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ABSTRACT
A significant fraction of an exoplanet transit model evaluation time is spent calculating projected distances between the planet and
its host star. This is a relatively fast operation for a circular orbit, but slower for an eccentric one. However, because the planet’s
position and its time derivatives are constant for any specific point in orbital phase, the projected distance can be calculated
rapidly and accurately in the vicinity of the transit by expanding the planet’s x and y positions in the sky plane into a Taylor series
at mid-transit. Calculating the projected distance for an elliptical orbit using the four first time derivatives of the position vector
(velocity, acceleration, jerk, and snap) is ∼100 times faster than calculating it using the Newton’s method, and also significantly
faster than calculating z for a circular orbit because the approach does not use numerically expensive trigonometric functions.
The speed gain in the projected distance calculation leads to 2–25 times faster transit model evaluation speed, depending on
the transit model complexity and orbital eccentricity. Calculation of the four position derivatives using numerical differentiation
takes ∼ 1μs with a modern laptop and needs to be done only once for a given orbit, and the maximum error the approximation
introduces to a transit light curve is below 1 ppm for the major part of the physically plausible orbital parameter space.
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1 IN T RO D U C T I O N

An exoplanet transit model aims to reproduce the photometric signal
caused by a planet crossing over the limb-darkened disc of its host
star (Mandel & Agol 2002; Seager & Mallen-Ornelas 2003; Winn
2010). Evaluation of the transit model can generally be divided into
two parts: (i) calculation of the projected planet–star centre distance,
z; and (ii) calculation of the flux decrement caused by a planet
occluding a part of the stellar disc visible to the observer.

The main focus in transit model development has been on the
second part, but the calculation of projected distances can actually
take a significant fraction of the total model evaluation time. The
standard approach for calculating z for a single point in time requires
several (≈6) trigonometric function calls and solving the Kepler’s
equation numerically. While worrying about the computational cost
of using trigonometric functions might seem frivolous, z needs to
be calculated at least once for each photometric data point when
evaluating an exoplanet transit model, and multiple times if the model
needs to be supersampled (such as for Kepler and TESS long cadence
light curves, Kipping 2010). Further, it is already common to have
photometric data sets of tens or hundreds of thousands of data points
(such as a four-year Kepler light curve), and a transit light-curve
analysis consisting of a posterior optimization and Markov Chain
Monte Carlo sampling steps can require the model to be evaluated a
large number (∼106) of times over all the data points.
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Thus, while calculating z using the standard approaches is a
trivial matter for small data sets, speeding up the calculation has
a potential to yield significant real-life performance gains when
modelling modern data sets. While accuracy is more important than
speed for a scientific code, a speed increase without any significant
sacrifices in accuracy gives freedom for exploratory analyses and
experimentation, which can lead to new interesting discoveries, or,
at least, increase the reliability of our analyses.

In this short paper, we show how a very simple change in the
computation of z can lead to a significant speed-up of a transit
model without sacrificing model accuracy. The approach is based
on high-school level mathematics (Taylor-series expansion, a tool
that has been used in astronomy and astrophysics for centuries,
especially in the research of eclipsing binaries) and has been tested
thoroughly. The approach still requires the ability to calculate the
eccentric anomaly to a high precision in order to calculate the
position derivatives using numerical differentiation, but this needs
to be done only for a small number of points in time (seven in our
implementation) for a single Keplerian orbit, rather than calculating
it for each data point separately.

We provide an example PYTHON implementation of the method
in Appendix A, and the approach has been adopted as the main z

computation method in the PYTRANSIT1 (Parviainen 2015) transit
modelling package.

1https://github.com/hpparvi/PyTransit
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Figure 1. Orbit of a transiting short-period exoplanet on an eccentric orbit.
The figure shows the projected planet–star centre distance (z), the impact
parameter (b), the stellar radius (R�), transit centre time (Tc), and the time
of minimum projected distance (Tb). The two latter are equal for a circular
orbit, but generally differ slightly for an eccentric orbit. Vertical dotted line
shows x = 0 and horizontal dotted line shows y = 0.

2 TH E O RY

Calculation of the projected planet–star separation (z, see Fig. 1) as
a function of time is a necessary step for exoplanet transit model
evaluation. The standard approach for calculating z for a generic
eccentric orbit requires the calculation of the eccentric anomaly from
the mean anomaly, which requires us to solve Kepler’s equation, for
which no closed-form solutions exist. Thus, the Kepler’s equation
needs to be solved using numerical methods, such as iteration or the
Newton’s method. After the eccentric anomaly has been solved, the
computation of z still requires six trigonometric function calls, which
are relatively expensive operations.

Could there be a way to calculate z without the need to solve
Kepler’s equation or use trigonometric functions? Planet’s x and y
positions in the sky plane draw smooth and well-behaved curves
as a function of time, as shown in Fig. 2. The x position is a
monotonically increasing function of time near the transit, and the
y position is a smooth unimodal function with a single minimum
near the transit (this for non-zero impact parameter since y is
constant for b = 0). These factors mean that the positions can likely
be accurately approximated with low-order polynomials near the
transit.

Thus, we choose to use a Taylor-series expansion to represent the
planet’s position in the sky plane as a function of time,

l(t) =
∑
n=0

l(n)(t)

n!
(t − t0)n, (1)

where l is the position (either x or y), t0 is the point around which
the Taylor series is expanded, l(n) is the nth derivative of l evaluated
at point t0, and n! is the factorial of n. Mid-transit time where x = 0
is a natural choice for t0 (although other possibilities exists, such as
the time of minimum projected distance or the time of minimum y
position), after which we only need to select n to ensure a sufficient
accuracy so that the approximation does not affect the transit model
in any significant fashion. After testing the accuracy of different n
(see discussion about accuracy later in Section 4), we chose to use
the four first time derivatives of position: velocity, acceleration, jerk,
and snap.

The first step is to calculate the planet’s position in the sky plane at
mid-transit time and its four time derivatives. For a circular orbit, the
position at mid-transit is [0, −b], where b is the impact parameter.
However, for an eccentric orbit the y position differs from −b.

We use a seven-point central finite-difference method (Fornberg
1988) to calculate the derivatives. This requires us to calculate the

positions at seven uniformly spaced times centred around the mid-
transit time. The calculation of these locations requires using a
standard accurate method for evaluating Keplerian orbits, but this
needs to be done only once for a given orbit.

The velocity, acceleration, jerk, and snap vector component
d (either x or y) can be computed given the points l i = l(t0 −
ih) where i = [ − 3, −2, −1, 0, 1, 2, 3] and h is the
time-step, as2

vd = −d−3 + 9d−2 − 45d−1 + 45d1 − 9d2 + d3

60h
, (2)

ad = 2d−3 − 27d−2 + 270d−1 − 490d0 + 270d1 − 27d2 + 2d3

180h2
, (3)

jd = d−3 − 8d−2 + 13d−1 − 13d1 + 8d2 − d3

8h3
, (4)

sd = −d−3 + 12d−2 − 39d−1 + 56d0 − 39d1 + 12d2 − 2d3

6h4
. (5)

After the derivatives have been calculated, the projected distance can
be computed for time tc by first calculating the time difference to the
nearest transit centre, t,

E =
⌊

tc − t0 + 0.5p

p

⌋
, (6)

t = tc − (t0 + Ep), (7)

where E is the epoch, t0 the mid-transit time, �� denotes the floor
operation, and p the orbital period, and then evaluating the Taylor
series at t as

l = l0 + vt + 1

2
at2 + 1

6
j t3 + 1

24
st4, (8)

z = |l| (9)

where l0 is the position vector at mid-transit, and v, a, j , and s are
the velocity, acceleration, jerk, and snap vectors, respectively.

The approximation requires that the planet’s position is evaluated
at seven points in time for an orbit that does not evolve in time
(i.e. the orbital parameters do not evolve in time). However, if the
orbit is perturbed by external forces, such as other massive bodies
in a multiplanet system, the series terms need to be calculated
separately for each transit. This leads to a photodynamical model
where the terms are calculated using a set of positions calculated
with an n-body integrator, as done in PYTTV by Korth et al.
(in preparation).

The derivatives known, the computation of z requires only mul-
tiplications, summation, and a single square-root operation. Given
the simplicity of the approximation, we provide an example PYTHON

implementation in Appendix A.

3 PE R F O R M A N C E

The real-world improvement in the transit model evaluation speed
depends on how heavy the transit shape model is relative to the z

2We group the expressions slightly differently for the actual implementation to
reduce sensitivity to floating point round-off errors, as shown in Appendix A.
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Figure 2. The exact (solid black line) and approximate (dashed black line) sky-plane x and y values and the projected distance z for three short-period orbits
with different eccentricities. The vertical lines mark the beginning and the end of a transit. The orbits have a common period (1 d), semimajor axis (4 R�),
impact parameter (0.5), and argument of periastron (0). The minimum planet–star separation, dmin, tells the separation between the planet and the star at
periastron.

calculation method (that is, how large fraction of the transit model
execution time is spent on computing the orbit). For the transit model
assuming quadratic stellar limb darkening by Mandel & Agol (2002),
the speed gain is between 6 (eccentric orbit calculated using the
Newton’s method) and 2 (circular orbit), that is, the model is six times
faster to evaluate for an eccentric orbit when z is calculated using a
Taylor-series expansion rather than Newton’s method. For the most
simple transit shape model that assumes uniform stellar disc, the
speed gain is between 24 (eccentric orbit) and 2 (circular orbit). In
both cases, the minimum speed gain is around 2 (i.e. the model is at
least twice as fast to calculate).

4 AC C U R AC Y

While the Taylor-series approximation of z is significantly computa-
tionally faster than the other approaches for calculating z, its practical
usability depends on the error caused to the exoplanet transit model.
The accuracy of the approximation depends on the 3D curvature of
the orbit at the mid-transit time, what again depends on the semimajor
axis, eccentricity, and argument of periastron.

Fig. 2 shows the actual and approximated x and y coordinates
and the projected distance z for three increasingly eccentric short-
period orbits with orbital period, p, of 1 d, scaled semimajor axis,
a, of 4 R�, and impact parameter, b, of 0.5. Fig. 3 shows the
maximum absolute errors in a transit light curve caused by the
approximation for a circular orbit as a function of the planet–star
separation (i.e. the semimajor axis) at mid-transit (upper panel) and
orbital period (lower panel). The orbits correspond to three planets
with radius ratio of 0.15, 0.1, and 0.05 orbiting a star with a stellar
density, ρ�, of 1.2 g cm−3 with an impact parameter of 0.5. The
figure focuses on the ultrashort- and short-period regimes because
the error is below 1 ppm for semimajor axes larger than 5 R�.
Considering the currently known transiting exoplanets, the maximum
absolute error introduced by the approximation would be ∼10 ppm,
staying below 1 ppm for all but the most extreme ultrashort-period
planets.

Figure 3. Maximum absolute error to a transit light curve introduced by
the approximation for a circular orbit. The maximum error is shown for
three planet sizes as a function of the planet–star separation (upper panel)
and period (lower panel) assuming a stellar density of 1.2 g cm−3, impact
parameter of 0.5, and quadratic limb darkening with coefficients (u = 0.24
and v = 0.10).
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Figure 4. Maximum absolute error to a transit light curve introduced by
the approximation for a circular orbit for four different scenarios averaged
over 2 × 105 samples in argument of periastron and impact parameter. The
scenarios (a)–(d) are described in Section 4.

Fig. 4 shows the maximum absolute errors in transit light curves
caused by the approximation for four sets of orbital parameters as
a function of increasing eccentricity. The scenarios are: (a) p =
2.5 d and a = 7.5 R�, (b) p = 5 d and a = 15 R�, (c) p = 15 d and
a = 25 R�, and (d) p = 30 d and a = 40.0 R�, and the eccentricities
cover the range of eccentricities for known planets with periods less
or equal to the scenario period. The maximum error for most of the
physically plausible orbits is below 1 ppm, and still below 10 ppm
for the very eccentric orbits.

5 C O N C L U S I O N S A N D D I S C U S S I O N

A planet’s normalized planet–star centre distance near a transit
(or a secondary eclipse) can be calculated using the planet’s sky-
plane position at mid-transit time and its four first time derivatives
for the whole physically plausible orbital parameter space without
sacrificing transit model accuracy. The approach is ∼100 times faster
to calculate than an approach using Newton’s method to solve the
Kepler’s equation, and yields a 2–24 gain in transit model evaluation
speed. Further, since the approach is based on expanding the sky-
plane position, the position can be used directly with transit models
that break the radial symmetry, such as the gravity-darkened transit
model for rapidly rotating stars by Barnes (2009). A gravity-darkened
model utilizing the approach to compute the (x, y) position has been
added to a coming PYTRANSIT version (v2.4), but here the speed gain
over the standard approach is relatively small due to computational
cost of the transit model itself.

As clear from Figs 3 and 4, the errors introduced by the approxi-
mation into the transit model are negligible. The absolute maximum
error is below 1 ppm for all but the shortest orbital periods and highest
eccentricities, and generally below 10 ppm for any currently known
planets.

We could also expand z directly into a Taylor series instead of
the sky-plane x and y positions. However, the projected distance has
a relatively sharp minimum (compared to the behaviour of x and y
positions), and the time of the minimum does not necessarily match
our mid-transit time for which x = 0. Thus, expanding z would
require one to first find the minimum z time and then include higher
order derivatives into the series. This increases complexity of the
implementation and would also likely reduce numerical stability, so
we decided to prefer the approach described here.

The approach naturally works when modelling transits (or
eclipses) only, and the full Keplerian orbit needs to be evaluated when
modelling phase curves. However, even then it may be beneficial
to calculate the projected distances for the transit model using the
Taylor-series approach, especially if the transit model needs to be
supersampled.

The planet–star contact points (beginning of ingress, T1, end of
ingress, T2, beginning of egress, T3, and end of egress T4, Winn 2010)
are easy to compute numerically. Calculation of a single point takes
≈500 ns, and the calculation of different durations (T14, T23, T12, and
T23) takes between 1–2μs. We do not include the code to calculate the
contact points here, but make it available from PYTRANSIT repository
in GITHUB. PYTRANSIT also uses the T1 and T4 points to create a
transit bounding box in time that is used to ensure we do not waste
time evaluating the model over the out-of-transit points.

The centre time for the series expansion, t0, affects the accuracy. It
could be beneficial to choose t0 to match the time where y is minimum
(so that y velocity is zero), or the time of minimum z. It could also be
possible to choose a different t0 for the x and y expansion. However,
both approaches would require more computation to solve those
locations than just choosing the mid-transit time, and are probably
not worth the work considering that the current approach already
reaches an accuracy that has basically no effect on the transit light
curve model.

The speed gains discussed in Section 3 depend significantly on the
overall implementation of the whole transit model. The examples in
this study consider light curves where most of the points are in transit
(i.e. most of the out-of-transit data have been removed). Having a
light curve with a small fraction of in-transit points (such as when
modelling a full Kepler or TESS light curve directly) will significantly
increase the speed gain unless the transit model is smart enough to
skip the out-of-transit points.

The final effect on the evaluation speed also depends on the other
parts of the posterior computation, such as the noise model. The gain
will be smaller when the posterior computation time is dominated by
the noise model evaluation (such as when using brute-force Gaussian
Processes), and greatest in an analysis with a computationally cheap
noise model and a large number of data points.

The approach has been adopted as the main z computation
method in the PYTRANSIT exoplanet transit modelling package
by Parviainen (2015). However, considering the simplicity of the
approach, we believe it can be useful to everyone developing
exoplanet transit models and modelling frameworks independent
of the programming language used. Thus, the approach can be
easily added to other commonly used transit modelling pack-
ages, such as EXOFAST by Eastman, Gaudi & Agol (2013), BAT-
MAN by Kreidberg (2015), ELLC by Maxted (2016), or TLCM by
Csizmadia (2020).
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APPENDIX A : EXAMPLE IMPLEMENTATIO N

Here, we show an example numba-accelerated PYTHON implemen-
tation of the approach used by the PYTRANSIT transit modelling
package. First, a method to calculate the sky-plane x and y derivatives

Here, xyeo calculates the x and y positions at given times using
the Newton’s method to calculate the true anomaly (ta newton s).
Now, the projected distance can be calculated using the derivatives
as a Taylor series
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