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ABSTRACT
We study the Kozai–Lidov mechanism in a hierarchical triple system in detail by the direct integration of the first-order post-
Newtonian equations of motion. We analyse a variety of models with a pulsar to evaluate the cumulative shift of the periastron
time of a binary pulsar caused by the gravitational wave emission in a hierarchical triple system with Kozai–Lidov mechanism.
We compare our results with those by the double-averaging method. The deviation in the eccentricity, even if small, is important
in the evaluation of the emission of the gravitational waves. We also calculate the cumulative shift of the periastron time by using
obtained osculating orbital elements. If Kozai–Lidov oscillations occur, the cumulative shift curve will bend differently from
that of the isolated binary. If such a bending is detected through the radio observation, it will be the first indirect observation of
gravitational waves from a triple system.
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1 IN T RO D U C T I O N

Gravitational wave (GW) is one of the most interesting phenomena
predicted by general relativity. It is the ripple on space–time caused
by motions of massive objects like black holes (BHs). Orbital motions
of close binaries emit GW that extracts orbital energy and gradually
shrinks the orbit. The shrinking binary orbits can be observed
through radio signals if the binary includes a pulsar as its component
(Weisberg & Taylor 2005). Such a binary system with a pulsar is
called a binary pulsar. A pulsar is a neutron star (NS) rotating fast
and emitting radio signals with peaks whose period is quite precise.
Due to this feature, it is possible to obtain various types of information
from the observation of the radio signals from the pulsar; for example,
we can know pulsar’s rotational period, binary orbital period, and
the information of binary orbital elements like semimajor axis and
eccentricity (Smarr & Blandford 1976). Hence, if it is observed for
a long term, the time evolution of orbital shape due to GW emission
can be followed.

Such a long-term observation of radio signals from a binary pulsar
was in fact conducted for the PSR B1913+16 system. This system
was found in 1975 and has been called Hulse–Taylor binary (Hulse
& Taylor 1975). It is one of the most famous binary pulsars. This
binary has a quite eccentric and close orbit: Its eccentricity and
semimajor axis are 0.617 and 0.013 au, respectively, and its orbital
period is 7.75 h (Taylor et al. 1976). Because of these features, the
orbital energy is extracted from this system by GW emission and
it results in ongoing shrink of the orbit and decrease of the orbital
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period. This decrease of the period has been detected over 30 yr with
radio observation. The period shift effect clearly appeared in the
cumulative shift of the periastron time (CSPT). The observed CSPT
curve was explained quite well by the theoretical prediction of GW
emission in general relativity (Weisberg & Taylor 2005; Weisberg,
Nice & Taylor 2010). This observation was the first indirect evidence
of the existence of GW.

Numerous binary pulsars other than Hulse–Taylor binary have
been found (see e.g. Lorimer 2008). Some pulsars were reported
as a part of triple systems. For example, the PSR B1620−26
system (Thorsett et al. 1999) and the PSR J0337+1715 system
(Ransom et al. 2014) are triple systems. These triple systems are
constructed with a close binary including a pulsar and another object
orbiting around the binary. The triple systems that can be divided
into an inner binary and an outer orbiting companion are called
as hierarchical triple systems. Triple systems sometimes exhibit
completely different orbital motions even if they have hierarchical
structures. One of the most remarkable phenomena in hierarchical
triple systems is the Kozai–Lidov (KL) mechanism (Kozai 1962;
Lidov 1962). It is one of the most important orbital resonances that
is mainly characterized by the secular changes of the eccentricity
of the inner binary and the relative inclination between inner and
outer orbits. These values oscillate exchanging their values with each
other in secular time-scale, that is, when the eccentricity increases,
the inclination decreases, and vice versa, with time-scale longer than
both orbital periods. The eccentricity excitation in the inner binary is
quite important for various astrophysical phenomena. For example,
the large eccentricity can enhance GW emission in the binary and
finally cause the merger of BHs (Blaes, Lee & Socrates 2002; Miller
& Hamilton 2002; Liu & Lai 2017). In addition, the tidal force
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Figure 1. The hierarchical triple system is constructed from inner and outer
binaries. The inner binary consists of objects whose masses are m1 and m2,
and the outer one is the pair of the inner binary and the third body with mass
m3. The outer semimajor axis aout is much larger than the inner one ain.

can also be enhanced with the excited eccentricity and the tidal
disruptions of stars by supermassive black holes (SMBH) can be
caused (Ivanov, Polnarev & Saha 2005; Li et al. 2005; Chen et al.
2009, 2011; Wegg & Bode 2011). In the context of planetary science,
the formation of hot Jupiters (Naoz, Farr & Rasio 2012; Petrovich
2015; Anderson, Storch & Lai 2016) or ultra-short-period planets
(Oberst et al. 2017) is also said to be caused by KL mechanism.
Recently, the GW emission from the hierarchical triple systems with
KL mechanism has attracted attention of researchers. Some authors
discussed about the waveform of GW from a binary in a hierarchical
triple system and its observability (Hoang et al. 2019; Randall &
Xianyu 2019; Gupta et al. 2020). If such systems exist and include
pulsars as components of the binaries, the radio signal from the
pulsar should also be detected. The CSPT curve described from the
signal will tell how the third companion and GW emission affect the
evolution of the binary.

In this paper, we first analyse the KL mechanism in relativistic
systems in detail and compare the orbital evolution by the direct
integration of the equations of motion and that by the well-known
double-averaging method.1 We then investigate how CSPT curve
changes with GW emission in hierarchical triple systems with KL
mechanism. We treat general hierarchical triple systems in this paper,
expanding the discussion in our previous letter (Suzuki et al. 2019),
which treated only one example. If the CSPT curves predicted in
this paper are detected through radio observation, it will be the
first indirect observation of GW from a triple system. The paper
is organized as follows: We summarize the important features of KL
mechanism in Section 2. We describe our models in Section 3 and
explain our methods in Section 4. The results and discussions are in
Section 5. The conclusion follows in Section 6.

2 K L MEC HANISM

Hierarchical triple systems are three-body systems in which the
motions of components can be divided into two Keplerian elliptic
orbits called inner and outer orbits due to highly hierarchical
configuration such that the outer semimajor axis is much longer than
the inner one (see Fig. 1). We denote the masses of the components

1In this paper, ‘double averaging’ denotes the commonly used averaging of
the dynamical equations for the orbital parameters over two mean anomalies
assuming multipole expansion of interaction terms of the potential. Note that
some authors use secular equations given by averaged Hamiltonian without
multipole expansion assuming that the interaction term is small (Saillenfest
et al. 2017; Li et al. 2018).

of inner binary by m1 and m2, and that of the tertiary companion
by m3. Each orbit in the hierarchical triple system is described with
six orbital elements. In this paper, so-called Kepler elements are
used as the orbital elements: the semimajor axis a, the eccentricity
e, the inclination i, the argument of periastron ω, the longitude of
ascending node �, and the mean anomaly M. It is well known
that these elements are constant in a two-body system, except the
mean anomaly, which corresponds to the phase in an elliptic orbit.
In the system that consists of three or more objects, in general,
the trajectory of each component is not a closed elliptical orbit
even in Newtonian dynamics. However, when the Hamiltonian of
the total system is given by the sum of two-body Hamiltonians
with perturbative interactions like a hierarchical triple system, each
trajectory can be approximated by an elliptical orbit but its shape
gradually changes in time. In such a case, the orbital elements of
the osculating orbit, which is obtained by the instantaneous position
and velocity, are used to describe the trajectory (see e.g. Murray &
Dermott 2000). In this paper, the osculating orbital elements of inner
and outer orbits are represented with the subscripts ‘in’ and ‘out’,
respectively. As for the outer orbit, we pursue the centre of mass of
the inner binary rotating around the tertiary companion (see Fig. 1).

KL mechanism is one of the orbital resonances seen in hierarchical
triple systems, which is discovered by Kozai (1962) and Lidov
(1962).2 In the system where KL mechanism occurs, the eccentricity
of inner orbit ein and relative inclination I between inner and
outer orbits oscillate on a secular time-scale. In this section, we
shortly summarize some important features of KL mechanism in
Newtonian and post-Newtonian dynamics. The basic features of KL
mechanism are well described with quadrupole-level approximation
for a restricted triple system (see e.g. Shevchenko 2017), in which one
of the components of the inner binary is assumed as a test particle. We
keep the lowest quadrupole order of the perturbed interaction terms in
the Hamiltonian expanded in terms of the ratio of the semimajor axes.
The detailed explanation of this treatment is given in Appendix A.

Not all of our models in this paper are the case of this restricted
triple system. For example, some models have the inner binary
constructed with two NSs. As shown in Section 4, we will not use the
double-averaging method in our analysis but we directly integrate the
equations of motion. Hence, the deviation from the test-particle limit
is automatically taken into account. Here, we just introduce the basic
features of KL mechanism obtained from the test-particle treatment
in order to analyse our results. Note that the detailed analysis for
non-restricted hierarchical triple system was given in Naoz et al.
(2013a, b). In Section 5, we will revisit this point and will discuss the
deviation seen in our simulation results from theoretical prediction
with test-particle limit approximation.

2.1 KL oscillations in Newtonian dynamics

First, we summarize important characteristics of KL mechanism in
a restricted triple system calculated in Newtonian mechanics. KL
mechanism is an orbital resonance in hierarchical triple systems
characterized by the oscillation of the eccentricity of inner orbit ein

and the relative inclination I between inner and outer orbits on a
secular time-scale. We call this characteristic oscillation of ein and I
as KL oscillation. The amplitude and time-scale of KL oscillation are

2Note that the framework of the fundamental formulation of this mechanism
had been already established by Von Zeipel in 1910 (von Zeipel 1910; Ito
& Ohtsuka 2019). We shall call it KL mechanism, however, because it is
commonly used.
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determined by the conserved quantities in the restricted hierarchical
triple system. From the quadrupole-order restricted triple treatment,
the following two conserved quantities are obtained:

θ ≡
√

1 − e2
in cos I , (1)

CKL ≡ e2
in

(
1 − 5

2
sin2 I sin2 ωin

)
. (2)

When these values satisfy appropriate conditions, the KL oscillation
occurs. The KL oscillations are classified into two types depending
on the sign of CKL. KL oscillation with CKL ≥ 0 is called the ‘rotation’
type because the periastron of the inner orbit rotates when the KL
oscillation proceeds, that is, the argument of periastron ωin increases
monotonically. On the other hand, KL oscillation with CKL ≤ 0 is
called the ‘libration’ type because the argument of periastron ωin

oscillates (librates) around π /2 or 3π /2 with the KL oscillation.
The possible ranges of conserved values (θ2, CKL) for both rotation
and libration types are depicted in fig. 1 in Antognini (2015). The
amplitude and time-scale of the KL oscillation depend on the type
of oscillations even if the system size (masses and semimajor axes)
is the same. For the amplitude, the difference is clearly seen in the
exact formulae of maximum and minimum eccentricities shown in
Appendix A1. The time-scale of the KL oscillation (TKL) is roughly
estimated as

TKL ∼
(

Gmin

a3
in

) 1
2 a3

out

Gm3

(
1 − e2

out

) 3
2 , (3)

where G is the gravitational constant and min = m1 + m2 is the
total mass of the inner binary. This time-scale depends only on the
system size and the eccentricity of the outer orbit, but the exact
oscillation period also depends on the conserved quantities of the
system (see Appendix A1 for the reason). In Section 5, we confirm
it by comparing our simulation results with different conserved
quantities.

2.2 Post-Newtonian correction

In the restricted hierarchical triple system with quadrupole-level
approximation, the GR correction is usually discussed by adding
a simple correction term to the perturbation potential, which is
derived by double averaging of the first-order post-Newtonian (1PN)
Hamiltonian of two-body relative motion (the details are given in
Appendix A2). Note that Will (2014a, b) pointed out that this
approach for the GR corrections is not always appropriate. Strictly
speaking, for secular calculation due to the risk of the violation
of energy conservation, we have to consider the effect of ‘cross-
terms’ between the Newtonian perturbations and the post-Newtonian
precession effect. In this section, however, we consider the GR
correction without cross-terms for interpretation of our numerical
results (see also Appendix A2). In our simulation, as shown in
Section 4, the equations of motion are directly integrated. Hence,
the effect of the cross-terms is automatically taken into account.

The restricted triple systems with the GR correction have two
conserved values as in the Newtonian dynamics. θ does not change
from Newtonian one, but CKL is modified as

C
(GR)
KL = CKL(e, i, ω) + ε(1PN)

(
1√

1 − e2
in

− 1

)
, (4)

where

ε(1PN) = 4
rg,in

ain

min

m3

(
aout

ain

)3 (
1 − e2

out

) 3
2 , (5)

which is a dimensionless constant describing the strength of GR
effect with rg,in = Gmin/c2. Note that C

(GR)
KL is the same as CKL for a

circular orbit.
The classification conditions of KL oscillations are C

(GR)
KL ≥ 0 for

‘rotation’ type while C
(GR)
KL ≤ 0 for the ‘libration’ type, respectively.

The amplitude and time-scale of KL oscillation with the GR cor-
rection depend on the conserved quantities and vary from those in
Newtonian analysis. In Section 5, we compare the Newtonian and
GR results.

Generally, it is known that relativistic effects suppress the KL
oscillations. There exists a critical value ε(1PN)

cr = 3(1 − e2
in)3/2, which

is found when the maximum and minimum eccentricities of the inner
orbit become equal.3 Beyond the critical value [ε(1PN) > ε(1PN)

cr ], the
KL oscillation does not occur (see e.g. Blaes et al. 2002; Anderson,
Lai & Storch 2017, for a detailed analysis). The condition for the
stable KL oscillations [ε(1PN) < ε(1PN)

cr ] is rewritten as

rg,in

ain

min

m3

(aout

ain

)3
(
1 − e2

out

)3/2(
1 − e2

in

)3/2 <
3

4
. (6)

3 MODELS

We study GW emission effects on CSPT of binary pulsars in
hierarchical triple systems with the KL oscillations. As discussed
in our previous letter paper (Suzuki et al. 2019), this effect could be
found in long-time observation of radio pulses from the pulsar. We
have shown only one model with initially circular inner binary as
an example. In this paper, we analyse a broad range of parameters.
We first obtain constraints on parameters by imposing stability of
the system and observable time-scale and we then analyse several
models in the allowed parameter range.

Before discussing the constraints, we first classify hierarchical
triple systems into the following three classes according to their
mass ratio:

Class [1]min � m3,

Class [2]min ∼ m3,

Class [3]min � m3.

In Class [1], KL-oscillations are expected to occur, i.e. the inclination
and eccentricity of inner orbit oscillates exchanging their values with
each other (VanLandingham et al. 2016; Hoang et al. 2019; Randall
& Xianyu 2019). For Class [2], we may also see the KL oscillations
(Blaes et al. 2002; Wen 2003; Thompson 2011; Liu & Lai 2018)
as in Class [1] as long as aout � ain. If aout is not large enough as
compared to ain, such a system does not have a sufficient hierarchy
and then the interaction between the inner and outer orbits becomes
strong. As a result, both orbital elements will change extremely with
time and the orbit will become chaotic. It may become unstable.

In Class [3], when the outer object can be treated as a test particle
(aout � ain), the inner orbit is not affected so much by the tertiary
object, while the orbital elements of the outer orbit may change
with time. However, it is known that the eccentricity of the outer
orbit does not change with time at least in the quadrupole-order
approximation. Instead, we may expect the oscillation between the
relative inclination I and the longitude of ascending node of the outer

3This happens just for the libration type (see Fig. A4 in Appendix A2). Hence,
the constraint (6) may not be applied for the rotation type. However, even if
the condition (6) is not satisfied, the KL time-scale becomes very long and
then such a range is not so much interesting for observation.
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orbit �out on a secular time-scale (Naoz et al. 2017). Since we are
interested in CSPT with the KL oscillations, i.e. CSPT via the time
change of the pulsar’s eccentricity, we discuss only Classes [1] and
[2].

In order to see CSPT through radio signals, each model should
contain a pulsar as a component of the inner binary. As a companion
of the pulsar in the inner binary, in order to find large GW emissions
from the inner binary and to neglect the tidal dissipation effect, we
may choose a compact object with a similar or larger mass than that
of the pulsar, i.e. a NS or a BH. If the companion is a non-compact
object like a main-sequence star, a strong tidal force from the pulsar
deforms the companion star and the orbital energy is dissipated by
friction in the star. Since such dissipation by the tidal force may affect
the periastron shift in addition to the GW emission, CSPT becomes
more complicated, which is beyond the scope of this paper. Hence,
we analyse the following three types of model for inner binaries;

P-NS binary (pulsar + NS),

P-BH binary (pulsar + BH)

P-IMBH binary (pulsar + intermediate mass BH).

m1 and m2 are the masses of the companion and pulsar in the
inner binary, respectively. We choose those concrete values given
in Table 1.

There exist some conditions for the parameters of the outer orbit in
order for the inner binary to exhibit stable KL oscillations. We show
those constraints in Fig. 2–4 in terms of the semimajor axis of the
outer orbit aout and the mass of the third body m3 by fixing parameters
of the inner binary. The dashed black line shows the constraint for the
outer binary mass m3, which should almost be the same or larger than
the mass of the inner binary min. The second condition is stability of
the hierarchical triple systems, i.e. the so-called ‘chaotic boundary’.
As given in Mardling & Aarseth (2001), the following condition
should be satisfied so that the hierarchical structure of the system
does not break at least in the initial state:

aout

ain
>

2.8

1 − eout

[(
1 + m3

min

)
1 + eout

(1 − eout)
1
2

] 2
5

. (7)

The stability condition (7) is shown by the blue thin-stripe region.
The third condition is given by equation (6), which ensures that
KL oscillation occurs even in a relativistic system. We depict this
condition by setting ein = eout = 0 because it does not change so
much even for non-zero eccentricities. This relativistic constraint
is given by the magenta-coloured region. In order to observe the
effect of KL oscillation on CSPT, the time-scale of KL oscillation
should be short enough, compared with our lifetime. As mentioned in
Section 2.1, the time-scale of KL oscillation is roughly estimated by
equation (3). We show some contour lines of TKL by the dark-green
lines (TKL = 10, 102, and 103 yr).

When the tertiary companion has the parameters both in the blue
thin-stripe region and the magenta-coloured region in Figs 2–4, the
KL oscillation will occur with appropriate time-scale. We also show
our model parameters by the black dots with the model names in
Fig. 2–4. We analyse nine models: For P–NS inner binary, we discuss
four models, namely PNN, PNB, PNIB, and PNSB, in which the
tertiary companion is a NS, BH, IMBH, and SMBH, respectively.
For P–BH inner binary, we consider three cases: PBB, PBIB, and
PBSB, in which the tertiary companion is a BH, IMBH, and SMBH,
respectively. We also analyse the model PIBIB and PIBSB; both
systems have a P–IMBH inner binary, and an IMBH or SMBH as a
tertiary companion. We choose the masses of a pulsar (or NS), BH,

IMBH, and SMBH as 1.4, 30, 103, and 106 M	, respectively. The
model parameters are summarized in Table 1.

Here, we remark the Lense–Thirring precession effect. This is one
of the spin-orbit coupling effects appearing in 1.5 post-Newtonian
order correction (Barker & O’Connell 1975). Recent studies have
shown that the Lense–Thirring precession caused by the rapid
rotation of an outer SMBH in a hierarchical triple system changes
the evolution of the KL oscillation (Fang & Huang 2019; Fang, Chen
& Huang 2019; Liu, Lai & Wang 2019). As in Liu et al. (2019), TLT

is evaluated by

TLT = 2c3a3
out

(
1 − e2

out

)3/2

χ3G2m2
3 (4 + 3min/m3)

, (8)

where χ3 ≤ 1 is the rotation parameter of the third object in the
hierarchical triple system. By using equation (3), TLT � TKL gives
the condition to neglect the Lense–Thirring effect, i.e.

(ain

au

) 3
2 � 10−12

(
m3

M	

)(
min

M	

) 1
2

. (9)

We imposed χ3 = 1 in the above estimation. Since all the models
in Table 1 satisfy this condition, we can neglect the Lense–Thirring
effect in our calculation.

4 BASI C EQUATI ONS

For the models explained in Section 3, we directly integrate the
equations of motion for their orbital evolution. Then we analyse the
behaviour of KL oscillations and evaluate the CSPT of the inner
binary.

4.1 Equations of motion and initial conditions

4.1.1 Equations of motion for three-body system

In order to solve relativistic motions of our three-body system
composed of compact objects, we use the first-order post-Newtonian
equations of motion, which are called as the Einstein–Infeld–
Hoffmann (EIH) equations (Einstein, Infeld & Hoffmann 1938):

dvk

dt
= −G

∑
n
=k

mn

xk − xn

|xk − xn|3
[

1 − 4
G

c2

∑
n′ 
=k

mn′

|xk − xn′ |

− G

c2

∑
n′ 
=n

mn′

|xn − xn′ |
{

1 − (xk − xn) · (xn − xn′ )

2|xn − xn′ |2
}

+
( |vk|

c

)2

+ 2

( |vn|
c

)2

− 4
vk · vn

c2

− 3

2

{
(xk − xn)

|xk − xn| · vn

c

}2]

− G

c2

∑
n
=k

mn(vk − vn)

|xk − xn|3 (xk − xn) · (3vn − 4vk)

− 7

2

G2

c2

∑
n
=k

mn

|xk − xn|
∑
n′ 
=n

mn′ (xn − xn′ )

|xn − xn′ |3 , (10)

where mk, vk , and xk are the mass, velocity, and position of the
k-th component of the system (k = 1, 2, and 3), respectively. Note
that this equation could be derived from the Lagrangian given by
Lorentz & Droste (1917). In our study, equation (10) is numerically
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Table 1. Model parameters: m1, m2, and m3 are the masses of components. We fix the second object with mass m2 = 1.4 M	 as a pulsar.
ain(0) and aout(0) are the initial values of the semimajor axes of the inner and outer orbits, respectively. ε(1PN) is the strength of the relativistic
effect defined by equation (5) for a restricted hierarchical triple system. P, NS, BH, IMBH, and SMBH mean a pulsar, neutron star, black hole,
intermediate-mass black hole, and supermassive black hole, respectively.

Model Inner binary Tertiary companion m1 (M	) m2 (M	) m3 (M	) Class ain(0) (au) aout(0) (au) ε(1PN)

PNN P–NS NS 1.4 1.4 1.4 [1] 0.01 0.2 0.177
PNB P–NS BH 1.4 1.4 30 [2] 0.01 0.5 0.129
PNIB P–NS IMBH 1.4 1.4 103 [2] 0.01 2.5 0.484
PNSB P–NS SMBH 1.4 1.4 106 [2] 0.01 10.0 0.0310

PBB P–BH BH 30 1.4 30 [1] 0.1 1.0 0.0130
PBIB P–BH IMBH 30 1.4 103 [2] 0.1 7.0 0.134
PBSB P–BH SMBH 30 1.4 106 [2] 0.1 40.0 0.249

PIBIB P–IMBH IMBH 103 1.4 103 [1] 0.1 1.2 0.684
PIBSB P–IMBH SMBH 103 1.4 106 [2] 0.1 10.0 0.396

Figure 2. Stability constraints on the parameters of the outer orbit for stable
KL oscillations. The inner binary is a pulsar–neutron star system (P–NS
binary), where parameters are fixed as m1 = 1.4 M	, m2 = 1.4 M	, and ain

= 0.01 au. The black dashed line denotes the total mass of the inner binary
min. m3 should be the same or larger than min for Class [1] and Class [2]. In
the blue thin-stripe region, a hierarchical triple system is stable. The condition
for the KL oscillations not to be suppressed by the post-Newtonian relativistic
effect is given by the magenta-coloured region. The overlapped region gives
a stable KL oscillation. The dark-green lines show the time-scales of KL
oscillations (TKL = 10, 102, and 103 yr), which should be shorter than our
lifetime (<100 yr) for observation. Our models given in Table 1 are shown
by the black dots.

Figure 3. The same figure as Fig. 2, but the inner binary is a pulsar–black
hole system (P–BH binary), where parameters are fixed as m1 = 30 M	,
m2 = 1.4 M	, and ain = 0.01 au.

Figure 4. The same figure as Fig. 2, but the inner binary is a pulsar–IMBH
system (P–IMBH binary), where parameters are fixed as m1 = 103 M	, m2 =
1.4 M	, and ain = 0.1 au.

integrated by using the sixth-order implicit Runge–Kutta method.
The coefficients of sixth-order Runge–Kutta are obtained from
Butcher (1964). The back reaction of GW emission to the orbital
evolution can be treated by including the 2.5-order post-Newtonian
terms. However, since the back reaction in a few KL-oscillation time-
scales is so small, it does not change our result. Hence, we consider
only the first order of the post-Newtonian equations for the orbital
evolution.

4.1.2 Initial conditions

In order to set initial conditions for our simulation, we not only need
the semimajor axis a but also other parameters like the eccentricity
e and the inclination i. These parameters fix the conserved quantities
θ and CGR

KL , which classify the type of KL oscillation as ‘libration’
or ‘rotation’ (see Section 2). Hence, we prepare four sets of initial
parameters named as ‘initially circular libration (ICL)’, ‘initially
circular rotation (ICR)’, ‘initially eccentric libration (IEL)’, and
‘initially eccentric rotation (IER)’. For ‘initially circular’, we set
ein = 0.01, while for ‘initially eccentric’ we choose ein = 0.6. The
other parameters are determined to find CGR

KL < 0 for libration and
CGR

KL > 0 for rotation. The parameters of each type are summarized
in Table 2 and are used for post-Newtonian calculations.

To study the relativistic effect, we also perform the Newtonian
calculation. We choose two conserved quantities as CKL = C

(GR)
KL

and the same value of θ2 as the post-Newtonian one, which are
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Table 2. The important parameters in initial conditions for KL oscillations for post-Newtonian calculations. We analyse four sets
of initial parameters: ICL, ICR, IEL, and IER. e, i, and ω are the eccentricity, the inclination, and the argument of the periastron,
respectively. We also show two conserved quantities, C

(GR)
KL and θ2, in post-Newtonian dynamics. For ‘initially circular’, we set ein

= 0.01, while for ‘initially eccentric’ we choose ein = 0.6. The other parameters are determined to find C
(GR)
KL < 0 for libration and

C
(GR)
KL > 0 for rotation. For the outer orbit, eout = 0 and iout = 0◦ are used and ωout cannot be defined. About the parameters other

than those shown in the table, the longitude of the ascending node � is set as 0 for both inner and outer orbits, and the mean anomaly
M is set as 0◦ and 20◦ for inner and outer orbits, respectively. To study the relativistic effect, we also perform the Newtonian
calculation. We choose two conserved quantities as CKL = C

(GR)
KL and the same value of θ2 as the post-Newtonian one, which are

obtained by setting the initial periastron argument as ωin given in the last column.

Model ε(1PN) Type ein iin (deg) ωin (deg) C
(GR)
KL θ2

ωin (deg)
(Newtonian)

PNN 0.177 ICL 0.01 60 60 −3.18 × 10−5 0.250 57.0
ICR 0.01 60 30 6.20 × 10−5 0.250 26.8
IEL 0.6 53 90 −0.170 0.232 73.9
IER 0.6 45 60 0.0667 0.320 53.8

PNB 0.129 ICL 0.01 60 60 −4.42 × 10−5 0.250 57.8
ICR 0.01 60 30 5.96 × 10−5 0.250 27.7
IEL 0.6 53 90 −0.182 0.232 76.3
IER 0.6 45 60 0.0548 0.320 55.4

PNIB 0.484 ICL 0.01 60 60 −1.64 × 10−5 0.250 52.0
ICR 0.01 60 30 7.73 × 10−5 0.250 20.4
IEL 0.6 53 90 −0.0931 0.232 62.7
IER 0.6 45 60 0.143 0.320 43.9

PNSB 0.0310 ICL 0.01 60 60 −3.91 × 10−5 0.250 59.5
ICR 0.01 60 30 5.47 × 10−5 0.250 29.5
IEL 0.6 53 90 −0.206 0.232 83.3
IER 0.6 45 60 0.0302 0.320 58.9

PBB 0.0130 ICL 0.01 60 60 −4.00 × 10−5 0.250 59.8
ICR 0.01 60 30 5.38 × 10−5 0.250 29.8
IEL 0.6 53 90 −0.211 0.232 85.7
IER 0.6 45 60 0.0257 0.320 59.5

PBIB 0.177 ICL 0.01 60 60 −3.39 × 10−5 0.250 57.7
ICR 0.01 60 30 5.98 × 10−5 0.250 27.6
IEL 0.6 53 90 −0.181 0.232 76.0
IER 0.6 45 60 0.0559 0.320 55.3

PBSB 0.0249 ICL 0.01 60 60 −3.94 × 10−5 0.250 59.6
ICR 0.01 60 30 5.44 × 10−5 0.250 29.6
IEL 0.6 53 90 −0.208 0.232 84.0
IER 0.6 45 60 0.0287 0.320 59.1

PIBIB 0.684 ICL 0.01 60 60 −6.41 × 10−5 0.250 48.8
ICR 0.01 60 30 8.73 × 10−5 0.250 15.1
IEL 0.6 53 90 −0.0430 0.232 56.9
IER 0.6 45 60 0.194 0.320 37.5

PIBSB 0.396 ICL 0.01 60 60 −2.08 × 10−5 0.250 53.4
ICR 0.01 60 30 7.29 × 10−5 0.250 22.3
IEL 0.6 53 90 −0.115 0.232 65.5
IER 0.6 45 60 0.122 0.320 46.7

obtained by setting the initial periastron argument as ωin given in the
last column in Table 2.

These initial orbital elements are converted into the position and
velocity vectors, xk and vk , in Cartesian coordinates, whose origin is
the centre of mass of whole system. The x–y plane of our coordinate
system is chosen to be the initial outer orbital plane. The detailed
conversion formula is given in Appendix B1 (see also e.g. Murray &
Dermott 2000). By using Cartesian initial variables, the above EIH
equations (10) are integrated numerically and the osculating orbital
elements are evaluated at each time-step. The procedure to evaluate

orbital elements from positions and velocities at each time-step is
also explained in Appendix B2.

The integrated inner orbit is not exactly a closed ellipse, but it
fluctuates with small amplitudes because of the effect of the tertiary
component. As a result, the orbital parameters of the osculating orbit
evaluated at each step are oscillating, which seem to be artificial.
Hence, we take an average of these elements for each inner cycle to
extract the effective values at each cycle. We describe such averaged
orbital elements with a bar, e.g. āin and ēin. Those elements evolve
on a secular time-scale due to the effect of the third body.
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4.2 CSPT

The orbital energy of inner binary, if it is close enough, is extracted
little by little via the GW emission. The energy dissipation makes
the semimajor axis of the orbit shrink and then the period of the
orbit becomes shorter and shorter. As derived in Peters & Mathews
(1963), the period change for each orbital cycle is

Ṗin = −192π

5

(
Pin

2π

)− 5
3 G2m1m2

c5
(Gmin)−

1
3

× 1(
1 − ē2

in

) 7
2

(
1 + 73

24
ē2

in + 37

96
ē4

in

)
, (11)

where Pin is the orbital period of the inner binary, given by

Pin = 2π

√
ā3

in

Gmin
. (12)

When the energy dissipation is evaluated for one binary cycle, the
orbital elements can be treated as constant because the back reaction
of energy dissipation is small enough in such a time-scale. Here, we
use the averaged values, ē and ā, instead of the osculating orbital
elements, e and a, to reflect the effective shape of the orbit for one
cycle. When ē and ā evolve with secular time-scale such as the
KL-oscillation time-scale, Ṗin also changes with time.

This period shift can be seen by observing the CSPT through
radio signals from a binary pulsar just as the observation of the
Hulse–Taylor binary (Weisberg & Taylor 2005). In this paper, we
expand the analysis to hierarchical three-body systems. The CSPT
of the inner binary 	P is defined as

	P (TN ) = TN − Pin(0)N, (13)

where TN is the N-th periastron passage time and Pin(0) is the initial
orbital period of the inner binary. From the definition of TN, we
obtain

N =
∫ TN

0

1

Pin(t)
dt, (14)

where Pin(t) is the binary period at time t, which changes in time by
the GW emission as

Pin(t) = Pin(0) +
∫ t

0
Ṗin(t ′)dt ′. (15)

By substituting equations (14) and (15) into equation (13), the CSPT
	P is described as

	P (TN ) = TN −
∫ TN

0
dt

Pin(0)

Pin(0) + ∫ t

0 Ṗin(t ′)dt ′

=
∫ TN

0
dt

∫ t

0 Ṗin(t ′)dt ′

Pin(0) + ∫ t

0 Ṗin(t ′)dt ′ . (16)

Since the emission energy of GWs is quite small, we usually expect∣∣∣∣
∫ t

0
Ṗin(t ′)dt ′

∣∣∣∣ � Pin(0). (17)

In fact, for Hulse–Taylor binary pulsar (Weisberg & Taylor 2005),
since we have

Pb = 0.322 99 d, (18)

Ṗb = −2.4184 × 10−12 s/s, (19)

the condition (17) is true if t � 3.7 × 108 yr. Hence, when we are
interested in the time-scale such that TN � 108 yr, we approximate

Figure 5. Time evolution of the averaged inner eccentricity ēin (green
line), relative inclination Ī (red line), and KL-conserved value θ̄2 (blue
line) for the ‘libration’-type KL oscillations in the PNN model. The
top and bottom panels correspond to the results of ICL and IEL types,
respectively.

	P as

	P (TN ) ≈ 1

Pin(0)

∫ TN

0
dt

∫ t

0
dt ′Ṗin(t ′). (20)

Note that if we assume Ṗin(t) is almost constant, that is, Ṗin(t) ≈
Ṗin(0), 	P is given by

	P (TN ) ≈ Ṗin(0)

2Pin(0)
T 2

N, (21)

which was used in Weisberg & Taylor (2005).
However, in a hierarchical triple system with the KL oscillation,

Ṗin(t) is not constant but may change in time with the KL-oscillation
time-scale. Hence, in this study, we evaluate 	P by equation (20)
with equation (11).

Our analysis can be applied to a general stable three-body (or N-
body) system with a binary pulsar as long as the condition equation
(17) is satisfied. Here we stress that the CSPT could be observed
through radio signals from the pulsar as the accumulated effect.
Highly accurate observation of radio pulsars enables us to see this
CSPT even for such weak GW emission that the back reaction of
GW emission on the orbital elements is negligibly small. The CSPT
observation through the radio signals from a binary pulsar in a triple
system may be the precursor of detection of GWs from a triple system
with the KL oscillation (Gupta et al. 2020).
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1652 H. Suzuki et al.

Figure 6. The same figure as Fig. 5 for the ‘rotation’-type KL oscillations
in the PNN model. The top and bottom panels are the results of ICR and IER
types, respectively.

5 R E SULTS AND DISCUSSIONS

5.1 Orbital evolutions

In our simulation results, the stable orbital evolutions are observed
in all the models shown in Table 1. We show the results of PNN
model and PNIB model as representative. The mass hierarchy in
PNN model is the smallest in all the models and it is expected that
the deviation from test-particle approximation used in Section 2 is
the largest. In PNIB model, on the other hand, ε(1PN) is the second
largest as seen in Table 1 and relativistic effect in this model may
become important.

5.1.1 PNN model

Evolution of orbital parameters: Figs 5 and 6 show the time
evolution of the averaged inner eccentricity ēin, relative inclination
Ī , and KL-conserved value θ̄2 of the PNN model. Fig. 5 shows the
result of libration-type KL oscillations, while Fig. 6 exhibits those
of rotation-type KL oscillations. In each figure, the top and bottom
panels correspond to the results of the initially circular and eccentric
cases, respectively, whose parameters are given in Table 2. In Figs 5
and 6, the KL oscillation is observed in all the panels with different
amplitudes and time-scales: The initially eccentric cases (bottom
panels) have smaller amplitude and shorter time-scale than those of
initially circular cases (top panels). This is because in the initially
circular case, the eccentricity oscillates between zero and some finite
value, while in the initially eccentric case, it oscillates between two
finite values around the initial value. The same behaviour is also
found from the figures of the eccentricity in the double-averaging

Figure 7. Comparison between two evolution lines of the averaged inner
eccentricity ēin for the libration type of KL oscillations in the PNN model.
The top and bottom panels show the results of ICL and IEL types, respectively.
The solid line describes the evolution obtained from direct simulation, while
the dashed line denotes the result obtained by double-averaged calculation.

method. CKL [or C
(GR)
KL ] is very small in the initially circular case,

while it is not so small in the initially eccentric case (see Fig. A1 for
the Newtonian case).

However, in all the panels of both the figures, θ2 is not exactly
constant but oscillates with the same period as that of the KL
oscillation although it should be constant in the analysis with test-
particle quadrupole approximation in Section 2. This is because all
masses of the components in the system are the same in PNN model
and the hierarchy assumed in Section 2 is not enough in this model,
that is, the test-particle approximation does not work exactly in this
model. This small deviation from the test-particle limit is consistent
with the discussion given in Naoz et al. (2013a).

Direct integration versus double-averaging method: In Figs 7
and 8, we show the evolution of inner eccentricity obtained in our
direct integration (dark-green solid line) as well as that calculated
with Lagrange planetary equations (A1)–(A5) (light-green dashed
line). The latter one corresponds to the result obtained by double
averaging under the quadrupole approximation.4 Each panel in Figs 7
and 8 is the same evolution as that shown in the corresponding panels
in Figs 5 and 6.

At first glance, the difference is very small except for the IER type
(the bottom panel in Fig. 8), but we find some difference between
the solid line and dashed lines in all the panels as shown below.
The time-scale of KL oscillation obtained from direct integration

4Double-averaging equations (A1)–(A5) are integrated by the fourth-order
implicit Runge–Kutta method using W4 method (Okawa et al. 2018; Fujisawa
et al. 2019), which is an improved version of the Newton–Raphson method,
as an internal non-linear solver.
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KL effect on periastron time shift 1653

Figure 8. The same figure as Fig. 7 for the ‘rotation’-type KL oscillations
in PNN model. The top and bottom panels show the results of ICR and IER
types, respectively.

is smaller than that calculated in double-averaging method in the
panels of Fig. 7, but it is larger in the panels in Fig. 8. The deviation
in time-scale is much more obvious in the bottom panel of Fig. 8.
For the amplitude, the tendency of the difference is not the same in
all the panels. In the results of ICL and ICR types (top panels in
Fig. 7 and 8), the amplitude of KL oscillation is larger in our direct
simulation than that obtained with double-averaged calculation with
quadrupole expansion. Both curves in these panels have the same
minimum values but the maximum values are enhanced in dark-
green lines. In the result of IER type (bottom panel of Fig. 8), the
enhancement of the amplitude in the direct simulation is observed
as seen in ICL and ICR types, but both maximum and minimum
values in light-green line are different from those of dark-green line:
Both maximum and minimum values are larger in light-green line
than those of dark-green line. In the result of IEL type (top panel of
Fig. 7), on the other hand, the amplitude of the dark-green line is
almost the same as that of the light-green line. These differences are
summarised in Table 3.

One may wonder that the double-averaging method can be
improved if we take into account the higher multipole interaction
terms. Here, we just comment about the calculation with the double-
averaging method up to the octupole-order expansion. We have
also performed numerical calculation including the octupole-order
expansion (Ford, Kozinsky & Rasio 2000; Naoz et al. 2013a, b).
In the models with PN-binary, the results obtained from octupole-
order equations are completely the same as quadrupole ones because
the octupole terms are always proportional to the mass difference
(m1 − m2). Hence, to see the effect of the octupole-order terms, we
analyse the models with different-mass binaries (e.g. model PBB).
We show the results in Appendix C. The octupole-order terms seem
to improve the results obtained by quadrupole ones, but it is not

Table 3. Comparison between the results by the direct integration and those
by the double-averaging method for the PNN model with ε(1PN) = 0.177.
We show the maximum and minimum eccentricities, and the KL-oscillation
period TKL. The first rows give the results by the direct integration, while the
second rows show the results by the double-averaging method.

Type θ2 C
(GR)
KL emin emax TKL (yr)

ICL 0.25 −3.18 × 10−5 0.007 28 0.687 12.465
0.006 13 0.683 12.858

ICR 0.25 6.20 × 10−5 0.006 89 0.687 12.117
0.007 68 0.683 11.937

IEL 0.232 −0.170 0.525 0.605 3.473
0.524 0.600 3.477

IER 0.32 0.0667 0.170 0.654 5.083
0.267 0.675 4.046

always the case (see Appendix C for the details). However, both
quadrupole- and octupole-order double-averaged calculations do not
exactly reproduce the evolution obtained by direct integration (see
Appendix C).

We remark that these differences between eccentricity evolution
obtained from direct integration and those by double-averaging
methods may be crucial when we evaluate the GW emission for
the systems with finite masses, that is, one may overestimate or
underestimate the maximum or minimum value of the eccentricity
when we use the double-averaging method. The amplitude and
frequency of the GWs are strongly sensitive to the eccentricity,
especially for the highly eccentric orbit like e > 0.9. It may be
important to calculate the evolution of such an orbit by direct
integration.

5.1.2 PNIB model

Evolution of orbital parameters: Figs 9 and 10 are the same figures
as Figs 5 and 6 but for PNIB model. Figs 9 and 10 reflect the features
of libration and rotation types of KL oscillations, respectively. In
each figure, the top and bottom panels are the results of initially
circular and eccentric types, respectively. As seen in Figs 5 and 6,
initially eccentric cases (bottom panel) have smaller amplitude and
shorter time-scale than those of initially circular cases (top panels),
which is similar to the PNN model. As for the KL-oscillation period,
it does not seem to depend on the oscillation types in the initially
circular case, while in the initially eccentric case, the rotation type
(the bottom panel in Fig. 10) gives shorter oscillation time than that
in the libration type (the bottom panel in Fig. 9).

θ̄2 is almost constant in PNIB model unlike that in PNN model. It
is because the test-particle approximation is valid in PNIB model. In
fact, the deviation from the double-averaging method is smaller than
that of PNN model.

Newtonian versus post-Newtonian: PNIB model has the second
largest value of ε(1PN) in Table 1 and its relativistic effect is the
strongest in our models except PIBIB model. Since the main features
are the same in both the models, we shall discuss the PNIB model as
a representative of relativistic ones.

In Figs 11 and 12, we show the evolution of the eccentricities
obtained by Newtonian and post-Newtonian direct simulations. Each
figure exhibits the results of libration and rotation types of KL
oscillations. The top and bottom panels in each figure correspond
to the results of initially circular and eccentric types. The Newtonian
and post-Newtonian results are described by the light- and dark-
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1654 H. Suzuki et al.

Figure 9. The same figure as Fig. 5 for PNIB model. The top and bottom
panels correspond to the results of ICL and IEL types, respectively.

Figure 10. The same figure as Fig. 6 for PNIB model. The top and bottom
panels correspond to the results of ICR and IER types, respectively.

Figure 11. Comparison between Newtonian and post-Newtonian evolution
curves of the averaged inner eccentricity ēin for the ‘libration’ type of KL
oscillations in the PNIB model. The top and bottom panels correspond to
the results of ICL and IEL types, respectively. The light- and dark-green
curves describe the results obtained from Newtonian and post-Newtonian
direct simulations.

Figure 12. The same figure as Fig. 11 for the ‘rotation’-type KL oscillations
in the PNIB model. The top and bottom panels correspond to the results of
ICR and IER types, respectively.
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Table 4. The comparison between Newtonian and post-Newtonian results
for the PNIB model. TKL denotes the KL-oscillation period. The first rows
give the Newtonian results, while the second rows show the results with first
post-Newtonian correction [ε(1PN) = 0.484].

Type θ2 C
(GR)
KL emin emax TKL (yr)

ICL 0.25 −1.64 × 10−5 N 0.004 38 0.761 36.779
1PN 0.005 50 0.680 36.913

ICR 0.25 7.73 × 10−5 N 0.008 69 0.761 32.231
1PN 0.007 76 0.680 32.60

IEL 0.232 −0.0931 N 0.328 0.749 11.419
1PN 0.450 0.605 10.804

IER 0.32 0.143 N 0.377 0.738 9.992
1PN 0.322 0.672 9.504

green curves, respectively. The tendency of the difference between
two curves is not the same in all the panels. In the results of ICL
and ICR types (top panels of Figs 11 and 12), the amplitude of
KL oscillation is smaller in post-Newtonian simulation than that
obtained from Newtonian calculation. Both curves in those results
have the same minimum values (about zero), but the maximum value
is suppressed in post-Newtonian curve. The KL time-scale is a little
longer in post-Newtonian result in the initially circular types.

In the results of IEL and IER types (bottom panels of Figs 11
and 12), on the other hand, the KL time-scale obtained in post-
Newtonian calculation is shorter than that obtained from Newtonian
one. Interestingly, IEL (bottom panel of Fig. 11) and IER (bottom
panel of Fig. 12) have different features in the amplitude. In the result
of IEL type, the amplitudes obtained by post-Newtonian simulation
are smaller than those of Newtonian result; unlike results of the ICL
and ICR types, both maximum and minimum values are suppressed in
this case. On the other hand, in the result of IER type, the amplitudes
of Newtonian and post-Newtonian results are almost the same but
both maximum and minimum values of post-Newtonian result are
shifted downwards.

These complicated features can be understood basically by using
the double-averaging method, which is given in Appendix A2. As
shown in Fig. A4, the curve of the maximum–minimum eccentricity
in terms of CKL in Newtonian dynamics is shifted to the right
when the post-Newtonian correction term is taken into account.
Here, we have used C

(GR)
KL instead of CKL as the horizontal axis

because it is conserved and classifies the oscillation types, libration
or rotation. Hence, when we include the post-Newtonian correction
term, fixing two conserved quantities [θ2 and C

(GR)
KL = CKL], we find

that the maximum value decreases and the minimum value increases
for the libration type, while both maximum and minimum values
decrease for the rotation type. As for the KL oscillation, the analysis
by the double-averaging method explains the results by the direct
integration (compare Figs 11 and 12 with Table 4.).

5.1.3 Irregularity of KL-oscillation period

As we showed above, the amplitude of KL oscillation and its
period can be understood basically by the double-averaging method.
However, we find that there appears an irregularity of the period in
some models. For example, the KL oscillations in ICR type of the
PNB and PBB models show irregular periods (see Fig. 13). This
irregular behaviour of the KL-oscillation period was already found
in Antonini & Perets (2012). They calculated orbital evolutions of
BH binaries around SMBH by using N-body integrator and found

Figure 13. The same figures as Fig. 11 for ICR-type KL oscillations in
the PNB model (top) and the PBB model (bottom). The period from one
maximum to the next one is not regular for the Newtonian case in the top
figure and for the post-Newtonian case in the bottom figure.

the irregular periods and amplitudes in the KL oscillation (fig. 3 in
their paper) .

Since the calculations in Antonini & Perets (2012) and ours are
performed by the direct integration, one may naturally expect some
deviation from the double-averaging method, in which the KL-
oscillation period is regular. However, since the deviation in our
calculation is very small, the double-averaging method may provide
almost correct results. Note that the amplitude and time-scale of KL
oscillation are strongly dependent on two conserved quantities θ2

and C
(GR)
KL , but not so much on ε(1PN) except for the ICL oscillation

type, in which the relativistic effect is large because it changes the
existence range of KL oscillation. Hence, we analyse the behaviour
of the ‘conserved’ quantities in our simulations. As for θ2, although
it oscillates with the outer orbit period, the averaged value is almost
constant except around the time when the eccentricity reaches the
maximum value. We then show the time evolution of CKL and C

(GR)
KL

in the top and bottom of Fig. 14, respectively. It is because the
irregularity is clearer for Newtonian calculation in the PNB model,
while it is so for the post-Newtonian calculation in the PBB model.
These figures show that CKL or C

(GR)
KL is not conserved when the

eccentricity reaches the maximum value. However, it becomes almost
constant again when the eccentricity decreases.

In order to see the details, in Table 5, we show the numerical
values of the oscillation periods. The period n (n = 1, 2, and 3)
denotes the period from the n-th peak of the eccentricity to the (n
+ 1)-th peak. We also show the constant ‘conserved’ values after
the eccentricity passes through the maximum value in Table 5. We
evaluate the KL-oscillation periods by the double-averaging method
with those values of CKL/C

(GR)
KL , which are given in the third row

of each period in Table 5. We find that those periods are consistent
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Figure 14. Time evolutions of CKL and C
(GR)
KL for ICR-type KL oscillations

in the PNB model (top) and the PBB model (bottom), respectively.

Table 5. The period of KL oscillations. The period n (n = 1, 2, and 3)
denotes the period from the n-th peak of the eccentricity to the (n + 1)-th
peak. CKL/C

(GR)
KL is the ‘conserved’ value after the eccentricity passes through

the maximum value. The periods calculated by the double-averaging method
with the same values of CKL/C

(GR)
KL are given in the third rows of each period.

Model PNB PBB
Newtonian 1PN Newtonian 1PN

Period 1 8.6 yr 8.8 yr 7.4 yr 8.0 yr
CKL/C(GR)

KL 3.2 × 10−5 5.5 × 10−5 2.6 × 10−5 −2.7 × 10−5

9.34 yr 8.90 yr 8.06 yr 8.03 yr

Period 2 10.0 yr 8.8 yr 7.6 yr 7.2 yr
CKL/C(GR)

KL 5.2 × 10−6 5.6 × 10−5 1.9 × 10−5 −7.9 × 10−5

10.77 yr 8.88 yr 8.26 yr 7.31 yr

Period 3 8.6 yr 8.8 yr 7.2 yr 7.1 yr
CKL/C(GR)

KL 3.2 × 10−5 5.6 × 10−5 3.1 × 10−5 −1.1 × 10−4

9.34 yr 8.88 yr 7.94 yr 7.09 yr

with the numerical ones by the direct integration. We believe that
these small deviations of the ‘conserved’ values in each period cause
small irregularity of the KL-oscillation period. We still have a small
difference from the numerical simulation, which may be because of
a large deviation of CKL/C

(GR)
KL near the maximum eccentricity.

5.2 CSPT

The KL oscillations shown in Section 5.1 affect the evolution of the
CSPT 	P of binary pulsar in the hierarchical triple system. As we
showed in the previous letter (Suzuki et al. 2019), if a hierarchical
triple system shows the KL oscillations in observation period, we
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Figure 15. The CSPT curve for libration type of PNIB model is shown. The
top and bottom panels are the results integrated from the time of maximum
and minimum eccentricities, respectively. The blue and red solid curves
correspond to ICL and IEL types, respectively. The dashed curves are those
of isolated binaries whose parameters are the same as the initial values of the
inner binaries of corresponding types.

expect the bending of CSPT curve. It is because when the eccentricity
becomes large, the amount of GW emission increases, and then
the change of orbital period gets large. Here, we shall discuss how
the bending of CSPT curve depends on the models or types of KL
oscillations.

For each model in Table 1, we have calculated the time evolution
of CSPT as explained in Section 4. Since the behaviour of the
CSPT curve of these models is similar, we show the results for
PNIB model in figures as representative. Figs 15 and 16 show the
results of libration- and rotation-types KL oscillations, respectively.
In each panel, the red and blue solid curves show the results of
initially circular and eccentric types, respectively. The top panels
show the CSPT curves calculated from the time when the maximum
eccentricity is found in each KL-oscillation type (at t = 15.21, 0,
14.96, and 1.32 yr for ICL, IEL, ICR, and IER types, respectively),
while the bottom panels exhibit those calculated from the time when
minimum eccentricity is reached (at t = 0, 5.40, 0, and 6.10 yr
for ICL, IEL, ICR, and IER types, respectively). It shows that the
CSPT curves become completely different depending on the choice
of the initial time of integration TN = 0 even for the same model.
For reference, we also show the CSPT curves of the isolated binary
whose parameters are the same as the initial parameters of the inner
binary in corresponding hierarchical triple models, by the red and
blue dashed curves.

The CSPT curves of isolated binaries are approximated by the
quadratic functions as equation (21). At first, the CSPT curves of KL
triple system coincide with the quadratic curves of corresponding
isolated binaries, but when the eccentricity changes with KL mecha-
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KL effect on periastron time shift 1657

Figure 16. The same figures as Fig. 15 but for rotation case. The blue and
red solid curves are the results of ICR and IER types, respectively.

nism, the curves of the triple system bend and the discrepancy from
the binary curves becomes large as already shown in Suzuki et al.
(2019). This is because the period change of the inner binary due
to GW emission (Ṗin) depends on the orbital eccentricity as given
by equation (11). Hence, when the orbital eccentricity changes, Ṗin

also changes, and then the CSPT curve deviates largely from the
quadratic curve.

In the top panels of Figs 15 and 16, the solid curves at first coincide
with the quadratic curves with eccentric orbits, but they switch to
the less steeper curves as the eccentricities become smaller by KL
mechanism. This feature results in the slower decrease of 	P in the
triple system compared with that of the isolated eccentric binary.
The slope and bending time-scale of red and blue solid curves are
different from each other depending on the amplitude and KL time-
scale. However, in the bottom panels of Figs 15 and 16, the switch
from the circular curves to the eccentric steeper curves causes rapid
decrease of 	P in the triple system curves than those of isolated
circular binaries.

This bending feature may be useful to see KL oscillation from
pulsar observation. The shape of the CSPT curve has the information
of the eccentricity and the KL-oscillation time-scale in its slope
change. The bending of the CSPT curve is clear when the curve
is integrated from minimum eccentricity, but the curve from the
maximum eccentricity does not show clear bending. However, the
change of the CSPT curve becomes clearer if the time derivative
of 	P is plotted. In Figs 17 and 18, the time evolution of d	P/dTN

for each KL type is plotted. Figs 17 and 18 show the results of
libration- and rotation-types KL oscillations, respectively. In each
panel, the red and blue curves show the results of initially circular
and eccentric types. The top and bottom panels in those figures show
d	P/dTN curves calculated from the time when the maximum and
minimum eccentricities are obtained, respectively. We find the clear

Figure 17. Time derivative of CSPT d	P/dt calculated for libration type
of KL oscillations in PNIB model. The top and bottom panels are the
results calculated from the time of maximum and minimum eccentricities,
respectively. The blue and red solid curves are the results of ICL and IEL
types, respectively.
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Figure 18. The same figures as Fig. 15 but for rotation type of KL oscillations
in PNIB model.
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Table 6. TKL, Smin, and Smax for all models are summarized.

Model Type TKL (yr) Smin (s yr−2) Smax (s yr−2)

PNN ICL 12.7 −0.475 −2.02 × 10−2

ICR 12.0 −0.476 −2.02 × 10−2

IEL 3.47 −0.215 −0.117
IER 4.08 −0.423 −3.10 × 10−2

PNB ICL 9.18 −0.902 −2.02 × 10−2

ICR 8.84 −0.903 −2.02 × 10−2

IEL 2.48 −0.223 −0.167
IER 3.40 −0.480 −2.79 × 10−2

PNIB ICL 36.9 −0.442 −2.02 × 10−2

ICR 32.6 −0.442 −2.02 × 10−2

IEL 10.8 −0.215 −7.28 × 10−2

IER 9.50 −0.406 −3.91 × 10−2

PNSB ICL 1.98 −1.21 −1.99 × 10−2

ICR 1.97 −1.21 −2.02 × 10−2

IEL 0.588 −0.255 −0.179
IER 0.876 −0.527 −2.34 × 10−2

PBB ICL 7.05 −2.70 × 10−2 −4.85 × 10−4

ICR 7.99 −2.72 × 10−2 −4.88 × 10−4

IEL 2.23 −6.33 × 10−3 −4.62 × 10−3

IER 3.19 −1.38 × 10−2 −6.01 × 10−4

PBIB ICL 75.1 −2.13 × 10−2 −4.85 × 10−4

ICR 69.9 −2.13 × 10−2 −4.86 × 10−4

IEL 21.6 −5.40 × 10−3 −3.88 × 10−3

IER 29.1 −1.20 × 10−2 −6.90 × 10−4

PBSB ICL 14.0 −2.82 × 10−2 −4.85 × 10−4

ICR 14.5 −2.86 × 10−2 −4.87 × 10−4

IEL 4.09 −6.28 × 10−3 −4.37 × 10−3

IER 5.96 −1.41 × 10−2 −6.08 × 10−4

PIBIB ICL 2.50 −6.04 −0.516
ICR 2.26 −6.01 −0.518
IEL 0.899 −6.34 −0.771
IER 0.491 −10.5 −1.20

PIBSB ICL 1.20 −11.5 −0.516
ICR 1.20 −11.5 −0.519
IEL 0.400 −7.69 −1.48
IER 0.339 −13.7 −0.915

slope change of the d	P/dTN curves even for the curve integrated
from the maximum eccentricity.

When the bending of the CSPT curve occurs, the slope of the
d	P/dTN curve changes. Here, we define the slope as

S(TN ) = d2	P

dT 2
N

= Ṗb(TN )

Pb(0)
(22)

from equation (20). Hence, we find that when eccentricity gets large,
the slope becomes steep, i.e. the absolute value of the slope becomes
large, and vice versa. Hence, the difference between the minimum
and maximum values of slope (Smin and Smax) indicates the amplitude
of KL oscillation.

The magnitude of the slope depends not only on the eccentricity
but also the model parameters. If a system has smaller semimajor
axis or larger masses for its inner binary, the GW emission rate is
larger and then the slope becomes steeper. In Tables 6, we summarize
the minimum slope Smin and the maximum slope Smax as well as the
KL time-scale TKL, which gives the time interval between minimum
and maximum slopes, for all models we have calculated.

Table 7. The adiabaticity parameter A of each model is
summarized.

Name A

PNN 0.103
PNB 0.075
PNIB 0.282
PNSB 0.0181

PBB 0.0125
PBIB 0.129
PBSB 0.0242

PIBIB 0.683
PIBSB 0.396

For the Hulse–Taylor binary, we find that the slope is SHT ≈
−8.57 × 10−2. Hence, we expect that we can observe the change of
the slope for most models except for the models with P–BH inner
binary. The models with P–IMBH inner binary show largest slope.
However, the models with P–BH inner binary give smallest absolute
values, for which we may need more precise observation to find the
CSPT curve. In each model, the difference between Smin and Smax

in the IEL-type KLoscillation is the smallest of all types. This is
because the amplitude of KL oscillation in this type is smallest as
seen in Figs 7 and 11.

It has already been pointed out that the KL oscillation should be
observed through the long-period radio observation of the orbital
elements of the binary pulsar (Gopakumar, Bagchi & Ray 2009;
Zwart et al. 2011). In real observation, however, the observational
data are sometimes missed due to some reasons; for example,
in the observation of the Hulse–Taylor binary, the data were not
obtained for a decade of 1990s because of the major upgrades of the
Arecibo telescope (Hulse 1994). If this unseen period is completely
overlapped with the time when eccentricity is changed from the
initial value with KL oscillation, it is difficult to recognize whether
KL oscillation occurs or not only from orbital element data. Even in
such case, we can conclude that KL oscillation occurs in the system
if the CSPT curve deviates from that of isolated binary in late phase.

Some readers may worry about the spin evolution of the pulsar
caused by the spin-orbit coupling in 1.5-order post-Newtonian terms
(Barker & O’Connell 1975) because it may change the direction
of the pulsar rotation axis and affect the radio observation, that
is, the change of beaming direction of pulse signal may cause the
disappearance of the pulsar. Following Liu & Lai (2017, 2018), the
evolution of spin in relativistic KL oscillation can be characterized
with the ‘adiabaticity parameter’ A defined as the ratio of the de-
Sitter spin precession rate �SL to the orbital precession rate by KL
oscillation �L. The adiabaticity parameter A is described as

A ≡
∣∣∣∣�SL

�L

∣∣∣∣ � 4
rg,in

ain

m1 + μin/3

m3

(
aout

ain

)3 (
1 − e2

out

) 3
2 , (23)

where μin = m1m2/(m1 + m2) is the reduced mass of the inner binary.
This parameter is quite similar to ε(1PN) defined as equation (5).
Hence, for the system with KL oscillation, which satisfies the
condition equation (6), we find that the adiabaticity parameter A
satisfies

A � m1(3m1 + 4m2)

(m1 + m2)2

(
1 − e2

in

) 3
2 ≤ 3. (24)

The adiabaticity parameters of our models are summarized in Table 7.
In case of A � 1, the spin evolution is classified as ‘non-

adiabatic’, that is, the orbital precession by KL oscillation is much
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faster than the relativistic spin precession, and then the spin axis
cannot ‘catch up’ with the precession of angular-momentum axis.
In such a situation, the spin axis of the pulsar is expected to be
parallelly transported just as in the Newtonian case, and then the
beaming direction of the radio signal is expected not to change so
much even when the inclination changes by KL oscillation. The
PBB model corresponds to this case. For the other models, A is still
smaller than unity, but not so much. The spin axis of the pulsar in
the system with such mid-range of A is perturbed around its initial
direction as shown in Liu & Lai (2018). If the perturbation of the spin
direction is large enough so that the beaming angle of the pulsar goes
out from the observable range, the radio signal from the pulsar will
disappear and will rarely reappear due to its complicated evolution.
If the disappearance of a pulsar in triple system is observed, it will
be an important example of the 1.5 post-Newtonian effect on the KL
oscillation. The critical value of A that causes the disappearance of
the signal should depend on the emission mechanism of the pulsar,
the intensity of the radio signal, the distance to the system, and
the opening angle of the radio telescope. If the CSPT is observed
for a whole period of KL oscillation despite the precession of the
spin direction of the pulsar, it means that the pulsar is successively
observed from some different directions and such observation may
give new information about the pulsar.

The hierarchical three-body system that causes the bending of
CSPT curve needs high inclination so that KL oscillation occurs.
Such highly inclined triple systems may need to be formed by
the dynamical interaction in dense environments like the globular
clusters and the galactic nuclei (Kulkarni, Hut & McMillan 1993;
Samsing, MacLeod & Ramirez-Ruiz 2014; Zevin et al. 2019). Hence,
we need population synthesis with large numerical simulation to
estimate event rates of the observation of bending of CSPT. We
also need to consider the distance to the system that should be
close enough to observe the radio signals from it. Though the
population synthesis simulation considering all factors is beyond
the scope of this paper, we can expect that the observation of
the bending of the CSPT curve may be a rare event. However,
as discussed in Suzuki et al. (2019), this interesting signal is
important not only to confirm the existence of the third body but
also to provide a first indirect evidence of GW emission from
the triple system with KL oscillations. GW emission makes the
inner binary more compact and GW waveform from such compact
triple system with KL oscillation can be observed by future GW
detectors (Gupta et al. 2020) like LISA (Amaro-Seoane et al. 2017),
DECIGO (Sato et al. 2017), and big bang Observer (Harry et al.
2006).

For some binary pulsars, for example, PSR J1840−0643 (Knispel
et al. 2013), the possible existence of the tertiary companion has not
been denied. Observing such binary pulsars for a long period may
lead to discovery of a first indirect evidence of GW emission from
the triple system with KL oscillations.

6 C O N C L U S I O N S

In this paper, taking the first post-Newtonian relativistic correction
into account, we have studied the KL oscillations in hierarchical triple
systems with a pulsar and calculated the CSPT. The KL mechanism
is one of the orbital resonances that appear in the hierarchical triple
systems characterized as the exchanging oscillation with the inner
eccentricity and the relative inclination. When the eccentricity of the
binary pulsar is excited by KL oscillation, it enhances GW emission
from the binary and it changes the shape of the CSPT curve. We

have analysed the KL oscillations in several models with a pulsar,
and those effects on the CSPT curves.

We have first analysed the KL oscillations for the models with
different initial parameters. We have classified those models into
four types (ICL, IEL, ICR, and IER). We have calculated their
orbital evolution by the direct integration of first post-Newtonian
equations of motion. The four KL types have different amplitudes
and time-scales and, in addition, the non-test-particle limit effect
and the relativistic effect appear differently. In the result of the
model with weak mass hierarchy (e.g. PNN model), we find that
KL-‘conserved’ value θ2 is not conserved but oscillating, whereas
it should be constant in double-averaged method with test-particle
limit approximation. It has also been found that the amplitudes and
time-scales obtained in direct integration do not coincide with those
in double-averaged method. The tendency of these discrepancies
is different in the four types of KL oscillations. The amplitudes
and frequencies of the emitted GWs are quite sensitive to the
eccentricity, and these differences between eccentricity evolution
in direct integration and that obtained from double-averaged method
may be crucial when we evaluate the GW emission for the systems
with finite masses, that is, one may overestimate or underestimate
the maximum or minimum value of the eccentricity when we use the
double-averaged method.

In the model with large ε(1PN) (e.g. PNIB model), we could
observe clear differences between the results obtained by Newto-
nian and post-Newtonian direct integrations. The post-Newtonian
effects appear differently in the four types of KL oscillations.
The complicated behaviours can be understood theoretically by
using the double-averaging method with first-order post-Newtonian
corrections. However, in some models (e.g. PNB and PBB models),
we have observed KL oscillation with irregular periods, which cannot
be explained by double-averaging method with quadrupole-order
approximation. This may be because the KL-conserved quantities
are not exactly constant in the direct integration.

The KL-oscillation effect appears in the CSPT curve as the
bending of the curve. The slope of the curve at each phase reflects
the maximum or minimum eccentricity and the time between two
bending points corresponds to the time-scale of KL oscillation.
The CSPT curves become completely different depending on the
choice of the initial time of integration even for the same model. The
bending of the CSPT curve is clear when the curve is integrated from
minimum eccentricity, but the curve from the maximum eccentricity
does not show clear bending. In such case, the time derivative of
the CSPT can be a good indicator for the bending of the CSPT
curve.

The system that causes this interesting signal may be rare because
such compact hierarchical triple systems with high inclination need
to be formed by dynamical interaction in a dense environment like a
globular cluster or the Galactic centre. However, once such systems
are observed with the pulsar signal, it is very important because it is
the first indirect observation of GW from triple systems. In addition,
it will be the precursor of the direct detection of the waveform by
the future gravitational detectors like LISA, DECIGO, and big bang
Observer. Some highly relativistic triple systems should show the
spin precession of the pulsar caused by the 1.5 post-Newtonian effect
from the outer orbit and it will change the beaming angle of the
pulsar. If the beaming angle of the pulsar is perturbed and goes
out of the observable range, the radio signal from the pulsar will
disappear and rarely appear again. The disappearance of the signal
from a pulsar in triple system will provide one of the important
examples of the 1.5 post-Newtonian effect on the KL oscillation. On
the other hand, if the CSPT is observed for a whole period of KL
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oscillation despite the precession of the spin direction of the pulsar, it
corresponds to the successive observation of a pulsar from different
directions and such observation may give new information about a
pulsar.
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APPENDIX A : D ETAIL A NA LY SIS O F K L
MECHANI SM BY DOUBLE-AV ERAG I NG
M E T H O D

A1 Newtonian dynamics

Here, we discuss the restricted hierarchical triple system. We choose
our reference plane to define the inclinations as the initial orbital
plane of the outer orbit. Since the outer inclination is conserved in
the restricted triple system, we find that iout = 0 and then the inner
inclination iin is the same as the relative inclination I between inner
and outer orbits.5 The secular time evolution of the osculating orbital
elements of the inner orbit is described by the Lagrange planetary
equations, which is decoupled from the orbital motion of the outer
orbit in the restricted hierarchical triple system as

da

dt
= 0, (A1)

de

dt
= −

√
1 − e2

na2e

∂VS

∂ω
, (A2)

di

dt
= cot i

na2
√

1 − e2

∂VS

∂ω
, (A3)

dω

dt
=

√
1 − e2

na2e

∂VS

∂e
− cot i

na2
√

1 − e2

∂VS

∂i
, (A4)

5Note that in the non-restricted triple system case, the outer inclination will
also evolve with time. In such case, the relative inclination is calculated as
cos I = cos iincos iout + sin iinsin ioutcos (�in − �out).
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d�

dt
= 1

na2
√

1 − e2 sin i

∂VS

∂i
, (A5)

where n is the mean motion of the inner orbit, which is defined by

n =
√

Gm

a3
, (A6)

and VS is the double-averaged perturbation potential in the Hamil-
tonian of the motion of a test particle in the triple system. ‘Double-
averaged’ means that the corresponding term is averaged for both
periods of inner and outer orbits. In this section, we drop the subscript
‘in’ for the inner orbit variables just for brevity.

VS is obtained by expanding the perturbative interaction potential
term in the Hamiltonian with a/aout up to the quadrupole moment
and performing its double-averaging procedure. It is described by
the orbital elements as

VS = V0vS(e, i, ω), (A7)

where

V0 = Gm3a
2

16a3
out(1 − eout)3/2

, (A8)

vS = (2 + 3e2)(3 cos2 i − 1) + 15e2 cos 2ω sin2 i. (A9)

Introducing the following three variables:

η ≡
√

1 − e2, (A10)

μ ≡ cos i, (A11)

τ ≡ V0

na2
t, (A12)

where τ is the dimension-free time parameter measured by the typical
oscillation time-scale na2/V0, we find that the basic equations (A2)–
(A4) are rewritten as

dη

dτ
= ∂vS

∂ω
, (A13)

1

μ

dμ

dτ
= − 1

η

∂vS

∂ω
, (A14)

dω

dτ
= −∂vS

∂η
+ μ

η

∂vS

∂μ
. (A15)

From these basic equations, the following two conserved quantities
are obtained:

θ ≡ ημ, (A16)

CKL ≡ vS

12
= (1 − η2)

[
1 − 5

2
(1 − μ2) sin2 ω

]
. (A17)

These are the same as the previously introduced two conserved
quantities (1) and (2). Due to the existence of two conserved values
for three equations, we get the following single equation for η:

dη

dτ
= −12

√
2

η

√
f (η)g(η), (A18)

where

f (η) ≡ 1 − η2 − CKL, (A19)

g(η) ≡ −5θ2 + (5θ2 + 3 + 2CKL)η2 − 3η4. (A20)

Because of KL oscillations, the eccentricity e takes the maximum
or minimum value when dη/dτ vanishes.

Since the zero of f(η) exists only for CKL ≥ 0, we classify the KL
oscillations into two types:

(i) rotation type: CKL ≥ 0
(ii) libration type: CKL ≤ 0.

The zero of f(η) is given by

η = η0 ≡
√

1 − CKL, (A21)

while the zeros of g(η) are obtained as

η = η± ≡
√

5θ2 + 2CKL + 3 ±
√

(5θ2 + 2CKL − 3)2 + 24CKL

6
.

(A22)

With the conditions f(η)g(η) ≥ 0 and 0 ≤ η ≤ 1, we find

η− ≤ η ≤ η0 for rotation type (CKL > 0)

η− ≤ η ≤ η+ for libration type (CKL < 0).

This gives

emin ≤ e ≤ emax, (A23)

where for rotation type (CKL > 0), we obtain

emin =
√

CKL, (A24)

emax =
√

4CKL

5θ2 + 2CKL − 3 +
√

(5θ2 + 2CKL − 3)2 + 24CKL

,

(A25)

while for libration type (CKL < 0), we have

emin =
√

4CKL

5θ2 + 2CKL − 3 −
√

(5θ2 + 2CKL − 3)2 + 24CKL

,

(A26)

emax =
√

4CKL

5θ2 + 2CKL − 3 +
√

(5θ2 + 2CKL − 3)2 + 24CKL

.

(A27)

From the condition of emin ≤ emax, we have the constraints for θ

and CKL:

θ2 ≤ −CKL + 1 (rotation type),

θ2 ≤ 1
5 (−2CKL + 3 − 2

√−6CKL) (libration type).

In Fig. A1, we show some examples of emin and emax for four
types of KL oscillations. We find that the eccentricity oscillates
between zero and the maximum value for the initially circular types,
while it changes between two finite values (finite minimum and finite
maximum values). For the libration types, there is no KL oscillation
beyond some critical value of θ2, while for rotation types, θ2 reaches
almost unity although the oscillation amplitude becomes smaller for
larger θ2.

The exact half-period of the KL oscillation TKL is defined by the
time such that the eccentricity changes from the minimum value to
the maximum value (Antognini 2015). It is evaluated as

TKL = na2

V0
τKL, (A28)

where

τKL =
∫ ηmax

ηmin

(
dη

dτ

)−1

dη. (A29)

Since τKL has order of unity, the dimensionful factor na2/V0 is used
for rough estimation of the KL time-scale, which corresponds to
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Figure A1. The maximum and minimum values of eccentricity in terms of
CKL. The red solid and blue dotted curves denote the maximum and minimum
values of the eccentricity, respectively. We choose θ2 = 0.01, 0.2, 0.4, 0.6,
and 0.8. The libration type exists only for θ2 < 0.6.

Figure A2. Normalized KL-oscillation period τKL in terms of θ2. The
cyan and magenta curves denote τKL for the libration and rotation types,
respectively.

equation (3). We find

τKL =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

12
√

6(η2
0−η2−)K

(√
η2+−η2−
η2

0−η2−

)
for libration

1

12
√

6(η2+−η2−)
K

(√
η2

0−η2−
η2+−η2−

)
for rotation,

where K(k) is the complete elliptic integral of the first kind with the
modulus k. In Fig. A2, we show τKL.

A2 Post-Newtonian correction

In the restricted triple system, the first-order post-Newtonian (1PN)
GR correction can be included by adding the correction term to the
interaction potential, that is,

VS → V
(GR)

S = VS + V (1PN), (A30)

where

V (1PN) = 3G2m2

c2a2
√

1 − e2
. (A31)

Figure A3. The same figure as Fig. A1 for the PNIB model with the post-
Newtonian corrections. The libration type exists only for θ2 < [3 − ε(1PN)]/5.
We choose ε(1PN) = 0.484.

This correction term is derived by double averaging the 1PN
Hamiltonian of two-body relative motion [see e.g. Migaszewski
& Goździewski (2011). The original Hamiltonian is obtained in
Richardson & Kelly (1988)]. When the corrected potential V

(GR)
S

is used instead of VS, dimensionless potential vS is also replaced by

v
(GR)
S = vS + 12

ε(1PN)

η
, (A32)

where ε(1PN) is the dimensionless constant that describes the 1PN GR
correction defined by equation (5).

The basic equations for the orbital elements are the same as
equations (A13), (A14), and (A15) by replacing the potential vS

with v
(GR)
S . Hence, we find two conserved quantities again:

θ = ημ, (A33)

C
(GR)
KL = CKL(η, μ, ω) + ε(1PN)

(
1 − η

η

)
. (A34)

Note that CKL(η, μ, ω) is not conserved in this case because of 1PN
corrections. C

(GR)
KL coincides with the Newtonian value CKL if the

orbit is circular (η = 1).
From three basic equations with two conserved quantities, we

obtain one single equation for η as

dη

dτ
= −12

√
2

η

√
f (GR)(η)g(GR)(η), (A35)

where

f (GR) = 1 − η2 − C
(GR)
KL + ε(1PN)

(
1 − η

η

)

g(GR) = −5θ2 +
(

5θ2 + 3 + 2C
(GR)
KL

)
η2 − 3η4 − 2ε(1PN)η (1 − η) .

In order to find the maximum and minimum values of eccentricity,
we look for the zeros of f(GR)(η) and g(GR)(η) under the conditions of
f(GR)g(GR) ≥ 0 with 0 ≤ η ≤ 1. Hence, we solve the cubic equation
ηf(GR)(η) = 0 and the quartic equation g(GR)(η) = 0. There is one root
for ηf(GR)(η) = 0 only if C

(GR)
KL ≥ 0. As a result, just as the Newtonian

case, the KL oscillation is classified into two types:

(i) rotation type with C
(GR)
KL ≥ 0

(ii) libration type with C
(GR)
KL ≤ 0.

In Fig. A3, we show the maximum and minimum values of the
eccentricity in terms of C

(GR)
KL . Since C

(GR)
KL is conserved, fixing

its value we obtain the maximum and minimum values of the
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Figure A4. Comparison of the post-Newtonian result with the Newtonian
one for the PNIB model with ε(1PN) = 0.484. We choose θ2 = 0.1. For the
libration type, for given CKL, the oscillation amplitude between emax and emin

in the P–NS case becomes smaller than the Newtonian one, which shows the
suppression of the KL oscillation by the relativistic effect. On the other hand,
for rotation type, the maximum value decreases, but the oscillation amplitude
can increase depending on the parameters.

eccentricity. Here, we choose ε(1PN) = 0.484, which is the value
for the PNIB model in Table 2. The behaviours are similar to those in
Newtonian case (Fig. A1), but the parameter region of θ2 and C

(GR)
KL

for the KL oscillation is modified.
In order to see the relativistic effect, we compare this result with

the Newtonian case. As an example, in Fig. A4, we plot both results
for θ2 = 0.1. In the libration type, the relativistic effect suppresses
the KL-oscillation mechanism. The parameter region of C

(GR)
KL where

the KL oscillation exists is reduced and the oscillation amplitude
of the eccentricity becomes smaller for a given value of C

(GR)
KL . On

the other hand, for the rotation type, the parameter region of C
(GR)
KL

increases, and the oscillation amplitude of the eccentricity is not
always reduced for a given value of C

(GR)
KL .

The time-scale of KL oscillation is evaluated in the same way as
the Newtonian case. With post-Newtonian correction, equation (A35)
is substituted into equation (A29) instead of equation (A18). We
give the result in Table A1. We also show the Newtonian case
as reference. We find that both time-scales are almost the same
although the relativistic correction changes their values slightly.
We can conclude that the relativistic effect changes the parameter
region of θ2 and C

(GR)
KL for the KL oscillation, and the normalized

KL-oscillation period τKL depends mostly on those two conserved
quantities.

APPENDI X B: C ONVERSI ON BETWEEN
ORBI TAL ELEMENTS AND CARTESI AN
C O O R D I NAT E S

B1 Initial condition

We employ six orbital elements to set up initial configurations:
semimajor axis a, eccentricity e, inclination i, argument of periastron
ω, longitude of ascending node �, and mean anomaly M. These
orbital elements should be transformed to the Cartesian coordinates
of the constituent bodies to provide the initial conditions for our
equations of motion. We first calculate the eccentric anomaly u
from the mean anomaly M, solving the following equation with
the Newton–Raphson method:

M = u − e sin u. (B1)

We then transform it to the true anomaly f according to the following
relation:

f = arctan

{
(sin u)

√
1 − e2

cos u − e

}
. (B2)

Then the polar coordinates of a body on the orbit are given in terms
of the true anomaly and other orbital elements as

r = a(1 − e2)

1 − e cos f
, (B3)

ψ = � + arctan{tan(ω + f ) cos i)}, (B4)

θ = arccos{sin(ω + f ) sin i}. (B5)

These coordinates describe the positions of an orbiting object
measured from its companion; for the inner binary of the hierarchical
triple system, the origin is put at the position of m1 and the orbiting
object is m2; for outer orbit, we set its origin at the position of m3 and
orbiting object is the centre of mass of the inner binary. The velocity
of an orbiting body in these coordinates is obtained as

ṙ = gr ḟ , (B6)

θ̇ = gθ ḟ , (B7)

ψ̇ = gψ ḟ , (B8)

where gr, gθ , gψ , and ḟ are given by

gr = a(1 − e2)e sin f

(1 + e cos f )2
, (B9)

Table A1. The maximum and minimum eccentricities for the PNIB models. 	e = emax − emin gives the oscillation amplitude. τKL

and TKL are the reduced KL-oscillation time-scale and the real period, respectively, which are calculated based on the double-averaging
method. The first row gives the Newtonian result, while the second row shows the result with post-Newtonian correction.

Model Type ε(GR) C
(GR)
KL θ2 emin emax 	e τKL TKL (yr)

PNIB ICL 0 −1.64 × 10−5 0.25 0.004 3293 0.763 76 0.759 43 0.278 17 37.027
Libration 0.484 −1.64 × 10−5 0.25 0.005 0901 0.667 54 0.662 45 0.283 02 37.673

ICR 0 7.73 × 10−5 0.25 0.008 7920 0.763 79 0.755 00 0.243 63 32.430
Rotation 0.484 7.73 × 10−5 0.25 0.007 8891 0.667 60 0.659 71 0.246 57 32.820

IEL 0 −0.0931 0.232 0.331 241 0.752 117 0.420 876 0.086 5099 11.515
Libration 0.484 −0.0931 0.232 0.427 721 0.599 244 0.171 523 0.083 7164 11.144

IER 0 0.143 0.32 0.378 153 0.738 886 0.360 732 0.076 4598 10.178
Rotation 0.484 0.143 0.32 0.336 263 0.668 577 0.332 314 0.068 4457 9.111

MNRAS 500, 1645–1665 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/2/1645/5954205 by guest on 19 April 2024



1664 H. Suzuki et al.

gθ = − 1

sin θ
cos (ω + f ) sin i, (B10)

gψ = cos2(ψ − �)
cos i

cos2(ω + f )
, (B11)

ḟ =
√

Gm′
(

2

r
− 1

a

)
1

g2
r + (rgθ )2 + (r sin θgψ )2

, (B12)

where m
′

is the total mass of the binary. We then change the polar
coordinates to the Cartesian coordinates and shift the origins so that
the centre of mass of the entire system coincides with the origin of
the coordinates. The numerical integration of the EIH equations is
performed on these Cartesian coordinates.

B2 Post-process

The computational results described with Cartesian coordinates are
transformed back to the orbital elements in order to interpret our
results. The semimajor axis a is obtained from the following relation:

a = −Gm′

2E
. (B13)

In this expression, m
′

is defined as m
′ = m1 + m2 and m

′ = m1 +
m2 + m3 for the inner and outer orbits, respectively. E is the orbital
energy per unit mass given as

E = 1

2
v2 − Gm′

r
, (B14)

in which v is the orbital velocity and r is the separation between the
orbiting object and the companion. The inclination i, eccentricity e,
and longitude of the ascending node � are derived from the following
equations:

i = arccos

(
(r × v)z
|r × v|

)
, (B15)

e =
√

1 − |r × v|2
aGm′

,

(B16)

� = arccos

(
(n × (r × v))x
|n × (r × v)|

)
, (B17)

where the subscripts stand for the components of vectors; n is the
unit vector normal to the xy plane. The argument of periastron ω is
obtained as follows: First, the true anomaly f is given as

f = arccos

(
a(1 − e2) − r

er

)
; (B18)

secondly, the angle θ of the planet from the ascending node is given
as

θ = arccos

(
x cos � + y sin �

|r|
)

; (B19)

the argument of periastron is finally obtained as the difference of
these arguments,

ω = θ − f . (B20)

APPENDIX C : D IRECT INTEGRATION V ERSUS
D O U B L E - AV E R AG I N G ME T H O D W I T H
O C T U P O L E - O R D E R EX PA N S I O N

In order to see the effect of the octupole-order terms, we integrate
the double-averaging equations with octupole expansion (Ford et al.

Figure C1. Comparison between three evolution lines of the averaged inner
eccentricity ēin for the libration type of KL oscillations in the PBB model. The
top and bottom panels show the results of ICL and IEL types, respectively. The
dark-green solid line describes the evolution obtained from direct simulation
while the two dashed lines denote the result obtained by double-averaged
calculation: The light-green line is the result of quadrupole-order equations
and dark-blue line is that of octupole-order ones. In the bottom panel, the
oscillation curve of the direct integration becomes broad. It is because the
KL-oscillation amplitude becomes small and it is almost the same as the
amplitude of modulation caused by the outer orbit.

2000; Naoz et al. 2013a, b) and compare the results with those given
by the quadrupole-order equations as well as those obtained by the
direct integration. Since the octupole-order term is proportional to the
difference of the inner binary masses, we shall analyse the models
with different-mass inner binary. Here, we show the result for the
PBB model.

Figs C1 and C2 are the evolution of inner eccentricity. These fig-
ures show the evolution curves obtained by direct integration (dark-
green solid line), by double-averaging method with quadrupole-order
term (light-green dashed line), and by the octupole-order expansion
(dark-blue dashed line). In the bottom panels of Figs C1 and C2, the
quadrupole- and octupole-order lines are almost the same, but are
different from the result of the direct integration. In the top panels of
Figs C1 and C2, on the other hand, we find the difference between
the results of quadrupole- and octupole-order expansion.

In the top figure of Fig. C1, the octupole-order expansion gives
better result compared with the quadrupole one, while the top
figure of Fig. C2 seems to show the opposite result when we
look at the fourth period. However, if we look at the second
period, the result of the octupole-order expansion is closer to the
direct one. This is possible because the ICR type in the PBB
model shows the irregular period as discussed in Section 5.1.3.
Although we have not confirmed that the octupole-order expansion
improves the calculation, we conclude that the double-averaged
calculations not only in quadrupole-order expansion but also in
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Figure C2. The same figure as Fig. C1 for the ‘rotation’-type KL oscillations
in PBB model. The top and bottom panels show the results of ICR and IER
types, respectively.

octupole-order one show clear deviation from the results by direct
integration.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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