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ABSTRACT
In 21-cm cosmology, precision calibration is key to the separation of the neutral hydrogen signal from very bright but spectrally
smooth astrophysical foregrounds. The Hydrogen Epoch of Reionization Array (HERA), an interferometer specialized for 21-
cm cosmology and now under construction in South Africa, was designed to be largely calibrated using the self-consistency of
repeated measurements of the same interferometric modes. This technique, known as redundant-baseline calibration resolves
most of the internal degrees of freedom in the calibration problem. It assumes, however, on antenna elements with identical
primary beams placed precisely on a redundant grid. In this work, we review the detailed implementation of the algorithms
enabling redundant-baseline calibration and report results with HERA data. We quantify the effects of real-world non-redundancy
and how they compare to the idealized scenario in which redundant measurements differ only in their noise realizations. Finally,
we study how non-redundancy can produce spurious temporal structure in our calibration solutions – both in data and in
simulations – and present strategies for mitigating that structure.

Key words: instrumentation: interferometers – dark ages, reionization, first stars.

1 IN T RO D U C T I O N

21-cm cosmology, the tomographic mapping of the redshifted hyper-
fine transition of neutral hydrogen, has the potential to provide direct
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†NSF Astronomy and Astrophysics Postdoctoral Fellow
‡NRAO Jansky Fellow

access to the majority of the luminous matter in the universe for the
first time (Furlanetto, Oh & Briggs 2006; Morales & Wyithe 2010;
Pritchard & Loeb 2012; Loeb & Furlanetto 2013; Zaroubi 2013;
Burns et al. 2019; Liu & Shaw 2019; Liu et al. 2019; Furlanetto et al.
2019c). At lower redshifts, 21-cm tomography can enable intensity
mapping of self-shielded gas within galaxies, allowing for precise
measurements of baryon acoustic oscillations across cosmic time
(Chang et al. 2008; Loeb & Wyithe 2008; Cosmic Visions 21 cm
Collaboration et al. 2018; Kovetz et al. 2019; Slosar et al. 2019). At
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higher redshifts, 21-cm cosmology promises a new window on the
“Cosmic Dawn”, spanning from the first stars through to the Epoch
of Reionization (EoR) by probing the intergalactic medium’s (IGM)
temperature, density, and ionization state (Alvarez et al. 2019; Chang
et al. 2019; Mirocha et al. 2019; Furlanetto et al. 2019a,b). Both
the sky-averaged 21-cm brightness temperature and its fluctuations
encode key information about these processes. With the as-yet-
unconfirmed detection of a surprisingly strong global absorption
signal at z ≈ 17 by the EDGES team (Bowman et al. 2018), there is
pressing need for follow-up observations of both the global 21-cm
signal and its fluctuations during the Cosmic Dawn.

The primary challenge of 21-cm cosmology across redshifts is
distinguishing 21-cm signal from comparatively nearby astrophys-
ical foregrounds, namely the continuum emission from our Galaxy
and other radio-bright galaxies, that are ∼105 times brighter. In 21-
cm tomography with radio interferometers – the focus of this work
– that separation relies on the spectral smoothness of foregrounds
compared to the complex spectral structure of the 21-cm signal
where different frequencies correspond to distinct regions of the
IGM. That separation is complicated by the inherently chromatic
nature of interferometric measurements. With an ideal instrument
that contamination is limited in to a wedge-shaped region of Fourier
space (Datta, Bowman & Carilli 2010; Vedantham, Udaya Shankar
& Subrahmanyan 2012; Parsons et al. 2012a,b; Liu, Parsons & Trott
2014a,b), leaving the remaining modes clean for a detection and
characterization of the 21-cm signal via its power spectrum.

However, any unmodelled effects that result in additional spectral
structure in the instrument response risk destroying that clean
separation in Fourier space. Chief among these is the bandpass
function of each antenna’s signal chain, which multiplies the true
per-antenna voltages in our measured visibilities. This effect can be
modelled as a complex per-antenna and per-polarization gain as a
function of frequency and time, namely

V obs
ij (ν, t) = gi(ν, t)g∗

j (ν, t)V true
ij (ν, t) + nij (ν, t), (1)

where Vij is the visibility measured for the baseline between antennas
i and j, gi is the gain on the ith antenna, and nij is the Gaussian-
distributed thermal noise in that measurement. The process of
correcting for these gains is often called direction-independent
calibration to distinguish it from the problem of accounting for the
spatial response of each antenna element. In this paper, we will just
use calibration as a shorthand.1Errors in calibration that produce
spectral structure in the effective instrument response, when mul-
tiplied by the overwhelmingly bright foregrounds, can completely
contaminate otherwise clean Fourier modes. For example, Ewall-
Wice et al. (2016a) saw that sub-percent-level cable reflections
produce sinusoidal ripples in the bandpass that create attenuated
but still very bright copies of the foreground wedge centred at the
line-of-sight cosmological mode, k‖, corresponding to the reflection’s
delay.

Traditionally, the calibration of radio interferometers requires
precise models of the sky and antenna beams to simulate the expected
Vij for each antenna pair and thus solve for each gi as part of a
large, overconstrained system of equations. Sky-based calibration
is especially difficult for arrays optimized for 21-cm cosmology,

1We also ignore the so-called D-terms, which mix polarization responses,
which are likely much smaller than the relevant calibration errors and have
less impact on the calibration of visibilities between antennas of the same
polarization – the ones most sensitive to unpolarized 21-cm cosmological
signal.

which often feature large fields of view and limited steerability of
elements. Worse, models of continuum foregrounds – especially,
diffuse and polarized emissions – are rarely accurate to better than
the percent-level. Unmodelled foregrounds, even those below the
confusion limit of current and upcoming arrays, can produce ruinous
spectral calibration errors (Barry et al. 2016). This effect can be
mitigated by calibrating with only the shortest, least spectrally
complex baselines (Ewall-Wice et al. 2017), though this may make
the calibration less accurate as it relies more heavily on the poorly
modelled diffuse Galactic emission. Alternatively, one can impose
a priori constraints on calibration solutions, either by the consensus
optimization technique (Yatawatta 2015, 2016) used in Patil et al.
(2017) and Mertens et al. (2020), via low-order polynomials (Barry
et al. 2019a,b), or by directly filtering gains (Kern et al. 2019c).
This general approach relies on the inherent spectral smoothness of
the instrument response, including its complex, per-antenna gains.
Much work has been done with simulations (Ewall-Wice et al. 2016b;
Trott et al. 2017) and field measurements (Patra et al. 2018) to
verify the smoothness and calibratability of arrays. It remains to
be demonstrated in which regimes the a priori assumption of spectral
smoothness will hold for real-world antennas operating inside large
arrays with complex electromagnetic interactions.

An alternate approach to calibrating arrays with many pairs of
antennas with the same physical separation is to solve for the gains
and unique visibilities simultaneously, using no prior information
about the sky or the instrument other than the assumption that
elements are identical and placed correctly. This approach, called
redundant-baseline calibration, works well when the number of
unique baseline separations is much smaller than the total number of
measurements, as is usually the case when the array is constructed
on a regular grid. This approach, developed in Wieringa (1992) and
formalized in Liu et al. (2010), simplifies the problem by solving for
most of calibration’s degrees of freedom – one complex antenna gain
per antenna and one complex visibility per unique baseline type for
each frequency and polarization – using only the internal consistency
of redundant measurements.

However, redundant calibration cannot resolve a small number of
degenerate parameters – four per frequency and per polarization –
and must ultimately reference the sky to resolve them (Zheng et al.
2014; Dillon et al. 2018), a process we call absolute calibration,
since its primary purpose is to set a flux scale and pointing centre.
Just as modelling errors plague sky-based calibration, redundant-
baseline calibration can suffer from similar problems due to position
errors and beam-to-beam variation between antenna elements (Orosz
et al. 2019) or to sky modelling errors in the absolute calibration step
(Byrne et al. 2019). Likewise, these too can be mitigated by a priori
constraints on bandpass spectral smoothness or by using only short
baselines (Orosz et al. 2019). Hybrid techniques that transition from
redundant-baseline to sky-based calibration with increasing sky and
instrument knowledge are also being explored (Sievers 2017).

Different first-generation arrays aiming to detect the 21-cm power
spectrum were constructed to take advantage of different techniques.
The LOw-Frequency ARray (LOFAR; van Haarlem et al. 2013;
Mertens et al. 2020) and Phase I of the Murchison Widefield Array
(MWA; Bowman et al. 2013; Tingay et al. 2013; Trott et al. 2020)
were both designed with minimal baseline redundancy to optimize
for a uv-coverage and thus the ability to image the sky and iteratively
calibrate off that image. By contrast, the technology demonstrator
MITEoR (Zheng et al. 2014, 2017) and the Donald C. Backer
Precision Array for Probing the Epoch of Reionization (PAPER;
Parsons et al. 2010; Ali et al. 2015) were built on regular grids which
both enable redundant-baseline calibration and focus sensitivity on
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5842 J. S. Dillon et al.

the measurement of a few modes for a delay-spectrum analysis
(Parsons et al. 2012b). Phase II of the MWA added some elements
on a regular grid, enabling a comparison of both types of calibration
(Li et al. 2018), as well as hybrid approaches.

As a second generation instrument, the Hydrogen Epoch of
Reionization Array (HERA; DeBoer et al. 2017) borrows approaches
from its predecessors. When it is complete, HERA will consist
of 350 14-m parabolic dishes observing at 50–250 MHz (4.7 �
z � 27). Of these, 320 are packed hexagonally into a dense core
while the remaining 30 outrigger antennas provide longer baselines
(∼1 km) for improved imaging. HERA was designed such that the
entire array could be redundantly calibrated, including the outriggers
(Dillon & Parsons 2016). It also features a core split into three offset
sectors to create denser simultaneous uv-coverage that improves
HERA’s ability to map diffuse galactic structure (Dillon et al.
2015).

In this work, we describe results from the redundant-baseline of
Phase I of HERA. In Phase I, HERA existed as a hybrid of PAPER
and the final HERA system; it featured modified PAPER dipole
feeds suspended over HERA dishes (Neben et al. 2016; Ewall-
Wice et al. 2016b; Patra et al. 2018; Fagnoni et al. 2019) and
used the PAPER signal chain and correlator. The legacy PAPER
components are all now being replaced as construction on the full
HERA system continues through 2020. This work complements other
recent work with HERA on both systematics mitigation (Kern et al.
2019a,b) and sky-based calibration and (post-redundant) absolute
calibration (Kern et al. 2019c). Likewise, this paper complements
the investigation of the spectral smoothness of HERA’s calibration
solutions in Kern et al. (2019c) with an investigation of the temporal
structure of those solutions and its origin. Along with those papers,
it is meant to lay the groundwork for forthcoming HERA Phase I
upper-limits on the 21-cm power spectrum.

HERA is also an important testbed for redundant-baseline calibra-
tion. Next-generation arrays across redshifts are being considered
which rely on Fast Fourier Transform (FFT) correlation (Tegmark
& Zaldarriaga 2009, 2010) to make arrays with large numbers of
elements feasible (Cosmic Visions 21 cm Collaboration et al. 2018;
Slosar et al. 2019; Ahmed et al. 2019; The HERA Collaboration
2019). FFT-correlation, which can reduce the cost-scaling of corre-
lating N-antenna arrays from O(N2) to O(N log N ), achieves that
speed-up via a form of data compression that relies on precise
relative calibration of antennas – precisely the terms solved for by
redundant-baseline calibration – in real time. While not the only
route to faster correlation (Morales 2011; Thyagarajan et al. 2017;
Kent et al. 2019), redundant-baseline calibration is likely a necessary
enabling technology for futuristic 21-cm interferometers.

Previous work with PAPER (Ali et al. 2015; Kolopanis et al. 2019)
and MITEoR (Zheng et al. 2014, 2017) showed both the promise
of redundant-baseline calibration and its ability to clearly spot
deviations from ideal behaviour. However, HERA’s high sensitivity
is an opportunity to assess redundant-baseline calibration in a more
systematic way. How redundant is HERA and how do we quantify
redundancy? In this paper, we explore several ways of answering
that question using 18 d of observation with HERA Phase I (Sec-
tion 3). Along the way, we review redundant-baseline calibration,
elaborating on previously unpublished implementation details and
a corrected and expanded exploration of one of the key metrics of
redundancy, χ2 (Section 2). Finally, we explore how the observed
temporal structure in our calibration solutions can be understood as
a consequence of non-redundancy (Section 4), complementing the
exploration of spectral structure in calibration solutions in Kern et al.
(2019c).

2 TH E T H E O RY A N D P R AC T I C E O F
R E D U N DA N T-BA S E L I N E C A L I B R AT I O N

In this section, we review the mathematical underpinnings (Sec-
tion 2.1) and practical algorithmic implementation (Section 2.2) of
redundant-baseline calibration. While some of this material have
been previously published (Liu et al. 2010; Zheng et al. 2014, 2017;
Dillon et al. 2018; Li et al. 2018), a number of the implementation
details are missing from the literature, especially the firstcal
(Section 2.2.1) and omnical algorithms (Section 2.2.3), and the
proper counting of degrees of freedom for normalizing χ2 (Sec-
tion 2.3).

In implementing and refining the technique for HERA, we have
strived to maintain the independence of our techniques from any
detailed knowledge about the sky or the array. All we need to know
about the array is where the antenna elements are and that they
are approximately identical to one another. From that point, we can
perform most of the calibration and learn quite a bit about how well
the array is functioning. This has proven especially useful for HERA,
since for both Phases I and II we have commissioned effectively
brand-new arrays.

2.1 Redundant-baseline calibration review

Fundamentally, redundant-baseline calibration is a process for find-
ing a solution to a system of equations of the form

V obs
ij = gig

∗
j Vi−j (2)

that minimizes χ2 defined as

χ2 ≡
∑
i<j

∣∣V obs
ij − gig

∗
j Vi−j

∣∣2

σ 2
ij

. (3)

Here, Vi − j is a shorthand for our estimate of the true visibility with
the same baseline separation as the one between antennas i and
j, using the fact that V true

ij depends only on that separation vector.
Ideally, 〈Vi−j 〉 = V true

ij , but in the real world both non-redundancy
and degeneracies make them differ from one another. σ 2

ij is the
variance of nij in equation (1). For simplicity, we have dropped the
explicit dependence on time and frequency, though all these terms
are, in principle, functions of both. Solving the system of equation
generally requires linearizing equation (2). Originally, Wieringa
(1992) proposed taking the logarithm of both sides and then solving
for the real and imaginary parts separately as two linear systems
of equations. Liu et al. (2010) showed that this logcal procedure
yields biased results and instead proposed a lincal approach using
the iterative Gauss–Newton algorithm, Taylor expanding around
approximate solutions and updating the solutions, to first order, using
a linear system of equations. Similar methods have been employed in
the literature, with different non-linear optimization algorithms such
as Levenberg–Marquardt (Grobler et al. 2018). For a pedagogical
review, see Dillon et al. (2018). Later in this section, we will detail
an alternative iterative algorithm that avoids matrix inversion. This
omnical algorithm was originally developed for and used in Zheng
et al. (2014), but was never explained in the literature.

After minimizing χ2 by whatever method, the degrees of freedom
in calibration that leave χ2 unchanged are the degeneracies of the sys-
tem of equations. When polarizations are calibrated independently
(as is the case in this work), there are four such degeneracies per
polarization and frequency. These are the overall amplitude (gi →
Agi, Vi − j → A−2Vi − j), the overall phase (gi → eiψgi), the East–
West tip-tilt (gi → gie

i�xxi , Vi−j → Vi−j e
−i�x�xij ), and the North–

South tip-tilt (gi → gie
i�yyi , Vi−j → Vi−j e

−i�y�yij ), where A, ψ ,
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�x, and �y are arbitrary real scalars and xi and yi are antenna
position components. While three of these can be solved by absolute
calibration using a sky model as a reference, the overall phase
cannot because it is merely an arbitrary convention with no physical
significance.

2.2 Practical implementation of redundant-baseline calibration

In practice, redundant-baseline calibration must be performed as a
series of iterative steps, each bringing us closer to a solution that
minimizes χ2. Without a good starting point, phase wrapping issues
plague logcal while lincal and omnical converge slowly, if
at all (Zheng et al. 2014; Joseph, Trott & Wayth 2018). Getting
“good enough” gain phases is key to achieving convergence and
avoiding the introduction of spectral structure in the degeneracies
(Dillon et al. 2018). In this section, we explain our refined method
for implementing these steps, starting with firstcal, a sky-
independent way to find a starting point for the rest of redundant-
baseline calibration.

2.2.1 Overall phase and delay calibration: firstcal

At a given time, any gain can be written without loss of generality
as

gj (ν) = Aj (ν)eiφj (ν)+2πiντj +iθj (4)

where A, φ, τ , and θ are all real. Most of the spectral structure
in a gain’s phase comes the delay, τ j, corresponding to the light
traveltime from the antenna to the correlator. Differences in delays
are often driven by small differences in cable length. While an overall
delay added to all antennas has no effect on the measured visibilities,
delay differences are a key factor to correct for. We also include
an overall phase term, θ j, to account for antenna feeds accidentally
installed with a 180◦ rotation. Both could be absorbed into a general
frequency-dependent phase, φj(ν), but it is useful for what follows
to separate them out. In past work, this initial phase calibration is
accomplished by a “rough calibration” referenced to the sky (Zheng
et al. 2014; Ali et al. 2015). However, we have pursued an alternate
approach, which can be performed completely independently (and
in parallel) for each integration without reference to a sky-model.2

Our approach,firstcal, uses redundancy to solve for one delay
and phase per antenna and per polarization (but not per frequency),
up to a set of degeneracies that turn out to be a subset of those listed
above.3 The key idea is to look at pairs of measured visibilities, Vij

and Vkl, that probe the same redundant baseline, Vi − j:

VijV
∗
kl∣∣Vij

∣∣ |Vkl |
≈ gig

∗
j
Vi−j g∗

k
glV

∗
i−j

|gi ||gj ||gk ||gl ||Vi−j |2

≈ exp
[
i
(
θi−θj−θk+θl

)+2πiν
(
τi−τj−τk+τl

)]
. (5)

Here, we have neglected any frequency-dependence of the gain
phases not captured by a delay term. Normalizing by the magnitude
of the visibilities (as opposed to taking the ratio of visibilities) has the
added benefit of reducing the added weight that would otherwise be

2In practice, we do not expect τ and θ to vary significantly over the course of a
night, but since this step is not rate-limiting computationally, we find it useful
to perform repeatedly both to make calibration more trivially parallelizable
and to provide additional data quality checks.
3While originally developed for PAPER and HERA, a simpler, delay-only
variant of firstcal first appeared in the literature in Li et al. (2018) and
was applied to MWA data.

Figure 1. The three stages of redundant calibration – firstcal, logcal,
and omnical – converge rapidly to a minimized value of χ2. Here, we show
the mean value of χ2 per degree of freedom (DoF), which has an expectation
value of 1, calculated at each step in the calibration of a simulated 37-element
array. The simulation details are in Section 2.2.1. For more on the calculation
of DoF, see Section 2.3. In firstcal, where Vi − j is not directly solved
for, an average of calibrated visibilities within a redundant group is used. It
should be noted that x-axis here is a bit misleading; logcal is not iterative
and the computational cost of firstcal and omnical depends on the
observation and are not always directly comparable.

assigned to channels with high levels of contamination from radio-
frequency interference (RFI).

Each pair of baselines within any given redundant-baseline group
gives us another equation in the form of equation (5) that involves (at
most) four antennas. To linearize this set of equations, we perform
delay and phase estimation on the left-hand side using the FFT-
based Quinn’s Second Estimator (Quinn 1997; see Appendix A).
This becomes two large systems of equations (one for the θ terms
and one for the τ terms), though one could likely use a subset of the
redundant-baseline groups to find a satisfactory starting point for full
redundant-baseline calibration.

While solving for the delay terms is fairly straightforward, solving
for θ terms is complicated by phase wrapping, since either side of
equation (5) can have an arbitrary ±2πN. We find that repeated
iterations of the firstcal algorithm converge to a stable solution
that reduces χ2 in equation (3) considerably.4

To demonstrate this technique, we simulated a redundant 37-
element hexagonal array from 100–200 MHz with relatively realistic,
frequency-dependent complex gains, and added random overall
phases between 0 and 2π and random delays between –20 and 20 ns.
Our visibilities are random, rather than drawn from a sky model, but
they are perfectly redundant after calibration. We then add complex
Gaussian random noise drawn such that calibrated visibilities have
identical noise variance, as would be the case with pure sky-noise
(Thompson, Moran & Swenson 2017). We set the signal-to-noise
ratio (S/N) on the visibilities to approximately 10, roughly consistent
with typical HERA observations. In Fig. 1, we show firstcal’s
ability to converge in a relatively small number of iterations, yielding
a good starting point for subsequent calibration that allows rapid
minimization of χ2 despite the high dimensionality of the problem.

4Strictly speaking, at this point, we only have estimators for the gains but
not the unique baseline visibilities. For the purpose of calculating χ2, Vi − j

is estimated by averaging calibrated visibilities within each group. This is
suboptimal when different baselines have different noise levels.
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2.2.2 Logarithmically linearized redundant-baseline calibration:
logcal

The next step in redundant-baseline calibration, logcal, linearizes
equation (2) by taking the logarithm of both sides. This technique
has been extensively reviewed in the literature (Wieringa (Wieringa
1992; Zheng et al. 2014; Ali et al. 2015; Liu et al. 2016; Dillon et al.
2018; Li et al. 2018) and we use it here without further refinement.
However, we will briefly review the key formalism here since it will
prove useful when we return to degree of freedom (DoF) counting in
Section 2.3.

If we define our complex gains as gj ≡ exp [ηj + iϕj], where ηj and
ϕj are both real, and if we take the natural logarithm of both sides of
equation (2) and then break it apart into real and imaginary terms,
we get

Re
[
ln V obs

ij

] = ηi + ηj + Re
[
ln Vi−j

]
and

Im
[
ln V obs

ij

] = ϕi − ϕj + Im
[
ln Vi−j

]
. (6)

This produces two decoupled systems of linear equations, which we
can write as

Re [d] = A Re [x] and

Im [d] = B Im [x] , (7)

where d is a vector of the natural logarithms of the observed
visibilities and x includes the gains and visibility solutions. The
matrices A and B encode the coefficients in equation (6); every entry
is either 1, 0, or in the case of B, -1. These systems of equations can
be solved with the standard linear least-squares estimators, however,
the solution is biased. While it may be a step in the right direction, it
will generally not yield the absolute minimum possible value of χ2,
as we see in Fig. 1 (Liu et al. 2010).

2.2.3 Damped fixed-point iteration redundant-baseline calibration:
omnical

Liu et al. (2010) introduced an alternative approach to logcal
that produced unbiased results using the Gauss–Newton algorithm.
Instead of taking the logarithm, we express gains as gi = g0

i + �gi

and unique visibility solutions as Vi−j = V 0
i−j + �Vi−j . Plugging

that into equation (2) and dropping second order terms, this yields

V obs
ij − g0

i g
0∗
j V 0

i−j = g∗0
j V 0

i−j�gi + g0
i V

0
i−j�g∗

j + g0
i g

∗0
j �Vi−j . (8)

Thelincal algorithm simply solves for the �-terms with a standard
noise-weighted least-squares optimization, updates, and repeats until
convergence.

However, a faster method called omnical was developed for
Zheng et al. (2014) and used in Ali et al. (2015) without an explicit
acknowledgement that it was, in fact, a different algorithm. The key
idea of omnical is to update each gain and visibility as if all other
gains and visibilities were constant. This technique is essentially a
form of the method for solving non-linear systems of equations via
fixed-point iteration. Ideally, as our model of the data improves with
each subsequent iteration, the statement that

V obs
ij ≈ gn

i g
n∗
j V n

i−j (9)

becomes closer and closer to accurate (where the superscripts denote
the n iteration). It follows then that

gi ≈ V obs
ij /(gn∗

j V n
i−j ). (10)

Since this equation should hold for all j, we can use it to update gi by
holding fixed all other variables in the system. Thus, to update gi, we

take an average over baselines that include antenna i with weights
wij, giving us

g′
i =

⎛
⎝∑

j

wijV
obs
ij

gn∗
j V n

i−j

⎞
⎠ /

∑
j

wij

= gn
i

⎛
⎝∑

j

wijV
obs
ij /yn

ij

⎞
⎠ /

∑
j

wij , (11)

where yn
ij ≡ gn

i g
n∗
j V n

i−j .
This method for iteratively updating gains (and analogously for

visibility solutions) is detailed in Algorithm 1.

Algorithm 1: omnical

Generate initial gain and unique visibility solutions, g0
i and V 0

i−j

via e.g. firstcal and logcal;
for 0 ≤ n < Nmax do

Evaluate all yn
ij = gn

i g
n∗
j V n

i−j ;

Update weights wij = (
yn

ij

)2
/σ 2

ij ;
for gn

i ∈ gn do

g′
i = gn

i

(∑
j wijV

obs
ij /yn

ij

)
/
∑

j wij ;

gn+1
i = (1 − δ)gn

i + δg′
i ;

end
for V n

i−j ∈ Vn do

V ′
i−j = V n

i−j

(∑
ij wijV

obs
ij /yn

ij

)
/
∑

ij wij ;

V n+1
i−j = (1 − δ)V n

i−j + δV ′
i−j ;

end
if ||�x||2/||x||2 < ε then

break;
end

end
Result: Gains g and visibility solutions V

There we defined g as the vector of calibration solutions gi, V as
the vector of visibility solutions Vi − j, x as the vector of both, and �x
as the difference between the solutions from one iteration to the next.
When we evaluate the gain update, we sum over all antennas. When
we evaluate the visibility solution update, we sum over all visibilities
with the same baseline separation as Vi − j. To avoid overcorrection
on any given step and thus speed up convergence, we damp each
update by a factor δ. We generally find that 0.1 � δ � 0.5 converges
fastest. This process repeats until some convergence level ε in the
L2-norm is reached. For HERA, we use δ = 0.4 and ε = 10−10.

Ideally, we would weight each visibility by the square of the S/N
on each measured visibility. While we could use V obs

ij as the signal, a
less noisy estimate of the quantity is the most recent iteration of yn

ij .
For the noise, we use the observed visibility autocorrelations, V obs

ii :

σ 2
ij =

〈
ViiVjj

�t�ν

〉
≈ ViiVjj

�t�ν
, (12)

where �t is the integration time and �ν is the channel bandwidth.
The first equality follows from the radiometer equation (Thompson
et al. 2017), the later approximation uses the fact that autocorrelations
are measured at extremely high signal-to-noise in HERA (usually
�100 in 10.7 s integrations). In Fig. 1, we show that this proper
noise-weighting allows us to converge to χ2/DoF ≈ 1 quite quickly.

Even though omnical generally takes many more steps to
converge than lincal, each step is much faster because it does not
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Figure 2. omnical, the damped fixed-point iteration algorithm we describe
in Section 2.2.3 that avoids matrix inversion converges much faster than
the lincal while achieving the same level of precision. Here, we show
the per-frequency and per-integration runtime for the two algorithms using
single-precision floating point variables. The simulation uses increasingly
large hexagonal arrays and simulates redundant visibilities using the same
technique as the one described in Fig. 1 and Section 2.2.1.

involve a matrix inversion. Comparing the total runtime to achieve
convergence at the same level of precision, we see in Fig. 2 that
omnical scales with the number of antennas as O(N2

ant) while
lincal scales as O(N3

ant).
There are a number of ways to speed up the algorithm. Since

the calibration is independent for each time and frequency, allowing
each observation to converge independently is generally a speedup.
Being careful to reuse repeated calculations also saves time. In our
implementation, checking for convergence is actually a bottleneck;
we speed up the algorithm by updating the noise model and
checking for convergence every 10 iterations.5 The source code
for omnical,6 along with firstcal, logcal, and lincal is
available freely on GitHub.7

2.2.4 Fixing degeneracies

Since redundant-baseline calibration is carried out for each frequency
and time independently, it will generally be the case that the cali-
bration of different frequencies and times will fall in different parts
of the degenerate subspace of the gain and visibility solutions that
minimize χ2. In principle, this is not a problem; absolute calibration
is designed to fix this and Kern et al. (2019c) showed that that
technique works quite well. However, we have found that absolute
calibration (itself an iterative process) converges more quickly and
reliably when we start the process by taking out an overall phase
slope and an overall delay slope – precisely the degeneracies of
firstcal. It is therefore useful, as was argued in Dillon et al.
(2018), to fix the degenerate terms to avoid introducing unnecessary
spectral or temporal structure that we must later take out.

5Though for the simulation in Fig. 1, we did a full update at every iteration
so as not to introduce confusing discontinuities in results.
6This pure-python implementation is faster than the original C++ imple-
mentation of omnical and has fixed the convergence issue identified in
Appendix B of Li et al. (2018), thus eliminating the need for any final
lincal post-processing.
7https://github.com/HERA-Team/hera cal/

Given our absolute calibration strategy and the fact that the
degeneracies of firstcal are a subset of the degeneracies of
full redundant-baseline calibration, we use our firstcal gains
as a degenerate “reference”. For the amplitude degeneracy, all
firstcal gains have unit amplitude. Therefore, we fix our gains to
have an average product over all antenna pairs of one. For the phase
degeneracies, we demand that the average phase and the phase slope
(computed by dotting each antenna position into its phase) to be the
same after firstcal as after redundant-baseline calibration. We
then update the visibility solutions accordingly to keep χ2 constant.

2.3 The normalization of χ2

Before we turn to real HERA data and a thorough investigation of
χ2 as it depends on time, frequency, antenna, and baseline, it is
important to understand quantitatively what we expect χ2 to be for
HERA. One might guess that, in a perfectly redundant array, V obs

ij

and gig
∗
j Vi−j differ only by the noise on the observed visibility and

thus that expectation value of equation (3), 〈χ2〉, should simply be
the number of baselines, Nbl. This would be true if we had an external
way to estimate gi and Vi − j, but since we do not, we must account
statistically for the fitting of noise. After all, a small enough system
of equations with enough free variables can always find a solution
such that χ2 = 0.

2.3.1 Overall degrees of freedom

The actual number of degrees of freedom in single-polarization
redundant-baseline calibration is given by

〈χ2〉 ≡ DoF = Nbl − Nubl − Nant + 2. (13)

Here, Nubl is the number of unique baselines (or equivalently, differ-
ent Vi − j estimated). Intuitively, the number of degrees of freedom
is given by the number of measurements minus the number of free
parameters solved for in redundant-baseline calibration, i.e. the gains
and visibilities. However, since each measurement and parameter is
complex, the extra two come from the four real degeneracies, which
reduce the number of parameters actually solved for. Equation (13)
differs from the one that appears in Zheng et al. (2014), which lacks
the two. When the number of baselines is large – in the data discussed
in Section 3, DoF is as large as 533 – the error is quite small,
which perhaps explains why it was not caught earlier. In Fig. 3,
we show the distribution of χ2/DoF using equation (13) for a 19-
element hexagonal array simulated analogously to that in Fig. 1 (see
Section 2.2.1 for details). With 19 elements, we have 171 visibilities
and only 30 unique baselines, yielding 124 degrees of freedom. With
that normalization, we find that the average χ2/DoF over 102 400
samples (1024 channels and 100 integrations) is 1.00013, consistent
with 1.0. Had we used the Zheng et al. (2014) formula, we would
have gotten 1.0156.

Furthermore, we see that the distribution of χ2/DoF follows a χ2-
distribution with k = 2 × DoF degrees of freedom, the factor of two
again resulting from the fact that each complex DoF is equivalent to
two real degrees of freedom.8 We see in Fig. 3 that this functional
form fits the simulated histogram quite well. Given that the expected

8This factor of 2 is missing from the discussion in Section 3.1.4 of
Zheng et al. (2014). Likely, this was an oversight that does not af-
fect Fig. 11 of that work. To be precise, if the probability density
function of the χ2-distribution denoted χ2

k (x) is given by fχ2 (x; k) =
1

2k/2�(k/2)
xk/2−1e−x/2, then probability distribution function of χ2/DoF
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Figure 3. A proper normalization by the number of degrees of freedom in
redundant-baseline calibration yields a histogram of simulated χ2/DoF values
consistent with the expected underlying χ -distribution. Here, we simulate and
calibrate a 19-element hexagonal array, using an analogous technique as laid
out in Section 2.2.1 and used for Fig. 1. Both the mean and variance of this
simulated distribution are consistent with our expectations, indicating both
good convergence of the algorithm and a correct accounting of the number
of degrees of freedom.

variance of χ2
k (x) is 2k, then it follows that the expected variance

of χ2/DoF should be (DoF)−1. Indeed, we find that Var(χ2/DoF) ×
DoF = 1.0028, consistent with 1.0.

2.3.2 Per-baseline degrees of freedom

While χ2/DoF is a very useful summary statistic for how consistent
our observations are with thermal noise, it is generally useful to break
apart the sum in equation (3) to assess redundancy as a function of
baseline, unique baseline, or antenna. We know that the sum of all
〈χ2〉 per baseline or per unique baseline group should be the total
DoF. Likewise, if we define χ2 per antenna such that each term in
the sum in equation (3) is assigned to both antennas involved in the
visibility, then it follows that the sum of all 〈χ2〉 per antenna should
be 2 × DoF. It is not true, however, that the degrees of freedom
are equally distributed among the baselines or antennas. In the case
of baselines, it is trivial to see this; adding a baseline that is not
redundant with any other baseline adds one new complex data point
and one new complex variable. We expect that for that baseline, we
can always find a Vi − j such that V obs

ij = gig
∗
j Vi−j exactly, meaning

that χ2 for this baseline should always be zero.
After some numerical exploration and educated guesses, we found

a method that predicts χ2 per baseline quite accurately. Specifically,
we found that the expectation value of the vector of χ2 values per
baseline, χχχ2, is given by

〈χχχ2〉 = 1 − 1

2
Diag

[
A (AᵀA)−1 Aᵀ + B (BᵀB)−1 Bᵀ] , (14)

where A and B are the real and imaginary logcal matrices defined
in equation (7) and the matrix inversions are actually Moore-Penrose
pseudoinverses, since both AᵀA and BᵀB are rank-deficient by the

is given by f
(

χ2

DoF ; DoF
)

= fχ2 (2χ2; 2 × DoF)/ (2 × DoF). We choose

not to simplify further because it is generally easier to compute
this function numerically using a standard library for fχ2 (x; k), e.g.
scipy.stats.chisq.pdf().

number of degeneracies of redundant-baseline calibration (1 for
AᵀA, 3 for BᵀB).

While in Fig. 4, we show numerically that equation (14) works
quite well, we have been unable to prove it analytically. To numerical
precision, the sum of 〈χχχ2〉 over all baselines matches the value in
equation (13). However the match is not perfect, perhaps due to the
biases in logcal or an insufficient accounting for the signal-to-
noise ratio on each baseline.

We can, however, get some intuition for why this might work.
The matrix A (AᵀA)−1 Aᵀ is often referred to as the data resolution
matrix in the geophysics literature (Menke 1989) and is essentially
the extent to which the data postdicts itself. That is to say that if we
have a system of linear equations 〈d〉 = Mx with equally weighted
data d and parameters x, then the postdicted set of data using the
parameters inferred from the measured data is

dpostdicted = Mxinferred = M (MᵀM)−1 Mᵀdmeasured. (15)

When the data resolution matrix is the identity, the parameters contain
all the information in the data. In our case, that would mean that
every baseline’s χ2 should be zero. Therefore, the more that each
piece of data is predicted by other data, the more off-diagonal the
data resolution matrix is, the less the noise is fit by the parameters
and thus, the more degrees of freedom there are.

3 A SSESSI NG HERA REDUNDANCY

With both algorithms for performing redundant-baseline calibration
and mathematical structures for assessing its success, we can now
turn to an assessment of the redundancy of Phase I HERA data.
In Section 3.1, we will present the observations we analysed. In
Section 3.2, we will explain how redundant-baseline calibration
informed our data quality assessment and selection process by
looking for outliers in χ2 per antenna. Next, we will examine how χ2

breaks down as a function of time and frequency (Section 3.3) and
by antenna and redundant-baseline group (Section 3.4). Finally, in
Section 3.5, we will take a different approach to assessing non-
redundancy and offer an answer to the more intuitive but less
mathematically well-defined question: how redundant is HERA?

3.1 Observations

The data in this section come from 18 nights of observation with
HERA between 2017 December 10 and 28, corresponding to all JD
between 2458 098 and 2458 116 except 2458 100 when the correlator
was malfunctioning. HERA is located in the Karoo Radio Astronomy
Reserve at −30.7215◦ latitude, 21.4283◦ longitude. As a zenith-
pointing, drift-scan array, HERA observations measure a roughly
10◦ stripe (the full width at half-maximum of the primary beam) at
150 MHz, centred at −30.7215◦ declination. Since HERA is sky-
noise dominated, observations where the sun is above the horizon
are flagged, since they are both noisier and less redundant than night-
time observations. This means that the observations span a range of
local sidereal times of 0.164–11.566 h, corresponding to zenith right
ascensions in the range of 2.46◦–173.49◦ .

During Phase I, HERA observed from 100–200 MHz in 1024
frequency channels, though the upper and lower ∼50 channels
were flagged because the feed design and the band-limiting filters
eliminated most of array’s sensitivity to those frequencies. Visibilities
were measured with 10.7 s integrations. At that time the array
consisted of 52 antennas, of which we eventually threw out 13 due
to non-redundancy or other issues (see Section 3.2). We show the
configuration of the array and the numbering of antennas, including
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Figure 4. Using equation (14), we can predict how χ2 should break down by baseline – and therefore by antenna or by unique baseline. In the first row, we
show our prediction for χ2 per antenna, calculated by assigning each term in the χ2 sum in equation (3) to both antennas involved. In the second row, we instead
breakup the sum into unique baseline groups. Using the same simulation as in Fig. 3, we show in both cases that the average simulated χ2 (left-hand column)
matches the predicted value (middle column) to ∼1 per cent accuracy (right-hand column).

the flagged antennas, in Fig. 5. All of these antennas are part of
Southwest sector of the split-core of the eventual HERA-350 design
(Dillon & Parsons 2016; DeBoer et al. 2017) and thus on the same
hexagonal grid.

For most of the redundancy metrics we assess in Sections 3.3–3.5,
we exclude frequencies and times identified as possibly contain-
ing RFI. The process for identifying RFI looks at both the data
and a variety of reduced data products, including the omnical
gains and visibilities, for outliers relative to neighbouring times
and frequencies. Assuming RFI events are usually compact in
time, frequency, or both, the technique then looks for marginal
outliers neighbouring strong outliers and grows the flagged region
accordingly (Kerrigan et al. 2019). The flags are then harmo-
nized to a single function of frequency and time for all antennas
and visibilities, flagging completely the channels or integrations
that show low-level contamination in the context of the full data
set. A full description of this work will appear the discussion
of the forthcoming HERA Phase I power spectrum upper-limits
paper.

3.2 Identification of malfunctioning antennas with high-χ2

After each night of observation, HERA’s “real-time” pipeline (RTP)
identified antennas with particularly low power and flagged them
(Ali 2018). During the period analysed here, Antennas 0 and 50
were flagged. To be conservative, antennas were flagged even if only
one of the two antenna polarizations was malfunctioning.

Figure 5. Layout of HERA antennas between JD 2458098 and 2458116.
These 14-m diameter dishes are on a hexagonal grid with a separation of
14.6 m and will eventually be part of the Southwest sector of the split HERA
core when HERA-350 is complete. Antennas flagged for non-redundancy
or otherwise suspected of malfunctioning (see Section 3.2) are noted in red
and excluded from the final redundant-baseline calibration examined in this
work.

MNRAS 499, 5840–5861 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/4/5840/5917098 by guest on 09 April 2024



5848 J. S. Dillon et al.

Figure 6. Here, we show an example of our observed, normalized χ2 per antenna, taking the median over time in single file (60 10.7 s integrations). The data
were taken from a field at ∼10 h of LST on 2458114 have had only Antennas 0 and 50 removed. The resulting data show that Antennas 98 and 136 remain clear
outliers from the others, meriting flagging for extreme non-redundancy. This process is then repeated as eliminating outliers makes less clear outliers stand out
better.

Redundant-baseline calibration – in this case performed well after
the observations were taken9 – gives us another tool with which to
assess the health of the array: χ2 per antenna. Armed with a proper
normalization of the expected degrees of freedom in χ2 per antenna
derived from equation (14), we can look for outliers.

In Fig. 6, we show the result of our calibration of a single 60-
integration file on 2458114 centred on LST ≈ 10 h after removing
only Antennas 0 and 50. Two antennas, 136 and 98, stand out
right away – especially, the North/South-oriented polarizations,
though unsurprisingly their East/West-polarizations also appear to
be outliers. The high per-antenna χ2 means that the visibilities these
two antennas participate in are particularly discrepant with other
visibilities in the same redundant groups. The fact that these antennas
are on the edge of the array and thus have different distribution of
baselines that they participate in should be taken into account by
our DoF normalization (see Fig. 4). While it is difficult to know
for certain, perhaps the telephone poles from which the feeds are
suspended over the dishes were sometimes less well-balanced at the
edge of the array (normally they support three feeds each at 120◦

angles), moving the feed off-centre or out of focus and thus creating
non-redundancy.

Instead of visually inspecting every piece of data for outliers in
χ2, we quantify the “outlierness” of an antenna using its modified
z-score, defined as

z(x) ≡ 0.6745

(
x − Median(x)

MAD(x)

)
, (16)

where the denominator of the right-hand side is the median absolute
deviation (MAD), the median absolute value of the difference
between a data point and the median of the data points. The
normalization of 0.6745 ensures that, with Gaussian-distributed data,
a 1σ outlier in the standard z-score (which uses means and standard
deviations) would also be a 1σ outlier in the modified z-score.

In our case, we first compute the median value of each antenna’s
χ2 over all frequencies and times in a single file. This avoids giving
undue influence to observations with very high χ2 due to RFI (seen
as spikes in Fig. 6). Then, we take these single median χ2 values for

9Though in future HERA observations, we plan to use these algorithms to
perform redundant-baseline calibration within 24 h of taking the data to
provide actionable information on the health of the array to the site team.

each antenna and compute the median and MAD over all antennas.
This gives us a modified z-score, which is less sensitive to extreme
outliers than a standard z-score.

That said, outliers in redundancy cannot always be so cleanly
identified with just a single round of calibration. While redundant-
baseline calibration has the virtue of insulating the calibration at a
given frequency and time from bad frequencies and times (e.g. when
there is a strong RFI event), it necessarily cannot isolate bad antennas
from the rest of the gain and visibility solutions. Every antenna is
involved in baselines with the worst antennas, which means that
every antenna’s χ2 will be somewhat elevated. Our strategy is, thus,
to remove all antennas that are 4σ outliers and then recalibrate,
lowering the median over all antennas and exposing new outliers.
We repeat until no new outliers appear.

That is not quite the end of the story. When we calibrate the entire
data set in this way, we find that our method for identifying bad
antennas does not always produce consistent results within each night
or across nights. In Fig. 7, we show the results of our outlier detection
across the entire data set, condensing each file to a single pixel.
After removing data when the sun was above the horizon (yellow)
and antennas flagged by the RTP (purple) or declared suspect by
the HERA commissioning team based on the RTP results (magenta),
the result of this outlier detection algorithm is shown in maroon.
Antennas 54, 98, are 136 are very-consistently identified as bad,
but not quite always. Other antennas are flagged inconsistently with
flagging patterns that often repeat night-to-night as a function of LST.
Clearly, the position of sources affects the level of observed non-
redundancy because different antennas are more or less redundant
with the bulk of the array along different lines of sight, i.e. their
primary beams differ. We will return to this observation in Section 3.3
and assess some of its consequences in Section 4.

Given our goal to conservatively select the best, most reliable
data, it is prudent to assume that an antenna that is a 4σ outlier at
many LSTs and over many nights is probably a not-quite-4σ outlier
the rest of the time. We therefore choose to flag Antennas 24, 53, 54,
67, 69, 98, and 136 for the entire data set (orange). We repeat this
process one more time, looking for new outliers (dark blue) once all
the most consistently bad antennas are removed consistently. On the
next round of hand-flagging (light blue), we remove antennas 2 and
122. We also remove antennas 11 and 139 which did not show any
substantial non-redundancy but were hand-flagged during absolute
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Figure 7. Here, we show our per-antenna data quality assessment and flagging as a function of night and LST. Each pixel shows whether an antenna was
completely flagged for a file and at what stage in the process. After throwing out daytime data (yellow) and bad antennas caught by the RTP and the commissioning
team (purple and magenta), we proceed through three rounds of redundant-baseline calibration of the entire data set, iteratively flagging 4σ outliers in the
modified-z score of their per-antenna χ2 (maroon, dark blue, green). After the first two rounds of calibration and flagging, we hand-flag antennas (orange, light
blue) that were frequently identified as outliers or were externally removed in subsequent processing (Kern et al. 2019c). This gives us the data set we analyse in
the rest of this work and from which we plan to produce the first HERA EoR power spectrum limits. (The one piece of data missing from every antenna during
the night of 2458114 is due to a correlator restart.).

calibration (Kern et al. 2019c). We then perform one final round of
redundant-baseline calibration with all of those antennas removed
and continue to remove the occasional 4σ outlier (green), but perform
no further whole-antenna flagging. Ideally, with redundant-baseline
calibration operating in near-real-time, bad antennas can be identified
on a nightly basis and removed from future calibration until they are
fixed.

3.3 Overall χ2 results

With our clear theoretical understanding of the behaviour of χ2 in an
ideal array and with our selection of high-quality data, we are now
prepared to compare the two. Though χ2 is a reduced statistic, it is

still calculated for every frequency, time, polarization, and night. In
this section, we examine a few different ways to slice these data and
begin to interpret the results.

We start by looking at the observed probability density function
of χ2, with an eye towards replicating Fig. 3 with real data. We
see in Fig. 8, our first clear indication of HERA’s non-redundancy.
We plot the distribution of χ2/DoF separated out along several axes.
We compare this to an ideal χ2-distribution in Footnote 8 where we
used DoF ≈ 520, the mean number of degrees of freedom over our
all observations. This is a bit lower than the 533 DoF we would
get from only the antenna flags in Fig. 5. Since each individual χ

measurement is normalized by the correct DoF, the effect of varying
per-observation DoF is minimal.
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Figure 8. Here, we show the distribution of χ2/DoF over the entire data
set. We compare this to an ideal χ2-distribution (see Footnote 8) with
DoF ≈ 520, the mean over observations with different antenna flagging.
In contrast to our simulations where the distribution matched the expected
one (Fig. 3), here, we see clear evidence for the hypothesis that the data cannot
be completely described by unique visibility baseline group and one complex
gain per antenna – the model for which we are computing χ2 in equation
(3). In other words, we see evidence for non-redundancy. This appears to be
consistent for both polarizations (top panel) and from night to night (middle
panel). However, we do see clear evidence for different distributions when
the histogram is broken out into rough frequency bands, indicating varying
and non-monotonic levels of non-redundancy as a function of frequency. This
effect is seem more clearly in Fig. 9 and the second panel of Fig. 10.

In most cases, we find that χ2/DoF peaks between 1.3 and 1.4,
meaning that HERA exhibits persistent non-redundancy ∼20 per cent
larger than the thermal noise level. Despite that, the data are
extremely inconsistent with the null hypothesis that non-redundancy
in visibilities is attributable to pure noise, as the histograms in
Fig. 8 make clear. Overall, we find a mean value of χ2/DoF of
1.389. This is somewhat difficult to compare to previous results
which have different noise levels normalizing χ2. In Ali et al.
(2015), PAPER reported a mean χ2/DoF of 1.9. While PAPER’s
elements had significantly less collecting area and thus sensitivity,
it had substantially larger frequency and time bins (493 kHz 42.9 s,
compared to 97.7 kHz and 10.7 s with HERA). MITEoR reported
a mean χ2/DoF of 1.05, however, its integration time (5.37 s)
and frequency resolution (49 kHz) are both roughly half HERA’s
and its elements were even smaller. The fact that the instruments
have different fields of view and, in MITEoR’s case, a northern
latitude, further complicate the comparison. Motivated in part by
this difficulty, we introduce a relative non-redundancy metric in
Section 3.5 that is ideally independent of the noise level. We do not
believe the elevated χ2/DoF is attributable to poor convergence due
to low visibilities S/N; as Gorthi, Parsons & Dillon (2020) showed
in a simulation of a perfectly redundant array, redundant-baseline
calibration of an array this size can achieve χ2/DoF ≈ 1 even when
the visibility S/N is �1.

The observed χ2/DoF level appears consistent both for the
East/West- and North/South-oriented polarizations and from night
to night.10 However, it does exhibit an interesting and clearly non-
monotonic dependence on frequency. To understand that structure
better, it is easier to look at the median of these distributions
(the median is taken to avoid any low-level RFI) as a function of
frequency, LST, or both, marginalizing over night and polarization
which seem to have little effect. The results are shown in Figs 9 and
10.

Fig. 9 shows clear evidence of temporal and spectral structure in
χ2/DoF, both of which are summarized in Fig. 10.

The temporal structure of χ2/DoF, seen both in Figs 9 and 10 is the
easier of the two to understand. By far the largest excess is clearly
associated with the transit of Fornax A through the beam. Fornax
A, which is at 3.378 h of right ascension and −37.21◦ declination,
transits relatively deep into HERA’s primary beam, but at 750 Jy
at 154 MHz (McKinley et al. 2015), it is substantially brighter than
anything else in the field. At roughly 1◦ across, Fornax A is effectively
a very bright point source for HERA Phase I, since it is slightly
smaller than the synthesized beam. When it transits through the
main beam, it is the dominant source in the field.

In the extreme case when the sky is a single point source, antenna-
to-antenna beam variations are reduced to a single pierce-point
as a function of time and frequency, meaning that they can be
wholly subsumed into temporal and spectral gain variations without
raising χ2. This is consistent with the finding that redundancy of
closure phases also improves when Fornax A transits (Kent et al.
2018). When Fornax dominates, beam and gain variations become
less distinguishable and χ2/DoF becomes a poorer metric of non-
redundancy. By contrast, when Fornax A is in a sidelobe, its apparent
flux density likely varies more from antenna to antenna because
sidelobes vary comparatively more than the main lobe, due to the

102458 104 and 2458 109 are excluded from the middle panel of Fig. 8 because
they both are flagged due to heavy RFI early in the night. That flagging
includes Fornax A’s transit, making their χ2 distributions appear artificially
low compared to other nights (see Figs 9 and 10).
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Redundant-baseline calibration of HERA 5851

Figure 9. The median unflagged value of χ2/DoF over night and polarization
reveals complex spectral and temporal structure in this metric of non-
redundancy. While close to the ideal value of 1.0 in places, significant
deviations are apparent at certain LSTs, especially those associated with
bright point sources (see Fig. 10).

increased relative impact of cross-coupling and other non-idealities
(Fagnoni et al. 2019). As long as other sources of comparable
apparent brightness are elsewhere in the beam, that variation along
the line of sight to Fornax A cannot be absorbed into the gains.
This explains the dual-peaked structure around Fornax A in Fig. 10
and the peak near the transit of Pictor A, which at a declination of
−45.78◦ only ever passes through HERA’s sidelobes. It also explains
the narrowing of the dual peak structure at high frequencies visible
in Fig. 9. At higher frequencies, the beam narrows, so Fornax A
enters the sidelobes later, spends less time in the main lobe, and
exits the sidelobes earlier. We return to more quantitatively assess
this explanation and the effect of non-redundancy on the temporal
structure of the gains in Section 4.

The frequency dependence again shows a non-monotonic trend. Its
origin is not obvious. A similar hump between ∼165 and 185 MHz
in χ2/DoF was seen by Ali et al. (2015) using PAPER (see their
Figure 5). Given that PAPER and HERA Phase I share feeds and
signal chains, perhaps this is attributable to some property of the
spectral or spatial response of the analog system. However, no
comparable peaks at low or middle frequencies are seen in Ali et al.
(2015). Comparing this spectrum to average absolute calibration
bandpass determined for HERA in Kern et al. (2019c) also shows
spectral structure at roughly the same scale, but it does not appear to
be correlated with the structure seen here – some dips in the bandpass
are also dips in χ2/DoF, but other dips in the bandpass are bumps in
χ2/DoF. The highest peak in χ2/DoF is perilously close to 137 MHz,
the frequency of the ORBCOMM constellation of satellites (seen
as a spike in Fig. 6 which is made prior to RFI flagging and as
a hole in the lower panel of Fig. 10). Given both our aggressive

Figure 10. Collapsing Fig. 9 along both the frequency and time axis (while
breaking it up into two polarizations) reveals significant structure in χ2,
likely due to the primary beam. We attribute the temporal structure to
bright point sources moving through the main lobe of the primary beam –
lowering χ2 by making gain and beam variations degenerate – or through the
sidelobes – highlighting the antenna-to-antenna variation. We explore this
explanation more in Section 4. The frequency structure appears correlated
with beam directivity, though the underlying cause of that correlation is less
well understood.

RFI flagging and the fact that the median should be relatively
immune to occasional unflagged RFI, this explanation also seems
incomplete.

Our best hypothesis is that the spectral structure in χ2/DoF reflects
beam directivity; the peaks and troughs are roughly aligned with
those in HERA’s total gain (see fig. 18 of DeBoer et al. 2017).
Equivalently, χ2 appears anticorrelated with beam total area �p

as defined in Appendix B of Parsons et al. (2013). Naively, one
might expect that higher beam directivity should lower χ2/DoF –
relatively less sensitivity to the sidelobes should dampen the effect
described above to explain the temporal structure. However, Fig. 9
shows spectral structure that is fairly consistent in time and thus
independent of the sky configurations. Perhaps greater directivity
comes at the cost of more well-defined sidelobes and deeper beam
nulls, which might in turn exacerbate the relative variation from
antenna to antenna. This question is difficult to answer without a
high-fidelity beam and source model in order to understand how
much flux is in the sidelobes for a given visibility for a given time,
frequency, and baseline. It merits further study beyond the scope of
this work.
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Figure 11. Here, we show our per-antenna χ2, normalized by the expected
number of degrees of freedom and averaged over all unflagged times,
frequencies, and nights. After having removed the strongest outliers (white
dashed circles; see Section 3.2), we see little clear pattern in the remaining
antennas. χ2 does not appear to depend strongly on position in the array
nor does it appear strongly correlated on the same antenna for the two
polarizations. While a useful data quality check, this gives us limited physical
understanding of the origin of our non-redundancy since the dishes have been
retrofitted with new feeds since the data were taken.

3.4 Assessing the antenna- and baseline-dependent structure of
χ2

But first, we would like to push the exploration of χ2 beyond where
previous applications of redundant-baseline calibration have gone,
namely to examine the breakdown of how different baseline groups
and different antennas contribute to it. This discussion builds upon
the mathematical framework for calculating the expectation value
of χ2 for specific baselines developed in Section 2.3.2 and on the
antenna cuts based largely on χ2 that we presented in Section 3.2.

We start with each antenna’s individual χ2, which is the sum
of all the terms in the overall χ2 in equation (3) that involve the
particular antenna, normalized by the degrees of freedom calculated
using equation (14). We plot the mean values over all unflagged
times, frequencies, and nights for all unflagged antennas in Fig. 11.

After removing the worst antenna outliers, little pattern remains in
the antennas. One might expect, if antenna beam deformation due to
neighbouring antennas were a dominant source of non-redundancy,
that antennas near the edge of the array would be particularly non-
redundant. We see no clear evidence for this. Interestingly, we
also see no significant correlation between χ2 seen by the two

polarizations of each antenna, though this was not the case for
the most egregious outliers, as was clearly demonstrated in Fig. 6
with Antennas 98 and 136. For the highest-quality antennas, this
indicates that the dominant source or sources of non-redundancy are
not ones that should affect the two polarizations roughly equally – like
feed height or dish position errors. Rather, errors in feed horizontal
positioning or orientation seem likelier culprits, since they can more
easily affect the way the two polarizations differentially illuminate
an imperfect dish surface. Unfortunately, since these dishes have
already been retrofitted with HERA Phase II broad-band feeds, there
is no way to verify this hypothesis.

Next we examine the structure of χ2, broken down by the
redundant-baseline groups involved. In Fig. 12, we show this in
the case of our fiducial calibration scheme – the one used in the rest
of this work. After removing our worst antennas, we also restrict
the baselines used in calibration. We exclude all baselines longer
than 90 m, motivated by the detrimental impact of long baselines on
calibration spectral structure (Orosz et al. 2019). We also exclude the
three shortest baselines, which show the strongest impact of cross-
coupling (Kern et al. 2019b). For the baselines we exclude from
calibration, we apply the gain calibration solutions derived from
the other baselines and then average within the redundant group to
estimate the visibility solution. To normalize the result, we divide by
the number of degrees of freedom that that baseline would have had
if no baselines were excluded from calibration.

Fig. 12 shows that the highest χ2 appears on the shortest baselines.
This can be attributed, at least in part, to a number of factors. The
shortest baselines have the greatest contribution from bright, but
mostly spatially smooth Galactic synchrotron emission – much of
which appears in the sidelobes and thus likely varies more from
antenna-to-antenna than emission in the main lobes of the primary
beam (see the second panel of Fig. 10). The shortest baselines
also exhibit the largest effect of temporally stable cross-coupling
systematics (Kern et al. 2019b), the impact of which is unlikely to
affect redundant baselines equally. The additional contribution from
bright galactic emission also increases the S/N on these baselines.
This increases the impact of non-redundancy χ2 – by increasing the
amplitude of both terms in the numerator of equation (3) relative to
the denominator. Thus, the same fractional non-redundancy produces
a larger χ2 than it would on other baselines. We will return to the
question of fractional non-redundancy and try to assess it in a way that
is ideally independent of both noise and signal strength in Section 3.5.

That said, to some extent high χ2 on short baselines was a self-
fulfilling prophecy. By excluding them from the calibration, we
removed their impact on the overall minimization of χ2, effectively
trading higher χ2 on short baselines for lower χ2 on all other
baselines. To check this effect, we also performed redundant-baseline
calibration without excluding any baselines. We show the results in
Fig. 13. Letting the shortest baseline affect the calibration raises χ2

elsewhere, especially on the moderate-length baselines. This fact,
along with the reasons enumerated above, underlies our decision to
exclude these baselines from our main analysis. However, it would
be useful to return to this question in the future in order to tease apart
the origin of non-redundancy on the short baselines to see if it can be
mitigated – especially if other systematics are reduced sufficiently
so that the shortest baselines can be confidently included in future
power spectrum measurements (Kern et al. 2019b).

3.5 Fractional non-redundancy

It is clear that χ2 – whether overall, per-antenna, or per-baseline
– is a metric that can show evidence for non-redundancy. It does
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Redundant-baseline calibration of HERA 5853

Figure 12. Here, we show χ2 for each redundant-baseline group, averaged over all unflagged times, frequencies, and nights. In our fiducial calibration scheme,
baselines longer than 90 m or shorter than 15 m are excluded from calibration (dashed outlines) and are instead solved for afterwards. Baselines in white are
unique separations, meaning that 〈χ2〉 = 0 and thus undefined after normalization. In general, shorter baselines have more non-redundancy structure. The
precise cause of this effect is unclear, but several factors may contribute. First these baselines have larger contributions from bright but spatially smooth galactic
emission, especially in the sidelobes. Relatedly, they have higher S/N, making any non-redundancy appear larger relative to the noise in χ2. They also exhibit
the strongest cross-coupling systematics (Kern et al. 2019b), which also source non-redundancy.

Figure 13. Here, we show the same χ2 per baseline metric we calculated in Fig. 12, this time without excluding any baselines from calibration. While χ2 on
the shortest baselines is reduced relative to Fig. 12, this comes at the cost of higher χ2 across other baselines, especially those of moderate length. We can thus
justify our fiducial choice of baseline cuts by arguing that is useful to keep the non-redundancy contained and not let these short baselines disproportionately
affect our calibration.

not, however, answer a seemingly much simpler question: how non-
redundant is HERA? Answering this question would be useful both
for quantifying the deviations from ideality in the construction of our
array and for comparing HERA to future redundant arrays – which
is challenging to do with χ2 alone, as we saw in Section 2.3.1.

To put it another way, χ2 compares differences between the data
and our redundant model of the data to the noise, but how do those
differences compare to the data itself? Two factors complicate this
simple question. The first is that some of that non-redundancy is
due to noise and is thus “uninteresting” – we want to know how
much our visibility solutions deviate from the calibrated data beyond
the variance expected from thermal noise. The second arises when
we want to start comparing different baselines, times, frequencies,
or nights by averaging over the other dimensions. While the noise

used to normalize χ2 has relatively smooth temporal and spectral
structure, that is not necessarily the case with our visibilities. When
averaging together relative error measurements, we might worry that
when the particular visibilities pass through destructive interference
nulls, the relative error metric blows up.

We address the first problem by defining a relative error metric
that looks for evidence of non-redundancy beyond that expected
from noise alone. We define our estimate of the relative error on a
baseline group ηi − j as

ηi−j ≡
∣∣σ 2

i−j,V − σ 2
i−j,N

∣∣1/2∣∣Vi−j

∣∣ , (17)
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Figure 14. Here, we show our metric of relative non-redundancy in baseline groups, ηi − j defined in equation (17), which was devised to separate out “true”
non-redundancy in baseline groups from non-redundancy attributable to thermal noise. We compute ηi − j for all frequencies, LSTs, nights, and baseline groups.
However, reducing this statistic along one or more axes is complicated by the nulls in the visibility. Means and even medians show substantial temporal
structure (top panel), largely due to this effect. If we assign the highest weight to the best-measured visibilities while averaging using equation (20), this effect is
smoothed out substantially. While the apparent deviations from redundancy can be as big as the visibilities themselves, in general, we see �20 per cent relative
non-redundancy across most of the band for short baselines and �10 per cent on longer baselines.

where σ 2
i−j,V is our estimate of the visibility variance in a redundant-

baseline group corresponding to antenna separation i − j and σ 2
i−j,N

is our proxy for the noise variance in that group. Since gains and
visibility solutions are estimated from the same data that we now
compare to those visibility solutions, our estimate of the variance
should take this into account. And since that data is weighted in
omnical by the inverse noise variance, σ−2

ij , we use the weighted
sample variance estimator

σ 2
i−j,V =

∑
ij σ−2

ij

(
Vij

gig
∗
j

− Vi−j

)2

∑
ij σ−2

ij −
(∑

ij σ−4
ij

)
/
(∑

ij σ−2
ij

) . (18)

Likewise, since some of the thermal noise is absorbed in the visibility
solution, we use the same formula for σ 2

i−j,N , substituting the noise
variance for the calibrated visibility difference and yielding,

σ 2
i−j,N =

⎡
⎣∑

ij

σ−2
ij −

⎛
⎝∑

ij

σ−4
ij

⎞
⎠ /

⎛
⎝∑

ij

σ−2
ij

⎞
⎠
⎤
⎦

−1

. (19)

Ideally, this estimator addresses our first problem by statistically
isolating the portion of the observed non-redundancy due to thermal
noise.

The estimator of relative error ηi − j in equation (17) is straight-
forward to compute as a function of baseline, time, frequency, and
night. However, when we try to form any summary statistics, we
immediately run into a problem. In Fig. 14, we plot ηi − j as a
function of both LST and frequency for a pair of baselines, averaging
over night and either frequency or LST. When the amplitude of
the visibility is low, this statistic swings wildly, sometimes yielding
relative error estimates of 10 or more. These times and frequencies
end up dominating the average and sometimes even the median. This
heavy variability in time, seen most clearly in the top panel of Fig. 14,
produces mean estimates of η well above the medians. Since our goal
is to develop a somewhat array-independent metric of redundancy,
it seems odd for the quantity to depend so strongly on the particular
time of observation. The array is not changing substantially during
this time, so do we really trust all of these estimates of ηi − j equally?
We propose a weighting scheme for averaging ηi − j where each
estimate is weighted by

wi−j ≡
∣∣Vi−j

∣∣2

σ 2
i−j,N

. (20)

This (S/N)2-weighting gives the most weight to the visibilities
measured with the highest signal to noise and removes the undue
influence of visibility nulls. In Fig. 14, our (S/N)2-weighting pro-
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Figure 15. Our metric of relative non-redundancy of baseline groups, ηi − j, defined in equation (17) and averaged over LST, frequency, and night using
(S/N)2-weighting (equation 20). Most of our baselines show sub-10 per cent relative non-redundancy, consistent across both instrumental polarizations. Larger
relative non-redundancy is observed for the shortest baselines and some of the longest baselines which were excluded from calibration (dashed outlines, see
Section 3.4). The longer baselines are also less sampled, so their estimates of visibility sample variance are themselves noisier.

duces substantially smoother estimates of 〈ηi − j〉 for both baselines
plotted. We use this weighting to investigate how non-redundancy
depends on baseline group in Fig. 15.

With the exception of the shortest and longest baselines, most
baseline groups show non-redundancy at the sub-10 per cent level.
This result is consistent with other metrics of non-redundancy, e.g.
closure phase (Carilli et al. 2018). Likewise, this is consistent with
the rough level of non-redundancy seen in the fiducial simulations
of Orosz et al. (2019), which take as inputs to their parametrized
non-redundancy the construction tolerances of HERA dish and
feed positioning. The longest baselines are the most infrequently
measured, so the estimate of the sample variance in equation (18) is
likely quite noisy. Similarly, we expect the shortest baselines to be
the least-redundant, in part due to their sensitivity to diffuse galactic
structure in the sidelobes, which likely vary more from antenna-
to-antenna than other parts of the beam. Still, they are only non-
redundant at the ∼20 per cent level, which is encouraging given that
they were excluded from the determination of the gains in redundant-
baseline calibration.

4 TH E E F F E C T O F N O N - R E D U N DA N C Y O N
C A L I B R AT I O N T E M P O R A L S T RU C T U R E

Because spectral smoothness is so key to 21-cm cosmology, one may
worry that any calibration using incomplete knowledge – be it sky or
beam knowledge in sky-based calibration (Barry et al. 2016; Ewall-
Wice et al. 2017) or unknown deviations from redundancy (Byrne
et al. 2019; Orosz et al. 2019) – might impart spurious spectral
structure on calibration solutions. We see clear evidence for non-
redundancy at a level comparable to the fiducial ∼10 per cent error
level in Orosz et al. (2019), so this concern appears to be pressing.
However, it does not appear to be the leading-order contribution
to unsmooth gains; Kern et al. (2019c) shows clear evidence for
spurious spectral structure in HERA’s solved gains using both
sky-based and redundant-baseline calibration attributable to cross-
coupling systematics (Kern et al. 2019a,b). As was suggested in the
conclusion of Orosz et al. (2019), Kern et al. (2019c) demonstrate
that low-pass filtering of calibration solutions appears to be a robust

way of mitigating this effect. This approach follows a “do-no-harm”
philosophy, relying on the instrument to impart less spectral structure
than we would with analysis errors. Whether that approach can
carry us through to a detection and characterization of the 21-cm
cosmological signal remains to be seen.

While Kern et al. (2019c) has thoroughly explored the spectral
structure of calibration solutions, they have largely set aside the
effects of non-redundancy on temporal structure. As we will show
in Section 4.1, we see clear evidence for temporal structure well
in excess of the expected gain drifts with ambient temperature. In
this final section of the paper, we quantify the apparent temporal
structure in our calibration solutions and attempt to assess how much
of it is real and how much of it is an artefact of non-redundancy,
invoking analogous simulations to those of Orosz et al. (2019) in
Section 4.2. This study lets us motivate future temporal filtering
of gains, analogous to how Zheng et al. (2014) used the Fourier-
space statistics of the calibration solutions to develop a Wiener filter
kernel.

4.1 Observed temporal structure in gains

Temporal structure in calibration solutions, in and of itself, is not
evidence for non-redundancy. Signal chain elements can be sensitive
to temperature, for example. The real smoking gun that something
is amiss is that the variability in our gains repeats from night to
night at fixed LST – just as χ2 did (see Fig. 10). In Fig. 16,
we show calibration gains after both redundant-baseline calibration
and absolute calibration. The procedure for absolute calibration is
detailed in Kern et al. (2019c). We include absolute calibration to
eliminate temporal discontinuities due to antenna flagging. However,
because absolute calibration was performed on a single field and
transferred to an entire night, we expect most of the temporal structure
to be attributable to calibration errors introduced by redundant-
baseline calibration.

While the calibration solutions shown in Fig. 16 vary from day
to day due to noise, there is clear evidence for repeated structure.
Perhaps unsurprisingly, the strongest apparent variations occur dur-
ing the transit of Fornax A, further evidence for our hypothesis
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Figure 16. One consequence of non-redundancy in redundant-baseline calibration is the introduction of calibration errors which depend strongly on the
configuration of sources in the beam at a given LST and thus repeat from night to night. Plotting our calibration solutions as a function of LST for a single
antenna and frequency for all nights demonstrates this effect. Here, we show gain amplitudes and phases for a single antenna – in this case, the East/West
polarization of antenna 88 – at a single frequency (∼125 MHz). Each different coloured line is a different night in our data set after redundant-baseline calibration,
absolute calibration to fix the degeneracies, and RFI flagging. The ∼20 per cent level fluctuations is typical of antennas and frequencies. While some of that
fluctuation is expected from thermal noise, but the coherent fluctuations that repeat from day to day (especially around the transit of Fornax A at ∼4 h) at the
same LST indicate systematic error. In black, we show the average across night after excluding daytime data and the most RFI-contaminated nights (2458 104,
2458 105, and 2458 109). To avoid temporal structure in the degenerate subspace, we apply absolute calibration after redundant-baseline calibration. Since
absolute calibration was performed only a few fields and then transferred to whole nights (Kern et al. 2019c), we do not expect it to contribute significantly to
the temporal structure seen here.

that bright point sources, combined with antenna-to-antenna beam
variation cause redundant gains to be erroneously dragged around.
The phases are contiguous, so this does not appear to be an LST-
dependence due to phase wrapping as was simulated in Joseph et al.
(2018). The particulars of the peaks and troughs vary from antenna
to antenna and frequency to frequency, but the general features seen
in the Fig. 16 are representative. This raises a question: with the
exception of the temporal variation which repeats from night to night,
do we see any evidence for real temporal structure not attributable to
noise or non-redundancy?

To study this problem statistically and understand the relevant
time-scales in the problem, we produce the temporal power spectra
of all of our gains at a particular frequency – in our case ∼125 MHz,
though the results are similar across the band. To interpolate over
RFI gaps, we use the iterative deconvolution algorithm of Parsons &
Backer (2009), smoothing the calibration solutions on a 1 min time-
scale. We do the same for the nightly average (black line in Fig. 16).
Assuming that our gain solutions are separable as the product of a
LST-dependent systematic and time-dependent intrinsic fluctuations,
we divide out the nightly averages, producing our best estimate of
“intrinsic” gain variability. These continuous gains and gain ratios
are then tapered with a Hann window, Fourier transformed, squared,
and then re-normalized to peak at unity.

We show our temporal power spectrum results in stages in Fig. 17.
In general, we find that dividing out the nightly average removes all
apparent spectral structure on time-scales shorter than 6 h, at least up
to a noise floor at the ∼0.1 per cent level in the gains. This appears
to be true over antennas and nights, and is confirmed by the fact
that the temporal power spectrum of the nightly averages themselves

contains the same temporal structure as in the original redundant-
calibration gains. Given the short period of observation (18 d), it
is possible that some of the apparently LST-locked behaviour is
attributable to cyclical changes in local conditions, such as the effect
of ambient temperature on gains or HERA dish/feed structure. We
expect this effect to be more pronounced in the antenna-independent
overall amplitude of the gains – a degeneracy of redundant-baseline
calibration – but we cannot completely rule out local effects on time-
scales between 6 h and the ∼1 h that LST changes relative to local
time over the observing campaign.

This result leads us to the conclusion that we can safely smooth
our calibration solutions on 6-h time-scales without losing any
real temporal structure above that ∼0.1 per cent level. To be clear,
this does not mean that our calibration solutions are correct to
∼0.1 per cent – only that any errors above that level are isolated
to time-scales longer than 6 h.

4.2 Explaining temporal structure in terms of non-redundancy

Without precise knowledge of antenna-to-antenna beam variation, it
is not possible to predict the precise way in which redundant-baseline
calibration of a not-quite redundant array will cause antenna gains to
vary in time. Those measurements are quite challenging and are the
focus of other work (e.g. Jacobs et al. 2017; Nunhokee et al. 2020).
However, given the statistical understanding we have developed in
Section 4.1 of the imprint of non-redundancy on redundant-baseline
calibration’s gains, it is reasonable to ask whether that structure is
reproducible in a relatively simple simulation.
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Figure 17. We compute temporal power spectra of our gains to look for “intrinsic” variability beyond the LST-locked component that we saw in Fig. 16 and
attributed to non-redundancy. First, we show the power spectrum of the same antenna as in Fig. 16 after dividing out the average over all nights from a gains on
a single night, 2458 098 (top left-hand panel). To look for overall trends, we average these power spectra incoherently over E/W-polarized antennas, plotting
a selection of the results as a function of night (top right-hand panel), and over nights, plotting a selection of the results as a function of antenna (bottom
left-hand panel). While these averages produce a less noisy estimate of the temporal power spectra, they reveal little structure beyond 6 h. Because the average
is incoherent, the noise floor remains fixed. Finally, in the bottom right-hand panel, we compare temporal power spectra before (blue) and after (green) dividing
out the nightly average gain, in both cases averaging gain power spectra incoherently over nights and antennas. The discrepancy between the two is the spectral
structure attributed to systematics that repeat from night to night at fixed LST, most likely non-redundancy. As a cross-check, we also plot the temporal power
spectrum of the nightly averages, averaged incoherently over antennas (orange). As expected, this matches the observed temporal structure of the measured
gains at long and medium timescales, but drops to a lower noise floor because the nightly average is coherent. The lack of structure at time-scales shorter than
6 h justifies smoothing on that time-scale, since it will not eliminate any real temporal structure in the gains above the ∼10−3 level.

To test this idea, we simulate visibilities at 125 MHz using the
same set of antennas and the same range of LSTs as those observed.
Our sky model consists of four components. First, we use the Global
Sky Model of diffuse emission (de Oliveira-Costa et al. 2008) at a
HEALPix resolution ofNSIDE=128. We then add the 1000 brightest
beam-weighted point sources from the GLEAM catalogue (Hurley-
Walker et al. 2017) and all of the bright radio sources that were
peeled from that catalogue but included in table 2 of Hurley-Walker
et al. (2017). Lastly, since Fornax A was excluded from the GLEAM
catalogue but not included in Table 2, we model it as a single 750 Jy
point source at 150 MHz and extrapolate to a 125 MHz using a
spectra index α = −.81 (McKinley et al. 2015). Since we are only
interested in a statistical comparison of the effect on redundant-
baseline calibration, accurate sky modelling is not strictly necessary.
Source mismodelling and double-counting are unlikely to affect our
temporal power spectra substantially.

To simulate non-redundancy, we adopt the simplified model
of HERA developed in Orosz et al. (2019). In our simulation,
antennas are perturbed from their ideal positions by Gaussian random
displacements with σ = .03 m in both directions. Our beams are Airy
functions parametrized by pointing errors (σ = 0.15◦) and beam

FWHM errors (σ = 0.28◦) in both directions. There is no statistical
difference between the two polarizations; the “average” beam is
circular. For mathematical details, see Section 2.1 of Orosz et al.
(2019). We simulate visibilities with perfect calibration, but then
allow omnical to move us away from gains of 1.0 in its attempt to
minimize χ2.

By renormalizing our gain temporal power spectra to peak at
unity, we can compare our simulation directly to the observed gain
variability. In Fig. 18, we show how our calibration of simulated data
with non-redundancy compares with our real calibration solutions.
On time-scales longer than the beam-crossing time (∼40 min), our
simulation matches the observed temporal power spectra very well.
This makes sense since over a beam-crossing time, calibration errors
due to, for example, bright point sources moving through non-
redundant sidelobes should be highly correlated, contributing min-
imally to temporal variability. Likewise, we expect our simulation
to diverge from the data on short time-scales because the data hits
a noise floor and the simulation is noise-free. There is tentative
evidence for minor disagreement at intermediate timescales – the
simulated power spectrum appears to be falling a bit faster than
the data. This could be attributed to the simplicity of the beam
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Figure 18. Comparing our simulation of the effect of non-redundancy on gain temporal power spectra to the statistics of our observed HERA gains reveals good
agreement on time-scales longer than a beam-crossing time. Here, we show our measured gain temporal power spectra averaged incoherently over antennas and
nights (the blue line is the same as the blue line in Fig. 17). At shorter time-scales, they disagree because our observed gains hit a thermal noise floor while
the simulation is noise-free. The agreement on long time-scales demonstrates the plausibility of our hypothesis that the difference between the observed and
“intrinsic” gain power spectra in Fig. 17 – and thus all observed temporal structure on time-scales shorter than 6 h – is attributable to the effect of non-redundancy
on redundant-baseline calibration.

model, which probably has less spatial structure than the real beam
and thus produces more correlated gain variations on time-scales
associated with sources passing through beam substructure, though
that conclusion is rather speculative.

To be clear, our simulation is not a fit to the data. By simple
guess-and-check, we found remarkably good agreement with HERA
data when using error levels 50 per cent higher than the “fiducial”
error level in Orosz et al. (2019). In that work, the fiducial errors
produced visibility variances at the ∼10 per cent level on the shortest
baselines, so increasing that by 50 per cent is entirely in line with the
non-redundancy of HERA we observed and quantified in Section 3.
We did not attempt to measure the levels of individual types of
non-redundancy individually. Likely the effect of these different
error types is highly degenerate in their effect on the gain temporal
power spectra and we know that this simple 6-parameter model for
each antenna does not capture the full complexity or variability of
HERA elements. Despite all that, the simulation makes it clear that
the observed LST-locked temporal structure in our gain solutions is
largely, if not entirely, attributable to the non-redundancy we observe
in HERA.

5 SU M M A RY

In this work, we comprehensively survey the method of redundant-
baseline calibration and its application to HERA. This includes a
pedagogical review of the mathematical and algorithmic underpin-
nings of the technique, a revised quantification of the statistical
expectation of χ2 (correcting a minor error in the literature), and
a new formalism for predicting how different baselines, antennas, or
redundant-baseline groups contribute to χ2. We apply this technique
to HERA data, producing redundant-baseline calibration solutions
that solve for most of the internal degrees of freedom and enable
future absolute calibration to fix the last few degenerate modes. Kern
et al. (2019c) show that that process works well with HERA and
that the combination of redundant-baseline and subsequent absolute
calibration compares favourably to pure sky-based calibration with
HERA. That said, both techniques introduce spectral structure into
the calibration solutions – likely attributable to cross-talk systematics
– that must be filtered on delay scales larger than ∼100 ns. Exploring

methods of redundant-baseline calibration that are immunized to
these sorts of systematics remains an active area of research.

We also use redundant-baseline calibration to assess the health of
the array and study the origins of non-redundancy – an important
systematic for 21-cm cosmology that affects calibration and can
adversely narrow the EoR window if not taken into account (Byrne
et al. 2019; Orosz et al. 2019). We study χ2 – the quantity
redundant-baseline calibration seeks to minimize – and show how
particular antennas contribute disproportionately to it, likely pointing
to some flaw in their construction. We find the largest deviations
from redundancy on short baselines, both in terms of χ2 and in
terms of relative error. We attribute them to some combination of
larger cross-talk effects and higher sensitivity to diffuse emission
in the sidelobes the array which are believed to be relatively
more non-redundant than the main lobe of the primary beam. By
one metric, we find that almost all of our putatively redundant-
baseline groups show visibility variance at or below the 10 per cent
level, roughly in line with our expectations given the construction
tolerances of element construction and placement. To study this,
we develop a metric for non-redundancy that is ideally comparable
between HERA and other redundantly arranged telescopes and
largely insensitive to the specific sky configuration within the
beam.

Since Kern et al. (2019c) already studied the spectral structure
of redundant-calibration solutions in detail, we then turn to an
assessment of the impacts of redundant-baseline calibration on the
temporal structure of calibration solutions. Though we see substantial
temporal structure in gain solutions, we find that it repeats from
night-to-night at fixed LST, indicating a systematic effect. Taking
out the nightly averages, we find little evidence for intrinsic variation
temporal structure on time-scales shorter than 6 h, justifying a long
smoothing time-scale. Inspired by Orosz et al. (2019), we simulate
this effect in a simplified model of the array and find that the entire
effect can be explained by non-redundancy at roughly the level we
see in HERA.

Overall, we find that redundant-baseline calibration is a powerful
tool for making sense of data from a new array without the require-
ment of substantial prior knowledge about that array or even the sky
at the observed frequencies. While redundant-baseline calibration is
vulnerable to systematics introduced by non-redundancy, so too is
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sky-based calibration if that non-redundancy is not precisely mea-
sured and forward-modelled. Nevertheless, considerable progress
has already been made on understanding the origin and nature of
these systematics and a number of ideas – from calibrating with only
relatively short baselines to filtering calibration solutions – have been
proposed to mitigate them. Hopefully, the tools we have detailed,
refined, and applied to HERA here will continue to serve HERA and
future 21-cm arrays in quantifying and avoiding systematics in the
quest to separate bright astrophysical foregrounds from high-redshift
21-cm signal.
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APPENDIX A : M ETHODS FOR ESTIMATING
DE LAY S F ROM GAINS O R V ISIBILITIES

In redundant-baseline calibration, precise determination of antenna
delays – the dominant term in the phase of antenna gains – helps later
iterative steps (e.g. omincal) converge faster and more reliably. It
also avoids the complication of adding spectral structure in the degen-
erate subspace of redundant-baseline calibration that must be later
removed via absolute calibration (Dillon et al. 2018). Determining
those delays via firstcal (see Section 2.2.1) requires estimating

Figure A1. In general, one can estimate a delay in a spectrum by looking
the delay where the absolute value of the FFT peaks. Here, we compare
that method (blue lines) to two variants that use information about the two
neighbouring values of the FFT. In the quadratic method (orange lines),
those three points are interpolated with a parabola to find the peak τ . This
is an improvement, but even more sophisticated methods exist in the signal
processing literature. We use Quinn’s Second Estimator (Quinn 1997), which
we explain quantitatively in Appendix A. The method uses the same three
pieces of information – the peak of the FFT and its neighbours – to produce
results orders of magnitude more accurate in our noise-free demonstration
(green lines). All three methods produce perfect delays when the input τ is
an integer multiple of 1/B, where B is the bandwidth (in our test, 100 MHz).

delays from visibilities or visibility products, as in equation (5).
Before solving a system of equations, as in firstcal, we must
determine delays τ from complex data products d(ν) (be they gains,
gain products, visibilities, visibility products, etc.) that look like

d(ν) ≈ d0e2πiντ . (A1)

To the extent that equation (A1) holds, the problem of estimating
τ from d(ν) is equivalent to finding the peak of the Fourier transform
of d(ν). The simplest peak finding algorithm is to take the FFT of
d(ν), which we define as d̃(τ ), and find the delay corresponding to
the maximum absolute value. In a measurement with 100 MHz of
bandwidth, this technique yields delay resolution of 10 ns and thus
errors as large as 5 ns (see Fig. A1). As Dillon et al. (2018) showed,
delay errors that large create phase wraps that add spectral structure
in the phase degeneracies.

This problem is well-studied in the signal processing literature,
where it is usually framed as the problem of frequency estimation
from time series data. There exist other, more accurate algorithms that
are not more computationally intensive than taking an FFT. Perhaps,
the next simplest is to find the peak absolute value of the FFT and
interpolate between it and two nearest neighbours with the unique
parabola that describes the three points. The interpolated peak is,
thus, the maximum value of the parabola, which is shifted from the
maximum value of the FFT towards the larger of the two neighbours.
This technique still has the virtue of computational simplicity and
locality in delay space. In the simple case of a single input tone,
Fig. A1 shows that this method produces smaller errors than the
maximum FFT approach.
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Redundant-baseline calibration of HERA 5861

Interestingly, it is possible to do substantially better just using the
same three pieces of information – the peak of the FFT and its two
neighbours – if one uses both their real and imaginary parts rather
than taking the absolute value. One such method is Quinn’s Second
Estimator (Quinn 1997). Since this method has not, to best of our
knowledge, been used in the radio astronomy literature, we reproduce
it concisely here. If d̃(τ ) is maximized at τ 0 for the discrete set of
delays produced by the FFT, and if the two neighbouring delays
are denoted τ−1 and τ+1, each �τ from τ 0, then Quinn’s Second
Estimator of delay, τ̂ , is given by

τ̂ ≡ τ0 + �τ

[
δ−1 + δ+1

2
+ κ

(
δ2
−1

) − κ
(
δ2
+1

)]
. (A2)

Here, the δ±1 terms are defined as

δ±1 ≡
∓Re

[
d̃ (τ±1) /d̃ (τ0)

]
1 − Re

[
d̃ (τ±1) /d̃ (τ0)

] , (A3)

and κ(x) is defined as

κ(x) ≡ 1

4
ln
(
3x2 + 6x + 1)

) −
√

6

24
ln

(
x + 1 − √

2/3

x + 1 + √
2/3

)
. (A4)

While mathematically more complicated (and certainly far less
intuitive), this estimator is simple to compute and performs orders of
magnitude better than the quadratic method in the simple scenario
of a single delay with no noise (Fig. A1). It is also, as Quinn (1997)
shows, a robust estimator in the presence of noise.
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