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ABSTRACT
We search for observational signatures of magnetic helicity in data from all-sky radio polarization surveys of the Milky Way
Galaxy. Such a detection would help confirm the dynamo origin of the field and may provide new observational constraints
for its shape. We compare our observational results to simulated observations for both a simple helical field, and for a more
complex field that comes from a solution to the dynamo equation. Our simulated observations show that the large-scale helicity
of a magnetic field is reflected in the large-scale structure of the fractional polarization derived from the observed synchrotron
radiation and Faraday depth of the diffuse Galactic synchrotron emission. Comparing the models with the observations provides
evidence for the presence of a quadrupolar magnetic field with a vertical component that is pointing away from the observer in
both hemispheres of the Milky Way Galaxy. Since there is no reason to believe that the Galactic magnetic field is unusual when
compared to other galaxies, this result provides further support for the dynamo origin of large-scale magnetic fields in galaxies.
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1 IN T RO D U C T I O N

Magnetic fields are critical to the structure and the turbulent prop-
erties of the interstellar medium, to the star formation process, and
to the acceleration, propagation, and confinement of cosmic rays
in galaxies (e.g. Haverkorn 2015). Observational features of galactic
magnetic fields include a strength of the order of a μG with magnetic
field lines that generally follow the arms in face on spirals (Beck
2001). Observations of nearby, edge-on galaxies reveal apparent X-
shaped field lines that extend into the halo (Beck 2009; Beck &
Wielebinski 2013; Krause 2015; Krause et al. 2020).

In recent years, we have learned a great deal about the magnetic
field of the Milky Way Galaxy, both through modelling of the
Galactic synchrotron radiation and Faraday rotation (Page et al. 2007;
Sun et al. 2008; Sun & Reich 2009, 2010; Jaffe et al. 2010; Jansson &
Farrar 2012a, b; Planck Collaboration XLII 2016b; Terral & Ferrière
2017), and through observations of the Faraday rotation of Galactic
pulsars and background radio sources (e.g. Brown & Taylor 2001;
Brown et al. 2003; Pshirkov et al. 2011; Van Eck et al. 2011;
Oppermann et al. 2015; Sobey et al. 2019; Hutschenreuter & Enßlin
2020; Ng et al. 2020), yet we still do not have a clear picture of the
3D geometry of this field, nor do we fully understand the origin. The
leading idea on how such ordered fields on galactic scales arise is
through amplification of a weak seed field through dynamo action
(Beck et al. 1996; Subramanian 2002), however, conclusive evidence
of this theory is yet to be achieved.

� E-mail: jennifer.west@dunlap.utoronto.ca

One consequence of dynamo theory (Subramanian 2002; Black-
man 2015) is the presence of twisted, or helical, magnetic fields
resulting from the Coriolis force, which produces a systematic
rotation, always in the same sense (for expanding motions). Since
all dynamo models will predict a field with a twist, confirming
the presence of helicity in the magnetic field of a galaxy would
strongly support a dynamo origin of the field. Additionally, a better
understanding of the impact that helicity may have on the observed
emission may help us devise new constraints on the geometry of
galactic magnetic fields. In this paper, we set out to find observational
evidence of helicity in the coherent, large-scale magnetic field of the
Milky Way Galaxy.

Faraday rotation describes the rotation of the plane of polarization
as an electromagnetic wave propagates through a magnetoionic
medium. Faraday depth, FD, is defined as the integral of the
magnetoionic medium along a line of sight, from a distance, r =
d, to the observer at r = 0,

FD(d) = 0.812

d∫
0

neB‖dr[rad m−2], (1)

where ne [cm−3] is the thermal electron density and B� [μG] is the
line-of-sight component of the magnetic field. Here, B� > 0 when
pointed towards the observer. In this paper, we use FD to mean the
entire Faraday depth of the Galaxy, FD(D), where D is the distance
to the edge of the Galaxy for a particular line of sight.

Observationally, FD is measured by looking at the dependence of
the position angle of the polarization vector, χ , as a function of the
wavelength of observation squared, λ2 [m2]. If we measure the FD

C© 2020 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/3/3673/5919456 by guest on 09 April 2024

http://orcid.org/0000-0001-7722-8458
http://orcid.org/0000-0002-3899-0877
http://orcid.org/0000-0002-5887-3205
http://orcid.org/0000-0002-3382-9558
mailto:jennifer.west@dunlap.utoronto.ca


3674 J. L. West et al.

of a background source through a Faraday-rotating medium, then we
call this the Faraday rotation measure, RM, where

χobs = χsrc + RMλ2. (2)

The amount of rotation (i.e. the difference between χobs and χ src) is
greater at longer wavelengths since the rotation is ∝ λ2.

While the degree of Faraday rotation depends on the line-of-sight
component of the magnetic field, the amount of synchrotron radiation
depends on the perpendicular component of the magnetic field (i.e.
in the plane of the sky), meaning these observations combined could
theoretically constrain the 3D magnetic field. However, since the
magnetic field is observed in projection, and since Faraday rotation,
as well as geometric effects (e.g. magnetic field reversals, turbulence,
beam depolarization, etc.) can lead to cancellation of the polarization
vectors (depolarization), the analysis is complex.

Magnetic helicity, Hm, is a property of a magnetic field, B, that
describes the amount of coil or twist that is present in the field. It is
defined as Hm = 〈A · B〉, where A is the vector potential and B =
∇ × A. However, there is an infinity of possible vector potentials
that can satisfy this equation, which means that Hm is not a uniquely
defined quantity. The integral over a volume is unique only if the
normal component of the magnetic field vanishes on the surface.
Observationally, it is a better choice to consider the current helicity,
Hj, since it is uniquely defined for a given B. Current helicity is
defined by the volume average of j · B, i.e.

Hj = 〈 j · B〉, (3)

where j = ∇ × B is the current density (e.g. Seehafer 1990). Both
magnetic helicity and current helicity are measures of the amount
of coil or twist in the magnetic field. Although there is no general
equation that relates magnetic helicity and current helicity, at the
relatively large scales considered in this paper, both helicities should
have the same sign.

The sense of this twist has a handedness that can be right-handed
(positive helicity) or left-handed (negative helicity). Junklewitz &
Enßlin (2011) develop a methodology and Oppermann et al. (2011)
use this method to attempt to detect helicity in the turbulent
component of the Galactic magnetic field, but its presence can not
be confirmed by these observations. More recently, Brandenburg &
Brüggen (2020) use observations of B-mode polarization in Wilkin-
son Microwave Anisotropy Probe (WMAP) data to demonstrate
broad agreement with a model, which is suggestive of opposite
handedness in the north and south Galactic hemispheres.

Volegova & Stepanov (2010) present a study on detecting helicity
in a purely turbulent field (i.e. not specific to the magnetic field
of a galaxy or using a dynamo field). In this study, they predict a
relationship between polarized fraction,1 P/I, where P is the linearly
polarized flux density and I is the total Stokes I flux density, and
the observed RM, which depends on the helicity of the field. When
there is no helicity, the rotation measure distribution is symmetric,
and the cross-correlation coefficient, C, between polarized fraction
and rotation measure is consistent with zero. When Hm > 0, the dis-
tribution is tilted towards negative RM for large polarized fractions,
which leads to C > 0. In contrast, when Hm < 0, there are more
negative RM for small polarized fractions and more positive RM at
large polarized fractions, and hence C < 0. Work by Brandenburg &
Stepanov (2014) further developed this idea.

The explanation for this correlation is in the way that Faraday
rotation interacts with a helical field. Faraday rotation rotates the

1Polarized fraction is also referred to as the degree of polarization.

plane of polarization in a right-handed sense about the magnetic
field, i.e. if the magnetic field is pointing towards the observer (FD
> 0) then the polarization vectors are rotated counter-clockwise
as they propagate towards the observer (e.g. Robishaw & Heiles
2018). Therefore, Faraday rotation either causes a ‘winding’ of the
orientation of the polarized electric field vector, consistent with
the direction of Faraday rotation (causing greater depolarization),
or ‘unwinding’, which is rotation of the polarized electric field
vector opposite to the direction of Faraday rotation (causing lesser
depolarization), depending on the sign of the FD and the handedness
of the helicity (for further explanation see Ferrière, West & Jaffe
2020).

For example, if the magnetic field has left-handed helicity (Hm <

0) and points towards the observer (FD > 0), then Faraday rotation
causes an ‘unwinding’, resulting in decreased depolarization (larger
polarized fraction). This causes a bias in the observed polarized
fraction for a particular sign of FD, leading to a correlation between
the two quantities. The theoretical maximum polarized fraction is
≈ 75 per cent. Helicity cannot increase this value, but it can act to
decrease it through increasing the depolarization effect.

Volegova & Stepanov (2010) find that for simulations with λ <

6 cm, i.e. wavelengths for which the amount of Faraday rotation is
small, C is almost equal to zero. They find the strongest correlation
to be C ≈ 0.4 for λ = 15 cm (ν = 2 GHz), where the degree of
Faraday rotation is � 6 times larger.

In the case of the simulations described above, the simulation box
contains pure turbulence with no coherent, large-scale pattern in the
magnetic field. However, we know that the magnetic field of a galaxy
does have a coherent pattern. And in addition to helicity that may be
present in the turbulent field, the mean-field dynamo also has helicity
present in the coherent, large-scale field.

The α effect of the mean-field dynamo is a process that generates
one component of the large-scale magnetic field from another (e.g.
Br from Bφ). This is illustrated by Parker (1970), who shows how a
rotating turbulent cell rising from an azimuthal magnetic field can
produce a magnetic loop. Coalescence of many such loops leads
to a large-scale poloidal field. Thus, magnetic helicity injected at
turbulent scales is transferred to the largest Galactic scales. This
transfer occurs on the long time-scale (of the order of 10 rotation
periods according to Brandenburg 2018) of the mean-field dynamo,
and preserves the sign of the helicity. Comparison of the observed
helicity with the helicity predicted by galactic dynamo models could
provide constraints on the α effect, and hence on the mean-field
amplification rate.

If there is a coherent, large-scale Galactic field with helicity (i.e.
twist) then the linear polarization pseudovector may rotate along the
line of sight so as to give a small or zero net polarization, even when
observed at frequencies where there is negligible Faraday rotation.
And since FD is a physical quantity, which depends only on the
column density of thermal electrons and the configuration of the
magnetic field along the line of sight (i.e. FD is not a function of
observation frequency), FD should be correlated to some degree
with the net linear polarized fraction for a helical field. This should
be true even in high-frequency data such as the WMAP 23-GHz
(1.5 cm) and Planck 30-GHz (1 cm) data. For reference, there is
nearly 1000 times more Faraday rotation at 1 GHz than at 30 GHz.
Using a Galactic FD of 100 rad m−2, we would expect �χ 	 0.◦6 at
30 GHz, but �χ 	 515◦ (more than 1 full rotation of the polarization
pseudovector) at 1 GHz. This amount of rotation applies through
the entire Galactic path-length for a particular line of sight, which
is typically of the order of a few kpc, depending on the Galactic
latitude.
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In this paper, we investigate whether such correlations are possible
to detect in a coherent, Galactic-scale magnetic field, and whether
these correlations are consistent with signatures of helicity. In
Section 2, we present our search for such a correlation in the Milky
Way Galaxy by cross-correlating large-scale polarized emission
from several large-scale surveys and comparing to measurements of
Galactic FD. In Section 3, we present our modelling, which uses the
HAMMURABI code2 (Waelkens et al. 2009) (described in Section 3.1)
to generate synthetic polarized fraction and FD maps using a model
magnetic field. We first use a simple, toy model of a singly helical
large-scale field to investigate whether the case of short-wavelength
(i.e. high-frequency) observations, with negligible Faraday rotation,
can still cause a correlation between the Faraday rotation measure
and the polarized fraction (Section 3.2). We investigate the trends in
the correlation as we change the observation frequency or introduce
turbulence. We then then use a more physically motivated magnetic
field model, which comes from a solution to the dynamo equation,
to further investigate whether this effect could be detectable in
observations (Section 3.3). The discussion and conclusions are
presented in Sections 4 and 5, respectively.

2 DATA

We look for signatures of helicity by a cross-correlation analysis to
compare FD to polarized fraction data, as described by Volegova &
Stepanov (2010).

A widely used Galactic FD map (see Fig. 1) is that derived by
Oppermann et al. (2015).3 This map is produced by observations
of Faraday rotation of extragalactic sources that probe the entirety
of the path through the Galaxy to the observer. The authors use a
careful reconstruction technique to separate the Galactic foreground
contribution from the extragalactic component.

We use their HEALPIX map for this analysis, which is provided
at a resolution of Nside = 128 (pixel size is 0.◦45). The HEALPIX

pixelization scheme (Gorski et al. 2005) is designed such that each
pixel represents an equal angular area on the sky. It is ideal for this
study since other sky projections may introduce biases or correlations
resulting from projection effects.

The polarized fraction is computed using P =
√

Q2 + U 2, where
Q and U, are the linear polarization Stokes parameters. It is a difficult
quantity to determine well due to many inherent uncertainties:

(i) In regions of low signal-to-noise ratio in Stokes I, the fractional
polarization values will be very uncertain.

(ii) The absolute zero-point of many surveys is difficult to calibrate
and often has some reasonably large uncertainty.

(iii) Depolarization becomes significant at lower frequencies
(<2 GHz), which means that the polarized fraction will be suppressed
over much of the sky.

(iv) At higher frequencies, such as from the WMAP (23 GHz)
and Planck (30 GHz) satellites, data suffer from uncertainty due to
increasing contributions from thermal dust and free–free emission,
making it necessary to estimate the contribution from the non-thermal
synchrotron component in these maps. These derived synchrotron
maps are especially uncertain for the region in and around the
Galactic plane (Planck Collaboration XLII 2016b). These systematic
errors are much harder to quantify, and are likely to be more important
that statistical uncertainties in these data.

2http://sourceforge.net/projects/hammurabicode/
3https://wwwmpa.mpa-garching.mpg.de/ift/faraday/2014/index.html

(v) Since P has a Rician, rather than Gaussian, noise distribution,
with a non-zero mean noise value, there is a noise bias present.

In order to mitigate these uncertainties, we perform this analysis
using two independent data sets (details are provided in Section 2.1
and Section 2.2). Any signal common to both is likely real.

We also exclude the Galactic plane (|b| ≤ 15◦), and additionally
mask unphysical polarized fraction values (i.e. P/I < 0 and P/I >

0.7) for all measurements. See Section 2.3 for a discussion on how
we test the impact of the noise bias.

In each case, we calculate the Pearson correlation coefficient,4 C,
for the Northern and Southern Galactic hemisphere separately. Each
HEALPIX map with Nside = 128 has 196 608 resolution elements,
which is reduced to 72 960 elements when selecting only the high-
latitude elements for a single hemisphere. We use bootstrapping and
draw 1000 elements from this sample to compute a value of C. We
then find the mean and standard deviation over 1000 iterations (each
iteration using 1000 samples) to determine the average measurement
of C with a 1σ uncertainty.

2.1 WMAP 23-GHz data

For the Stokes I map, we use the foreground K-band (23-GHz)
synchrotron component derived using the maximum entropy method
(Bennett et al. 2013). We use the full nine years of data for Stokes Q
and U (Bennett et al. 2013). The WMAP 23-GHz maps have a native
resolution of 53 arcmin. We resample with Nside = 128 to match the
FD map.

These WMAP data, along with the Oppermann et al. (2015) FD
map and derived polarized fraction maps, are shown in Fig. 1. The
2D histogram showing the cross-correlation coefficient of polarized
fraction versus FD is shown in Fig. 2.

It can be clearly seen in this plot that the distribution of polarized
fraction versus FD is skewed. It is particularly clear in the south that
for low polarized fractions (<0.3), there are more points with FD <

0 than FD > 0. This is also true in the North, but to a lesser degree.
In addition, in the north one can also see a slight excess of higher
polarized fractions (>0.3) where FD > 0.

2.2 Planck 30-GHz data

For the Planck data, the foreground (30 GHz) synchrotron compo-
nent is derived using the 408-MHz map, originally from Haslam
et al. (1982), which has been scaled to 30 GHz using a constant
synchrotron spectrum corresponding to a cosmic-ray electron (CRE)
power-law index, p = −3.1 (Planck Collaboration X 2016a). We
also use the Planck Stokes Q and U maps at 30 GHz to derive a
polarized fraction map. The Planck 30-GHz data have a resolution of
33 arcmin. We smooth this to 60 arcmin and resample with Nside =
128 to match the FD map.

These Planck data along with the the Oppermann et al. (2015) FD
map and derived polarized fraction maps are shown in Fig. 1. The
2D histogram showing the cross-correlation coefficient of polarized
fraction versus FD is shown in Fig. 2.

Similar to the WMAP data, it is clear that in the south for low
polarized fractions (<0.4), there are more points with FD < 0 than
FD > 0. The distribution in the north, in this case, is quite symmetric,
and thus C is consistent with zero in this case.

4Calculated in this work using PYTHON 2.7 and numpy.corrcoef (Virtanen
et al. 2020)
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Figure 1. Left-hand column: Derived synchrotron total intensity (top row) and polarized intensity (second row) (in units of mK) for the 23-GHz WMAP data
shown with the polarized fraction map (third row). Right-hand column: Derived synchrotron total intensity (top row) and polarized intensity (second row) (in
units of μK) for the 30-GHz Planck data shown with the polarized fraction map (third row). Bottom row: The Galactic FD map of Oppermann et al. (2015),
in units of rad m−2, is included for ease of comparison. In all cases, the region for |b| < 15◦ has been masked out as it is not included in these analyses. The
orientation of all maps is the same, shown in Galactic coordinates in Mollweide projection, with the Galactic centre at the centre of the map and the Galactic
plane oriented horizontally through the centre of each map. Masked values (shown as grey) are not included in the computations.
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Figure 2. 2D histogram of polarized fraction and FD for the Northern
(left-hand panel) and Southern (right-hand panel) Galactic hemispheres (|b|
> 15◦) in the WMAP 23-GHz data (top panel) and Planck 30-GHz data
(bottom panel).

Table 1. Cross-correlation coefficient, C, between FD and polarized fraction.

Northern hemisphere Southern hemisphere

WMAP 23 GHz 0.10 ± 0.03 0.13 ± 0.03
Planck 30 GHz 0.02 ± 0.03 0.14 ± 0.03

2.3 Results from the observations

All values of C are summarized in Table 1. For both WMAP and
Planck data, we measure a small but significant positive correlation
in the Southern Galactic hemisphere. The results for the northern
Galactic hemisphere are less clear. Planck does not measure any
significant correlation for the north while WMAP does, although
with less significance than the detection in the South.

In order to check the robustness of the detection and test whether
the correlations are just a function of FD, independent of the polarized
fraction, we randomly shuffle the polarized fraction values in the
array and recalculate C. We find that C is consistent with zero for all
cases. The mean and standard deviation of 1000 iterations of 1000
random samples are summarized in Table 2.

The FD map from Oppermann et al. (2015) also includes a map
of the uncertainty, dFD. We quantify the impact of this uncertainty
on C by taking the maximum value of dFD and randomly adding
or subtracting this to the FD map and recomputing C. With this test
we determine that the uncertainty introduced here is smaller than
that derived from the bootstrapping (∼±0.02 from the dFD map
compared with ±0.03 from bootstrapping). We note that the dFD

Table 2. Cross-correlation coefficient, C, between FD and randomized
polarized fractions.

Northern hemisphere Southern hemisphere

WMAP 23 GHz −4.1 × 10−5 ± 0.006 −5.5 × 10−5 ± 0.006
Planck 30 GHz −5.5 × 10−5 ± 0.004 1.0 × 10−4 ± 0.004

map is derived in a complicated way that includes some contribution
from Galactic variance that we are also sampling in the bootstrapping.
Thus, these uncertainty measurements are not independent. We
therefore quote the uncertainty from the bootstrap method since this
is the larger of the two.

We also note that the reconstruction used to make the FD map
suffers from sparsely sampled measurements for Southern declina-
tions. This results in higher uncertainties for this region, which in
Galactic coordinates is located at high longitudes in the Southern
Galactic hemisphere, i.e. to the right of the Galactic centre (240◦ <

l < 360◦) and on the lower side (b < 0), where the FD is mostly
positive (bottom panel of in Fig. 1). However, this is unlikely to
impact our conclusion since the asymmetry that can be seen in the
2D histograms shown in Fig. 2 are skewed predominantly by values
of FD < 0 rather than FD > 0.

We test the impact of the noise bias by exploiting the fact that
both the Planck and WMAP data were observed over a number of
years, and independent maps of Stokes Q and U with different noise
were produced. One method to correct for this bias is to multiply
these maps together when making the P map. I.e., if Q1 [U1] is the
Stokes Q [U] map made for the first half of the mission and Q2 [U2]
is the Stokes Q [U] map made for the second half of the mission, then
we can use P = √

Q1Q2 + U1U2 to make a bias-corrected P map.
We make these bias-corrected P maps and use this to make a new
polarized fraction map and recalculate C. We find the result remains
consistent with the values shown in Table 1.

3 MODELS

In the previous section, we presented a detection of a correlation
between FD and polarized fraction in observations. In this section,
we use toy models of coherent Galactic-scale magnetic fields to test
the idea that these correlations are due to helicity in the large-scale
field of the Milky Way Galaxy.

The models we use are all quite simple and none are intended to
truly represent the Galactic magnetic field in detail. Rather the goal
is to use these models to investigate trends in how such a correlation
may vary as a function of frequency for magnetic field models that
have helicity of known handedness. We also investigate how these
trends are impacted when we include a random component, which is
added to the coherent component of the field.

We use a coordinate system that defines the plane of the model
Galaxy to be parallel to the xy-plane, with the origin at its Galactic
centre. The z-axis is perpendicular to the plane, with z > 0 towards
the Northern hemisphere. Despite being simplified models, we still
use Galactic-like properties in several respects:

(i) The models use a grid with a bounding box physical size of
40 × 40 × 10 kpc3 (in the x-, y-, and z-coordinates, respectively) in
order to use a scale similar to that of the Galaxy.

(ii) We place an observer inside of this field, at a position
analogous to the Sun’s position in the Galaxy, i.e. (x, y, z) = (−
8.5, 0, 0) kpc. In Section 3.3 we use the electron density model of
Yao, Manchester & Wang (2017), which assumes a slightly different
Solar position (x = −8.3 kpc from Brunthaler et al. 2011). However,
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this has no impact on our results as we remove all nearby structures
(see discussion in Section 3.3) and there is no structure on the scale
of this small, 200 pc difference in Solar position.

(iii) The strength of the coherent magnetic field is of the order of
∼1 μG, which is similar to the Galactic field. The strength of the
coherent magnetic field in the plane of the Milky Way is thought to
be about 5 μG (Haverkorn 2015). The strength of the halo field is
less well known, but thought to be ≈1–2.5 μG (Haverkorn 2015).
Our analysis excludes the Galactic plane, and thus focuses more on
the Galactic halo where the field is weaker.

(iv) We add a random component of varying strength, up to
6 μG, which is of the order expected from turbulence in the
Galaxy (Haverkorn 2015). A relevant related quantity is the ratio
of the strength of the random magnetic field component to the
regular component. This quantity has several estimated values from
different works with estimates of this ratio ranging from <1 to
∼2 (Haverkorn 2015, and references therein), depending on the
particular measurement and the location in the Galaxy (i.e. disc
versus halo). These factors motivate our decision to test several
different values of the random component strength and thus different
values for the random to regular field strength ratio.

We integrate the coherent field alone using a low-resolution
HEALPIX Nside = 64, corresponding to roughly 1◦ pixels. This angular
resolution corresponds to a physical distance that varies along the
LOS and is roughly 200 pc at a distance of 10 kpc. These models
have no small-scale structure.

In the cases, where we introduce a random magnetic field com-
ponent, a higher resolution model and integration are necessary to
resolve some smaller-scale structure and its averaging effects. We
use a Cartesian grid of dimension 512 × 512 × 128 pixels3 (physical
width 	 8 pc per cell) to define the fields and integrate with a HEALPIX

grid that varies from Nside = 32 to 512 as a function of distance to
maintain a width of roughly 50 pc on average (50 pc pixels correspond
to ∼3◦ at a distance of 1 kpc and to ∼0.◦3 at 10 kpc). (See Waelkens
et al. 2009, for how the HAMMURABI code handles this.)

3.1 Method

The HAMMURABI code was created to model the large-scale structure
of the Galactic magnetic field. It models the synchrotron emission and
Faraday rotation given an input 3D magnetic field, thermal electron
distribution, and CRE distribution, for an observer that is embedded
in the observed volume. There is no absorption included in these
models, so the assumption is that the medium is optically thin.

HAMMURABI calculates the simulated Stokes I, and the Stokes
Q and U parameters relevant to the linear polarization, which are
expressed as

Ii = CIB
(1−p)/2
i,⊥ ν(1+p)/2�r,

Pi = CP B
(1−p)/2
i,⊥ ν(1+p)/2�r,

�FDi = 0.812neBi,‖�r,

FDi =
j=i∑
j=1

�FDj ,

χi = χi,0 + FDi λ2,

Qi = Pi cos (2χi) ,

Ui = Pi sin (2χi) , (4)

where i corresponds to the ith volume element along some line of
sight, p is the CRE power-law spectral index (where dN/dE ∼
E p), CI and CP are factors that are dependent on p (see Rybicki &

Lightman 1985; Waelkens et al. 2009). FDi is the FD of the ith
element and �FDi is its Faraday thickness. The intrinsic polarization
angle of the ith element, χ i, 0, is defined as the inclination angle of
the plane-of-sky component of the magnetic field, Bi, ⊥, with respect
to north (in the frame of Galactic coordinates), rotated by 90◦. The
polarization angle that would be observed from emission at the ith
element, χ i, is given by χ i, 0 plus the Faraday rotation angle of
the ith element (see equation 2). The line-of-sight component of the
magnetic field at the ith element is Bi, �, Pi is the polarized intensity, ne

is the thermal electron density, and ν is the frequency of observation.
The total Stokes I, Stokes Q, Stokes U, and FD are then found by
summing the volume elements, i, along the line of sight. The resulting
output is HEALPIX images (Gorski et al. 2005) for each Stokes I, Q,
and U parameter. These synthetic observables can then be used to
create a synthetic polarized fraction map.

For each model, we use the total FD for the model and polarized
fraction, P/I, to calculate C. In Section 3.2, we use a simple helical
field model and compute C for the hemisphere of the model where z>

0 (i.e. the Northern hemisphere in the convention of the data). We do
this for clarity in dealing with the cases individually, but we explain
how these results apply to the Southern hemisphere. In Section 3.3,
we compute C for both hemispheres using a somewhat more realistic,
physically motivated model. In both models, we exclude the plane
(|b| ≤ 15◦) for the computation of C, which is the same as how we
treat the data (see Section 2). We also use the same bootstrapping
method as described in Section 2 to calculate the mean and 1σ

uncertainties for C.

3.2 Simple helical field

We first investigate whether a simple, toy model of a large-scale
helical field can reproduce an analogous correlation between FD
and polarized fraction as seen in the result of Volegova & Stepanov
(2010). We construct a helical field with

B = Bφ êφ + Bz êz, (5)

where φ is the azimuthal angle around the xy-plane , Bφ is the
azimuthal magnetic field component, Bz is the magnetic field
component perpendicular to the plane of the Galaxy, and êφ and
êz are the corresponding unit vectors.

For simplicity, we use a constant thermal electron density, ne =
0.01 cm−3, which is consistent with the average value in the Galactic
disc (Yao et al. 2017). The CRE model defines the spectral index and
the CRE spatial density distribution at all points in the volume. We use
p = −3 (in equation 4) as this is the typical value used in other Galac-
tic models (Planck Collaboration XLII 2016b). For the spatial distri-
bution of CREs, we use a simple exponential disc with a scale height,
hd = 1 kpc and a radial scale length, hr = 5 kpc, as was used for the
WMAP model (Page et al. 2007). We find that the value of C is very
sensitive to the CRE density at high latitudes, but not very sensitive to
the thermal electron density. This is why we apply a scale height to the
CRE model, but use a constant value for the thermal electron density.

The magnitude of the coherent magnetic field is chosen to be |B| =
1.5 μG, with |Bφ | = 1.4 μG and |Bz| = 0.5 μG. The current helicity
for this model is found using equation (3), and is given by

Hj = (BφBz)/r. (6)

Thus, when Bφ and Bz have the same sign, Hj > 0 (right-handed
helicity) and when Bφ and Bz have opposite sign, Hj < 0 (left-handed
helicity).

We model five cases described in Table 3 for a range of frequencies,
0.1 < ν < 30 GHz, from the low-frequency case where the Faraday
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Helicity in the large-scale galactic magnetic field 3679

Table 3. Parameters for the five cases of the simple helix model. Models 1 and 2 have right-handed helicity (Hj > 0)
while Models 3 and 4 have left-handed helicity (Hj < 0). We use B�, z to specify the line-of-sight component of Bz alone
(i.e. excluding any contribution from Bφ ). We use the usual convention that B�, z > 0 if the magnetic field is directed
towards the observer. This is distinct from the sign of Bz since that is defined for a fixed z-axis, which does not depend
on the observer’s location. We use B⊥, φ to mean the observer’s plane-of-sky projection of Bφ . The direction of B⊥, φ

depends of the observer’s location, where the sign of Bφ does not. Here, CW refers to a clockwise direction, and CCW
as counterclockwise. The sign of C0 applies at high frequencies, where Faraday rotation is negligible and for situations
where the value of Brms is moderate.

In fixed frame For an observer looking north For an observer looking south
Model Bφ Bz Hj Model B⊥, φ B�, z C0 Model B⊥, φ B�, z C0

0 −1.4 0 0 0N CCW 0 0 0S CW 0 0
1 −1.4 −0.5 >0 1N CCW >0 <0 1S CW <0 >0
2 1.4 0.5 >0 2N CW <0 >0 2S CCW >0 <0
3 −1.4 0.5 <0 3N CCW <0 >0 3S CW >0 <0
4 1.4 −0.5 <0 4N CW >0 <0 4S CCW <0 >0

rotation is large (�χ 	 515◦, see Section 1), to the high-frequency
case where Faraday rotation is negligible (�χ < 1◦).

Since the observer in this model is positioned at z = 0 (i.e. in the
Galactic plane), and since we only consider the Northern hemisphere
in this section, the sign of Bz tells us whether the z-component of the
field is pointed towards or away from the observer.

This can be understood by considering that in the instances of this
simple helical field, we define the same field throughout the entire
box, with the observer located at the centre plane of the box (i.e. at
z = 0). Models 1 and 2 are both right-handed fields. The difference
between them is simply the viewing angle. For Model 1, you can
imagine looking at your right-hand hand with your thumb pointing
down (defining Bz) where your fingers appear to curl clockwise
(CW, defining Bφ). In Model 2, you can imagine viewing your right
hand with your thumb pointing up where your fingers appear to curl
counterclockwise (CCW). The difference for the two hemispheres
is analogous: In the Northern hemisphere, we view the field from
below, which we describe as Model 2N in Table 3 (i.e. like holding
your right-hand panel above your head while keeping your thumb
pointing down), while in the Southern hemisphere, Model 2S, we
view the same field but from above.

For Model 1, we have Bz < 0 and Bφ < 0, which for the North,
Model 1N, has Bsky, φ = CCW and Blos, z > 0 (i.e. pointed towards
the observer). For this same field in the Southern hemisphere, Model
1S the observer sees the opposite, Bsky, φ = CW and Blos, z < 0 (i.e.
pointed away from the observer), which is like Model 2N. The total
field has Hj > 0 and this remains constant in the two hemispheres.

The first of these cases, Model 0, has Bz = 0, and thus represents a
purely toroidal field. In this case, there is no helicity (Hj = 0) and we
find that the Eastern (left-hand side) side of the model observation
has a negative FD (field is directed away from the observer) and
the Western (right) side of the model observations has a positive FD
(field is directed towards the observer), as shown in the top row of
Fig 3. In this case, we find C = 0 for all frequencies.

The next four cases, Models 1–4, have Bz �= 0, so that the
field becomes a helical corkscrew. In these cases, we find the FD
distribution becomes asymmetric due to the additional z-component
and the Sun’s off-centre position in the Galaxy. Moreover, the
polarized fraction is also asymmetric, even in cases of high-frequency
observations where the Faraday rotation is very small, as shown in
Fig. 3. This asymmetry is due only to geometric cancellations of the
magnetic field along the line of sight due to the twist introduced by
the helicity, and for most frequencies, C �= 0, as shown in Fig. 4. In
Table 3, we give the sign of C at high frequencies, where Faraday
rotation is negligible (i.e. for λ = 0), which we call C0. Other values

of |Bz| were explored and the trend remains the same in all cases,
however, the values of C differ. We choose to focus on a single value
here, but this could be further explored in future work.

This correlation can be understood by noting that e.g. in Model
1 (second row in Fig. 3), high polarized fraction (yellow) regions
tend to have small positive FD (light red), while large positive FD
(dark red) regions tend to have low polarized fraction (dark blue),
and hence a negative contribution to the correlation.

If we flip the handedness of the helicity by flipping the sign of
Bφ while keeping the sign of Bz unchanged (i.e. switching between
Models 1 and 4 or between Models 2 and 3), then the east–west
pattern of the FD distribution flips (i.e. reflected about longitude l =
0◦), but so does the pattern of the polarized fraction distribution. In
this case, the sign of C0 does not change.

However, if we flip the handedness of the helicity by flipping the
sign of Bz while keeping the sign of Bφ unchanged (i.e. switching
between Models 1 and 3 or between Models 2 and 4), then the east–
west patterns of the |FD| and polarized fraction distributions flip (as
in the previous case), but in contrast to the previous case, the general
sign of FD itself (e.g. negative east and positive west) does not flip.

We also investigate how these cases change when we introduce a
normalized Gaussian random component, Brms. We test this using
values of Brms = 1, 3, and 6 μG. A value of Brms = 6 μG is
approximately what we expect for the magnitude of the random
component in the Milky Way Galaxy (Haverkorn et al. 2006).
Nominally, this random component should have a Kolmogorov power
spectrum with maximum scales ∼100 pc. However, due to the pixel-
scale of our model, the maximum scale is set at 200 pc (so that it is
sampled by ∼3 pixels). It is not feasible to include other turbulent
scales at this model resolution, so this is effectively single-scale
turbulence. The magnitude of the random component is modulated by
a simple exponential disc with a scale height, hd = 1 kpc and a radial
scale length, hr = 10 kpc, as was implemented for other Galactic
magnetic field models in Planck Collaboration XLII (2016b).

The results, summarized in Fig. 4, apply to an observer looking
towards the Northern hemisphere. These can also apply to the
Southern hemisphere, as discussed previously in Section 3.

We note the following:

(i) Models 1 and 3 have the same Bφ but opposite Bz, and therefore
opposite Hj. This is why, in the case Brms = 0 μG (green, solid curve),
they have opposite C0 (because of opposite Bz). More generally, for
each value of Brms, they have opposite |C(ν)|. Likewise for Models
2 and 4.
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Figure 3. FD [rad m−2] (left-hand panel) and polarized fraction (right-hand panel) for the five cases of a simple helical field described in Table 3. These are
simulated observations of the Northern hemisphere (Galactic latitude, b > 0) of a model galaxy, with an observer located at the Sun’s position. They are shown
in Galactic coordinates in Mollweide projection, with Galactic longitude l = 0 at the centre. In all cases, the region for |b| < 15◦ has been masked out as it is
not included in these analyses. Polarized fraction is shown for the high-frequency limit (ν = 30 GHz) where Faraday rotation is negligible. The FD colour scale
is saturated at |FD| = 80 rad m−2. More than 90 per cent of FD < 80 rad m−2. The maximum FD = 158 rad m−2. Note that the colour scale for the polarized
fraction appears very skewed towards the theoretical limit (	 0.75) since it has been histogram equalized. This is because the models shown have Brms = 0 μG,
and most of the polarized fraction values are very close to this limit. However, there are still some values very near 0, which can only be easily seen with this
extreme colour map.

(ii) When Brms = 0 μG (green, solid curve), C in each model has a
single sign for all frequencies, except for very low frequencies where
there is a great deal of Faraday rotation. This sign is consistent with
the sign of C0 indicated in Fig. 3.

(iii) When Brms = 0 or 1 μG, Models 1 and 3 have a distinct peak
in |C| at ν ≈ 1.5 GHz, which is close to the peak frequency of ν =
2 GHz found by Volegova & Stepanov (2010).

(iv) When Brms = 1 μG, the value of |C0| is larger than for
Brms = 0 μG. In this case, the coherent component of the magnetic
field, which has a magnitude of 1.5 μG, is larger than the random
component. Therefore, the total magnetic field does not change
sign. The larger value of |C0| can be explained by considering that

the amount of depolarization increases as the random component
increases. Since the total magnetic field does not change sign, the
FD also does not change sign. Thus, there is a stronger correlation
between FD and polarized fraction when compared to the Brms =
0 μG case.

(v) When Brms is larger than the coherent component (i.e. Brms =
3 and 6 μG), the value of |C| tends to be smaller than for
Brms = 0 or 1 μG (at most frequencies). Here, the random
component dominates the coherent component. Since the total
magnetic field can randomly change directions, the FD randomly
changes sign as a function of position, so there is a weaker
correlation.
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Helicity in the large-scale galactic magnetic field 3681

Figure 4. Frequency dependence of the cross-correlation coefficient, C, in the four cases of a simple helical field as described in Table 3, and as observed for the
Northern hemisphere, plus the data points from high-frequency observations calculated in Section 2. Models 1 and 2 (top row) both have right-handed helicity
(Hj > 0), while Models 3 and 4 (bottom row) have left-handed helicity (Hj < 0). The models are shown with and without the random magnetic field components
as described in Section 3.2. The 1σ uncertainty, shown by the shaded region, is derived from the bootstrap method used for the data and described in Section 2.

We have shown that a simple, toy model of a large-scale helical
field does produce correlations between FD and polarized fraction
as seen in the result of Volegova & Stepanov (2010). However, they
found that when Hm > 0, C > 0 and we find the relationship here is
more complex. In our simple, large-scale models, the sign of C does
not appear to be explicitly linked to the sign of Hj. Rather in these
cases, C has the opposite sign to Blos, z. This is discussed further in
Section 3.4.

3.3 Dynamo model

In order to test, whether these correlations exist in a more physically
motivated, and more complex magnetic field model, we use a spirally
symmetric dynamo model that was developed by Henriksen (2017),
Henriksen, Woodfinden & Irwin (2018) and applied to modelling
NGC 4631 by Woodfinden et al. (2019). We test both dipolar and
quadrupolar symmetries.

This model is a particular solution that was motivated by the desire
to find cases in classical dynamo theory where there is an agreement
between the model and observed properties including magnetic disc
spirals and X-shape poloidal fields. The model contains the α effect,
a shearing outflow and diffusion in a ‘pattern’ frame. The pattern
frame is defined with respect to the spiral arms, which may have a
different rotation rate than the mean disc rotation. This is really the
magnetic spiral arm pattern speed, which may be different from the
stellar arm speed. It is all in the context of scale invariance which has

the merit of reproducing most of the known numerical effects with
computational ease.

A particular model is parametrized using the variables m, a, u,
v, w, T, q, ε, C1, and C2. The spiral mode is defined by m, where
we use the axisymmetric m = 0 mode, which has a diverging X-
shaped morphology, which is similar to the halo magnetic field that is
observed in external galaxies as discussed in Section 1. The variable
a is a scaling parameter, and u, v, and w are velocity components in
the x-, y-, and z-directions, respectively. We use a case where a = 1,
which conserves a global velocity. The m = 0 mode that we explore
here has no radial velocity nor circular velocity in the pattern frame
(u = v = 0), but an outflow (w > 0). An outflowing vertical velocity
component (sometimes called a fountain flow) is often included in
galactic dynamo models (e.g. Shukurov et al. 2006; Chamandy et al.
2014). Here, we use w = 1. The pitch angle of the spiral is set by
the variable q. We use q = 4.9, which corresponds to a pitch angle
of −11.◦5, the value used in most Milky Way magnetic field models
(Planck Collaboration XLII 2016b). T is a time variable and ε sets
the rotation rate. We use a case that is observed at an arbitrary time
taken to be the current epoch (T = 1 and ε = −1). Finally, C1, and C2
are boundary conditions (C1 = 0 and C2 = 1). The model is briefly
defined further in Appendix A, and a full description may be found
in other work (Henriksen 2017, 2018; Woodfinden et al. 2019).

We find the solution for this equation for points where z > 0, and
then assume a dipolar symmetry across the disc of the model Galaxy
(i.e. z = 0) to calculate points where z < 0. Under this condition, Bz is

MNRAS 499, 3673–3689 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/3/3673/5919456 by guest on 09 April 2024



3682 J. L. West et al.

Figure 5. Plot of the dipolar case of the magnetic field from the dynamo model (m = 0 mode) described in Section 3.3. Top left: x−y plane (top-down view) cut
through z = 1.02 kpc (Northern hemisphere). Top right-hand panel: x−y plane (top-down view) cut through z = −1.09 kpc (Southern hemisphere). Bottom left-
hand panel: x−z plane (side view) cut through y = 0 (i.e. through the Galactic centre). Bottom right-hand panel: y−z plane (side view) cut through x = −8.52 kpc
(i.e. through the position of the observer). The colourbar and the length of the arrows in the plot are scaled according to the total magnitude of the magnetic field.

continuous across z = 0, but Br and Bφ change sign. This necessarily
means that Hj also changes sign across z = 0. We show this case
plotted in Fig. 5.

We also model the case with quadrupolar symmetry, plotted in
Fig. 6. Here, Hj also changes sign across the mid-plane, as in the
dipolar case. However, unlike the dipolar case, here Bz changes sign
while Br and Bφ keep the same sign across the mid-plane.

For convenience, we set to zero all values of the field immediately
in the centre for r < 1 kpc and within a vertical cone with opening
angle, θ = 10◦. We do this because the field model diverges at the
origin. Although not strictly physical, this only impacts a very small
fraction of pixels (< 0.04 per cent of pixels) and this practice is
consistent with what other field models have done where the field is
very uncertain at the Galactic centre (e.g. Jansson & Farrar 2012a).
We emphasize that we present this particular solution, for the dipolar
and quadrupolar cases, as proof of concept and do not imply that
these parameters represent the best fit for a model of the Milky
Way’s magnetic field.

To be consistent with our more physically motivated model, the
simulated observations use the most recent Galactic thermal electron
density model defined by Yao et al. (2017). We remove the variations
in the electron density contribution that are added for local ionized
features near to the Sun (r < 1 kpc). We do this because at the
resolution of our model, ∼75 pc per pixel, the local features are only
a few pixels wide with sharp edges. As such, they produce significant
artefacts in our simulated images. And since here, we investigate the
large-scale field, the local electron density is not relevant. However,

the local electron density (and magnetic field) may be an important
difference between these models and the observations and we discuss
this further in Section 4. We use the same CRE distribution as
described in the previous section.

As in the previous case, we compute the simulated observations
for a range of frequencies, 0.1 < ν < 30 GHz, i.e. between large
and negligible Faraday rotation regimes. Fig. 7 shows the simulated
observations for the high-frequency limit (ν = 30 GHz, λ ∼ 0.01 m)
of the field model with dipolar symmetry (Fig. 5), and Fig. 8 shows
the frequency dependence of C for both the Northern and Southern
hemispheres, still for the dipolar case. Similarly, Fig. 9 shows the
simulated observations for the high-frequency limit of the field model
with quadrupolar symmetry (Fig. 6), and Fig. 10 shows C(ν) for the
quadrupolar case.

At first sight, the FD maps shown in Fig. 3, on the one hand, and
Figs 7 and 9, on the other hand, may appear quite different. This
can be explained by considering that in the simple helix model, the
field has no radial component (Br = 0), so the FD maps in Fig. 3
are roughly symmetric with respect to longitude l = 0 (centre of the
maps), especially at low latitudes, where Bz contributes little to FD.
In contrast, in the dynamo model, the field has a significant radial
component, so the FD maps in Figs 7 and 9 are roughly symmetric
with respect to a non-zero longitude, whose value depends on the
pitch angle.

For the dipolar model, the Northern hemisphere has Bφ < 0 and Bz

< 0, which suggests Hj > 0, and which has the same signs as Model
1. This is why the Northern hemisphere (left) plot in Fig. 8, is similar
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Helicity in the large-scale galactic magnetic field 3683

Figure 6. Plot of the quadrupolar case of the magnetic field from the dynamo model (m = 0 mode) described in Section 3.3. Top left-hand panel: x−y plane
(top-down view) cut through z = 1.02 kpc (Northern hemisphere). Top right-hand panel: x−y plane (top-down view) cut through z = −1.09 kpc (Southern
hemisphere). Bottom left-hand panel: x−z plane (side view) cut through y = 0 (i.e. through the Galactic centre). Bottom right-hand panel: y−z plane (side view)
cut through x = −8.52 kpc (i.e. through the position of the observer). The colourbar and the length of the arrows in the plot are scaled according to the total
magnitude of the magnetic field.

to the Model 1N plot in Fig. 4. An important difference is that, as can
be seen in Figs 5 and 6 (see the scale shown in the colourbar), the
coherent part of the magnetic field in the dynamo model is larger than
in the simple helical model, which has a constant value of 1.5 μG.
Thus, in Fig. 8 we see the case where Brms = 3 μG is more similar to
the case where Brms = 1 μG as compared to Fig. 4 where the Brms =
3 and 1 μG cases are quite different.

On the other hand, the Northern hemisphere of the quadrupolar
field model has Bφ > 0 and Bz > 0, which is also a case where Hj >

0. Here the sign of C0 is reversed. This field has the same signs as
Model 2 in Fig. 3.

In the Southern hemisphere, the dipolar and quadrupolar models
are the same, with Bφ > 0 and Bz < 0. The signs here are the same
as Model 4, but since Model 4S is the same as Model 3N, we should
compare Model 3N in Fig. 4 to the right plot in Fig. 8, we also find
many similarities between the two plots, with the same differences
for Brms as noted in the Northern hemisphere.

An important point to notice is that, for the dipolar dynamo
field, the cross-correlation coefficient has opposite signs in the two
hemispheres. In the quadrupolar dynamo field, the cross-correlation
coefficient has same signs in the two hemispheres.

3.4 Summary of the models

From the tests that we performed with the simple helical field (Fig. 4),
we are able to make the following statements:

(i) Intrinsically, a helical field looks like a Faraday rotated one, and
there are parts of the observed emission pattern that are depolarized
due to the geometry of the field. Thus, large-scale helicity does
introduce an intrinsic correlation between FD and polarized fraction,
even in instances where there is negligible Faraday rotation.

(ii) The sign of the cross-correlation coefficient does not, in gen-
eral, correspond to the sign of the helicity. However, measurements
of C as a function of ν show trends that can help distinguish the cases
presented in Table 3. In addition, in the case of a simple helical field,
if we know the sign of Bφ from other measurements, combined with
the sign of C0, we can infer the sign of the helicity.

(iii) Introducing a smaller scale random magnetic field, expected
in a turbulent medium, has a significant impact on this picture. A
significant result is that the ratio between the coherent and random
components is an important indicator as to whether |C| can be useful
in the detection of the helicity in the large-scale coherent component.
If the random component has a magnitude that is of the same order as
the helical coherent component, then we expect |C| �= 0. However, if
the random component is much larger than the coherent component,
then we find C close to zero.

We expect that the more complex and physically motivated case
using the dynamo model should show properties of a field with
helicity, since this is a predicted consequence of dynamo theory.
Indeed the frequency dependence of C in the dynamo model, shown
in Figs 8 and 10, has similar trends as the simpler case in Fig. 4. By
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Figure 7. Top row: Simulated FD [rad m−2] (left-hand panel) and polarized fraction (right-hand panel) at ν = 30 GHz for the dipolar case of the dynamo
model shown in Fig. 5 and a magnetic field with Brms = 0 μG. The orientation of all maps is the same as the observations in Fig. 1, with the Galactic centre at
the centre of the map and the Galactic plane oriented horizontally through the centre of each map. In all cases, the region for |b| < 15◦ has been masked out as
it is not included in these analyses. Bottom row: Same as for the top row, but for Brms = 6 μG.

Figure 8. Frequency dependence of the cross-correlation coefficient, C, for the dipolar case of the dynamo model, shown in Fig. 5. This figure is presented in
a similar way as for the simple helix model cases shown Fig. 4. In this case, Bz is pointing towards the observer in the Northern hemisphere (left-hand panel),
and Bz is pointing away from the observer in the Southern hemisphere (right-hand panel).

comparing the two cases, we can convincingly say that the Northern
hemisphere of the dynamo model is consistent with right-handed
helicity and the Southern hemisphere is consistent with left-handed
helicity in both the dipolar and quadrupolar cases. The trends in the
plots showing C as a function of ν for this more complex model are
largely consistent with those in the simple case. This gives us further
confidence that these trends can indicate helicity in the large-scale
magnetic field.

In addition to the sign of C0, which is where Faraday rotation is
negligible, we also note that we may be informed by the slope of C(λ),

which describes how C changes as the amount of Faraday rotation
(i.e. as wavelength) increases from λ = 0 m (ν = ∞) to λ ≈ 0.2 m
(ν ≈ 1.4 GHz). In the case of right-handed helicity (Hj > 0), C gets
smaller as the amount of Faraday rotation increases. This is seen for
both Models 1N and 2N in Fig. 4. In the case of left-handed helicity,
C gets larger as the amount of Faraday rotation increases, which is
seen for both Models 3N and 4N in Fig. 4. This trend is also true in
the dynamo models (see Figs 8 and 10) in the cases where Brms = 0
and 1 μG. However, for Brms = 3 and 6 μG in the dynamo model, we
see the opposite trend. It is not clear if the trend seen in all cases for
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Figure 9. Top row: Simulated FD [rad m−2] (left-hand panel) and polarized fraction (right-hand panel) at ν = 30 GHz for the quadrupolar case of the dynamo
model shown in Fig. 6 and a magnetic field with Brms = 0 μG. The orientation of all maps is the same as the observations in Fig. 1, with the Galactic centre at
the centre of the map and the Galactic plane oriented horizontally through the centre of each map. In all cases, the region for |b| < 15◦ has been masked out as
it is not included in these analyses. Bottom row: Same as for the top row, but for Brms = 6 μG.

Figure 10. Frequency dependence of the cross-correlation coefficient, C, for the quadrupolar case of the dynamo model, shown in Fig. 6. Bz is pointing away
from the observer in both hemispheres.

the Brms = 0 μG case is true in general, for all instances of a helical
field, and for observers in any location. This requires further study.

The trend we observe can be directly compared to the result of
Volegova & Stepanov (2010) (see their Fig. 5) and Brandenburg &
Stepanov (2014). They find that for Hj > 0, C gets larger as the
amount of Faraday rotation increases, which is opposite to what we
find in the Brms = 0 μG case. The likely reason for this is that we have
taken Faraday rotation to be right-handed about the magnetic field
(e.g. Robishaw & Heiles 2018), whereas their assumptions imply that
it is left-handed (Brandenburg & Stepanov, private communication).
When we repeat our experiment with left-handed Faraday rotation,

we find that our results do agree with theirs. In addition, although
we both use helical fields, the geometry of the two scenarios are
quite different. We use a large-scale, coiled field (like a slinky),
whereas Volegova & Stepanov (2010) and Brandenburg & Stepanov
(2014) use a ‘staircase’ type helical field (see fig. 8 in Brandenburg &
Stepanov 2014). It is not clear whether we should expect that these
two cases should give the same result for the trend of C(λ). Of the
two, the slinky-type geometry used in this work is more consistent
with that which is typically used in large-scale models of the Galactic
magnetic field (e.g. Jansson & Farrar 2012a; Planck Collaboration
XLII 2016b).
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4 D ISCUSSION

Although the precise value is not known, we expect the magnitude of
the random magnetic field component in the Milky Way Galaxy to
be Brms ∼ 6μG, which is around two times larger than the coherent
component (Haverkorn 2015) (see discussion in Section 3). Thus,
we focus on comparing our observations to the case where Brms =
3 μG in Fig. 4 and Brms = 6 μG in Figs 8 and 10, which are the
cases where the random component is around two times larger than
the coherent component.

The rotation of the stellar component of the Milky Way Galaxy is
known to be clockwise, as observed from above the north Galactic
pole (e.g. Oort 1927). Thus, according to the model presented by
Parker (1970), we would expect Hj < 0 for the Northern hemisphere
and Hj > 0 for the Southern hemisphere, i.e. left-handed about the
z-axis. Given that the measurements for real data show that C0 > 0 in
both hemispheres, this would be consistent with a quadrupolar case
where Bz and Hj both change sign, and C0 > 0 in both hemispheres.
Thus, we find this is consistent with Model 3N in the Northern
hemisphere, where Hj < 0 and C0 > 0, and Model 1S in the Southern
hemisphere, where Hj > 0 and C0 > 0 (recalling that Model 1S
= Model 2N).

In Fig. 4, we can see that for the Brms = 3 μG case, Model 2N
(i.e. Model 1S) has a value of C0 that is consistent with both of
our Southern hemisphere measurements. In the Brms = 3 μG case
of Model 3N, the value of C0 is somewhat less than our Northern
hemisphere WMAP measurement, though it agrees with the Northern
hemisphere Planck measurement. This agrees with the Parker model
predictions from the stellar rotation direction. This scenario, i.e.
left-handed helicity in the Northern hemisphere and right-handed
helicity in the Southern hemisphere, with a Bz pointing away from
the observer in both cases, is most consistent with what we detect in
the observations when compared to the simple helix model.

However, in the quadrupolar case of the dynamo model, shown
in Fig. 10, we find the opposite. We find that the WMAP and
Planck measurements in the Northern hemisphere agree best with
the Northern hemisphere of this dynamo model (i.e. which is similar
to Model 2N of the simple helix) and that the WMAP and Planck
measurements in the Southern hemisphere agree best with the
Southern hemisphere of this dynamo model (i.e. which is similar
to Model 3N of the simple helix). This scenario, i.e. right-handed
helicity in the Northern hemisphere and left-handed helicity in the
Southern hemisphere, with a Bz pointing away from the observer in
both cases, is most consistent with what we detect in the observations
when compared to the dynamo model.

The models to which we are comparing are very simple and surely
do not capture a complete picture of the Milky Way field. We note
that observations of the Milky Way Galaxy reveal the presence of
magnetic reversals in its disc field (e.g. Brown et al. 2007). Further,
recent observations also reveal the presence of magnetic reversals
in the halo fields of some external galaxies (e.g. Mora-Partiarroyo
et al. 2019; Krause et al. 2020). These reversals may help explain
the ambiguity that we find in the direction of the toroidal component
of the field (i.e. when comparing the simple helical field with the
dynamo fields).

In both cases, we find that Bz should point away from the observer
in both hemispheres. This disagrees with the result of Mao et al.
(2010), which found no evidence for a Bz-component in the Northern
hemisphere. They found a positive average rotation measure in the
Southern hemisphere, which is evidence that the Bz-component
points towards the observer, and not away. As pointed out in the
case of the toroidal component, the models to which we compare are

very simple, which means a more complete, and complex, model is
likely needed to explain these discrepancies.

We can make the following observations:

(i) The correlation we find in the Planck and WMAP data cannot
be due to helicity in the random component of the magnetic field,
since that requires Faraday rotation, and the frequency of these
observations is too high for Faraday rotation to be a significant factor.

(ii) Any explanation for the observed correlation requires a coher-
ent pattern in the magnetic field over large angular scales.

(iii) An analysis of how the cross-correlation coefficient in ob-
servations changes as a function of frequency would provide an
additional diagnostic.

Helicity in the large-scale field is one possible – and plausible
– explanation for the correlations that we find, however, it is not
the only explanation. The local magnetic field, and possibly helicity
within the local field itself, can not be ruled out as a possible cause of
these correlations. It is reasonable to expect the local magnetic field
to have non-zero helicity, because under the model of Parker (1970),
the expansion of the Local Bubble was presumably accompanied by
counterrotation with respect to Galactic rotation, under the effect of
the Coriolis force.

The North Polar Spur (NPS) is the most dominant feature in the
Northern Galactic hemisphere and has the highest polarized fraction.
The origin of the NPS, and related spur-like features, are unknown
but are most likely local features (Sun et al. 2015; West et al., in
preparation). Regardless of their origin, the presence of the NPS
and related Northern hemisphere loops will impact the results in the
Northern Galactic hemisphere and may contribute to the discrepancy
and lack of correlation observed in the Planck data. Other, fainter,
loops may impact the result in the Southern hemisphere, but to a
lesser degree. We consider masking out these features, however, the
full extent of their emission is not well understood, so it is unclear how
to do this precisely. Experimenting with different masks is beyond
the scope of this paper. In addition, a very few extragalactic sources
that could potentially impact the results are visible in the maps (e.g.
Centaurus A, the Large and Small Magellanic clouds). Due to their
relatively small angular extent, the bootstrapping method, we use to
calculate the correlation (see Section 2) should mitigate any possible
impact these might have on the value of C.

In our models, we removed the contribution of local features
from the thermal electron density model of Yao et al. (2017). Being
nearby, these features will have a large angular extent on the sky and
will have a significant impact on the measured FD across the sky.
The significance that these features might have on these correlations
should be investigated in future work.

We also expect helicity in the large-scale field of opposite sign to
the very small-scale field (e.g. Brandenburg & Subramanian 2005,
Fig. 9.6), which we have not included here. However, given point (i)
earlier in this section, and given that these very small-scale effects
(i.e. much smaller than the injection scale of turbulence) would be
difficult to detect with the low resolution of our data and models, we
believe it is reasonable to neglect the very small-scale component.

5 C O N C L U S I O N S

We find that a cross-correlation between FD and polarized fraction
of the synchrotron radio emission from the Milky Way Galaxy has a
positive and measurable value in the Southern Galactic hemisphere,
as shown in Table 1. For the Northern hemisphere, we find a smaller,
but still measurably positive value of the cross-correlation coefficient,
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C, in WMAP data, but the value in Planck data is consistent with
zero. We conclude that our measurements of C are consistent with
the presence of helicity in the mean magnetic field of the Galaxy.

We demonstrate that a model of large-scale magnetic field can
exhibit a correlation that is similar to the result for helical turbulence
shown by Volegova & Stepanov (2010) and Brandenburg & Stepanov
(2014). From modelling, we find that C, or at least the limit of C for
high frequencies, which we call C0, has the same parity as the large-
scale magnetic field: if the field is dipolar, C0 changes sign across
the mid-plane; if the field is quadrupolar, C0 keeps the same sign.

We have shown that the simulated synchrotron emission and Fara-
day rotation of a large-scale helical magnetic field have a complex
relationship with C that varies as a function of frequency (Figs 4,
8, and 10). A follow-up study of multifrequency observations would
help to confirm these results. We plan to present an analysis of lower
frequency (∼1 GHz) data from the Global Magneto-Ionic Medium
Survey (GMIMS, Wolleben et al. 2009) in a forthcoming study.

Comparing our simple helical magnetic field models with the
observations, we find the observational measurements are consistent
with the presence of a quadrupolar magnetic field with left-handed
helicity in the Northern hemisphere and right-handed helicity in the
Southern hemisphere, with a vertical component of the magnetic
field that is pointing away from the observer in both hemispheres
(similar to Model 3 in the north and Model 2 in the south, see
Fig. 4). The comparison of our dynamo model with the observations
is also consistent with a quadrupolar magnetic field with a vertical
component of the magnetic field that is pointing away from the
observer in both hemispheres, however, in this case, we find it is
more consistent with right-handed helicity in the north and left-
handed helicity in the south.

Further work is needed to resolve this discrepancy, and demon-
strate that this is a global feature of the large-scale field rather than
a local one. The study presented in this work is limited by angular
resolution and may benefit from careful masking of local features.
Broadband FD observations offered by upcoming surveys such as the
Polarization Sky Survey of the Universe’s Magnetism (Gaensler et al.
2010), which uses the Australian Square Kilometer Array Pathfinder
(ASKAP) telescope and the Very Large Array Sky Survey (VLASS)
(Lacy et al. 2020) are expected to provide ten times the source
density of current observations. These observations will provide a
much improved Galactic FD map and will help verify the results of
this work. However, even upcoming surveys, with greatly improved
resolution, will not be able to access the very small scales at which
helicity of opposite sign is expected.

Improved Galactic magnetic field modelling is also necessary to
verify these results. The IMAGINE consortium and the Bayseian
inference code they are developing (Haverkorn et al. 2019) aims to
develop more sophisticated Galactic magnetic field modelling using
dynamo models such as those in GALMAG (Shukurov et al. 2019),
which include higher order dynamo modes and combinations of
modes. The cross-correlation analysis presented in this work should
be applied to an improved model for the Galactic magnetic field
when such a model becomes available.

However, even if the phenomenon is local, and even if the sign
of the helicity in each hemisphere is only suggestive rather than
conclusive, these results strongly indicate a detection of non-zero
helicity. This strengthens the argument that ordered fields on galactic
scales arise through dynamo action.
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APPENDIX A : DYNAMO MODELS

The dynamo models that we use start from the classical mean-field
dynamo equations (Moffatt 1978)

∂t A = v × ∇ × A − η∇ × ∇ × A + αd∇ × A, (A1)

where A is the large-scale (mean) vector potential of the mean
magnetic field B (and B = ∇ × A). Here, v is the mean velocity
with components (u, v, w), η is the resistive diffusivity, and αd is an
effective ‘twisting’ velocity that describes the α effect, which leads
to the macroscopic, large-scale magnetic helicity, Hm (see Section 1).

Figure A1. 3D view of a selection of magnetic field lines for the dynamo
case described as seen from the top down (left-hand panel) and from the side
for z > 0 (right-hand panel).

The model is parameterized using the variables R, �, Z, a, u, v,
w, T, m, q, ε, C1, and C2.

The cylindrical coordinates {r, φ, z} are transformed into scale
invariant coordinates {R, �, Z} according to

r = ReδT , � = φ + (ε + q)δT , z = ZeδT (A2)

(e.g. Henriksen 2015), where δ is an arbitrary scale that appears
in the spatial scaling, ε is a number that fixes the rate of rotation
of the magnetic field in time, and T is a time variable that follows
eαT = 1 + α̃dαt (α̃d is a numerical constant that appears in the scale
invariant form for the helicity, α is an arbitrary scale used in the
temporal scaling). The variable a ≡ α/δ is a parameter of the model
defined as the self-similar ‘class’ (Carter & Henriksen 1991), which
reflects the dimensions of a global constant.

The time dependence of the models does not affect the field
geometry because the dependence is mainly a multiplicative power
law or exponential in time, depending on the parameter a. The
one exception is the rotation, which can change the position of the
observer relative to the structure of the field. This can be dealt with
by varying the parameter ε.

Further assumptions allow the model solutions to be simplified
further into two cases: one where outflow and accretion are allowed
to vary but the rotation is held constant and another where rotation
in the ‘pattern frame’ is allowed (i.e. the rest frame of the dynamo
magnetic field, see Henriksen 2017). In the rotation-only case, u =
w = 0, but v and a are allowed to vary. Whereas in the outflow case,
a = 1, u = v = 0 and w is allowed to vary (where w > 0 is outflow
and w < 0 is inflow).

The pitch angle, ψ , of the spiral is set by the variable q, where 1/q
(q positive) is the tangent of the angle that a trailing (assuming the
φ direction is in the direction of galactic rotation) spiral arm makes
with the circular direction (Henriksen et al. 2018, see equation 9)
and ψ = arctan(1/q). We use q = 4.9, which corresponds to ψ =
−11.◦5, the value used in most Milky Way magnetic field models
(Planck Collaboration XLII 2016b).

The ‘spiral mode’, m, arises in the spirally symmetric case when
solving for the magnetic field potential A. Solutions are searched for
in the complex form

A(R, �, Z) = A(ζ )eimκ ,

ζ = Z/R,

κ ≡ � + q ln R ≡ φ + q ln(r) + εT . (A3)

In these models, the m = 0 mode has the diverging X-shaped
morphology that is similar to what is observed in external galaxies.
All modes have a spiral morphology of varying degree. Woodfinden
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et al. (2019) use a mixture of these modes to attempt to model the
observed magnetic field of NGC 4631.

Finally, C1 and C2 are the boundary conditions. The boundary
condition at the disc must be treated carefully so that the solutions
are continuous across the disk along the real axis (Henriksen et al.
2018, see Section 4.1).

For this work, we use a case with m = 0, a = 1, (u, v, w) = (0, 0,
1), T = 1, q = 4.9, ε = −1, and (C1, C2) = (0, 1). In Fig. A1, we
show a 3D plot of this case for z > 0.
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