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ABSTRACT
We report on a high-precision timing analysis and an astrophysical study of the binary millisecond pulsar, PSR J1909−3744,
motivated by the accumulation of data with well improved quality over the past decade. Using 15 yr of observations with the
Nançay Radio Telescope, we achieve a timing precision of approximately 100 ns. We verify our timing results by using both
broad-band and sub-band template matching methods to create the pulse time-of-arrivals. Compared with previous studies, we
improve the measurement precision of secular changes in orbital period and projected semimajor axis. We show that these
variations are both dominated by the relative motion between the pulsar system and the Solar system barycentre. Additionally,
we identified four possible solutions to the ascending node of the pulsar orbit, and measured a precise kinetic distance of the
system. Using our timing measurements and published optical observations, we investigate the binary history of this system
using the stellar evolution code MESA, and discuss solutions based on detailed WD cooling at the edge of the WD age dichotomy
paradigm. We determine the 3D velocity of the system and show that it has been undergoing a highly eccentric orbit around
the centre of our Galaxy. Furthermore, we set up a constraint over dipolar gravitational radiation with the system, which is
complementary to previous studies given the mass of the pulsar. We also obtain a new limit on the parametrized post-Newtonian
parameter, |α̂1| < 2.1 × 10−5 at 95 per cent confidence level, which is fractionally better than previous best published value and
achieved with a more concrete method.

Key words: gravitation – methods: data analysis – binaries: general – pulsars: individual (PSR J1909−3744).

1 IN T RO D U C T I O N

Millisecond pulsars (MSPs) are neutron stars (NSs) that were spun
up by accretion in a binary system to have a rotational period
of �30 ms (Alpar et al. 1982). They are well noted for their
highly regular rotational behaviour that competes the best atomic
clock on Earth over a time-scale of decades (Matsakis, Taylor &
Eubanks 1997; Verbiest et al. 2009). PSR J1909−3744, an MSP with
rotational period of approximately 2.95 ms, was first discovered in
the Swinburne High Latitude Pulsar Survey using the Parkes 64-m
Radio Telescope (Jacoby et al. 2003). Follow-up timing campaigns
have achieved a timing precision at the level of a few hundreds
nano-seconds (e.g. Desvignes et al. 2016; Reardon et al. 2016;

� E-mail: kliu.psr@gmail.com

Arzoumanian et al. 2018a; Alam et al. 2020a; Kerr et al. 2020)
on a time-scale of over 10 yr, making it one of the most precisely
timed pulsars. The timing data sets of PSR J1909−3744 have been
utilized for various astrophysical experiments, including placing
stringent constraint on nano-Hertz gravitational wave background
(Shannon et al. 2013; Lentati et al. 2015; Arzoumanian et al. 2018b),
measuring the mass of main Solar system bodies (Champion et al.
2010; Caballero et al. 2018) and establishing the first pulsar time
standard (Hobbs et al. 2020).

However, apart from the discovery (Jacoby et al. 2003), there has
not been much work reported that focuses on the astrophysical study
of the PSR J1909−3744 system. The significantly extended timing
baseline and the largely improved data quality attributed to a state-of-
the-art data recording system in the recent years, strongly motivates a
revisit of this pulsar’s properties using up-to-date measurements from
but not restricted to the radio timing experiment. PSR J1909−3744
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is in a binary system with a ∼0.21 M� helium-core white dwarf
(He WD) companion with an orbital period of Pb = 1.53 d. Radio
timing analysis has yielded high-precision measurement of its orbital
parameters, including a few post-Keplerian parameters from which
the masses of the two bodies have been determined precisely (e.g.
Desvignes et al. 2016). In parallel, spectroscopy and photometry
observations of the WD companion in the optical band have been
used to infer its temperature, gravity, radius, and radial velocity
of the system (Antoniadis 2013). The age of PSR J1909−3744 is
of interest for resolving its formation, evolutionary, and kinematic
history. While characteristic (spin-down) ages of recycled pulsars
are very poor true age estimators (e.g. Tauris 2012; Tauris, Langer &
Kramer 2012), the cooling history of their WD companions can be
used to determine the age of the systems (e.g. Kulkarni, Djorgovski
& Klemola 1991; van Kerkwijk et al. 2005). However, this is a
non-trivial exercise given that a cooling age dichotomy exists for
extremely low-mass WDs (ELM WDs) depending on their hydrogen
envelope thickness and the associated possibility of undergoing
hydrogen shell flashes (e.g. Alberts et al. 1996; Althaus, Serenelli
& Benvenuto 2001; Istrate et al. 2014, 2016). WD masses can also
be obtained independently from radio timing data, by using optical
measurements in combination with WD cooling models and the mass
function of a given binary pulsar (as an example, determining the
WD mass from this method also enabled a mass determination of the
heavy pulsar PSR J0348+0432 by Antoniadis et al. 2013).

The same as many other NS–WD systems, PSR J1909−3744 is
useful for a few types of gravity experiments to constrain alternative
theories (Wex 2014). The asymmetry in the gravitational binding
energy of two components, one being a strongly self-gravitating
NS while the other being a weakly self-gravitating WD, allows
for gravitational dipolar radiative tests in a class of scalar–tensor
theories which feature non-perturbative strong-field effects (Damour
& Esposito-Farese 1993, 1996; Freire et al. 2012; Shao et al. 2017).
The test depends on the underlying equation of state of NS matters
(Shibata et al. 2014) and, given the mass of PSR J1909−3744,
the measurement of orbital decay could possibly place a better
constraint over some equation of states. In addition, the extremely
well-measured orbital eccentricity makes PSR J1909−3744 a superb
laboratory for testing preferred-frame effects (Damour & Esposito-
Farèse 1992; Shao & Wex 2012; Shao et al. 2013; Shao 2014;
Will 2014). The existence of a preferred frame in the Universe
would introduce characteristic evolution in the projected semimajor
axis and the orbital eccentricity vector. The absence of abnormal
behaviours in them places tight constraints on two (strong-field
counterparts of) parametrized post-Newtonian parameters (Will
2018). The aforementioned tests require high precision timing of
the pulsar, preferably measurements of a selection of post-Keplarian
parameters and the masses of the system. PSR J1909−3744, as one
of the most precisely timed pulsar, has already fulfilled these criteria,
and provided improvements in the gravity tests.

The rest of the paper is organized as follows. In Section 2 we
describe details of the observations and the post-processing of the
data. Section 3 presents the results of the timing analysis, and their
application to studying the binary evolution, tracking the galactic
motion of the system, and testing alternative theories of gravity.
Conclusions are provided in Section 4.

2 O BSERVATION

Regular timing observations of PSR J1909−3744 have been con-
ducted with the Nançay Radio Telescope (NRT) since late-2004.
These observations were carried out using the L-band and S-band

receivers of the telescope, which have a frequency coverage of 1.1–
1.8 GHz and 1.7–3.5 GHz, respectively.

Starting from late-2004, the legacy Berkeley-Orléans-Nançay
(BON) backend (Cognard & Theureau 2006), a member of the
ASP/GASP coherent dedispersion backend family (Demorest 2007),
was used to record the pulsar timing data for nearly 10 yr, until
2014 March. The bulk of the observations with the L-band receiver
was conducted initially at a central frequency of 1.4 GHz and
later at 1.6 GHz after 2011 August, while observations with the
S-band receiver were mostly performed at a central frequency of
2.0 GHz. The original bandwidth of these observations of 64 MHz
was increased to 128 MHz in 2008 July. Additional details about the
BON data set used in this paper are given in Desvignes et al. (2016)
which presented the first Data Release from the European Pulsar
Timing Array.

The Nançay Ultimate Pulsar Processing Instrument (NUPPI) is a
baseband recording system using a Reconfigurable Open Architec-
ture Computing Hardware (ROACH) FPGA board developed by the
CASPER group1 and Graphics Processing Units (GPUs). It has be-
come the primary pulsar timing backend in operation at Nançay since
2011 August (Cognard et al. 2013). The NUPPI data set included in
this paper spans from 2011 September to 2019 July. Observations
with the NUPPI backend have an integration time ranging from
less than 20 to over 80 min, and a bandwidth of 512 MHz which is
channellized into 128 frequency channels and coherently dedispersed
in each. Most of the observations with the L-band receiver were
carried out at a central frequency of 1484 MHz, while those with the
S-band receiver are generally centred at 2539 MHz.2 The data were
polarization-calibrated with the SINGLEAXIS3 method of PSRCHIVE
using observations of a reference noise diode conducted prior to
each observation of PSR J1909−3744, to correct for differential
phase and amplitude between the two polarizations. Then the data
were phase-folded with the pulsar ephemeris from Desvignes et al.
(2016) and visually checked to clean for radio frequency interference
(RFI). In the case of L-band observations, the top and bottom
16 MHz of bandwidth were removed due to the presence of persistent
RFI and out-of-band signal reflection in the receiver. We extracted
(broad-band) times-of-arrivals (TOAs) from the NUPPI data4 using
the Channelized Discrete Fourier Transform (CDFT) algorithm
developed in Liu et al. (2014).5 In order to form the template
profile, we integrated the top three brightest epochs, formed average
profiles for each 32-MHz of bandwidth at L-band and 128-MHz
of bandwidth at S-band, respectively, and removed the radiometer
noise using a wavelet smoothing method. The template-matching
procedure was then carried out toward data with the same frequency
resolution. For the L-band data, we also divided the entire band into
four 128-MHz sub-bands, formed frequency-averaged profiles and
calculated the corresponding TOAs using the canonical approach
detailed in Taylor (1992). These data were later used for comparison
purposes as discussed in the next section. In the end, we excluded
observations corrupted by calibration issues, intense RFI activity,
incidental backend fault, or containing no visible pulsar signal due

1http://casper.berkeley.edu/
2The central frequency of some S-band observations was set to lower
frequencies of 1854 and 2154 MHz, in periods of time when the L-band
receiver of Nançay was unavailable.
3http://psrchive.sourceforge.net/manuals/pac/
4The TOAs were measured without fitting for the DM simultaneously, so that
the DM modelling is left for the noise analysis stage.
5The CDFT approach is integrated into a local branch of PSRCHIVE available
at: https://github.com/xuanyuanstar/psrchive CDFT.
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to interstellar scintillation. Most of the post-processing of the NUPPI
data was conducted with the PSRCHIVE software package (Hotan, van
Straten & Manchester 2004). In total, the NUPPI data set includes
405 L-band and 181 S-band observations.

3 R ESULTS

3.1 Timing analysis

3.1.1 Data set and noise properties

We combined the BON data presented in Desvignes et al. (2016) with
the NUPPI data collected in the past 8 yr as described above, which
delivered a new data set with an overall timing baseline of nearly
15 yr. Whenever both BON and NUPPI data were available from the
same observation, we kept only the NUPPI data. In total, the data set
contains 846 TOAs, 615 at L-band and 231 at S-band. This gave us
an averaged observing cadence of more than one per week. We noted
that in an earlier analysis using the NUPPI data of PSR J1909−3744
(Liu et al. 2014), the post-processing of the data was affected by
an issue in the PSRCHIVE software package.6 Reprocessing the same
data set (which contains 30 epochs from MJD 56545 to 56592) now
delivers timing residuals with a weighted rms of approximately 60 ns,
more than a factor of 4 better than the previous value.

We used the TEMPONEST software package to perform timing
analysis to our data set. TEMPONEST is built based on TEMPO2 (Hobbs,
Edwards & Manchester 2006) and MULTINEST (Feroz, Hobson &
Bridges 2009) software packages, to explore the parameter space of
a non-linear pulsar timing model with Bayesian inference (Lentati
et al. 2014). The fitted parameters included in the timing model are
described in Table 1 (noted as ‘measured parameter’). To describe
the orbital motion of the pulsar in the binary system, we used the
‘ELL1’ timing model (Lange et al. 2001) as the orbit is known to
have a very small eccentricity. Additionally, we included a set of
parameters to characterize the noise in the data set. The white noise
parameters are the error factor ‘EFAC’ (Ef) and an additional error
added in quadrature ‘EQUAD’ (Eq) which relate to the measurement
uncertainty (σ r) of a TOA as

σ =
√

E2
q + E2

f σ
2
r . (1)

For each observing system a pair of such parameters was included to
capture its white-noise properties to yield a proper weight in the data
combination. To describe the long-term red process in the data set, we
included two models to account for the chromatic component caused
by dispersion measure (DM) variation and the monochromatic part
of the signal, respectively. In both models, the signal is assumed to
be a stationary, stochastic process with a power-law spectrum in the
form of

S(f ) = A2

C0

(
f

fr

)−γ

, (2)

where S(f), A, γ fr are the power spectral density as a function
of frequency f, the spectral amplitude, the spectral index, and the
reference frequency (set to 1 yr−1), respectively. The constant C0 is
equal to 1 for the chromatic term and is 12π2 for the monochromatic
term. The spectrum had a low-frequency cutoff equal to the inverse
of the data span (approximately 14.6 yr), and was sampled with
integer multiples of the lowest frequency up to one over 14 d. To

6This was induced by a lack of precision in polyco epoch stored in the header
of PSRFITS files. The issue was fixed by an update of PSRCHIVE in late 2014.

Table 1. Measured and derived timing parameters of PSR J1909−3744.

Parameter Value

MJD range 53 368–58 693
Number of TOAs 846
Timing residual rms (μs) 0.103
Reference epoch (MJD) 55000

Measured parameter
Right ascension, α (J2000) 19:09:47.4335812(6)
Declination, δ (J2000) −37:44:14.51566(2)
Proper motion in α, μα (mas yr−1) −9.512(1)
Proper motion in δ, μδ (mas yr−1) −35.782(5)
Parallax, π (mas) 0.861(13)
Spin frequency, ν (Hz) 339.315687218483(1)
Spin frequency derivative, ν̇ −1.614795(7) × 10−15

DM (cm−3 pc) 10.3928(3)
DM1 (cm−3 pc yr−1) −0.00035(5)
DM2 (cm−3 pc yr−2) 2.2(7) × 10−5

Orbital period, Pb (d) 1.533449474305(5)
Epoch of ascending node (MJD), Tasc 53113.950742009(5)
Projected semi-major axis, x (s) 1.89799111(3)
x̂ component of the eccentricity, κ 4.68(98) × 10−8

ŷ component of the eccentricity, η −1.05(5) × 10−7

Orbital period derivative, Ṗb 5.1087(13) × 10−13

Derivative of x, ẋ −2.61(55) × 10−16

Shape of Shapiro delay, s 0.998005(65)
Range of Shapiro delay, r (μs) 1.029(5)

Derived parameter (assuming GR)
Galactic longitude, l (deg) 359.7
Galactic latitude, b (deg) −19.6
Longitude of periastron, ω (deg) 156(5)
Orbital eccentricity, e 1.15(7) × 10−7

Pulsar mass, mp (M�) 1.492(14)
Companion mass, mc (M�) 0.209(1)
Parallax distance, dπ (kpc) 1.16(2)
kinematic distance, dk (kpc) 1.158(3)
Spin period, P (ms) 2.94710806976663(1)
Spin period derivative, Ṗ (× 10−21) 14.02521(6)
ṖGal (× 10−21) 0.0587(2)
ṖShk (× 10−21) 11.36(3)
ṖInt (× 10−21) 2.60(3)
Characteristic age, τ c (Gyr) 18.0
Surface magnetic field, B (G) 8.9 × 107

align the data from different systems, we included an arbitrary time
offset (known as JUMP) between the reference system and each
of the rest systems. Both the timing and noise parameters were
simultaneously fitted for during the TEMPONEST analysis, while the
JUMPs were analytically marginalized. All model parameters were
sampled with uniform priors, except for EQUAD and amplitudes of
the red processes for which a log-uniform prior was used.

In Fig. 1 we present the timing residuals of the data set
obtained from the analysis with TEMPONEST, both before and
after the subtraction of the red processes in the data. A long-
term evolution of the residuals is prominent across the entire
time-span of the data set, leading to an weighted rms of over
500 ns. We note that a similar feature in the PSR J1909−3744
timing residuals was also seen in the recent analysis presented
by Arzoumanian et al. (2018a). Subtraction of the measured red
noise models successfully whitened the residuals, leading to a
weighted residual rms of 103 ns over a time-scale of nearly 15 yr.
The L-band data from NUPPI itself has a weighted residual rms
of 86 ns. The posterior distribution of the red-noise parameters
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Figure 1. Timing residuals of PSR J1909−3744 over a time-span of nearly 15 yr. The upper panel shows the residuals before subtracting the stochastic
noise model components, and the lower panel shows the residuals after noise subtraction. The circles and triangles represent L-band and S-band observations,
respectively. The filled and unfilled symbols stand for NUPPI and BON TOAs, respectively.

(a) Broad-band TOAs, (b) Broad-band TOAs, (c) Sub-band TOAs,

Figure 2. 2D marginalized posterior distributions of the logarithmic amplitude and spectral index of the achromatic red noise and DM noise components,
respectively. The solid, dashed, and dotted line contours represent 1-σ , 2-σ , and 3-σ credible regions, respectively. The stars stand for the maximum-likelihood
values.

are presented in Fig. 2, where the logarithmic amplitude and
spectral index of the achromatic red noise were measured to be
log(Ared) = −13.92+0.07

−0.07 and γred = 2.51+0.30
−0.27, highly consistent with

published values by Caballero et al. (2016) and Arzoumanian et al.
(2018a).

Timing precision of the brightest MSPs could be limited by the
intrinsic variability in the pulsar signal itself which is known as ‘jitter
noise’ (e.g. Cordes & Downs 1985; Liu et al. 2011). To estimate such
contribution in our data, we selected three epoch observations when
the pulsar signal was the strongest due to interstellar scintillation,
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and measured the jitter noise following the approach described in
Liu et al. (2012). For L-band, this gave us σ J,30min = 14.1 ± 1.7 ns,
where σ J,30min is the amount of jitter noise with 30-min integration
time. This result is well in agreement with previously published
values (Shannon et al. 2014b; Lam et al. 2016, 2019). We did not
measure any significant jitter noise in our S-band observation, but
obtained a 95 per cent upper limit of 78 ns for σ J,30min at 2.5 GHz.
The limit is in line with the prediction in Lam et al. (2019) that jitter
noise of PSR J1909−3744 should be around 10 ns at this frequency.
To explore the impact of jitter noise on our noise modelling, we
incorporated our measurement into the L-band data, i.e. quadratically
adding the corresponding jitter noise to the TOA errors before
performing the timing analysis with TEMPONEST. By doing so, the

white noise description here becomes σ =
√

E2
q + E2

f [σ 2
r + σ 2

J (τ )],

where σ J is calculated based on the integration time (τ ) of the
observation as σJ = σJ,30min/

√
τ/30 min. In principle, the inclusion

of jitter noise in the noise model would be fully covered by EQUAD if
the integration times of the observations were identical (i.e. it is then
a constant addition to all TOA errors just as EQUAD). This, however,
is not the case here because the integration times of our observations
range from 20 to 80 min, and thus the jitter noise corresponding to
each TOA can differ by up to a factor of 2. Using this modified L-
band data set instead in the timing analysis gave a very minimal (well
below 10 per cent) change in EQUAD values of the L-band systems,
while the EFAC values remained around unity. This is expected as
the jitter noise with a typical 30-min integration time is well below
the timing residual rms of the L-band data. In fact, jitter noise is
dominant over the radiometer noise only in less than 1 per cent of
our observations.

To further verify our results, we carried out a separate investigation
of the noise properties using the ENTERPRISE software package
which is also widely used in pulsar timing array data analysis (Ellis
et al. 2019). We built the noise model consisting of the timing
model, white noise and both the chromatic and achromatic red noise
components. Those are the same components used in TEMPONEST,
while the implementation and application are somewhat different.
In detail, we performed a fully Bayesian analysis using a parallel
tempering Markov Chain Monte Carlo sampler PTMCMC (Ellis &
van Haasteren 2017), adopting the same priors as in the TEMPONEST

analysis but marginalizing over the timing parameter errors (van
Haasteren & Levin 2012). The white noise is characterized by
‘EFAC’ and ‘EQUAD’, with the same description as in TEMPONEST

(cf. equation 1). Both red-noise components were modelled as a
stationary Gaussian process with a power-law power spectral density
parametrized by an amplitude (at frequency 1/year) and a spectral
index, the same as in equation (2) except for that here the constant C0

is equal to 12π2 for both chromatic and monochromatic terms. The
inferred posteriors, as shown in Fig. 2, are largely consistent with the
results from TEMPONEST, with somewhat more pronounced tail in the
distribution for the achromatic red noise distribution. This difference
might be attributed to the use of different samplers (MULTINEST
versus PTMCMC) in the multidimensional parameter space.

In addition, we noted that the irregularly distributed and unevenly
numbered observations between L-band and S-band in the data
set may have an impact on the measurement of DM variation, in
particular on separating its contribution to the overall red process
from the achromatic component. To examine this potential issue
and its potential impact on our timing results, we carried out the
same timing analysis to a different version of the data set where
the sub-band TOAs were used for L-band observations with NUPPI.
This offers more regular multifrequency coverage and as shown in

Figure 3. Differences (normalized by their errors) in measured timing
parameters, from those obtained with the original data set which contains
broad-band TOAs without jitter noise incorporated in their uncertainties.

Fig. 2, thus provides better constraints on DM model parameters. The
achromatic red noise parameters becomes less constrained, probably
due to the drop of the best-estimated value of the amplitude. The
spectral index is shifted to a higher value as expected since the
effect from an ‘imperfect’ DM modelling exhibits as a relatively
shallow noise source. On the other hand, applying the noise model
measurements obtained with the sub-band TOAs to subtract the red
process in the original data set resulted in very little difference in
the residuals and the overall weighted rms. This suggests that our
noise modelling with the broad-band TOAs should still be able to
effectively extract the red processes in the data.

It is worth noting that the experimental analysis on incorporating
jitter noise measurement in the TOAs and using sub-band TOAs
in the data set have both yielded highly consistent measurement in
all timing parameters, compared with those from using the broad-
band TOAs. This is demonstrated in Fig. 3, where the differences
in measured timing parameters are shown to be all consistent with
zero within 1-σ confidence interval. We note that in Alam et al.
(2020a,b) the analysis using broad-band and sub-band TOAs has
also led to highly consistent timing results. Thus, for the analysis in
the rest of the paper we will simply quote the timing results obtained
from the broad-band data set. A more detailed noise analysis using
different forms of data sets will be presented in an upcoming paper
(Chalumeau et al., in preparation).

3.1.2 Astrophysical measurements

The results of the timing parameters from the analysis are sum-
marized in Table 1, where the uncertainties of the measurements
are 1-σ Bayesian credible interval obtained from 1D marginalized
posterior distribution. The posterior distributions of a subset of
the timing and noise parameters from the TEMPONEST analysis
can be found in Fig. 4. In Table 2 we compared a subset of
timing parameters from our analysis with a few recent publica-
tions. It can be seen that all of our measurements have a broad
consistency with previous analysis, and that our work has led to
a clear improvement in measurement precision of Ṗb and ẋ. We
note that Alam et al. (2020a) reported a covariance between ẋ

and the red-noise terms. This, however, is not obvious from the
posteriors shown in Fig. 4, possibly because the longer timing
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Figure 4. 2D marginalized posterior distribution for a subset of the timing and noise parameters: proper motion in right ascension (PMRA) and declination
(PMDEC), annual parallax (PX), orbital eccentricity in component x̂ (EPS1) and ŷ (EPS2), derivative of orbital period (PBDOT), derivative of orbital projected
semimajor axis (XDOT), shape of the Shapiro delay (SINI), range of the Shapiro delay (M2), logarithmic amplitude (RedAmp), and spectral index (RedSlope)
of the achromatic red noise and those of the DM noise component (DMAmp, DMSlope). The distributions are with the maximum-likelihood values (presented
in Table 1 and Fig. 2) subtracted and normalized by their standard deviations.

Table 2. Comparison of a selection of timing parameters measured in this work with previous publications. The values of orbital eccentricity e were calculated
from two eccentricity vectors κ , η, except for the case of Reardon et al. (2016) where it was directed fitted for.

π (mas) Ṗb ẋ sin i mc (M�) e

Desvignes et al. (2016) 0.87(2) 5.03(5) × 10−13 −0.6(17) × 10−16 0.99771(13) 0.213(2) 1.22(11) × 10−7

Reardon et al. (2016) 0.81(3) 5.03(6) × 10−13 – 0.99811(16) 0.2067(19) 1.14(10) × 10−7

Arzoumanian et al. (2018a) 0.92(3) 5.02(5) × 10−13 −4.0(13) × 10−16 0.99808(9) 0.208(2) 1.16(12) × 10−7

Perera et al. (2019) 0.88(1) 5.05(3) × 10−13 −3.9(7) × 10−16 0.99807(6) 0.209(1) 1.04(6) × 10−7

Alam et al. (2020a) 0.88(2) 5.09(3) × 10−13 −2.9(8) × 10−16 0.99794(7) 0.210(2) 1.10(9) × 10−7

This work 0.861(13) 5.1087(13) × 10−13 −2.61(55) × 10−16 0.998005(65) 0.209(1) 1.15(6) × 10−7

baseline here helps to mitigate the degeneracy between ẋ and the
red-noise parameters. Using the measurements of the Shapiro delay
parameters, s and r, the mass of the pulsar and the WD are derived
to be mp = 1.492 ± 0.014 M� and mc = 0.209 ± 0.001 M�,
respectively, as demonstrated in Fig. 5. These new values resolves
the slight inconsistency reported in Desvignes et al. (2016) from
other works. Fig. 5 also shows the independent constraint on the
mass ratio (q ≡ mp/mc = 7.0 ± 0.5) reported in Antoniadis (2013)
based on optical observations of the WD, which is consistent with

the values determined from Shapiro delay, albeit with a larger
uncertainty.

The orbital eccentricity can be calculated as e =
√

κ2 + η2 =
(1.15 ± 0.07) × 10−7, which still makes PSR J1909−3744 the most
circular system in all binary pulsars known by far (Manchester
et al. 2005). Using the mass measurements, the relativistic pe-
riastron advance of the system is calculated to be 0.14 deg yr−1

(Lorimer & Kramer 2005). Accordingly, the eccentricity vector
has rotated by only 2 deg within 15 yr of our timing baseline,
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Figure 5. Mass–mass diagram of the PSR J1909−3744 system which shows
the constraints from the Shapiro delay parameters, r and s, in our timing
analysis, and from mass ratio, q, measurement in Antoniadis (2013) based on
optical observations of the WD.

which, if unmodelled, would cause an apparent variation in the
x̂, ŷ components of the eccentricity vector by less than 10−10.
This is well below their measurement precision shown in Table 1.
Thus, the periastron advance is still not measurable with our data
set.

The observed secular variation of orbital period in binary pulsars
can include contributions from multiple effects (Damour & Taylor
1991; Lorimer & Kramer 2005). As for the case of PSR J1909−3744
where the pulsar has negligible tidal interaction with the WD
companion, the most relevant effects can be summarized below:

Ṗ obs
b = Ṗ Shk

b + Ṗ Gal
b + Ṗ GR

b + Ṗ ṁ
b . (3)

The first term, Ṗ Shk
b , denotes the contribution from the transverse

relative motion of the system to the Solar system barycentre (SSB)
which is known as the Shklovskii effect. Using the measured proper
motion of the pulsar (μα , μδ) and its distance (d) derived from timing
parallax, this term is estimated to be

Ṗ Shk
b = Pb

(
μ2

α + μ2
δ

) d

c
= 5.13(8) × 10−13, (4)

where c is the speed of light. The second term, Ṗ Gal
b , is caused by

the differential acceleration from the Galactic potential. As shown
in Damour & Taylor (1991), this effect can be calculated based on
astrometric measurements and a Galactic potential model. Using
our timing results and the model provided in McMillan (2017), we
have7

Ṗ Gal
b = 0.0265(6) × 10−13. (5)

7The error in this calculation only reflects the error in the parallax. Accounting
for a realistic error in the Galactic potential, one expects an error roughly an
order of magnitude larger, which however, is still about an order of magnitude
smaller than the error in Ṗ Shk

b .

The third term, Ṗ GR
b , represents the contribution from gravitational

wave damping in GR, and following Peters (1964), is found to be8

Ṗ GW
b = −192π

5

(
2π

Pb

)5/3 (T�mc)5/3q

(q + 1)1/3
= −0.0279(3) × 10−13,

(6)

where T� = (GM)N
�/c3, and (GM)N

� is the solar mass parameter
as defined by the IAU (Mamajek et al. 2015). The last term,
Ṗ ṁ

b , is arising from the mass loss of the system. In the case of
PSR J1909−3744, we consider the loss of rotational energy of
the pulsar to be the dominant mass-loss effect, given that there is
no expectation of significant stellar wind from a cooled WD with
strong surface gravity like the companion of PSR J1909−3744 (e.g.
Unglaub 2008). Following Damour & Taylor (1991), this can be
worked out as9

Ṗ ṁ
b = 8π2G

T�c5

Ip

mp + mc

Ṗ

P 3
Pb = 4.85(6) × 10−16. (7)

Here Ip and Ṗ denote the moment of inertia and the intrinsic period
derivative of the pulsar, respectively. To obtain the estimate above,
we used Ip = 1.4 × 1045 g cm2, a typical value derived using our mass
measurement and different equations of state that are in agreement
with all pulsar and LIGO/Virgo constraints (Lattimer & Prakash
2001; Capano et al. 2020). We also recovered the intrinsic spin period
derivative, by subtracting the contribution from the Shkloskii effect
and the Galactic potential from the observed value as performed
in the case of the orbital period derivative. These calculations are
summarized in Table 1 which shows that the intrinsic Ṗ of the
pulsar is in fact more than a factor of five smaller than the observed
value.

The analysis above clearly shows that the observed Ṗb is dominated
by the Shklovskii effect, next to which is the contribution from Galac-
tic potential. Though the expected contribution from gravitational
wave damping is well above the measurement uncertainty of the
observed Ṗb, it is still below the estimation error of the Shklovskii
contribution which mostly comes from the measurement uncertainty
in parallax distance. Thus, with the current measurement precision
Ṗ GW

b is not separable from Ṗ obs
b and we expect to be able to do

so only when the precision in distance measurement is improved
by at least a factor of 4 to 5. This could possibly be obtained
by adding more existing data, extending the timing baseline, or
using timing data from more sensitivity telescope (e.g. Bailes et al.
2018). Subtracting all aforementioned contributions from Ṗ obs

b gives
Ṗ Exs

b = (−1.7 ± 7.8) × 10−15 which is consistent with zero. This
allows us to calculate the kinematic distance (dk) of the system with
Ṗ obs

b by directly assuming a zero excessive Ṗb (Bell & Bailes 1996),
which gives dk = 1.157(3) kpc, a highly consistent and more precise
distance estimate.

The observed secular variation of projected semimajor axis in
binary pulsars can also be induced by a series of effects as listed
below (Lorimer & Kramer 2005):

ẋobs = ẋShk + ẋGal + ẋGW + dεA

dt
+ ẋSO + ẋPM. (8)

8Whenever being in combination with T�, masses are understood in solar
units.
9The uncertainty here only includes the measurement error of the parameters,
except Ip whose value is assumed. It should be noted that equation (7) is an
approximation for slowly rotating neutron stars, whose precision nevertheless
is better than 10 per cent for PSR J1909−3744.
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The first term, ẋShk, stands for the contribution from the Shklovskii
effect, and using our timing astrometric measurements, is estimated
to be

ẋShk = x
(
μ2

α + μ2
δ

) d

c
� 7.3 × 10−18. (9)

The second term, ẋGal, is the contribution from the differential
Galactic potential, and following the same approach as for Ṗ Gal

b ,
is found to be

ẋGal � 3.8 × 10−20. (10)

The third term, ẋGW, is caused by gravitational wave damping.
Following (Peters 1964) and using our mass measurements, it is
estimated to be

ẋGW = −x
64

5

(
2π

Pb

)8/3 (T�mc)5/3q

(q + 1)1/3
� −2.8 × 10−20. (11)

The fourth and fifth term, dεA/dt10 and ẋSO, denote contribution
from geodetic precession of the pulsar spin axis and the precession
of the orbital plane due to spin-orbit coupling effect (classical and/or
Lense–Thirring), respectively. Following Damour & Taylor (1991),
dεA/dt is of the order of �geo · P/Pb ∼ 10−19. The spin-orbit
precession induced by the companion’s rotation has so far been
measured in a small number of different binary pulsar systems (Kaspi
et al. 1996; Shannon, Johnston & Manchester 2014a; Venkatraman
Krishnan et al. 2020). However, spin-orbit contributions to ẋ vanish
when the spin axes of the pulsar and companion are aligned with the
orbital angular momentum (e.g. Damour & Taylor 1992; Wex 1998),
which is expected to be the case for fully recycled binary pulsars such
as PSR J1909−3744 from the binary evolution aspect (e.g. Tauris
2012). Additionally, the pulsar is in a relatively wide orbit with the
WD companion, which will further suppress the spin-orbit coupling
effects by a few orders of magnitude compared with the case of
PSR J1141−6545 studied in Venkatraman Krishnan et al. (2020).

Therefore, it can be concluded that the contribution from the
relative motion between the pulsar and the SSB, ẋPM, should
be dominating in ẋobs. Following Arzoumanian et al. (1996) and
Kopeikin (1996), this effect can be expressed as11

ẋPM = x (μα cos � − μδ sin �) cot i . (12)

It can be seen that one can derive the ascending node of the
binary system, �, once ẋPM and i are measured. This is shown
in Fig. 6, where we plot the contribution to ẋ/x from the proper
motion for PSR J1909−3744 as a function of �, in conjunction with
the measured ẋ/x. Accordingly, we have identified four possible
solutions considering the ambiguity in i (sin i equals to the shape
of Shapiro delay, s): � = 217 ± 5, 352 ± 5 deg when i < 90 deg,
and � = 37 ± 5, 172 ± 5 deg when i > 90 deg. We noted that
Reardon et al. (2016) reported only one possible solution of such
and Alam et al. (2020a) reported two. In principle, this ambiguity
can be resolved if the annual-orbital parallax of the binary system
is measurable, via directly fitting for the ‘Kopeikin’ (KOM and
KIN) parameters in the TEMPO2 software package as e.g. has been
carried out in the PSR J1713+0747 system (see e.g. Desvignes
et al. 2016). However, with the formula in Kopeikin (1995), we
estimate the scale of the feature in the timing data induced by annual-
orbital parallax to be ∼6 ns, well below any of the published timing

10Here ε is defined as in equation (2.6) of Damour & Taylor (1992).
11Note that there is a conversion between the � and i here and those in
Kopeikin (1996): � = π /2 − �K96, i = π − iK96.

Figure 6. Contribution of the proper motion to ẋ/x as a function of �, for
i < 90◦ (upper) and i > 90◦ (lower) using the measured sin i. The observed
value of ẋ/x and its 1-σ uncertainty are shown with the horizontal orange
band. The four intersections represent the derived � values.

precision of PSR J1909−3744. This is mostly due to the fact that
PSR J1909−3744 has a small and edge-on orbit with a distance
of the order of kpc. In practice, the Kopeikin parameters can also
be highly correlated with some of the Keplerian parameters (e.g.
the orbital period), which would further suppress the subtractable
feature from the fit. Thus, our current timing precision does not allow
us to distinguish among the four possible solutions by modelling
the annual-orbital parallax of the system. This has been verified
by our attempt to switch on the fit for the Kopeikin parameters
in our analysis, where all of the four solutions can be found,
resulting in the same post-fit residual rms and returning the same
goodness-of-fit. We however note that studying the orbital variations
in the interstellar scintillation of the pulsar could potentially provide
additional constraint over orbital inclination and help to resolve the
ambiguity in our solutions (e.g. Lyne 1984; Reardon et al. 2019).

3.2 Binary evolution

PSR J1909−3744 is an archetypical binary MSP with an orbital
period of Pb = 1.53 d, a helium-core WD companion of mass
mc � 0.21 M�, a (very) low eccentricity e = 1.15 × 10−7, a
rapid NS spin of P = 2.9 ms, a small spin period derivative of
Ṗ = 1.4 × 10−20 (yielding a surface magnetic dipole field of ap-
proximately B � 1 − 2 × 108 G), and an NS mass of mp � 1.49 M�.
All these characteristics imply a plain vanilla formation scenario
from a progenitor system which was a low-mass X-ray binary
(LMXB) with an NS accretor and a main-sequence donor of mass
1.0 − 2.3 M� (Tauris & van den Heuvel 2006; Tauris 2011). Donor
stars less massive than about 1.0 M� (depending on metallicity)
will not terminate their evolution within a Hubble time, and stars
more massive than ∼2.3 M� start to burn helium without their core
becoming degenerate.

In order to study the formation and evolution of PSR J1909−3744,
we employed new binary evolutionary models computed with the
open source stellar evolution code MESA (Paxton et al. 2011, 2013,
2015, 2018), version 12115, with the assumed physics similar as
presented in Istrate et al. (2016) (e.g including rotational mixing
and element diffusion). The new evolutionary models will be soon
available publicly (Istrate et al., in preparation). For the initial binary
conditions, we assumed a 1.1 M� donor mass, 1.3 M� NS accretor
treated as a point mass, and an accretion efficiency of ε ∼ 0.23 (β =
0.77).

From a stellar evolution point of view, one expects a tight
correlation between the orbital period at the end of the LMXB phase
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Figure 7. Orbital period at the end of the LMXB phase versus the mass of
the proto-WD. The lines represent the mass–period relation resulting from
our detailed evolutionary models for Z = 0.0001 (dotted red), Z = 0.001
(solid yellow), and Z = 0.0142 (dashed-dotted blue), respectively. The grey
region represents the mass–period relation as calculated by Tauris & Savonije
(1999). The circles stand for various He WD companions of MSPs for which
the mass was determined from the Shapiro delay. The star represents the
observed data for PSR J1909−3744.

and the mass of the proto-He WD (e.g. Joss, Rappaport & Lewis
1987; Savonije 1987; Rappaport et al. 1995; Tauris & Savonije 1999;
Lin et al. 2011; Istrate et al. 2014; Jia & Li 2014). This results from
the relatively tight correlation existing between the degenerate-core
mass of a red giant star and its radius (Refsdal & Weigert 1971). The
mass-period relation depends primarily on the assumed metallicity
and to some extent on other stellar parameters, such as the adopted
mixing length value, αMLT and partly on the initial donor mass (Tauris
& Savonije 1999). Our models presented below assume αMLT = 2.0.

Fig. 7 shows the orbital period at the end of the LMXB phase versus
the mass of the He WD for Z = 0.0001, Z = 0.001 and solar-like
metallicity of Z = 0.0142. The grey area represents the fitted mass-
period relation for population I and II stars from Tauris & Savonije
(1999). Overplotted are several observed values for MSP companions
for which the mass12 of the He WD was measured from the Shapiro
delay and therefore it is independent of the WD cooling models used.
One should note that the observed mass–period relation can appear
to be different from the theoretical mass–period relations in Fig. 7,
especially at relatively small orbital periods or alternatively small
WD masses. The most important contributor to this discrepancy is
the shrinkage of the orbit due to gravitational wave radiation. There
are also smaller effects due to the change in the orbit as well as in mass
of the WD caused by the occurrence of hydrogen shell flashes, which
are stronger at higher metallicities (see for example the discussion
in Mata Sánchez et al. 2020). Finally, deviations can occur due to
pulsar irradiation of the donor star which results in a widening of the
orbit while the WD mass decreases (Kluźniak et al. 1988; Stevens,
Rees & Podsiadlowski 1992; van Haaften et al. 2012; Chen et al.
2013).

The observed orbital period and companion mass for
PSR J1909−3744 are marked with a black star and are in agreement
with the values predicted for Z = 0.001. Notably, the companion of
PSR J1909−3744 has one of the most accurate mass measurements

12The values are taken from https://www3.mpifr-bonn.mpg.de/staff/pfreire
/NS masses.html.

Figure 8. Orbital period evolution for selected tracks resulting in WD
masses of 0.207, 0.208, 0.209, and 0.210 M�, respectively. The initial binary
configuration consists of a 1.1 M� donor mass and a 1.3 M� NS with an
accretion efficiency of ε ∼ 0.23 at Z = 0.001. The horizontal dashed line
marks the observed orbital period of PSR J1909−3744. With the assumed ε,
the final NS mass is ∼1.49 M�, in agreement with the measured value.

from the Shapiro delay. As previously mentioned, the theoretical
mass–period relations can vary based on assumed value of mixing
length, αMLT. For example, it would be possible that one could find
a solution for a somewhat lower metallicity than Z = 0.001 with
αMLT smaller than 2.0 or slightly higher metallicity than Z = 0.001
with αMLT larger than 2.0. The value of αMLT is relatively uncertain
and possibly is degenerate with stellar mass or metallicity (e.g Tayar
et al. 2017; Viani et al. 2018; Sonoi et al. 2019; Valle et al. 2019).

Fig. 8 shows the orbital period evolution for a few selected evolu-
tionary tracks with Z = 0.001 that produce a final WD mass of 0.207,
0.208, 0.209, and 0.210 M�, respectively. The measured companion
mass of PSR J1909−3744 is consistent with a 0.208, 0.209, and
a 0.210 M� solution; however, as it can be seen from Fig. 8, the
measured orbital period is only consistent with the 0.208 M� track.
Notably, at the moment of the Roche lobe detachment, the orbital
period was slightly larger, ∼1.55 d, but after ∼7 Gyr of orbital decay
due to gravitational wave radiation it crosses the present value of
1.53 d (see inlet in Fig. 8).

In order to obtain the final NS mass in agreement with the observed
value (mp ∼ 1.49 M�), we fine-tuned the accretion efficiency, ε to
a value of ∼0.23, given our assumed NS birth mass of 1.3 M� and
initial donor mass of 1.1 M�. This value is close to the upper limit of
the accretion efficiency from the following reasons: a higher initial
donor mass implies a smaller value of ε, and a smaller initial donor
mass (which would imply a larger value for ε) is unlikely as the
evolution of the system to the current observed values will take
longer than the Hubble time.

It has been demonstrated that characteristic ages, τ = P/2Ṗ are
often very poor true age estimators for recycled pulsars (Tauris 2012;
Tauris et al. 2012). Therefore, we use the cooling age of the WD, τWD

(defined as the time elapsed since the end of the LMXB phase until the
WD reaches the observed effective temperature) to estimate the age
of the PSR J1909−3744 system. The WD companion has a measured
radius of 0.030 ± 0.001 R� (Antoniadis 2013) and an effective
temperature of 8920 ± 150 K (Kilic et al. 2018). Fig. 9 shows
the evolution of the radius versus effective temperature (cooling
evolution) for the selected evolutionary models presented above.
None of the cooling tracks in Fig. 9 are consistent at the 1-σ level
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Figure 9. Radius versus effective temperature for WD cooling tracks
corresponding to the evolutionary tracks (Z = 0.001) shown in Fig. 8. The
black star represents the observed values. The labels denote the WD mass,
the total amount of hydrogen available at the beginning of the cooling track
(defined as the maximum effective temperature) and the associated WD age
(from the end of the LMXB phase until it reaches the observed value of Teff =
8920 K).

with the observed value of the WD radius. These cooling tracks
are all characterized by a thick hydrogen envelope of ∼4 × 10−3 M�
with an associated WD age of the order of 7 Gyr. We therefore search
for another solution to see if we can better match the derived WD
radius.

The most important parameter that determines the cooling history
of a WD, for a given mass, is the mass of its envelope. Helium-core
WDs can be divided into thin or thick hydrogen envelopes depending
on whether or not they experience diffusion-induced hydrogen shell
flashes (e.g Althaus et al. 2001; Istrate et al. 2016) with a large
impact on their cooling ages (the cooling dichotomy; e.g. Alberts
et al. 1996; van Kerkwijk et al. 2005; Istrate et al. 2014). The mass
threshold for a hydrogen flash occurrence depends strongly on the
assumed metallicity (Istrate et al. 2016). This is also demonstrated
in Fig. 10, where we show our computed cooling tracks for a
helium-core WD of ∼0.21 M� resulting from initial donors with
a metallicity of Z = 0.001, Z = 0.002, Z = 0.0025, and Z = 0.0142,
respectively. The mass threshold for flashes to occur at the metallicity
suggested by the binary evolution, Z = 0.001, is ∼0.23 M�. This
threshold drops to ∼0.215 M� for Z = 0.002. As a consequence,
the upper two tracks with Z = 0.001 and Z = 0.002 have thick
envelopes (MH,cool ∼ 4 × 10−3 M�, and no flashes) and the bottom
tracks have thin hydrogen envelopes (MH,cool ∼ 6 × 10−4 M�, and
undergo flashes). The observed properties of the PSR J1909−3744
companion are consistent at the 1-σ level only with thin hydrogen
envelope models with a corresponding age of ∼0.5 Gyr. However,
at the 2-σ level, both thick and thin hydrogen envelope solutions are
possible, with a resulting large spread in the cooling age from 7 to
0.5 Gyr, respectively. Given the current uncertainties of the radius,
one cannot firmly derive the cooling age of the WD and therefore the
age of the pulsar.

We stress here that the binary evolutionary models leading to a
He WD orbiting an MSP use various parameters that are not well
constrained yet. At the level of precision that we investigated in this
work, parameters such as αMLT, overshooting, initial donor mass,
efficiencies of various mixing processes, just to name a few, play
an important role in determining the precise mass–period relation

Figure 10. Radius versus effective temperature for WD cooling tracks
resulting from various metallicities with comparable mass to that of the
companion of PSR J1909−3744, mc ∼ 0.21 M�. The two families of tracks
represent systems that do not experience hydrogen flashes (upper tracks with
a thick envelope, Z = 0.001 and Z = 0.002) and systems that undergo flashes
(bottom tracks with a thin envelope, Z = 0.0025 and 0.0142, respectively).

at a given metallicity. Varying these parameters, one could obtain
a thin hydrogen envelope solution self-consistently from the binary
evolution in the same manner as the solution presented for the thick
envelopes. Alternatively, the mass threshold for flash occurrence
as well as the amount of hydrogen remaining after the hydrogen-
shell flash episodes might also depend on other physical parameters
besides the well-known dependence on element diffusion (e.g.
Althaus et al. 2001; Istrate et al. 2014, 2016). Once a more precise and
reliable radius measurement can be obtained, the PSR J1909−3744
system will serve as a powerful benchmark for investigating the
influence and calibrating parameters that otherwise are thought to
have only second-order effects both for the binary evolution and
cooling of helium-core WDs.

To summarize, we have obtained a binary solution in agreement
with the observed orbital period, WD mass and NS mass for
Z = 0.001, with an upper limit for the accretion efficiency ε ∼
0.23. However, this solution is not self-consistent with the cooling
properties of the PSR J1909−3744 WD companion. The radius,
effective temperature, and mass of the WD can best be explained by
models with a thin hydrogen envelope (most likely with a chemical
abundance Z > 0.001) with a corresponding age of only ∼0.5 Gyr,
but at the 2-σ level, the cooling age varies from 7 to 0.5 Gyr. We
emphasize here that the WD companion to PSR J1909−3744 is
a perfect showcase for the cooling dichotomy of He WDs, which
makes an age determination very difficult in practice. To pinpoint
with certainty a cooling age, one would need a more accurate radius
measurement. Currently, this is mostly limited by uncertainties in the
reddening estimate, and the precision of available photometric data.
Therefore, a significant improvement would require deeper imaging
observations at multiple wavelengths and a more precise extinction
model.

Fortunately, the effective temperature and the surface gravity of
the WD companion of PSR J1909−3744 place it closely to the
red edge of the instability strip of extremely-low mass white dwarf
variable stars (ELMVs) (Córsico et al. 2012; Van Grootel et al.
2013; Kilic et al. 2018). Additional constraints on the thickness
of the hydrogen envelope (and therefore cooling age) could be
obtained if one would investigate the asteroseismological properties
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for the possible evolutionary solutions and (ideally) compare it with
observed pulsation periods (Calcaferro et al. 2018). This is beyond
the scope of this paper and it will be addressed in a future work.

3.3 3D velocity and galactic motion

PSR J1909−3744 is one of the few pulsars where we have full
information on the 3D spatial velocity with respect to the SSB.
The proper motions in right ascension and declination are known
with high precision from timing observations (see Table 1). The
same is the case for the distance to the PSR J1909−3744 system. In
particular, the kinematic distance dk has an uncertainty of less than
0.3 per cent. Combining this information gives a transverse velocity
of 203.2 ± 0.5 km s−1. Finally, from high-resolution spectroscopy
Antoniadis (2013) was able to infer a systemic radial velocity of
−73 ± 30 km s−1 with respect to the SSB. The corresponding total
velocity with respect to the SSB is found to be 218 ± 10 km s−1.

With the local (SSB frame) position and 3D velocity of
PSR J1909−3744 at hand, we can now reconstruct the Galactic
motion of the PSR J1909−3744 system. For this purpose, we make
use of the Galactic gravitational potential given by McMillan (2017).
We introduce a Galactic frame centred at the location of the Galactic
centre, with the X − Y plane coinciding with the Galactic plane, and
the Sun located at X =−8.2 kpc and Y = Z = 0 kpc. For the purpose of
this section, we can safely ignore the small and somewhat uncertain
offset of the Sun from the Galactic plane (see e.g. Yao, Manchester
& Wang 2017). The X value for the Sun corresponds to the Galactic
centre distance R0 used in the McMillan (2017) model, which is in
good agreement with the latest distance estimate for Sgr A∗ by the
GRAVITY Collaboration (Gravity Collaboration 2020). To calculate
today’s velocity of the PSR J1909−3744 system with respect to our
X − Y − Z frame, we need the Galactic velocity vector of the SSB.
For a given R0, the proper motion measurements for Sgr A∗ by Reid
& Brunthaler (2004) can directly be converted into the Y- and Z-
velocity of the SSB. For R0 = 8.2 kpc we find V SSB

Y = 248 km s−1

and V SSB
Z = 8 km s−1. Furthermore, we adopt V SSB

X = 9 km s−1, in
agreement with McMillan (2017) as well as Reid et al. (2014). As a
result, we find the following Galactic velocity for PSR J1909−3744

VX = −67 ± 28 km s−1 , (13)

VY = 46 ± 1 km s−1 , (14)

VZ = 16 ± 10 km s−1 . (.15)

The small error in VY does not come as a surprise. On one hand, the
error budget in the velocity is clearly dominated by the error in the
observed radial velocity; on the other, PSR J1909−3744 is located
at l = 359.7 deg and b = −19.6 deg (see Table 1), meaning that the
radial velocity has practically no component in Y-direction. Further-
more, it is interesting to note how small VY is, compared to the motion
of the SSB, i.e. V SSB

Y = 248 km s−1, although PSR J1909−3744 is
practically in our Galactic neighbourhood. From this, one can already
assess that the PSR J1909−3744 must have a somewhat peculiar
Galactic motion. The velocity with respect to its local standard of
rest is therefore comparatively large, amounting to 201 ± 10 km s−1.

We have used the software package provided by McMillan (2017)
to integrate the Galactic motion of the PSR J1909−3744 system back
in time, using its current location and inverting its current velocity
in equations (13)–(15). The result is given in Fig. 11, where we have
stopped the integration at 500 Myr, which is below the expected
age of the pulsar, i.e. long after the supernovae that formed the
neutron star and imparted a kick to the system (see Section 3.2).

Figure 11. Galactic motion of the PSR J1909−3744 system, starting
500 Myr in the past. Today’s location is indicated by a blue circle. The thin
dashed lines correspond to a variation of the radial velocity Vr by plus/minus
one standard error. The potential for the Galactic gravitational field has been
taken from McMillan (2017). The location of the Sun is indicated by a red
circle.

As one can see, PSR J1909−3744 is on a highly eccentric orbit,
currently being close to its maximum distance from the Galactic
centre. About 30 Myr ago it had its closest approach to the Galactic
centre with a distance of �1 kpc. The motion is confined to a region
comparably close to the Galactic plane with |Z| � 0.5 kpc. We have
used different models for the Galactic potential (provided with the
software package of McMillan 2017) to verify the robustness of our
finding against uncertainties in the Galactic gravitational potential.
The fine details of the Galactic orbit of PSR J1909−3744 should
generally be taken with a grain of salt, since already the assumption
of an axisymmetric mass distribution in our Galaxy is only a first-
order approximation. For instance, in the inner few kpc one has
the central bar as a clearly non-axisymmetric structure (see Bland-
Hawthorn & Gerhard 2016, and references therein). Although this
will modify the details of the orbit, it is not expected to change the
overall picture that the Galactic orbit of PSR J1909−3744 is highly
eccentric and takes PSR J1909−3744 into the inner Galactic region.

3.3.1 On the small eccentricity of PSR J1909−3744

The orbital eccentricity of PSR J1909−3744 is a record low among
all known binary pulsars with a value of just e = 1.15 × 10−7.
Given a potential age of from 0.5 to 7 Gyr of this binary pulsar
(inferred from the WD cooling age, as discussed in Section 3.2),
it is of interest to investigate whether we can use it as a probe
of the stellar density in the Galactic disc. It is anticipated that
orbital eccentricities might be induced by dynamical interactions
with field stars, similar to the examples of resulting high eccentricities
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seen among some binary pulsars in dense stellar environments like
globular clusters. The question is if for an assumed old system
like PSR J1909−3744 (depending on the exact WD cooling models
discussed in Section 3.2), the column density of field stars within
its cross-section radius, accumulated from its motion in the disc
(Section 3.3) over its lifetime of several Gyr, may reach a critical
level.

Rasio & Heggie (1995) investigated resulting eccentricities of
binary MSPs induced via such dynamical interactions, and they
derived the following expression (their equation 6):

e �
( η

400

)5/2
P

5/3
b , (16)

where η ≡ t9 n4/v10, and t9 is the age in units of Gyr, n4 is the stellar
density (all assumed to be of mass 1 M�) in units of 104 pc−3, and
v10 being the 1D velocity dispersion in units of 10 km s−1. Given
Pb = 1.53 d and e = 1.15 × 10−7, it yields η � 0.50. Assuming
v10 � 5 (based on the relative velocity between PSR J1909−3744 and
local field stars), and t9 � 10 as an extreme upper limit, we find that
n4 � 0.25. That is the critical number density needed to explain the
small observed eccentricity of 1.15 × 10−7 for PSR J1909−3744
based on dynamical interactions is about 2 500 stars pc−3. This value
is four orders of magnitude larger that the number density of stars in
the solar neighbourhood, n� = 0.12 pc−3 (e.g. Holmberg & Flynn
2000).

Therefore, we conclude that it is not surprising that
PSR J1909−3744 was able to retain its small eccentricity although
potentially plowing through the Galactic disc for possibly up to
several Gyr. We also note that this eccentricity is expected to be a
residual value from its formation process via mass transfer from the
progenitor star of the WD (Phinney 1992).

3.4 Tests of alternative gravity theories

3.4.1 Testing for dipolar radiation

Short orbital period (Pb � 1 d) pulsar-WD systems have turned out to
provide some of the most stringent limits on dipolar gravitational ra-
diation, a prediction by many alternative gravity theories (Wex 2014).
With its orbital period of approximately 1.5 d, PSR J1909−3744 is
rather slow compared to the systems like PSR J1738+0333 (Freire
et al. 2012) or PSR J0348+0432 (Antoniadis et al. 2013). However,
its outstanding timing precision and the corresponding precise
measurement of Ṗb makes it still interesting for a test of dipolar
gravitational wave damping. Moreover, while for PSR J1738+0333
and PSR J0348+0432 optical measurements and the modelling
of WD spectra were required to obtain the masses of pulsar and
companion, for PSR J1909−3744 we can estimate these masses
directly from the high precision timing observations due to the
presence of a prominent Shapiro delay.

Here we discuss our dipolar radiation test within the framework
of Bergmann–Wagoner theories. Bergmann–Wagoner theories rep-
resent the most general mono-scalar–tensor theories that are at most
quadratic in the derivatives of the fields in their action (Will 2018).
Quite a number of well-known mono-scalar–tensor theories belong
to this class, like Jordan–Fierz–Brans–Dicke (JFBD) gravity (Jordan
1955; Fierz 1956; Brans & Dicke 1961), DEF gravity (Damour &
Esposito-Farese 1993, 1996), MO gravity (Mendes & Ortiz 2016),
f(R) gravity (De Felice & Tsujikawa 2010), and massive Brans–Dicke
gravity (Alsing et al. 2012).

In Bergmann–Wagoner theories, the field equations for the (phys-
ical) ‘Jordan-frame metric’ gμν and the scalar field φ can be derived

from the following action

S = 1

16πG0

∫ √−g d4x

(
φR − ω(φ)

φ
∂μφ∂μφ − U (φ)

)

+Smat

[
ψA

mat, gμν

]
, (17)

where G0 denotes the fundamental (‘bare’) gravitational constant, g
is the determinant of the metric gμν , and R the curvature scalar. The
two functions ω(φ) and U(φ) denote the coupling function and the
scalar potential, respectively. Here we will assume that the influence
of U(φ) is negligible on the relevant scales (cf. Alsing et al. 2012).
Smat is the action of the matter fields ψA

mat, which couple universally
to the space–time metric gμν .

The Newtonian gravitational constant, as measured in a
Cavendish-type experiment, is given by

GN = G0

φ0(1 − ζ )
, (18)

where φ0 is the cosmological background field and ζ ≡ 1/(2ω(φ0) +
4). A further quantity, which we will need below, is the sensitivity

si ≡
(

d ln mi(φ)

d ln φ

)
φ0

, (19)

which accounts for the dependence of the mass of the i-th body (for
a fixed number of baryons) on a change in its ambient scalar field
(Will 2018).

For our dipolar radiation test with PSR J1909−3744 we can utilize
three post-Keplerian parameters. These are the range

r = (1 − ζ ) m̃c � m̃c , (20)

and shape

s = x

(
2π

Pb

)2/3 (m̃p + m̃c)2/3

(1 − 2ζ sp)1/3m̃c
, (21)

of the Shapiro delay caused by the WD companion, and a potential
(intrinsic) change of the orbital period due to scalar dipolar radiation

Ṗb � Ṗ
dipole
b � −16π2

Pb

m̃pm̃c

m̃p + m̃c
ζ s2

p , (22)

where m̃i ≡ GNmi/c
3. In equation (22) we have neglected the

dependence on the eccentricity, since the PSR J1909−3744 orbit is
practically circular. The sensitivity of the WD companion has been
neglected as well, since generally sc 
 sp (see e.g. Will 2018, for
details). In principle, Ṗb also has additional multipole contributions,
dominated by the tensorial quadrupole (Damour & Esposito-Farese
1992; Will 2018). They are all well below the current measurement
precision (cf. equations 6 and 23) and therefore can be ignored in the
following calculations.

While |ζ | � 10−5 due to Solar system experiments (Bertotti, Iess
& Tortora 2003), one cannot a priori assume that ζ sp and ζ s2

p are
small as well. In fact, within Damour–Esposito-Farèse gravity it has
been found that ζ s2

p can be of the order of unity even if ζ → 0. In this
regime of the so-called ‘spontaneous scalarization’ the strong-field
gravity of a neutron star can lead to very large sensitivities, sp.

For a given theory, i.e. a given ω(φ), and a given equation of state
for neutron star matter, one can calculate the sensitivity sp, and use the
three post-Keplerian parameters, i.e. equations (20)–(22), with the
two unknown masses as a consistency test (see e.g. Damour & Taylor
1992). Here we will follow a more generic approach by leaving ω(φ)
unspecified and only making use of the Solar system constraint on
|ζ |. For a given ζ , equations (20)–(22) can then be solved for m̃p,
m̃c, and sp.
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The numerical values for the Shapiro range in equation (20) and the
Shapiro shape (21) can directly be taken from Table 1: r = 1.029 ±
0.005 μs and s = sin i = 0.998005 ± 0.000065. In equation (22)
we need the intrinsic change of the orbital period, i.e. we need to
subtract Shklovskii (Ṗ Shk

b ) and Galactic (Ṗ Gal
b ) contributions from

the observed orbital period derivative Ṗb in Table 1 (see e.g. Lorimer
& Kramer 2005). Using the parallax distance dπ from Table 1 and
the Galactic potential of McMillan (2017) we find for the intrinsic
change of the orbital period

Ṗ int
b = Ṗ obs

b − Ṗ Shk
b − Ṗ Gal

b = −4.4+7.7
−7.9 fs s−1. (23)

It is worth mentioning that as discussed in Section 3.1.2, the observed
secular change in orbital period is predominantly coming from the
Shklovskii contribution. There is no measurable intrinsic orbital
period change, as one can see from equation (23), and the Galactic
correction is only 2.7 ± 0.1 fs s−1 and therefore smaller than the
error in the Shklovskii correction. For comparison, with the masses
from Table 1 one finds for the orbital period change as predicted
by the GR’s quadrupole formula Ṗ GR

b = −2.79 ± 0.03 fs s−1 (see
equation 6), significantly smaller than the error in Ṗ int

b .
With the numbers for the three post-Keplerian parameters in hand,

we can now use equations (20)–(22) to calculate the mass parameters
m̃p and m̃c and put generic (i.e. independent of the details of ω(φ))
constraints on combinations of ζ and sp. As it turns out, for the
allowed range of |ζ |� 10−5 the constraints on sp do come exclusively
from equation (22). As a result, for all values of ζ compatible with
Solar system experiments one has√

|ζ | |sp| < 4.0 × 10−3 (95 per cent C.L.) . (24)

In a comparison with the currently best limit on dipolar radiation
obtained from PSR J1738+0333 (Freire et al. 2012; Zhu et al. 2019)
one has to keep in mind that ζ = κD/4 (Will 2018). Assuming
equation (7) in Zhu et al. (2019) for the sensitivity, in order to make
the limit comparable, one obtains from equation (24)

|κD| < 2.0 × 10−3 (95 per cent C.L.) . (25)

This limit is still about an order of magnitude weaker than the
one from PSR J1738+0333. Nevertheless, the limit is qualitatively
different as it is based on three post-Keplerian parameters, while the
PSR J1738+0333 limit used optical observations and WD models
to obtain the masses of pulsar and companion. As a result, the mass
of PSR J1909−3744 is known with higher precision (better than
1 per cent; see Table 1), which is important for strong field effects
that depend critically on the neutron-star mass. In Fig. 12 we give a
specific example to illustrate this.

3.4.2 Testing for a preferred frame for gravity

High-precision timing with binary pulsars is a also powerful tool
in constraining the gravitational Lorentz invariance violation via its
orbital dynamics. This type of study is typically carried out using
the parametrized post-Newtonian (PPN) formalism (Wex 2014; Will
2014, 2018; Shao & Wex 2016). Here we investigate the application
of the PSR J1909−3744 system to such gravity experiments.

In the PPN framework, Lorentz invariance violation is described
by three PPN parameters, α1, α2, and α3. While α1 and α2 only per-
tain to semiconservative dynamics, α3 additionally introduces non-
conservative effects, namely, it simultaneously introduces preferred-
frame effects and violates the energy–momentum conservation laws
(Will 2014; Will 2018). The α3 parameter was severely bound, down
to the level of ∼10−20, via the long-term high-precision timing of

Figure 12. Upper limits on spontaneous scalarization within Damour–
Esposito-Farèse (DEF) gravity from dipolar radiation tests with five different
pulsar-WD systems, where ζ = 10−10 has been chosen. This figure is similar
to fig. 1 in Shao et al. (2017), with the exceptions that the equation of
state for neutron star matter is WFF1 (Lattimer & Prakash 2001), the error
bars for the masses are 2-σ , and our y-axis gives the absolute value of the
pulsar’s sensitivity sp instead of the effective scalar coupling. The blue curves
are plotted for different values of the coupling parameter β in Damour &
Esposito-Farese (1993) (from bottom to top: β = −4.2, −4.3, −4.4, −4.5).
The thin grey lines indicate steps of 0.01 in β. Due to the precise mass
measurement for PSR J1909−3744 this pulsar provides the tightest constraint
in that particular scenario, specifically excluding β < −4.4. Data for the other
pulsars are taken from Antoniadis et al. (2013) (J0348+0432), Ding et al.
(2020) (J1012+5307), Freire et al. (2012) (J1738+0333), and Cognard et al.
(2017) (J2222-0137).

PSR J1713+0747 (Zhu et al. 2019). Therefore, here we only consider
constraints of α1 and α2. Because neutron stars are strongly self-
gravitating objects, in order to distinguish them from weak-field
objects, in the following we use α̂1 and α̂2, respectively, to denote
the strong-field counterparts of α1 and α2.

As shown in Shao & Wex (2012), for a nearly circular binary orbit,
α̂2 introduces a precession of the orbital angular momentum around
the direction of w, where w is the absolute velocity of the binary
with respect to a preferred frame. Usually, the frame wherein the
cosmic microwave background (CMB) is isotropic is chosen. The
α̂2-induced precession causes the change of the orientation of the
orbit with respect to the observer, notably that the orbital inclination
angle i is changing. This change introduces a non-zero time derivative
of the projected semimajor axis, and can be bound via the timing
parameter ẋ. The contribution is given by (Shao & Wex 2012),
(

ẋ

x

)α̂2

= − α̂2

4
nb

(w

c

)2
cot i sin 2ψ cos ϑ , (26)

where nb ≡ 2π /Pb, ψ is the angle between w and the orbital norm k̂,
and ϑ is the angle between w⊥ ≡ w − (

w · k̂
)

k̂ and the direction of
ascending node. As discussed in Section 3.1, for PSR J1909−3744
the proper motion effect is able to fully account for the observed ẋ.
Hence, there is no need to have a non-zero α̂2 in order to reproduce
the measured ẋ, which is in fact translated into a bound on α̂2.

We follow the method developed in Shao & Wex (2012) to
obtain the upper limit on α̂2. We randomize orbital ascending
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Figure 13. Probability distribution of α̂2. The limits at 68 per cent and
95 per cent confidence levels are shaded. Notice that the α̂2 test here is a
probabilistic test, as explained in detail in Section 3 of Shao & Wex (2012).

node � uniformly in [0, 360◦), and give equal probabilities to the
configuration i ∈ [0, 90◦) and the configuration i ∈ [90, 180◦]. We
subtract the contribution to ẋ/x from the proper motion (12) and
assign the remaining ẋ/x to the α̂2-induced precession (26). Such
a treatment renders the test a probabilistic one (see Section 3 in
Shao & Wex 2012), thus the obtained results on α̂2 should only be
interpreted as upper bounds (see Fig. 13). In the test, the CMB frame
is chosen to be the preferred frame, and the absolute 3D systematic
velocity is obtained for the binary by combining radio timing and
optical observations (Antoniadis 2013). All uncertainties in relevant
parameters are taken into account in the Monte Carlo simulations.
The probability density for α̂2 is given in Fig. 13, from where we
have,

|α̂2| < 1.6 × 10−4 (68 per cent C.L.) , (27)

|α̂2| < 9.7 × 10−4 (95 per cent C.L.) . (28)

These limits are weaker than the best existing limit from the spin
precession of the Sun (Nordtvedt 1987) and solitary pulsars (Shao
et al. 2013), yet it still represents a new modest limit from a
completely different system.

As for the PPN parameter α̂1, Damour & Esposito-Farèse (1992)
elegantly picturized the orbital polarization phenomenon for near-
circular binary orbits. In this picture, a non-zero α̂1 induces a
polarization of the eccentricity vector, e ≡ eâ where â is the direction
to the periastron. The polarization is towards a direction in the orbital
plane that is perpendicular to the absolute velocity. Consequently,
the observed eccentricity vector is a vectorial superposition of a
constant-length, relativistically rotating eccentricity, eR(t), and a
forced eccentricity, eF,

e(t) = eF + eR(t) . (29)

The forced eccentricity is given by (Damour & Esposito-Farèse 1992;
Shao & Wex 2012),

eF = α̂1

4c2

q − 1

q + 1

nb

ω̇PN
VO k̂ × w , (30)

where q ≡ mp/mc,VO ≡ (GMnb)1/3 withG the effective gravitational
constant and M ≡ mp + mc. The ω̇PN in equation (30) is the constantly
rotating rate of eR(t), which, in GR, is the well-known periastron
advance rate.

Figure 14. Constraint on α̂1 as a function of the unknown longitude of the
ascending node, �. The vertical grey bands give the allowed values of � if
we have assumed α̂2 = 0 (cf. Fig. 6).

The above picture was applied in Shao & Wex (2012) to
PSRs J1012+5307 and J1738+0333, and the yet tightest limit on α̂1

was achieved. The test used the observed eccentricity, decomposed
into the Laplace parameters η ≡ esin ω and κ ≡ ecos ω (Lange et al.
2001). It requires that the α̂1-introduced time variations in η and
κ to be consistent with their observed uncertainties (Shao & Wex
2012). The best constraint, α̂1 = −0.4+3.7

−3.1 × 10−5 at the 95 per cent
confidence level, comes from PSR J1738+0333 (Freire et al. 2012).

To obtain constraint on α̂1 with PSR J1909−3744, we repeated
the same timing analysis as described in Section 3.1.1, with time
derivatives of η and κ (η̇ and κ̇) directly included as fitted timing
parameters. This allowed us to have high-precision measurements of
both η and κ and their time derivatives, and enabled us to perform a
more straightforward test of α̂1 by directly using the time derivative
of e(t). With a non-zero α̂1, after averaging over an orbital time-scale,
we have (Shao & Wex 2012)

ė(t) = eω̇PNb̂ + α̂1

4c2

q − 1

q + 1
nbVOw⊥ , (31)

where b̂ ≡ k̂ × â, and w⊥ is the projection of w on to the orbital
plane.

We set up Markov chain Monte Carlo simulations which account
for all the uncertainties. For each value of �, we use the EMCEE

package (Foreman-Mackey et al. 2013) to explore the posterior
distribution of α̂1 that is consistent with both η̇ and κ̇ . From the
posterior, we obtain the median, as well as the 1-σ , 2-σ , and 3-σ
enclosed regions for α̂1. The result for the configuration i < 90◦ is
given in Fig. 14, while the other configuration with i ≥ 90◦ is merely
a mirrored case of Fig. 14 (see e.g. Figs 6 & 7 in Shao & Wex 2012).
From the figure, we see that the loosest limit is from � ∼ 135◦,

|α̂1| < 3.7 × 10−5 (68 per cent C.L.) , (32)

|α̂1| < 6.3 × 10−5 (95 per cent C.L.) . (33)

The limit is slightly worse than that from PSR J1738+0333. If we
assume that the α̂2 limit from the spin precession of solitary pulsars
(Nordtvedt 1987; Shao et al. 2013) is applicable to PSR J1909−3744,
we can use equation (12) to determine � (cf. Fig. 6). The correspond-
ing allowed values of � are indicated by the grey bands in Fig. 14,
from which we can obtain,

|α̂1| < 1.2 × 10−5 (68 per cent C.L.) , (34)

|α̂1| < 2.1 × 10−5 (95 per cent C.L.) . (35)

The limit is fractionally better than that from PSR J1738+0333. More
importantly, our limit here is obtained via a more straightforward
method, directly using equation (31), and sophisticated statistical
analysis was carried out using the Bayesian inference.

MNRAS 499, 2276–2291 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/2/2276/5913330 by guest on 10 April 2024



2290 K. Liu et al.

4 C O N C L U S I O N S

In this paper, we presented a high-precision timing analysis and an as-
trophysical study of the binary millisecond pulsar, PSR J1909−3744.
We have managed to achieve a timing precision of approximately
100 ns with 15 yr of data collected with the Nançay Radio Telescope.
The measurements out of the timing analysis have been examined
by using broad-band and sub-band TOA data sets, by incorporating
jitter noise in the TOA errors and by conducting the analysis with
different software (TEMPONEST and ENTERPRISE). We have improved
measurement precision of secular changes in orbital period and
projected semimajor axis, and showed that these measured variations
are dominated by the relative motion between the pulsar system and
the barycentre. Using the orbital period derivative measurement,
we derived a kinematic distance of the system which is highly
consistent and more precise than the parallax distance. In addition,
we identified four possible solutions to the ascending node of the
pulsar orbit with the secular change in the projected semimajor
axis.

By combining our timing measurements and published observa-
tions of the WD companion, we investigated the binary evolution
history of the PSR J1909−3744 system by modelling with the stellar
evolution code MESA, and discussed solutions based on detailed
WD cooling at the edge of the WD age dichotomy paradigm.
We additionally determined the 3D velocity of the system and
depicted its highly eccentric orbit around the centre of our Galaxy.
Moreover, we placed a constraint over dipolar gravitational radiation,
a complement to previous studies given the precisely measured mass
of the pulsar. We derived an improved limit on the (strong-field
counterpart of) PPN parameter, |α̂1| < 2.1 × 10−5 at 95 per cent con-
fidence level, achieved with a more concrete method than previous
analysis.
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Damour T., Esposito-Farèse G., 1992, Phys. Rev. D, 46, 4128
Damour T., Esposito-Farese G., 1993, Phys. Rev. Lett., 70, 2220
Damour T., Esposito-Farese G., 1996, Phys. Rev. D, 54, 1474
Damour T., Taylor J. H., 1991, ApJ, 366, 501
Damour T., Taylor J. H., 1992, Phys. Rev. D, 45, 1840
De Felice A., Tsujikawa S., 2010, Living Rev. Relat., 13, 3
Demorest P. B., 2007, PhD thesis, University of California, Berkeley
Desvignes G. et al., 2016, MNRAS, 458, 3341
Ding H., Deller A. T., Freire P., Kaplan D. L., Lazio T. J. W., Shannon R.,

Stappers B., 2020, ApJ, 896, 85
Ellis J., van Haasteren R., 2017, jellis18/ptmcmcsampler: Official release.

Available at: https://doi.org/10.5281/zenodo
Ellis J. A., Vallisneri M., Taylor S. R., Baker P. T., 2019, ENTERPRISE:

Enhanced Numerical Toolbox Enabling a Robust PulsaR Inference SuitE.
Available at: http://ascl.net/1912.015

Feroz F., Hobson M. P., Bridges M., 2009, MNRAS, 398, 1601
Fierz M., 1956, Helv. Phys. Acta, 29, 128
Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, PASP, 125,

306
Freire P. C. C. et al., 2012, MNRAS, 423, 3328
Gravity Collaboration et al., 2020, A&A, 636, L5
Hobbs G. B., Edwards R. T., Manchester R. N., 2006, MNRAS, 369,

655
Hobbs G. et al., 2020, MNRAS, 491, 5951
Holmberg J., Flynn C., 2000, MNRAS, 313, 209
Hotan A. W., van Straten W., Manchester R. N., 2004, PASA, 21, 302
Istrate A. G., Tauris T. M., Langer N., Antoniadis J., 2014, A&A, 571, L3

MNRAS 499, 2276–2291 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/2/2276/5913330 by guest on 10 April 2024

https://ui.adsabs.harvard.edu/abs/2020arXiv200506495A/abstract
http://dx.doi.org/10.1038/380676a0
http://dx.doi.org/10.1038/300728a0
http://dx.doi.org/ 10.1103/PhysRevD.85.064041 
http://dx.doi.org/10.1046/j.1365-8711.2001.04324.x
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.3847/1538-4365/aab5b0
http://dx.doi.org/10.3847/1538-4357/aabd3b
http://dx.doi.org/10.1086/309862
http://dx.doi.org/10.1038/nature01997
http://dx.doi.org/10.1146/annurev-astro-081915-023441
http://dx.doi.org/10.1103/PhysRev.124.925
http://dx.doi.org/10.1093/mnras/stw179
http://dx.doi.org/10.1093/mnras/sty2632
http://dx.doi.org/10.1051/0004-6361/201833781
http://dx.doi.org/10.1038/s41550-020-1014-6
http://dx.doi.org/10.1088/2041-8205/720/2/L201
http://dx.doi.org/10.1088/0004-637X/775/1/27
http://dx.doi.org/10.3847/1538-4357/aa7bee
http://dx.doi.org/10.1086/191076
http://dx.doi.org/10.1051/0004-6361/201220114
http://dx.doi.org/10.1088/0264-9381/9/9/015
http://dx.doi.org/10.1103/PhysRevD.46.4128
http://dx.doi.org/10.1103/PhysRevLett.70.2220
http://dx.doi.org/10.1103/PhysRevD.54.1474
http://dx.doi.org/10.1086/169585
http://dx.doi.org/10.1103/PhysRevD.45.1840
http://dx.doi.org/10.12942/lrr-2010-3
http://dx.doi.org/10.1093/mnras/stw483
http://dx.doi.org/10.3847/1538-4357/ab8f27
https://doi.org/10.5281/zenodo
http://ascl.net/1912.015
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://dx.doi.org/10.1086/670067
http://dx.doi.org/10.1111/j.1365-2966.2012.21253.x
http://dx.doi.org/10.1051/0004-6361/202037813
http://dx.doi.org/10.1111/j.1365-2966.2006.10302.x
http://dx.doi.org/10.1093/mnras/stz3071
http://dx.doi.org/10.1046/j.1365-8711.2000.02905.x
http://dx.doi.org/10.1071/AS04022
http://dx.doi.org/10.1051/0004-6361/201424681


J1909−3744 revisited 2291

Istrate A. G., Marchant P., Tauris T. M., Langer N., Stancliffe R. J., Grassitelli
L., 2016, A&A, 595, A35

Jacoby B. A., Bailes M., van Kerkwijk M. H., Ord S., Hotan A., Kulkarni S.
R., Anderson S. B., 2003, ApJ, 599, L99

Jia K., Li X. D., 2014, ApJ, 791, 127
Jordan P., 1955, Schwerkraft und Weltall, Die Wissenschaft. Vieweg. Availa

ble at: https://books.google.de/books?id=VP85AQAAIAAJ
Joss P. C., Rappaport S., Lewis W., 1987, ApJ, 319, 180
Kaspi V. M., Bailes M., Manchester R. N., Stappers B. W., Bell J. F., 1996,

Nature, 381, 584
Kerr M. et al., 2020, Publications of the Astronomical Society of Australia,

37, id. e020
Kilic M. et al., 2018, MNRAS, 479, 1267
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