axis,
√

〈(vtot
gal,z − vh

z )2〉. Middle: Projected correlation function

and ratios with respect to the default mocks (NFW + σ vir, αv = 1). Note
that most curves line up in this subfigure, see text. Bottom: Quadrupole and
ratios. Note the legends are consistent across subfigures.

slightly skewed towards negative values. This is expected for the
particles, as not all of them are virialized and some are expected to
currently being accreted.

The effect of the velocity distributions on the projected correlation
function (middle of Fig. 6) is negligible. The only appreciable
differences are actually due to the differences reported for the
positions of satellite galaxies for NFW and particle profiles (see
Section 4.3).

As expected, it is in the quadrupole where the main differences
appear, due to variations in the velocity profiles. We find that the
quadrupole is more suppressed (closer to zero) for higher velocity
dispersion (higher αv), as expected by the finger-of-god effect. The
effect of adding a net infall velocity also suppresses the quadrupole
power. This is expected, as this additional peculiar velocity uncorre-
lated with the large-scale structure also erases clustering along the
line of sight.

We added in the top subfigure of Fig. 6 some vertical lines
indicating the dispersion of velocities of satellite galaxies around
haloes along the Z-axis (arbitrarily chosen as the line of sight)√

〈(vtot
gal,z − vh

z )2〉. This allows us to quantify to first order the finger-

of-god effect, and the ordering if these lines can be identified with
the ordering of the quadrupoles at the mildly non-linear scales.

We remark that this dispersion is different to
√〈vr〉, we checked

the ordering would be quite different in that case and unrelated
to the quadrupoles. When taking an arbitrary line of sight (e.g.
the Z-axis), the dispersion due to the addition of vinfall, appears a
factor 1/3 smaller due to projection effects. This does not occur
for the viral velocities whose dispersion occur in all the three
dimensions.

The quadrupole from models using the particle information are
within 1σ of that from assuming NFW profiles, and their ratios are
very close to 1. This is remarkable, since the velocity assignment
follows different procedures, and their velocities profile (top panel)
showed some differences.

On the other hand, paying attention to the exact shape of the
quadrupole, one can find subtle but statistically significant differ-
ences in the shape induced by the effect of velocity bias and the
effect of infall velocities. For example, the αv = 0.2 and vinfallcase
(yellow dashed) follows closely the line of the standard case (αv

= 1 and vr = 0, green solid) for s > 12 Mpc h−1, where the
effect of the overall velocity dispersion is already apparent. These
curves, however, diverge at smaller scales. Many other subtleties
could be found exploring in more detail the small scales, however,
it is unclear that we could gain any further intuition from basic
principles.

We also analysed the hexadecapole ξ 4(s), and found some differ-
ences at small scales due to the finger-of-god effect. The differences
among mocks were qualitatively similar to the results found in the
quadrupole, but statistically less significant, which is why we omit
the hexadecapole in the figures.

Additionally, in Appendix A we show the clustering in Fourier
space of all the mocks presented in Sections 4.1, 4.2, 4.3, and 4.4.
When exploring the effect of velocity profile choices, we also show
the hexadecapole of the power spectrum.

5 FI TTI NG THE EBOSS DATA

In this section, we describe the optimization procedure followed
to find the HOD models that produce the mock catalogues with
clustering closest to the eBOSS ELG data.
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5.1 Optimization

In the previous section, we have presented the wide variety of HOD
mocks generated for this work. Here, we explore the parameter
space of the HOD models and constrain it with the observational
data presented in Section 3. We construct our data vector, θ , as a
combination of the monopole, the quadrupole, and the projected
correlation function, at different scales (see also Section 3):

θ0,2,rp = {ξ0(s0), ξ2(s2), wp(rp), }
∀ {15 < s0 < 40;

10 < s2 < 25; 0.02 ≤ rp ≤ 4.5} [Mpc h−1]. (38)

We choose these scales so that the information in each statistics
are complementary. The range of scales considered are enclosed by
the two dotted vertical lines in Fig. 7, which is described in detail
in Section 5.7. The wp is cut at rp,max = 4.5 Mpc h−1 so that it mostly
contains information from the 1-halo term (see Figs 3, 4, and 5) given
that the amplitude of the 2-halo term is set by the bias, which is fixed.
As shown in Fig. 7, below rp,min = 0.02 Mpc h−1 there is sudden
change in the behaviour of wp(rp) for the observational data. This
might be due to some not fully accounted for systematic errors. As
we have covered a wide range of the 1-halo term at these small scales,
which are well below the fibre collision diameter scale (Section 3.1),
we do not to include points below rp ≤ rp,min = 0.02 Mpc h−1.

For the monopole, we only use quasi-linear scales (15 < s < 40),
which for most cases will not be affected by the choice of HOD
parameters (once b is fixed), but it does help ruling out some extreme
models. For the quadrupole, we also use quasi-linear scales. In this
case, those scales enter mildly in the 1-halo velocity term, as we saw
in Section 4.4 that these scales are already affected by choices of
the velocity profiles. As we explained in Section 3, there are some
systematics that have not been removed in this study because the
way they were eliminated in Tamone et al. (2020) would imply a big
change for the definition and interpretation of the quadrupole. For
this reason, we use s2,max = 25 Mpc h−1, which is the scale at which
the effect starts to appear.

We note that the scale choices previously mentioned can affect
the results that we find in the subsections below, so these have to
be interpreted carefully. In Appendix C, Supporting Information, we
look at changes in the scale cuts, finding qualitatively similar results
to the fiducial choices. In the absence of systematic errors one would
not need to worry about choosing certain scales, and any redundant
information would be accounted for by the covariance matrix. Hence,
the study in Appendix C, Supporting Information must be understood
as a consistency check in order to search for possible systematics not
accounted for. We also prefer to choose shorter data vectors because
with larger and more correlated data vectors the inversion of the
covariance matrix becomes numerically noisier or even unfeasible
by standard methods.

We now explore the HOD models by creating 27 (1Gpc h−1)3

mock catalogues at each parameter space point, following a grid in
parameter space that is refined at later iterations. We compute the
different 2PCF of these mocks. Their mean will be our theory vector
θ th at a given point in the explored parameter space, for which we
compute the χ2 against the data vector θdata:

χ2 = (
θ th − θdata

)T
C−1

(
θ th − θdata

)
, (39)

with C the covariance matrix of θ . Our best fit is then defined as the
point in parameter space that minimizes χ2.

In order to compute C, we use the 1000 EZMOCKS presented in
Zhao et al. (2020). We use a version of the mocks that include the

Figure 7. 2-point correlation functions (ξ0, ξ2, wp) of the mocks that best
fit the eBOSS data, under different assumptions mocks 1, 2, 3, 4, 6, 13, 16,
and 11 of Table 3, as explained in Sections 5.2, 5.3, 5.4, and 5.5. The stars
show the clustering of eBOSS data corrected with the PIP + ANG weights
(Section 3.4). Points show the eBOSS data with the CP corrections instead
of the ANG + PIP for wp (the only case where differences are noticeable).
We use as reference model the mock 11 for the ratios and the shaded area
represents the error bars derived from the diagonal of the covariance matrix
in equation (40). The vertical lines represent the interval of scales considered
for the fits.
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Table 3. List of best-fitting mocks under different assumptions. For each best fit, we write from left to right: a number in order to label it (Mock), the mean
HOD choice (HOD), the fraction of satellites (fsat), the model parameters β, K, αv , the profile choice, the choice of infall velocity, and the χ2 of the mock with
respect to the data for the projected correlation function, the quadrupole, the monopole, and the combined χ2. Variables that are set free are in bold. For the
details on the modelling see Section 4, and for a description of the fits see Section 5.

Mock HOD fsat β K αv Profile vinfall χ2
wp χ2

2 χ2
0 χ2

tot (bins: 14+3+5)

0 HOD-3 0.22 0 1 1 NFW 0 21.7 1.1 5.0 31.3

1 HOD-3 0.56 N-I 1 1 NFW 0 17 0.3 4.7 24
2 HOD-3 0.51 0 0.25 1 NFW 0 7.2 0.3 5 12.7
3 HOD-3 0.21 0 1 1.5 NFW 0 22 0.5 5.3 28.3
4 HOD-3 0.21 0 1 1.0 NFW −500 22 0.5 5.0 28

5 HOD-3 0.36 0.0 1 1 PART 0 15.5 0.7 4.7 23
6 HOD-3 0.44 0 0.4 1 PART 0 8 0.3 4.6 13.5
7 HOD-3 0.26 0 1 1.2 PART 0 15 0.2 4.6 21.4
8 HOD-3 0.26 0 1 0.8 PART −500 16 0.9 4.3 21.2

9 HOD-3 0.48 0.10 0.15 1 NFW 0 6 0.3 4.9 10.9
10 HOD-3 0.21 0.0 1 1.5 NFW 0 22 0.5 5.3 28.3
11 HOD-3 0.51 0 0.25 1.0 NFW 0 7.2 0.3 5 12.7

12 HOD-1 0.40 N-I 1 1 NFW 0 17.9 0.3 4.7 25
13 HOD-1 0.43 0 0.25 1 NFW 0 7 0.3 5.0 12.4
14 HOD-1 0.18 0 1 1.6 NFW 0 22 0.3 5.5 28.6

15 HOD-2 0.70 N-I 1 1 NFW 0 21 0.3 4.9 28.4
16 HOD-2 0.70 0 0.25 1 NFW 0 8.1 0.3 4.8 13.8
17 HOD-2 0.22 0 1 1.5 NFW 0 22 0.2 5.4 29.1

eBOSS geometry, but no observational systematics (in particular
no fibre assignment). The effect of the observational systematics is
expected to be minor compared to the need of rescaling explained
below. We reanalyse these mocks with the OUTER RIM fiducial cos-
mology in order to follow the procedure used with the observational
data. This changes the amplitude of the clustering statistics with
respect to using the true cosmology of the EZMOCKS. There is also a
miss-match in the amplitude of wp at scales below the fibre collision
scale regardless of the choice of cosmology. This is expected as the
EZMOCKS were not tuned to match the clustering at highly non-linear
scales. For this reason, we rescale the covariance matrix by

Cij = CEZ
ij

θOR
i · θOR

j

θEZ
i · θEZ

j

, (40)

where CEZ is the raw covariance matrix from the EZMOCKS, θEZ

the mean of the correlation function of the EZMOCKS, and θOR the
correlation function of one of our best-fitting OUTER RIM mocks
(mock 9 in Table 3, with the lowest χ2). This rescaling is derived
from the assumption that the correlation matrix of the EZMOCKS,
their relative uncertainty and the amplitude of the clustering of the
OUTER RIM mock are all correct. We do not expect this choice of
covariance matrix to affect strongly the best-fitting values. In fact, we
also did the same analysis with a diagonal covariance inferred directly
from the standard deviation of the 1Gpc h−1-subboxes of mock 9 in
Table 3, rescaled to the eBOSS volume (as done in Section 3.2 for
the errorbars). For this case, we found results for the best fits similar
to the ones shown here, but with artificially small χ2 contours, given
that no correlation between points was taken into account.

5.2 Baseline model

Our baseline model consists of mock catalogues with the HOD-
3 shape (Section 4.1), satellite galaxies drawn from a Poisson
distribution (β = 0, Section 4.2) following an NFW profile (with

K = 1.0, Section 4.3) and with virial velocities (αv = 1 and vinfall

= 0, Section 4.4). These are the default choices taken in Section 4,
except that now we have not fixed fsat, which is set to vary following
equation (20).

For all the models, we keep constant the linear bias, b = beBOSS,
and set the number density to n = 7 × neBOSS. This number density
is the maximum before reaching 〈Ncen〉 = 1.0 for fsat= 0, where
the model breaks down (i.e. when the number of central galaxies
becomes larger than 1). Having a larger number density reduces the
noise in our theoretical model, θ , hence reducing the noise in the
inferred best fit and χ2 contours.

The best fit from this baseline model is the first entry in Table 3,
mock 0. It has fsat= 0.22+0.02

−0.03, with error bars representing the �χ2 =
1 interval. The best value found for fsat is close to that found by Guo
et al. (2019), 13–17 per cent, where an earlier version of the eBOSS
ELG sample was analysed with the incomplete conditional stellar
mass function model presented in Guo, Yang & Lu (2018).

The baseline model gives a poor fit to the observational data, so
we explore other alternatives below.

5.3 Baseline + 1 parameter model

In this subsection, we relax the baseline model by allowing an extra
degree of freedom. The change is introduced, one at a time, in one of
the three following aspects: (i) a non-Poissonian PDFs for satellite
galaxies, (ii) rescaling the satellite density profile by a factor K, and
(iii) modifying the velocity dispersion by a factor αv . Additionally,
for the αv model we also consider a separate case with a net infall
velocity, vinfall. The results are summarized in the second tier of
Table 3, mocks 1–4, and in Fig. 8. This figure shows the χ2 as a
function of fsat and another variable (β, K, or αv) for wp, ξ 2 and the
combination of {wp, ξ 2, ξ 0}.

In the case of modifying the PDF of satellite galaxies, the nearest
integer is represented with a negative β in Fig. 8 (with an arbitrary
value of β = −0.1), the Poisson distribution with β = 0 and negative
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Figure 8. χ2 contours for the baseline + one free parameter (different in each subfigure) model. Top left: β is set free, with β = 0 representing the Poisson
distribution, β > 0 a negative binomial distribution, and β = −0.1 (arbitrary choice for the representation) the nearest integer distribution (see Section 4.2). Top
right: The concentration of the satellite profiles are rescaled by a free parameter K, c → K · c (see Section 4.3). Bottom left: The velocity dispersion is allowed
to vary, σ vir → αvσ vir (see Section 4.4). Bottom right: An infall velocity component is added, vinfall= −500 ± 200 km s−1, while still letting αv free. Within
each subfigure, we show the χ2 component of the quadrupole (bottom panel), projected correlation function (middle panel), and the combination full fit to the
monopole, quadrupole, and wp (top panel, scales are defined in equation 38). Except for the variations specified in each subfigure, we assume the baseline model
described in Section 5.2: HOD-3, NFW profile, β = 0, K = 1, αv = 1, and vinfall=0. The models shown here assume, n = 7 × neBOSS. The filled stars show the
minimum χ2 for the statistics used in each subfigure. In the top panels, we also include a filled circle for the minimum χ2 if we exclude the monopole of the fit.

binomial distributions with β > 0. Remarkably, the best fit shows a
preference for low scatter, with the nearest integer PDF, and a large
satellite fraction (fsat = 0.56). We highlight that there is not a smooth
transition between a Poisson and a nearest integer PDF in terms of
scatter, resulting in the break that appears at β = 0 in the top left
subfigure of Fig. 8.6 In line with the effects found in Section 4.2,
ξ 2 does not constrain β, but does set a lower limit for fsat (with a
very slight degeneracy with β). wp constrains β to be small, with
a notable degeneracy with fsat. A preference for a sub-Poissonian
distribution, β < 0, is at odds with the results from SAMs (Jiménez

6We use the CONTOURF function from the PYTHON library MATPLOTLIB for
these figures. This function interpolates the colour between discrete values.
This is why the break appears below β = 0.

et al. 2019). However, as we will show in the following subsections,
our best-fitting values for β depend on other model assumptions.

When we vary the profile concentration, setting K free (see Sec-
tion 4.3), we find a similar effect, with ξ 2 only constraining fsat and
wp driving the main constraints. We find the best fit for K = 0.25
(with a step of 0.05 in the parameter space grid) and fsat = 0.52,
clearly favouring profiles less concentrated than NFW, in line with
previous studies (see references in Section 4.3).

In the bottom left of Fig. 8, we show what happens when allowing
for a velocity bias αv . In this case, wp is the quantity that is insensitive
to the choice of αv (in lines with Fig. 6), constraining only fsat. ξ 2

shows a strong degeneracy between fsat and αv . When combining
both, we find the best fit at fsat = 0.21 and αv = 1.5. For the NFW
profiles, αv represents a deviation from the galaxy velocity dispersion
found in Bryan & Norman (1998). Hence, the observational data
prefers an enhanced velocity dispersion within this model.
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Building upon the preference for a larger velocity dispersion,
we also include a net infall velocity of vinfall∼ −500 km s−1 (see
Section 4.4), letting αv to also vary. The bottom right-hand panel of
Fig. 8 shows similar results to the previous case, but with a preference
for lower αv values. The constraints from wp remain the same and
those from ξ 2 shift and get distorted. In this case, we get a best
fit of αv = 1.0 and the same fraction of satellites fsat = 0.21. This
suggest that including vinfall∼ −500 km s−1 enhances the finger-of-
god effect, in a similar way as with ∼0.5σ vir. We note again that the
modelling for vinfalladopted here is more extreme than that of Orsi &
Angulo (2018).

Of the four extensions to the baseline model considered here, the
modification of the satellite density profile (with the concentration
controlled by K) yields the best fit to the data, with a reduced χ2

below unity (we do not show explicitly the reduced χ2 as it can
be derived from the data already provided in Table 3). We consider
combinations of these extensions in Section 5.5.

5.4 Particles + 1 parameter model

In this section, we repeat the variations described in Section 5.3, but
using the particle position and velocity profiles, PART, instead of the
NFW profile and virial theorem velocities. A lower density n = 1
× neBOSS is used, as the computation is much more demanding in
this case. With this choice, we also minimize the cases for which we
run out of particles. However, this choice increases the noise in the
modelling of θ , giving, in turn, noisier contours.

The results are summarized in Fig. 9 and the third tier of Table 3,
mocks 5–8. The best fits for these models, follow roughly the results
described in Section 5.3, with some differences:

(i) In the {fsat, β} plane, this time the data prefer the Poisson
PDF (β = 0), together with a lower fraction of satellites, following
a similar degeneracy as that seen in Section 5.3.

(ii) Results in the other planes ({fsat, K}, {fsat, αv}, {fsat,
αv+vinfall}) show qualitatively similar results to the NFW case.

(iii) The best PART fit give K = 0.4, which, although closer to the
baseline model (K = 1) than the NFW case, is clearly preferring less
concentrated profiles, K < 1. The differences in the profiles, seen in
the top panel of Fig. 5, change the preferred value of K. The satellite
fraction is also somewhat lower than for the NFW case.

(iv) The best fit αv gets shifted by �αv ∼ −0.3 (−0.2 for the vinfall

case) when using PART profiles.
(v) For the PART models, αv corresponds to the definition of

galaxy velocity bias: the ratio of the velocity dispersion of galaxies
to the one of dark matter particles. The value found here, αv = 1.2,
is compatible with that found in subhaloes in simulations (Diemand,
Moore & Stadel 2004).

(vi) For those models with αv set as a free parameter (with or
without vinfall), the PART models give better fits than for the NFW
ones. For the other cases, the χ2 has similar values.

As for both NFW, with PART profiles we find the effect of vinfall to
be mostly equivalent to a shift in αv . Thus, we will not explore further
the vinfall=−500 case in the following subsections or in Appendix C,
Supporting Information.

5.5 Baseline + 2 parameter mode

We keep increasing the level of complexity of the model by setting
free fsat and two other parameters, while fixing the rest to the default
choices, including an NFW profile. We set free at once the following
groups of parameters: {fsat, β, K}, {fsat, β, αv}, and {fsat, αv , K}. The

results from these fits are summarized in Fig. 10 and the fourth tier
of Table 3, mocks 9–11. We highlight some of the main results:

(i) When both β and K are free, the data prefer positive β and K
gets even smaller (K = 0.15, see Table 3).

(ii) {fsat = 0.48, K = 0.15, β = 0.1} gives the best fit of all models
considered.

(iii) When both β and αv are set free, the data prefer a Poisson
distribution (unlike when only β was free, Section 5.2) and we
recover the αv = 1.5 found in Section 5.2 (for αV free).

(iv) When both K and αv are varied, we recover the K = 0.25 case
(like in Section 5.2) and the data prefer a model with the fiducial
virial theorem velocity, αv = 1.

(v) A general result is that a low K (a less concentrated profile
than NFW) is necessary to obtain a good fit to the data.

5.6 HOD variations + 1 parameter

So far in this section, we have used the HOD-3 model in all
cases. In this subsection, we use the HOD-1 and HOD-2 functions
(equations 16, 18, and Table 2) for the mean HODs, and explore the
parameter space by leaving fsat and one parameter (β, K, or αv) free.
The results are summarized in the last 2 tiers of Table 3, mocks 12–7,
and Fig. 11.

We find that the choice of mean HOD changes the preferred
fraction of satellites. In the case of the HOD-1, fsat is always found
lower than for models assuming the HOD-3. This can easily be
explained by the behaviour of the wp presented in Fig. 3. For the
same value of fsat = 0.30, the wp 1-halo term is larger for HOD-1 and
lower for HOD-2. Hence, with respect to HOD-3, HOD-1 models
will need a lower fraction of satellite, and HOD-2 a higher one, to
match the wp from the data.

Remarkably, the best-fitting value of the rest of parameters (β, K, or
αv) and the overall shape of the χ2-contours remain unchanged. This
implies that the HOD shape is not degenerated with any parameter
other than fsat. Additionally, the χ2 shown in Table 3 mildly disfavours
HOD-2.

5.7 Best fits

Finally, we compare the correlation functions of the data to the best
fit mocks in several of the most representative scenarios assumed
in past subsections. Results are shown in Fig. 7 with the lowest χ2

mock (9 in Table 3) as a reference.
All the best fits shown in Fig. 7 reproduce similarly well the

monopole of the data over the range of selected scales. We also find
that the quadrupoles from all the mocks shown agree with the data,
within the error bars. Nevertheless, we find a differentiated shape for
the quadrupole for the two fits (with and without vinfall) with fsat =
0.21 and fitted αv .

When studying the projected correlation function, the differences
between mocks are clearer partially because for this statistics we
explore a larger range of scales. Here, we see clearly that only
models with K < 1, i.e. with profiles less concentrated than the
NFW/PART default one, can fit well small scale data. We can
see the differentiated shape induced in the wp for the different
ingredients for the HOD (e.g. β versus K versus αv). We note
that the HOD shape does not change much the wp once the fsat

is free to compensate for the excess or deficit of small scale
clustering. We also see the importance of using the PIP + ANG
weights at scales rp < 1 Mpc h−1, with the traditional CP weights
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Figure 9. χ2 contours for the particle + fsat + one free parameter model. We follow the same structure as in Fig. 8, but using the particles profiles and velocities
as a starting point for the models. See Sections 4.3 and 4.4 for the details of the differences in the modelling. Note that this figure is made from mocks with
lower number density, n = 1 × neBOSS, yielding noisier contours.

resulting in a lower clustering (more details in Mohammad et al.
2020).

6 C O N C L U S I O N S

In this paper, we study a series of HOD models for star-forming ELGs
motivated by theoretical and observational studies in the literature.
We create mock ELG catalogues using OUTER RIM simulation haloes
at z = 0.865. This is one of the largest (L = 3 Gpc h−1) existing dark
matter-only N-Body simulations within its mass resolution range,
mp ∼ 2 · 109M� h−1. Throughout this study, we fix the galaxy bias
of the mock ELGs to that observed in the eBOSS data catalogue and
we take its number density, n = neBOSS, as a reference. We use n =
neBOSS for error estimations or reporting HOD parameters, and × 7 to
10 higher density when computing clustering signal at a given point
of the parameter space. We make the mock catalogues available so
they may be used for model testing in preparation for future surveys.7

7http://popia.ft.uam.es/eBOSS ELG OR mocks

We revisit the HOD model for the case of ELGs, reconsidering
most of the assumptions that go into it. We consider different shapes
of the mean HOD for central galaxies, 〈Ncen(M)〉: from the classical
smoothed step function (HOD-1), through a model with decaying
occupation for higher masses (HOD-3) up to a model with no
occupation at large masses (HOD-2). We set our default choice to
HOD-3 (Section 4.1) with a piecewise Gaussian plus a power law
that best fits the results from the SAM of galaxy formation and
evolution presented in Gonzalez-Perez et al. (2018). For the mean
HOD of satellite galaxies, 〈Nsat(M)〉, we always use a power law, as
is typically done in the literature. We allow three HOD parameters
to vary in order to control the number density n, the bias b, and the
fraction of satellites fsat, while fixing the scaling relations for the other
parameters (see Table 2). We highlight that one basic need to match
the number density and the large-scale bias of a ELG sample is to ac-
count for the incompleteness in stellar mass of the ELG central galaxy
sample (see also Favole et al. 2016). This is common to other samples
clearly incomplete in stellar mass such as QSOs (Lyke et al. 2020).

We do not focus exclusively on the functions and parameters that
control the shape of the mean HOD, but also on the other choices
that need to be made when populating haloes with satellite galaxies.
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Figure 10. χ2 contours for the baseline + 2 parameters model. These two
parameters are {β & K}, {β & αv}, and {K & αv} for the top, middle, and
bottom subfigures, respectively. In this figure, we only show the combined
({ξ0, ξ2, wp}) χ2. Within subfigures, panels are used to represent an extra
dimension, which is set constant within the panel, and varied across panels.
The star represents the minimum of the χ2.

The first of these choices is the PDF P(Nsat|〈Nsat〉). We consider a
Poisson distribution as our default (β = 0), but we also consider a
negative binomial with greater scatter (β > 0) and a nearest integer
function (β < 0).

We place satellite galaxies either following an NFW profile or the
particle distribution within haloes. We allow for a rescaling of the
profiles as we expect ELGs to follow different profiles than dark
matter. We assign velocities either using the virial theorem for the
NFW profiles or simply the particle velocities. On top of that we
allow for a velocity bias and for the inclusion of a net infall velocity.

With different combinations of the above choices, we construct
a range of HOD models. We study how each of these models affect
the clustering of mock galaxies, mainly via the projected correlation
function wp and the quadrupole ξ 2. We find that these statistics
help separating different effects. Although the fraction of satellites
affects both statistics, the PDF, and the position assignment affect
mostly the projected correlation. The velocity assignment mostly
affects the quadrupole. We also studied the monopole, but it shows
nearly no variations on the linear scales because we fixed the bias
to that of the data.

In Section 5, we fit to the eBOSS ELG data, mocks produced with
different HOD models. Some general findings are as follows:

(i) In all the analysed scenarios, the observational data prefers
dispersed profiles for ELGs (K = 0.15 − 0.4).

(ii) We also find a mild preference (lower χ2) for particle profiles
as opposed to NFW ones. However, this preference goes away if we
let K vary.

(iii) We find some preference for a positive velocity bias (αv > 1),
i.e. a larger velocity dispersion of satellite galaxies around the halo
velocity, although once K is set free we recover the αv = 1.0 scenario
(no velocity bias).

(iv) The PDF preference depends a lot on the rest of assumptions.
We find that negative, positive, and vanishing β are preferred in
different scenarios.

(v) The shape of the mean HOD does have some effect on the clus-
tering but can be mostly compensated by increasing or decreasing the
fraction of satellites. After that change in fsat, the effect of the HOD
shape is found subdominant. The data slightly disfavour HOD-2.

(vi) For HOD-3, the fraction of satellites found to match the
clustering vary from fsat ∼ 0.21, for the cases where both K and
β are fixed to their default values (1 and 0, respectively), to fsat ∼
0.50 when either of those parameters are let vary. In the latter case,
fsat rises to 0.70 when assuming HOD-2 and it goes down to ∼0.40
for HOD-1. The change of profile (to PART) also affects fsat.

(vii) The key ingredient to match the data seems to be the profile
rescaling with a factor K, c → K · c (see Section 4.3).

We find that small-scale clustering strongly depends on the details
of how we place satellite galaxies within haloes. These details may
be more relevant than the shape of the mean HOD, which is the
quantity many studies in the literature put the focus on.

The general results obtained here, such as ELGs distributing in
more disperse profiles than NFW, are expected to also be applicable
to star-forming galaxies at the studied redshifts, independently of
their particular selection. Thus, this work is relevant for DESI, that
will select ELGs also based on their [O II] flux, but also Euclid and
other surveys targeting star-forming galaxies at z ∼ 1 in different
ways from eBOSS.

This study shows what scenarios of the ELG–dark matter relation
are preferred or ruled out by the observational data. These findings
have implications for the modelling of physical processes that shape
the formation and evolution of ELGs. Studies like this one, can give
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Figure 11. χ2 contours of the HOD-1 (left subfigure) and HOD-2 (right subfigure) mocks, constructed varying fsat and one other parameter (β, K, or αv as
indicated in each panel). The rest of default choices are the same as in Fig. 8. All the panels in this Figure show results for the full data vector wp + ξ2 + ξ0.

us a unique insight of the physics of galaxy formation and evolution
of ELGs. Such study could also provide information on other samples
that will be available with current and future cosmological surveys.

In this study, we did not include galaxy assembly bias, i.e. the
dependence of the galaxy clustering on properties other than the halo
mass. This is an effect widely seen in model galaxy (e.g. Zehavi
et al. 2018). Although several observational studies have concluded
that galaxy assembly bias is not a strong source of systematic uncer-
tainty (Tinker, Wetzel & Conroy 2011; Walsh & Tinker 2019), others
have found evidence of galaxy assembly bias (Obuljen, Percival &
Dalal 2020). Exploring such effect is beyond the scope of this work
partly because we only had access to limited information of the
FoF halo catalogue. Additionally, other approaches, such as subhalo
abundance matching, might be more adequate for such purpose (e.g.
Contreras, Angulo & Zennaro 2020). Another effect that has not
been considered in this study is the conditional probability of Nsat

on whether or not the central galaxy is an ELG. This is known as
galactic conformity and has been studied elsewhere (e.g. Kauffmann
et al. 2013; Hearin, Watson & van den Bosch 2015; Lacerna et al.
2018; Alam et al. 2019).

In this study, we have not explored the change of the selection
function and galaxy evolution within the redshift range of this ELGs
sample. The results from Guo et al. (2019) indicate that the variation
in number density at different redshifts has the largest effect on the
derived eBOSS ELG mean HODs. This suggests that the shape and,
likely, distribution of satellite galaxies, could be maintained, while
adjusting the target number density. Similar results are obtained for
model ELGs (Gonzalez-Perez et al. 2018). We defer to the future a
more in-depth study of the evolution of ELG samples.

Our results could be sensitive to the choice of fiducial cosmology.
In order to assess that, we would need other OUTER RIM-size
simulations at different cosmologies. This is something beyond the
scope of this project, but stage-IV surveys already in preparation
might need to consider this.

The eBOSS ELG program, with the largest ELG sample to
date serves as a bridge from stage-III to stage-IV experiments,
where ELGs will be crucial. ELGs probe, on average, lower halo
masses compared to LRGs and have a more complicated selection
function. This posed the question whether ELGs would have in turn a
complicated relation to dark matter that could have implications when

interpreting their anisotropic clustering to understand cosmology.
This study probes a very wide variety of plausible scenarios within
our current knowledge of ELG formation and evolution. The mocks
presented here have been analysed following the same procedure
used to derived the eBOSS ELG BAO + RSD measurements (de
Mattia et al. 2020; Raichoord et al. 2020; Tamone et al. 2020; see
Appendix B and Alam et al. 2020 for more details), finding no
evidence of any bias on the derived parameters within the statistical
errors provided by the set-up of OUTER RIM simulation, which is
much lower than the eBOSS uncertainties.

If we want to extract the full cosmological potential of future
surveys, we will need to consider smaller and smaller scales in the
analysis. Studies like this one will need to be carried out in order
to validate the correct extraction of cosmological information and
to test ways to disentangle cosmology from baryon physics when
interpreting galaxy clustering.
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Carretero J., Castander F. J., Gaztañaga E., Crocce M., Fosalba P., 2015,

MNRAS, 447, 646
Chen Y.-C. et al., 2017, MNRAS, 466, 1880
Child H. L., Habib S., Heitmann K., Frontiere N., Finkel H., Pope A., Morozov

V., 2018, ApJ, 859, 55
Cochrane R. K., Best P. N., 2018, MNRAS, 480, 864
Cochrane R. K., Best P. N., Sobral D., Smail I., Wake D. A., Stott J. P., Geach

J. E., 2017, MNRAS, 469, 2913
Comparat J. et al., 2013, MNRAS, 428, 1498
Comparat J. et al., 2016, A&A, 592, A121
Contreras S., Baugh C. M., Norberg P., Padilla N., 2013, MNRAS, 432, 2717
Contreras S., Angulo R., Zennaro M., 2020, preprint (arXiv:2005.03672)
Cooray A., Sheth R., 2002, Phys. Rep., 372, 1
Darvish B., Sobral D., Mobasher B., Scoville N. Z., Best P., Sales L. V., Smail

I., 2014, ApJ, 796, 51
Davies L. J. M. et al., 2019, MNRAS, 483, 1881

Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985, ApJ, 292, 371
Dawson K. S. et al., 2016, AJ, 151, 44
de Mattia A. et al., 2020, MNRAS, submitted
DESI Collaboration, 2016, preprint (arXiv:1611.00036)
Diemand J., Moore B., Stadel J., 2004, MNRAS, 352, 535
du Mas des Bourboux H. et al., 2020, ApJ, 901, 153
Einasto J., 1965, Tr. Astrofiz. Inst. Alma-Ata, 5, 87
Favole G. et al., 2016, MNRAS, 461, 3421
Favole G. et al., 2019, MNRAS , 497, 5432
Feldman H. A., Kaiser N., Peacock J. A., 1994, ApJ, 426, 23
Gao L., Navarro J. F., Cole S., Frenk C. S., White S. D. M., Springel V.,

Jenkins A., Neto A. F., 2008, MNRAS, 387, 536
Geach J. E., Sobral D., Hickox R. C., Wake D. A., Smail I., Best P. N., Baugh

C. M., Stott J. P., 2012, MNRAS, 426, 679
Gil-Marin H. et al., 2020, MNRAS, 498, 2492
Gonzalez-Perez V. et al., 2018, MNRAS, 474, 4024
Gonzalez-Perez V. et al., 2020, MNRAS, 498, 1852
Gunn J. E. et al., 2006, AJ, 131, 2332
Guo H., Yang X., Lu Y., 2018, ApJ, 858, 30
Guo H. et al., 2019, ApJ, 871, 147
Hand N., Feng Y., Beutler F., Li Y., Modi C., Seljak U., Slepian Z., 2018, AJ,

156, 160
Hearin A. P., Watson D. F., van den Bosch F. C., 2015, MNRAS, 452, 1958
Hearin A. P., Zentner A. R., van den Bosch F. C., Campbell D., Tollerud E.,

2016, MNRAS, 460, 2552
Hearin A. P. et al., 2017, AJ, 154, 190
Heitmann K. et al., 2015, ApJS, 219, 34
Heitmann K. et al., 2019, ApJS, 245, 16
Hernández-Aguayo C., Prada F., Baugh C. M., Klypin A., 2020, MNRAS,

preprint (arXiv:2006.00612)
Hou J. et al., 2020, preprint (arXiv:2007.08998)
Jackson J. C., 1972, MNRAS, 156, 1P
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APPENDIX A : C LUSTERING IN FOURIER
SPAC E

For completeness, in this Appendix, we analyse the clustering of
the mock catalogues presented in Section 4 (Figs 3, 4, 5, and 6)
in Fourier space (Figs A1, A2, A3, and A4). The power spectrum

Figure A1. Power Spectrum multipoles of mean occupation halo variations:
HOD shapes (HOD-1, HOD-2, HOD-3), and fraction of satellites (fsat). These
correspond to the same mocks as shown in Fig. 3. In the top panel, we present
both the monopole (upper set of lines) and quadrupole (lower set of lines).
In the middle/lower panel, we show the ratio of the monopole/quadrupole to
the reference model: {HOD-3, fsat=0.30, NFW, K = 1, β = 0, αv = 1}.

Figure A2. Power Spectrum multipoles of mocks with different Point
Distribution Function Variations: nearest integer, Poisson (β = 0) or Negative
Binomial (0 < β < 1)). These correspond to the mocks shown in Fig. 4. In the
top panel, we present both the monopole (upper set of lines) and quadrupole
(lower set of lines). In the middle/lower panel, we show the ratio of the
monopole/quadrupole to the reference model: {HOD-3, fsat=0.30, NFW, K
= 1, β = 0, αv = 1}.

Figure A3. Power Spectrum multipoles of mocks with different position
assignment (NFW versus PART and different values of K). These correspond
to the same mocks as shown in Fig. 5. In the top panel, we present both
the monopole (upper set of lines) and quadrupole (lower set of lines). In the
middle/lower panel, we show the ratio of the monopole/quadrupole to the
reference model: {HOD-3, fsat=0.30, NFW, K = 1, β = 0, αv = 1}.
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Figure A4. Power Spectrum multipoles of mocks with different velocity
assignment (NFW versus PART, different values of αv and optionally vt =
vinfall) as indicated in the legend. Due to visualization purposes, we show
slightly different combinations of choices with respect to Fig. 6. In the top
panel, we represent the monopole (upper set of lines), quadrupole (middle set
of lines), and hexadecapole (lower set of lines). In the lower panels, we show
the ratio of the monopole (P0), quadrupole (P2) and hexadecapole (P4) to the
reference model: {HOD-3, fsat=0.30, NFW, K = 1, β = 0, αv = 1}.

multipoles are computed in the L = 3 Gpc h−1 box using periodic
conditions and redshift space distortions along the Z-axis. We use
the NBODYKIT code (Hand et al. 2018) to compute the power
spectrum multipoles P�(k) using a grid size of 5123 and Triangular-
Shape-Cloud mass assignment together with interlacing (Sefusatti
et al. 2016). This configuration gives a Nyquist frequency of kNy

= 0.54h Mpc−1. We refer to de Mattia et al. (2020) for further
details.

Qualitatively, the results are similar to those found in Section 4, but
in some cases the information is spread differently in k space. We find
that the effects that did not change the quadrupole in configuration
space, ξ 2, have a very small effect in P0 and P2 at the scales shown
here. This is very clear in Fig. A3, where profile variations barely
change the power spectrum multipoles. In those lines, in Fig. A2,
we find a mild effect of the PDF on to the multipoles. On the other
hand, the effects that did change the ξ 2 have a strong effect on P2

but are also relevant for P0. This is clearly seen when varying the

fraction of satellites (Fig. A1) or the velocity profiles (Fig. A4). The
above findings can be summarized by saying that power spectrum
multipoles, within the explored scales, are affected only by the
Finger-of-God effect from the 1-halo term.

In Fig. A4, for completeness, we also show the hexadecapole
P4(k). We find the the dependence on the satellite velocity assignment
scheme is relatively low. We note that de Mattia et al. (2020) finds
that, for the eBOSS uncertainty, the hexadecapole is compatible with
zero.

A remarkable result is that, whereas for the analysis in configu-
ration space we could clearly split the 1-halo contributions from the
large-scale signal used for cosmology, in P�(k) the 1-halo does affect
modes with k ∼ 0.1h Mpc−1, which are scales that are also used BAO
and RSD analysis. Despite this, we show in Appendix B that this has
a negligible effect on the derived cosmological constraints, as the
effects are absorbed by the nuisance parameters.

A P P E N D I X B: C O S M O L O G I C A L C O N S T R A I N S

In this Appendix, we present the results of fitting a RSD and
anisotropic Alcock–Paczynski model (with fσ 8, α�, α⊥ as free param-
eters) to the mock catalogues presented in Section 4 based on their
power spectrum multipoles [Pl(k), Appendix A]. These mocks have
been analysed following the methodology used for the eBOSS data
in de Mattia et al. (2020). The model considered here combines reg-
ularized perturbation theory with the Taruya, Nishimichi, and Saito
RSD model (Taruya, Nishimichi & Saito 2010; Taruya et al. 2012).

A representative subset of the mocks presented in this work is also
shown in Alam et al. (2020), together with other complementary
N-Body mocks. In that paper, we not only show the results from
fitting those mocks in Fourier space, but also in configuration space
ξ�, following the methodology used for the data in Tamone et al.
(2020). We refer to Alam et al. (2020) for details on the way
the fits presented here were performed, with the only difference
being that here we only report results using the Z-axis as the line
of sight.

Alam et al. (2020) also reports a systematic error budget due to pos-
sible theory uncertainties of ({ 3.3 per cent, 1.8 per cent, 1.5 per cent}
for {fσ 8, α�, α⊥}). These are conservative systematic error budgets,
corresponding to 2× σ stat, as no significant deviation was found at the
2σ stat level, with σ stat being the statistical uncertainty on the OUTER

RIM simulation.
For completeness, here we present the fits in Fourier space of a

wider range of mocks sweeping the parameter space of the HOD
considered as done in the main body of this paper. We consider
this analysis more necessary for the Fourier space case, as the
cosmological and HOD scales mix more than in configuration space.

Fig. B1 shows the results all the fits, following the same notation
and line-styles as in Figs A1, A2, A3, and A4. We find that the fits
are consistent with the OUTER RIM cosmology (the dashed horizontal
line) within the systematic error budget, marked by the grey bands
in Fig. B1.

From Fig. B1, it is clear that the cosmological constraints are
robust against the different details of the HOD modelling, and the
same result is found in Alam et al. (2020). We also note that the
theoretical systematic error reported is an order of magnitude lower
than the statistical error of eBOSS.
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Figure B1. Cosmological parameters fits for different mocks presented in this paper. On the top row, we show the product of the growth rate and the normalization
of the power spectrum fσ 8, on the middle row of panels we show the Alcock–Paczynski distortion along the line of sight α� and on the bottom row we show the
Alcock–Paczynski parameter on the angular direction α⊥. From left to right, we show the same effects as in Figs A1, A2, A3, and A4, respectively, following
the same line styles. The error bars show the statistical uncertainty of the best fit. The horizontal grey-dashed line represents the true value for OUTER RIM

simulation, and the grey band the systematic error reported in Alam et al. (2020).
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