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ABSTRACT
Resolving faint galaxies in large volumes is critical for accurate cosmic reionization simulations. While less demanding than
hydrodynamical simulations, semi-analytic reionization models still require very large N-body simulations in order to resolve
the atomic cooling limit across the whole reionization history within box sizes �100 h−1 Mpc. To facilitate this, we extend the
mass resolution of N-body simulations using a Monte Carlo algorithm. We also propose a method to evolve positions of Monte
Carlo haloes, which can be an input for semi-analytic reionization models. To illustrate, we present an extended halo catalogue
that reaches a mass resolution of Mhalo = 3.2 × 107 h−1 M� in a 105 h−1 Mpc box, equivalent to an N-body simulation with
∼68003 particles. The resulting halo mass function agrees with smaller volume N-body simulations with higher resolution. Our
results also produce consistent two-point correlation functions with analytic halo bias predictions. The extended halo catalogues
are applied to the MERAXES semi-analytic reionization model, which improves the predictions on stellar mass functions, star
formation rate densities, and volume-weighted neutral fractions. Comparison of high-resolution large-volume simulations with
both small-volume and low-resolution simulations confirms that both low-resolution and small-volume simulations lead to
reionization ending too rapidly. Lingering discrepancies between the star formation rate functions predicted with and without
our extensions can be traced to the uncertain contribution of satellite galaxies.
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1 IN T RO D U C T I O N

Simulating the epoch of reionization is extremely challenging, with
different techniques developed to study different aspects of the
problem. For example, high-resolution hydrodynamical simulations
(e.g. Wise et al. 2012; Johnson, Dalla Vecchia & Khochfar 2013;
Ceverino, Glover & Klessen 2017; Rosdahl et al. 2018) can re-
solve the faintest galaxies with detailed spatial information on the
interstellar media (ISM). These faint sources are found to have
non-negligible contributions to reionization (Wise et al. 2014; Katz
et al. 2020). However, these simulations are limited to a small
volume (�103 h−3 Mpc3). At the other extreme, Iliev et al. (2014)
presented a study in a 425 h−1 Mpc box, and pointed out that at
least an ∼100 h−1 Mpc box is required for the convergence of
reionization histories. Other studies use seminumerical calculations
of reionization to simulate large volumes (e.g. Greig & Mesinger
2015; Hassan et al. 2016; Park et al. 2019). A disadvantage of these
approaches is the absence of a detailed galaxy formation model.
While large volumes have been achieved by several hydrodynamical
simulations (e.g. Feng et al. 2016; Pillepich et al. 2018), they cannot
resolve the faintest sources. The Cosmic Reionisation on Computers
project (Gnedin 2014; Gnedin & Kaurov 2014; Kaurov & Gnedin
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2015) aims to produce hydrodynamical simulations with both large
volume and high spatial resolution, with self-consistent treatment
of radiative transfer, gas dynamics, and star formation. They reach
an ∼100 pc spatial resolution in an ∼80 h−1 Mpc box. However,
one shortcoming of hydrodynamical simulations is that they are
extremely computationally expensive, and therefore cannot be easily
used to explore different model variations.

Semi-analytic galaxy formation models (see Baugh 2006;
Somerville & Davé 2015, for reviews) provide a good alternative, and
can potentially achieve very high mass resolution in large volumes.
They take halo merger trees extracted from N-body simulations as an
input, and evolve several key baryonic components of galaxies within
these haloes. They do not consider hydrodynamic forces or the spatial
distribution of the ISM, which limits their predictive power but makes
them computationally efficient. One example is the MERAXES semi-
analytic model (Mutch et al. 2016), which couples galaxy formation
with reionization using 21CMFAST (Mesinger & Furlanetto 2007).
Predictions for reionization using MERAXES can be found in Geil
et al. (2016).

The mass resolution and the simulation volume of semi-analytic
models are determined by the input N-body simulations. Predic-
tions of cosmic reionization may require a volume greater than
1003 h−3 Mpc3. For example, Deep Kaur, Gillet & Mesinger (2020)
suggested that a 170 h−1 Mpc box is needed for a simulation to
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predict convergent 21 cm power spectra. At the same time, the main
contribution of ionizing photons could be from faint sources (e.g.
Liu et al. 2016; Finkelstein et al. 2019; Katz et al. 2020; however, see
Naidu et al. 2020). In order to resolve all faint sources and examine
their contribution to reionization, semi-analytic models require N-
body simulations with a very large particle number. This work
attempts to overcome this challenging task by augmenting N-body
halo merger trees using Monte Carlo haloes. The first such method
was presented in Benson, Cannella & Cole (2016). We extend their
study to z ≥ 5, and introduce an improvement to make the results
satisfy the halo mass function (HMF) of the given N-body simulation.
Detailed reionization calculations require the spatial distribution of
haloes. This work also proposes an approach to assign and evolve the
position of Monte Carlo haloes, which can reproduce halo clustering
predicted by the N-body simulation.

This paper is organized as follows: Our methodology of extending
N-body halo catalogues is presented in Section 2. Specifically,
Section 2.1 describes the N-body simulations utilized in this work.
Section 2.2 introduces the algorithms to augment N-body halo merger
trees. We populate and evolve the position of Monte Carlo haloes in
Section 2.3, and sample their spin parameter in Section 2.4. Then,
in Section 3, we apply the extended halo catalogues to the MERAXES

semi-analytic reionization model. Finally, this work is summarized
in Section 4.

2 ME T H O D O L O G Y

2.1 N-body simulations

This work utilizes two boxes from the Genesis N-body simulations
(Elahi et al., in preparation). We focus on extending the mass
resolution of L105N2048, which is a 105 h−1 Mpc box, containing
20483 particles, with mp = 1.17 × 107 h−1 M�. To calibrate and
verify our results, we take advantage of L35N2650, which has a much
higher resolution. It contains 26503 particles in a 35 h−1 Mpc box.
The particle mass is mp = 2.00 × 105 h−1 M�. All the simulations
are run using GADGET-2 (Springel 2005). Haloes in the simulations
are identified using VELOCIRAPTOR (Elahi, Poulton & Canas 2019a;
Elahi et al. 2019c), which is a six-dimensional friends-of-friends
phase space halo finder. Merger trees are constructed using TREEFROG

(Elahi, Poulton & Tobar 2019b; Elahi et al. 2019d). Table 3 provides
a summary of the N-body halo catalogues used in this work.
Throughout the paper, we adopt the mass obtained by summing all
particles in a friends-of-friends group as halo mass. The Genesis
N-body simulations use a cosmology with h = 0.6751, �m =
0.3121, �b = 0.0491, �� = 0.6879, σ 8 = 0.8150, and ns = 0.9653
(fourth column in table 4 of Planck Collaboration XIII 2016). To be
consistent, we adopt this cosmology throughout the paper.

2.2 Augmenting N-body merger trees

Our approach to augment N-body merger trees mainly follows
Benson et al. (2016). The basic idea is to generate Monte Carlo
merger trees with the desired mass resolution and compare these
with an N-body merger tree in the mass range where the simulation
is fully reliable. If both trees are similar, as determined by several
criteria (described below), Monte Carlo haloes with mass below the
simulation resolution are attached to the N-body merger tree. This
results in a hybrid structure, containing both Monte Carlo and N-
body haloes, but with the same mass resolution as the Monte Carlo
tree.

2.2.1 Generating Monte Carlo trees

We adopt the Parkinson et al. (2008) algorithm to generate Monte
Carlo merger trees. The algorithm is based on binary splits in small
internal time-steps. It employs the conditional mass function (CMF)1

derived from the Extended Press Schechter (EPS) theory (Bower
1991; Bond et al. 1991; Lacey & Cole 1993) with an additional
parametrization to take into account the difference between the EPS
theory and N-body simulations. The CMF is expressed as

f (M1, z1|M2, z2) = G0

(
σ1

σ2

)γ1
(

δ2

σ2

)γ2

fEPS(M1, z1|M2, z2), (1)

where fEPS(M1, z1|M2, z2) is the CMF given by the EPS theory. We
denote σ 1 = σ (M1) and σ 2 = σ (M2), which are the mass variance of
the matter density field linearly extrapolated to z= 0 and smoothed by
a spherical top-hat filter at M1 and M2. The density contrast is defined
by δ2 = 1.686/D(z2), where D(z) is the linear growth factor. The free
parameters are G0, γ 1, and γ 2. Parkinson et al. (2008) calibrated
these free parameters against the Millennium simulation (Springel
et al. 2005) in the mass range between 1012 and 1015 h−1 M� and
from z = 0 to 4. However, in this work, we are interested in growing
haloes at z ≥ 5, and require that the mass resolution of the merger
trees reaches the atomic cooling threshold (∼107–108 h−1 M�) in
order to capture the majority of ionizing sources during the epoch
of reionization. Therefore, we recalibrate the parameters against our
simulations, which also accounts for updated cosmology.

Following Parkinson et al. (2008), the cost function of the
calibration is given by

C(G0, γ1, γ2) =
∑ [

log10 fNS − log10 fMC

]2
, (2)

where fNS and fMC are the CMFs of the N-body and Monte Carlo
merger trees, respectively. We estimate log10fNS from L35N2650
and log10fMC using samples of 300 Monte Carlo merger trees for
each descendant mass M2. The fitting points calculated from the
simulation are shown as black dots in Fig. 1. We employ the particle
swarm optimization (Shi & Eberhart 1998) to minimize the cost
function. The best-fitting parameters are accepted if they do not
change for 100 iterations. Their values are given in Table 1, and the
fitting results are illustrated in Fig. 1. Our best-fitting parameters
improve the cost function by �C ≈ −0.6, compared with Parkinson
et al. (2008). However, the best-fitting result is still poor at z = 5.5
and 10.1. While a potential improvement is to employ weights for
different mass or redshift ranges in the cost function, in Appendix A,
we show that this approach cannot significantly improve the fitting
results.

2.2.2 Augmentation algorithm

The most important and difficult component of the augmentation is
to decide whether a Monte Carlo tree is similar to an N-body tree.
Instead of comparing entire trees, Benson et al. (2016) decompose
an N-body merger tree into many subbranches, and match only one
subbranch every time with Monte Carlo realizations. A subbranch is
comprised of one descendant halo and all haloes that directly merge
into it. Hereafter, we refer to this structure as a ‘simple branch’.

We denote the mass of each progenitor in an N-body simple branch
as M1, M2, ..., Mn with M1 > M2 > . . . > Mn, where n is the number
of the progenitors, and let ncut be the number of the progenitors whose

1The CMF discussed here is defined by the mass fraction distribution (M1/M2)
as a function of progenitor mass M1 given the descendant mass M2.
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Figure 1. Fitting results of the calibration for the Parkinson et al. (2008) algorithm. The CMFs are defined by dfCMF/dln M1. Black dots are the fitting data,
which are estimated using L35N2650. Red and blue empty circles are the results corresponding to the best-fitting parameters obtained in this work and those
used by Parkinson et al. (2008), respectively. The values of the parameters are listed in Table 1.

Table 1. Parameters of the Monte Carlo tree algorithm.

Symbol Parkinson, Cole & Helly (2008) This work

G0 0.57 1.0
γ 1 0.38 0.2
γ 2 − 0.01 − 0.4

mass is above a threshold Mcut. We use primed symbols for the same
quantities of Monte Carlo trees. Benson et al. (2016) match N-body
and Monte Carlo simple branches using the following:

(a) n
′ ≥ ncut,

(b) for i = 1, 2, . . . , ncut, |Mi − M ′
i | < ξMi ,

(c) for i = ncut + 1, ncut + 2, . . . , n
′
, M ′

i < Mcut,

where ξ is a free parameter and controls the mass precision of the
match. Once a match is found, N-body progenitors at Mhalo < Mcut

are replaced by Monte Carlo haloes in the same mass range. In
the resulting hybrid structure, the descendant halo and progenitors
with mass above Mcut are from the original simple branch, while
progenitors with mass below Mcut are additional Monte Carlo haloes
from the match.

In practice, relaxing the three matching criteria (a), (b), and (c)
is necessary, since there is often no match even for large numbers
of Monte Carlo realizations. Benson et al. (2016) increase ξ by a
factor of 1 + εmass after N limit

mass rejections. However, this only impacts
the second condition. We have also found many cases where the
first and third conditions are never satisfied. This problem was not
reported in Benson et al. (2016), and the reason might be that the
mass range investigated in this work is much lower than that in
that paper. To address this issue, we increase Mcut by a factor of
1 + εcut after N limit

cut rejections. We do not allow Mcut to be greater
than either a maximum mass cut Mmax

cut or the mass of the most
massive progenitor. Furthermore, a maximum number of trials N limit

tot
is employed. Once this number of trials is reached, the algorithm is
terminated and returns the input simple branch, with all progenitors

below the minimum mass cut Mmin
cut removed. This treatment may

remove some N-body haloes without augmentation of Monte Carlo
haloes. However, in practice, we find that this situation occurs at a
rate that is always smaller than 0.06 per cent for a given snapshot.

N-body merger trees have a special feature that should be taken
into account in the comparison with Monte Carlo merger trees. When
the halo finder fails to identify the descendant of an N-body halo in
the next snapshot, it may try to search for the descendant in later
snapshots. Hence, progenitors in an N-body simple branch are not
always from the adjacent snapshot. However, this situation never
happens for Monte Carlo merger trees. We follow Benson et al.
(2016) to resolve the issue. In order to make the trees comparable,
for a given N-body simple branch, we manually set all progenitors to
be located in the previous snapshot relative to their descendant, and
keep their mass unchanged (except for the most massive progenitor,
whose mass is interpolated with time).

N-body merger trees typically contain subhaloes, which is an
additional feature that Monte Carlo merger trees do not have.
Following Benson et al. (2016), we do not consider subhaloes in
the tree augmentation. Accordingly, we reconstruct a merger tree
that only consists of host haloes from an original N-body tree. The
reconstruction proceeds forward with time. If the descendant of an N-
body halo is a subhalo, we link it to the host of the subhalo. We neglect
the descendant of a subhalo when building the host halo merger
trees. We note that the reconstructed trees are only used during the
Monte Carlo augmentation. When applying the augmented trees to
semi-analytic models, the original links of N-body haloes (including
subhaloes) are adopted. We note that these original links may be
broken since some N-body haloes are removed by the augmentation
algorithm. Section 2.2.3 will discuss the approach to fix the issue.

In reconstructed N-body merger trees, we have found many
massive haloes (Mhalo � 1010 h−1 M�) that have no progenitors. In
the original trees, these haloes only have one subhalo progenitor
whose host merges into a different target. When augmenting such
haloes, criteria (a) and (b) are automatically satisfied. However,
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Figure 2. Schematic diagram of augmenting N-body halo merge trees. Solid
and dashed circles represent N-body and Monte Carlo haloes, respectively,
with radius proportional to halo mass. The blue and yellow circles form an
N-body simple branch (defined in Section 2.2.2), which is compared with
a Monte Carlo tree. Grey circles also represent N-body haloes, but are not
considered in this comparison. The algorithm removes haloes with mass
below Mcut, corresponding to the yellow circle. The progenitors of removed
haloes will not be taken into account in the next step. Red dashed circles
represent Monte Carlo haloes that are added to the N-body simulation. The
Monte Carlo haloes on the top are grown from its descendant using the
Parkinson et al. (2008) algorithm.

we find that forcing criterion (c) overestimates the CMF at Mhalo

< Mcut. Based on several experiments, we suggest the following
modification, which can lead to more consistent CMFs:

(c’) if n > 0, for i = ncut + 1, ncut + 2, . . . , n
′
, M ′

i < Mcut;
otherwise, for i = 1, 2, . . . , n

′
, M ′

i < Mmax
cut .

Overall, given a simple branch in an N-body merger tree, our
augmentation algorithm proceeds as follows:

(i) Set N trial
cut = 0, N trial

mass = 0, N trial
tot = 0, ξ = ξ 0, and Mcut = Mmin

cut .
(ii) Whenever a progenitor is at a non-adjacent snapshot of its

descendant halo, put it to one previous snapshot of the descendant.
If the progenitor is the most massive, interpolate its mass with time.

(iii) Generate a Monte Carlo simple branch using the same
configuration as the given N-body branch. Increase N trial

tot by 1.
(iv) Compare the N-body and Monte Carlo simple branches using

criteria (a), (b), and (c
′
). If all three criteria are satisfied, go to step

(vii), otherwise, increase the corresponding counters:

(a) If criteria (a) or (c
′
) are false, increase N trial

cut by 1.
(b) If criterion (b) is false, increase N trial

mass by 1.

(v) Relaxing the criteria when a certain number of rejections is
reached:

(a) If N trial
cut = N limit

cut , set N trial
cut = 0 and increase Mcut by a

factor of 1 + εcut. If Mcut is greater than Mmax
cut or the mass of

the most massive progenitors of the given simple branch, set it
to be the minimum of these two values.

(b) If N trial
mass = N limit

mass , set N trial
mass = 0 and increase ξ by a factor

of 1 + εmass.

(vi) Terminate the algorithm if N trial
tot = N limit

tot , otherwise, go to
step (iii).

(vii) Replace progenitors with mass below Mcut at the N-body
simple branch with Monte Carlo haloes in the same mass range.

We apply the augmentation algorithm to every halo in the N-body
simulation backwards with time, and grow new Monte Carlo haloes

Table 2. Parameters of the tree augmentation algorithm.

Symbol Value

ξ0 0.2
εmass 0.2
N limit

mass 50

Mmin
cut 100 mp

a

Mmax
cut 2500 mp

a

εcut 2.0
N limit

cut 5

N trial
tot 1000

Note. aFor L105N2048, mp = 1.17 × 107 h−1 M�, which is the particle mass
of the simulation.

using the Parkinson et al. (2008) algorithm. A schematic diagram of
the augmentation can be found in Fig. 2.

Free parameters in the algorithm are summarized in Table 2.
Ideally, if the CMFs of Monte Carlo merger trees are consistent with
the N-body simulations, these parameters should primarily affect
numerical efficiency and be insensitive to the results. However,
as demonstrated in Fig. 1, even with recalibrated parameters, the
Parkinson et al. (2008) algorithm is unable to reproduce all parts of
the CMFs of the N-body merger trees, particularly at the lower mass
end and higher redshifts. For this reason, we find that the choice of
the algorithm parameters impacts the resulting CMFs. The values
listed in Table 2 are chosen based on several experiments in order to
obtain better consistency with the N-body simulations.

To summarize, our augmentation algorithm builds on the method
of Benson et al. (2016) by changing the mass cut Mcut dynamically
(and introducing the maximum mass cut Mmax

cut ). When applying the
approach of Benson et al. (2016), the result contains only Monte
Carlo haloes at Mhalo < Mcut and only N-body haloes at Mhalo ≥
Mcut. In our approach, Mcut is not a constant. The minimum and
maximum mass cuts become the dividing lines of N-body and Monte
Carlo haloes. At the mass range in between, halo types are mixed.
This modification averages the difference between the merger trees
extracted from N-body simulations and those generated by the Monte
Carlo algorithm.

2.2.3 Fixing original subhalo trees

In N-body simulations, secondary progenitors may still be self-
bound for a certain period after a merger. Such objects are known
as subhaloes. During the tree augmentation, we reconstruct N-body
merger trees that only include host haloes. The reconstructed trees
are only used in the comparison of Monte Carlo merger trees. In the
application of the extended trees to semi-analytic models, we include
subhaloes from the original N-body trees. However, the augmentation
algorithm removes an N-body halo if its mass is below Mcut, which
may break an original subhalo tree. The left-hand panel of Fig. 3
shows such a case, where a subhalo (green circle) merges into a
removed halo (dashed circle), and the host of the subhalo merges
into a different target. To fix the problem, we redirect the merger
target of the subhalo to the descendant of its host halo as shown by
the red dashed arrow. An additional case that is worth mentioning is
illustrated in the right-hand panel of Fig. 3, where a progenitor host
halo of a subhalo is removed during the Monte Carlo augmentation.
Consequently, the whole corresponding subhalo tree should also be
removed. An easier way to fix the issue is to prevent semi-analytic
models from seeding a galaxy in such subhaloes. This treatment is
implemented in our application of the extended trees in Section 3.
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Figure 3. Schematic diagram of fixing subhalo trees. In both panels, black
and green circles represent host haloes and subhaloes, respectively. Empty
circles correspond to a halo removed by the augmentation algorithm. In the
left-hand panel, a subhalo merges into a removed halo, and the host of the
subhalo merges into a different target. We fix the problem by redirecting
the merger target of the subhalo to the descendant of its host halo as shown
by the red dashed arrow. In the right-hand panel, a progenitor host halo
of a subhalo is removed by the augmentation algorithm. Consequently, the
whole corresponding subhalo tree becomes invalid. This issue can be fixed
by preventing semi-analytic models from seeding a galaxy in a subhalo.

2.2.4 Identifying the complete halo population

A complete halo population cannot be obtained by applying the
augmentation algorithm introduced in Section 2.2.2. The reason is
that all Monte Carlo haloes added by the algorithm will eventually
merge into an N-body halo, while there are unresolved haloes that
do not interact with any N-body halo at the redshift range covered by
the algorithm. This suggests that an additional catalogue of Monte
Carlo haloes is required to obtain a complete halo population.

As a specific example in this work, we apply the augmentation
algorithm at z = 5, adding Monte Carlo haloes to the N-body merger
trees backwards in time. However, at z = 5, the algorithm does
not add new haloes that are not resolved (between Mmin

cut and Mres).
In addition, we also miss progenitors of such unresolved haloes in
earlier snapshots, resulting in an incomplete halo population. To fix
this problem, we create an additional halo catalogue at z = 5, using
masses and numbers drawn from the HMF of L35N2650. We use
interpolation of a histogram instead of a fitting model for the HMF.
We then generate trees for these haloes using the Parkinson et al.
(2008) algorithm. Hereafter, Monte Carlo haloes generated by the
augmentation algorithm are labelled as MC-I, while those in the
additional catalogue are referred to as MC-II.

2.2.5 Applying to N-body simulations

We apply the approach introduced in the proceeding sections to
augment the N-body merger trees of L105N2048 from z = 5 to
20. We choose three levels of mass resolution: Mres = 1.4 × 108,
5.7 × 107, and 3.2 × 107 h−1 M�, corresponding to the atomic
cooling threshold at z = 5, 10, and 15, respectively. These three
extended halo catalogues are labelled as L105E5, L105E10, and
L105E15. Their information is summarized in Table 3.

To test the results, we compare the CMFs of augmented merger
trees with our L35N2650 high-resolution simulation in Fig. 4. The
upper and lower panels correspond to different descendant halo
mass bins. The CMFs of extended trees are shown as dashed lines,
which broadly agree with L35N2650. Several discrepancies, e.g. the
underestimation at the low-mass end at z = 5.5, can be explained
by the fact that the CMFs given by the Parkinson et al. (2008)
algorithm do not fully agree with the simulation as demonstrated
in Fig. 1. However, we find that this overestimation does not affect
the stellar mass functions when applying a semi-analytic model to
the augmented trees. We show this in Section 3.

The HMFs of the extended trees are demonstrated in the upper
panels of Fig. 5. They show excellent agreement with L35N2650.
The lower panels of the figure explicitly show the HMFs of N-body,
MC-I, and MC-II haloes from L105E10. As defined in Section 2.2.4,
MC-I haloes augment N-body merger trees, while MC-II haloes are
added to form a complete sample of haloes, and are independent
of N-body haloes. While MC-II haloes dominate the population
at lower redshifts, MC-I haloes are the main contributor at higher
redshifts. Hence, both types of haloes are necessary to calculate the
halo abundance across all redshifts.

2.3 Halo positions

When modelling reionization, we require spatial information for
haloes within the extended halo catalogues. We aim to assign a
position to every Monte Carlo halo and ensure that their two-point
statistics agree with N-body simulations. Section 2.3.1 discusses
a random sampling method for placing MC-II haloes within the
simulation in the snapshot that the augmentation of the N-body
merger trees is started, i.e. at z = 5. The method is then also used to
verify our approach for evolving the position of Monte Carlo haloes
based on the position of their descendant, which is introduced in
Section 2.3.2.

2.3.1 Populating halo positions

Monte Carlo haloes can be populated into a simulation box using
an analytic halo bias to transform the dark matter density field to a
halo density field as a function of halo mass (de la Torre & Peacock
2013; Angulo et al. 2014; Neyrinck et al. 2014; Ahn et al. 2015;

Table 3. Information on halo catalogues used in this work.

Name Type Box size (h−1 Mpc) Particle mass (h−1 M�) Mass resolution (h−1 M�)

L35N2650 N-body simulation 35 2.00 × 105 –
L105N2048 N-body simulation 105 1.17 × 107 –

L105E5 Hybrid 105 – 1.4 × 108

L105E10 Hybrid 105 – 5.7 × 107

L105E15 Hybrid 105 – 3.2 × 107

Note. The mass resolutions of L105E5, L105E10, and L105E15 correspond to the atomic cooling threshold at z = 5, 10, and
15, respectively.
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Figure 4. Comparisons of the conditional functions, defined by dfCMF/dln M1, of N-body and augmented merger trees. Solid lines are the results derived using
L35N2650 and L105N2048. The information on these two N-body simulations can be found in Table 3. Dashed lines are based on augmented halo merger trees,
which are obtained by applying the algorithm described in Section 2.2.2 to L105N2048. Darker colours correspond to higher mass resolution. The grey vertical
lines show the minimum mass cut of the augmentation algorithm.

Figure 5. Upper panels: comparisons of the HMFs of N-body and extended halo catalogues. Solid lines are estimated from the N-body simulations, using
L35N2650 and L105N2048. Their information can be found in Table 3. Dashed lines are based on extended halo catalogues, which are obtained by applying
the algorithm described in Section 2.2 to L105N2048. The mass resolutions of L105E5, L105E10, and L105E15 correspond to the atomic cooling thresholds at
z = 5, 10, and 15 respectively. Darker colours correspond to higher mass resolution. Bottom panels: HMFs of N-body, MC-I, and MC-II haloes from L105E10.
Their mass fractions are labelled in the top left corners. See Section 2.2.4 for the definition of MC-I and MC-II haloes.

Nasirudin, Iliev & Ahn 2020). In this work, the dark matter density
field is estimated from the L105N2048 N-body simulation using
the nearest grid point method. The result is represented as a cubic
grid. To estimate the halo density field, we adopt the non-linear halo
bias proposed by Ahn et al. (2015), which avoids negative density
in underdense regions, and results in better two-point correlation
functions on smaller scales. Halo positions are obtained by random
sampling. We normalize the halo density field derived from the
halo bias, and treat it as a one-dimensional discrete probability
distribution. Then, at a given snapshot, we assign every Monte Carlo
halo to a cell according to this probability and place it uniformly
within the cell so that the number of haloes in each cell follows

the Poisson distribution. This approach does not depend on the
normalization of the halo density field and can be applied to any
given number of Monte Carlo haloes.

To verify this method, we carry out a test within mass ranges
that are well resolved by L105N2048. Specifically, we apply this
method to 105 samples, placing them within an empty box and
measuring their two-point correlation functions. Then, we compare
the results using N-body haloes from L105N2048. We perform
the test at Mhalo = 109.1 and 109.5 h−1 M� from z = 5 to 10 with
different grid sizes. The results can be found in Fig. 6, which
shows good agreement with those estimated from the N-body
simulation.
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Producing hybrid dark matter simulations 499

Figure 6. Comparison of two-point correlation functions produced using the random sampling method and estimated from N-body simulations. Empty circles
are the results based on the random sampling method introduced in Section 2.3.1, with colours corresponding to different grid sizes as labelled on the top
rightmost panel. Black dashed lines are estimated from the L105N2048 N-body simulations. Each row corresponds to a halo mass bin. These mass ranges are
well resolved by L105N2048.

The small-scale clustering predicted by the random sampling
method is affected by the choice of grid sizes. Halo positions within a
cell of the grid are inaccurate since they are assumed to be uniformly
distributed. As expected, the two-point correlations obtained using
a 1283 grid (shown as blue circles in Fig. 6) are underestimated at
separations smaller than 0.8 h−1 Mpc, which is equal to the cell size
of the grid. In terms of the results using a 5123 grid (grey circles),
they have slightly larger clustering amplitudes over all scales than
those using a 2563 grid (red circles). A potential reason could be that
the estimation of the dark matter density field becomes noisy when
a larger number of cells are used. For the following applications, we
adopt a 2563 grid for the random sampling method. This choice is
appropriate since the corresponding cell size (0.4 h−1 Mpc) is smaller
than the characteristic size of ionizing regions (e.g. Furlanetto,
McQuinn & Hernquist 2006).

Unfortunately, we are unable to do the same test for Monte Carlo
haloes in the extended halo catalogues. This is because a complete
sample of N-body haloes at these mass ranges is only available in
L35N2650, for which the box size is not sufficient to estimate two-
point statistics. However, we note that the linearity of halo density
fields increases towards lower halo mass, implying that the results
are likely to be improved at Mhalo � 108 h−1 M�. This argument
indicates that the results in Fig. 6 are conservative for estimating the
accuracy of the method. Hence, our method can be safely applied to
the mass ranges that we are interested in.

2.3.2 Evolving halo positions

Evolution in the clustering of haloes is influenced by their peculiar
motions. Our approach of evolving halo positions is based on the
linear continuity equation. We again divide the L105N2048 box into
a cubic grid with 2563 cells. For Monte Carlo trees at t1, the first step

is to place the haloes into the same cell as their direct descendant
at t2. We assume that the spatial distribution of the haloes at t1 can
be described by a halo density field denoted as D(�x, t1). The idea
is to move these haloes using a velocity field such that their spatial
distribution becomes a desired halo density field denoted as D(�x, t2).
We assume that this process can be described by the linear continuity
equation. If �t = t2 − t1 is small, the velocity field can be obtained by

∇�v(�x, t2) = − 1

�t

[
D(�x, t1) − D(�x, t2)

]
. (3)

In the linear regime, we want

D(�x, t1) = b(M1, t1)δDM(�x, t1), (4)

where M1 is the mass of the Monte Carlo haloes and b(M, t) is
the linear halo bias. After a forward evolution, the change of the
density field for haloes at t1 with mass M1 is contributed from both
the variation of the background dark matter density field and local
interactions such as smooth mass accretion and mergers. Although
a detailed model that considers all the effects is complicated, we
find that evolving halo positions using the following expression for
D(�x, t2) can lead to reasonable two-point statistics.

D(�x, t2) = b(M1/μ̄R, t2)δDM(�x, t2), (5)

where μ̄R is the mean mass ratio between the progenitor and
descendant haloes.

Then, it is straightforward to compute the velocity field using the
Fourier transform. The velocity field in k-space can be written as

�v(�k, t2) = b(M1/μ̄R, t2)�u(�k, t2) − b(M1, t1)�u(�k, t1) (6)

with

�u(�k, t) = i�k
�tk2

δDM(�k, t), (7)
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Figure 7. Comparison of two-point correlation functions produced using the evolving method and estimated from N-body simulations. Dash–dotted lines are
the results based on the evolving method introduced in Section 2.3.2. For blue and grey lines, grids with 323 and 1283 cells are used to calculate the velocity
field, respectively, while for red lines, the adopted grid size varies with redshift, with 1283 cells at z = 5–6, 643 cells at z = 6–8, and 323 cells at z > 8. Red
empty circles are the results obtained using the sampling method described in Section 2.3.1, which can be used to check the accuracy of the evolving method.

The real space velocity field then can be obtained using the inverse
Fourier transform. Since �u(�k, t) is independent of halo mass, we
only need to perform the Fourier transform once per snapshot, and
the velocity can be calculated per halo, without any mass bins. This
advantage is only available when the halo bias and the dark matter
density field are separable. For the linear halo bias, we adopt the
fitting model given by Tinker et al. (2010).

We apply this method to all extended halo catalogues and find
that the choice of grid sizes to calculate �u(�k, t) can affect the results.
In Fig. 8, we show that the median velocity of Monte Carlo haloes is
underestimated at z ∼ 5 using a 323 grid and is overestimated at z ∼
10 using a 1283 grid. This trend is expected. The density field should
not be over smoothed, as this loses the information on density peaks.
On the other hand, the halo bias increases rapidly with redshift, in
which case the halo density field cannot be described by the linear
bias. Smoothing the density field over larger regions can increase
the linearity.

To verify the two-point correlation functions predicted by the
evolving method, we have to use the sampling method introduced
in the previous section. A direct comparison with L35N2650 is not
feasible due to its limited box size, and the accuracy of this indirect
approach is confirmed in the previous section. Fig. 7 compares the
two-point correlation functions obtained using the sampling and
evolving methods. Since halo positions are evolved backwards with
time, when a 323 grid is used, the errors due to the underestimation of
the halo velocity accumulate towards higher redshifts, which results
in the overestimation of the two-point correlation functions at z �
6 (see blue dash–dotted lines). Overall, we find good agreement be-
tween the results based on both methods, particularly on large scales.

Based on the discussion above, we have decided to vary the grid
size with redshift when evolving halo positions. Specifically, we use
a 1283 grid at z = 5–6, a 643 grid at z = 6–8, and a 323 grid at z

> 8. This treatment results in both consistent two-point correlation
functions and velocity distributions, which are shown as red dash–
dotted lines and red histograms in Figs 7 and 8, respectively.

2.4 Spin parameters

Many semi-analytic models use the halo spin parameter (defined by
Bullock et al. 2001) to compute quantities including disc size and
star formation rate. To facilitate this, we sample the spin parameter
of Monte Carlo haloes using the spin distributions estimated from
the N-body simulation. At z ≥ 5, negligible dependence on halo
mass is found in the spin distributions of our simulations, which is
consistent with Knebe & Power (2008) and Angel et al. (2016). The
mass independent spin distributions can be described by a lognormal
distribution (e.g. van den Bosch 1998; Knebe & Power 2008) or a
modified profile taking into account the long tail of low spins (e.g.
Bett et al. 2007; Angel et al. 2016). In this work, we adopt a non-
parametric approach. We train a Gaussian kernel density estimator
(see e.g. Scott 2015) using samples from our N-body simulations
(in log10λ space), and assign the spin of Monte Carlo haloes by
resampling from the density estimator. We choose the bandwidth of
the density estimator according to Scott’s Rule (Scott 2015).

In Fig. 9, black and red histograms are the spin distributions based
on N-body and Monte Carlo haloes, respectively. When assembling
N-body haloes to estimate the spin distributions, we only include
haloes comprised of at least 100 particles and exclude all subhaloes.
Our results illustrate excellent agreement between the resampled and
original distributions by construction. We note that our approach can
be generalized to the case where spin parameter is tightly correlated
with halo mass by splitting the total sample into several mass bins
and applying the kernel density estimator to each subsample.
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Figure 8. Peculiar velocity distributions of N-body and Monte Carlo haloes. The velocities of Monte Carlo haloes are derived using the method introduced in
Section 2.3.2. For blue and grey histograms, grids with 323 and 1283 cells are used in the calculations, while for red histograms, the adopted grid size varies
with redshift, with 1283 cells at z = 5–6, 643 cells at z = 6–8, and 323 cells at z > 8. The distributions of N-body haloes are shown as black histograms.

Figure 9. Spin distributions of N-body and Monte Carlo haloes, plotted as back and red histograms, respectively. The spin parameters of Monte Carlo haloes
are resampled from the distributions of N-body haloes using a Gaussian kernel density estimator (see e.g. Scott 2015). We only include N-body haloes comprised
of at least 100 particles to estimate their spin distributions, with subhaloes excluded.

3 A PPLIC ATIO N TO MERAXES

We apply both the N-body and extended halo catalogues to the
MERAXES semi-analytic model (Mutch et al. 2016). In addition
to the implementation of several key galaxy formation processes
including radiative cooling, star formation, and supernova feedback,
the MERAXES model is coupled with 21CMFAST (Mesinger &
Furlanetto 2007) to realize inhomogeneous reionization feedback and
to predict reionization related properties such as the global neutral
fraction and 21 cm power spectra. The MERAXES model only seeds
galaxies in haloes whose mass is above the atomic cooling threshold.
We adopt the same parameters as Mutch et al. (2016) but note that
the model predictions can be different from Mutch et al. (2016) due
to the use of different halo merger trees. However, the main focus
of this work is to demonstrate the consistency between the N-body
and extended halo catalogues and to illustrate the consequences of
adopting different halo mass resolutions rather than to present a
model that satisfies all current observational constraints.

3.1 Galaxy properties

Figs 10, 11, and 12 demonstrate the stellar mass functions, star
formation rate functions, and star formation rate densities predicted
by MERAXES, respectively. L35N2650 is a small-volume N-body
simulation with very high mass resolution, which is used to verify the
results based on the extended halo catalogues. The predicted galaxy
properties using L35N2650 and extended trees are shown as purple
solid and dashed lines, respectively. We find a difference in the peaks
of both the stellar mass and star formation rate functions, which may
result from the fact that Monte Carlo merger trees do not contain
subhaloes. This point is illustrated in the lower panels of Figs 10

and 11, where we show that L35N2650 provides significantly higher
satellite fractions than the extended halo catalogues, particularly at
the low-stellar mass and low-star formation rate ends. In MERAXES,
all gas infalling into a friends-of-friends group is assumed to be
accreted on to the central galaxy. Therefore, satellite galaxies have
less fuel to form stars. Despite this disagreement, we find excellent
agreement between the cosmic star formation rate densities obtained
using L35N2650, L105E10, and L105E15 at z < 10. The result based
on L105E15 shows higher star formation rate density than L35N2650
at z > 10. However, L35N2650 has a higher mass resolution. This
is likely due to the overestimation of the HMFs at these redshifts as
illustrated in Fig. 5.

An additional finding is that the effect of mass resolution does
not seem to be cumulative. While the mass resolutions of L105E5,
L105E10, and L105E15 are different (and all above the atomic
cooling threshold at z = 5), in Fig. 10, their corresponding stellar
mass functions overlap at z = 5. Fig. 12 also shows that the star
formation rate densities predicted by the extended trees converge
towards z = 5. These findings are non-trivial. We note that even if a
halo is below the atomic cooling threshold at a given redshift, it can
still host a galaxy. The reason is that the atomic cooling threshold
increases with redshift, and as long as any progenitor of a halo is
above the cooling limit, the halo will contain a galaxy. Therefore, we
should not expect that halo catalogues with different mass resolutions
produce similar stellar mass and star formation rate functions towards
z = 5. On the contrary, our results indicate that if all haloes above the
atomic cooling threshold at a given redshift are resolved, an ability
to resolve less massive haloes at an earlier time has little effect on
predicted galaxy properties such as the stellar mass and star formation
rate functions at the given redshift.
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Figure 10. Upper panels: stellar mass functions predicted by the MERAXES semi-analytic model. Lower panels: satellite fractions as a function of stellar mass.
For all panels, solid lines use the original halo merger trees from our N-body simulations. Dashed lines are the results based on extended catalogues, which
consist of both N-body and Monte Carlo haloes. Darker colours correspond to higher mass resolution. The information on each halo catalogue as labelled in the
top right corner can be found in Table 3.

Figure 11. Upper panels: star formation rate functions predicted by the MERAXES semi-analytic model. Lower panels: satellite fractions as a function of
star formation rate. For all panels, solid lines use the original halo merger trees from our N-body simulations. Dashed lines are the results based on extended
catalogues, which consist of both N-body and Monte Carlo haloes. Darker colours correspond to higher mass resolution. The mass resolutions of L105E5,
L105E10, and L105E15 are the atomic cooling thresholds at z = 5, 10, and 15, respectively. The information on each halo catalogue as labelled in the top right
corner can be found in Table 3.

3.2 Reionization histories

Having demonstrated the galaxy properties based on both N-body
and extended halo catalogues, we now focus on the predictions of
cosmic reionization. The end of reionization is known to be too rapid
in simulations that do not resolve all faint galaxies or do not have a
sufficiently large volume (Barkana & Loeb 2004; Iliev et al. 2014).
We therefore expect that the predictions of the reionization history
are sensitive to both halo mass resolution and simulation volume.

Fig. 13 illustrates the effect of halo mass resolution on the
predicted volume-weighted neutral fractions. We see a difference
between results using direct N-body merger trees (from L35N2650
and L105N2048). However, it is not straightforward to interpret
this due to the different simulation volumes. Our extended halo
catalogues (L105E10 and L105E15) have the same volume as
L105N2048 and produce consistent star formation rate densities with
L35N2650. Fig. 13 shows that the end of reionization occurs earlier
in L105E10 and L105E15 than in L105N2048, which confirms that

mass resolution has an impact on the reionization history. This is
expected since reionization is sensitive to cumulative star formation.
A similar result was previously obtained by Finlator et al. (2018).
We note that our results only indicate a minimum requirement of
the mass resolution for predicting convergent reionization histories,
since our model neglects star formation below the atomic cooling
threshold, which may also provide a non-negligible contribution to
reionization (e.g. Wise et al. 2014).

Small box simulations are known to suffer from both cosmic
variance and lack of large-scale modes (e.g. Barkana & Loeb
2004). We demonstrate this effect using subvolumes of the L105E10
extended halo catalogue. In the left-hand and middle panels of
Fig. 14, we show reionization histories in two different sizes of
subvolumes, having Lsub = 35 and 21 h−1 Mpc. The former has the
same volume as L35N2650, while the latter is roughly equal to the
maximum bubble size that we choose in the 21CMFAST algorithm
within MERAXES. Each subvolume contains different amounts of
large-scale power, leading to a rapid end of reionization in each case,
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Figure 12. Star formation rate density predicted by the MERAXES semi-
analytic model. Solid lines use the original halo merger trees from our N-body
simulations. Dashed lines are the results based on extended catalogues, which
consist of both N-body and Monte Carlo haloes. Darker colour corresponds
to higher mass resolution. The mass resolutions of L105E5, L105E10, and
L105E15 are the atomic cooling thresholds at z = 5, 10, and 15, respectively.
The information on each halo catalogue as labelled in the bottom right corner
can be found in Table 3.

Figure 13. Volume-weighted neutral fractions predicted by the MERAXES

model. Solid lines and dashed lines are the results based on N-body and
extended halo catalogues, respectively. Darker colours correspond to higher
mass resolution. The mass resolutions of L105E5, L105E10, and L105E15
are the atomic cooling thresholds at z = 5, 10, and 15, respectively. See
Table 3 for the information on these halo catalogues.

but at a range of redshifts. This explains the deviation of the shape of
the late-time reionization history in L35N2650 from the predictions
based on L105E10 and L105E15. The large-volume simulations
average cosmic variance shown within subvolumes in Fig. 14.

In the right-hand panel of Fig. 14, we compare the standard
deviation of redshift at fixed neutral fractions in the subvolumes
(solid lines) with the analytic prediction of Barkana & Loeb (2004)
(dashed lines). They pointed out that the difference of the collapse
fraction in random regions of the Universe can be interpreted as an
offset in redshift with respect to the cosmic mean. The scatter of
the offset can be calculated from the critical collapse fraction, and
be related to the width or duration of the reionization history by

equating it to the size of a particular reionization region (Wyithe
& Loeb 2004). Despite the complexities in MERAXES, the analytic
prediction provides a reasonable estimation of cosmic variance.
Overall, our results reinforce the importance of a large volume for
cosmic reionization simulations, which has also been highlighted by
previous studies (e.g. Iliev et al. 2006, 2014; Deep Kaur et al. 2020).

In addition, our results show that resolving all haloes above
the atomic cooling threshold across whole cosmic reionization is
important for calculating a converged reionization history. Robertson
et al. (2015) analysed the joint observational constraints of Thomson
scattering optical depth measured by Planck Collaboration XIII
(2016) and cosmic star formation rate density estimated by Madau
& Dickinson (2014), suggesting that cosmic reionization happens
at 6 � z � 10. Our results imply that simulations should reach at
least the atomic cooling threshold at z = 10 in order to explore such
reionization scenarios. The decrease of the atomic cooling threshold
with increasing redshift places constraints on the required halo mass
resolution of simulations towards the beginning of reionization.

4 SU M M A RY

In this paper, we present a hybrid method to compute high-resolution
halo merger trees within large-volume N-body simulations for semi-
analytic reionization models, which is based on the work of Benson
et al. (2016). As an application, we extend the mass resolution of
halo merger trees extracted from the Genesis N-body 105 h−1Mpc
simulation box at z ≥ 5. We verify the results using a small N-body
simulation with very high resolution, and find good agreement for the
HMFs. We also introduce a method to assign and evolve the position
of Monte Carlo haloes. The resulting two-point correlation functions
are consistent with N-body simulations at separations greater than
0.4 h−1 Mpc. In the application to the MERAXES semi-analytic model,
the extended halo catalogues provide significant improvements on
the predicted galaxy properties and reionization history.

(i) The decreasing atomic cooling threshold requires simulations
to have higher mass resolution towards higher redshifts. Our model
confirms that the faint sources at the beginning of reionization can
have a significant impact on the reionization history, and therefore
resolving the atomic cooling threshold throughout reionization is
necessary for reliable calculations of the reionization history.

(ii) The end of reionization is predicted to be too rapid in
simulations that either fail to resolve all faint galaxies or have a
too small volume, putting demands on halo mass resolution and
simulation volume. Using our extended tree algorithm, we show
that the convergent predictions of the late-stage reionization history
need both large volumes (Lbox � 100 h−1 Mpc) and resolution of the
atomic cooling threshold across the whole reionization history.

(iii) If all haloes above the atomic cooling threshold at a given
redshift are resolved, resolving even smaller haloes at higher redshifts
has negligible effect on predictions of galaxy population properties
from the MERAXES semi-analytic model at the given redshift.

Our methodology provides a powerful tool to achieve desired
mass resolution in large volumes. The largest extended halo cat-
alogue obtained in this work has the mass resolution of Mhalo =
3.2 × 107 h−1 M� in a 105 h−1 Mpc box, equivalent to an N-body
simulation with ∼68003 particles. Given the efficiency of the Monte
Carlo algorithms, our approach can be applied to larger volumes
(several hundred Mpc on each side), which are necessary for studying
the statistics of reionization including X-ray heating and global 21 cm
signal during cosmic dawn.
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Figure 14. The left-hand and middle panels show the reionization histories in subvolumes with side lengths of 35 and 21 h−1 Mpc, respectively. The latter is
roughly equal to the maximum bubble size that we choose for 21CMFAST. These results are based on L105E10. In the right-hand panel, solid lines show the
standard deviations of redshift in subvolumes at fixed neutral fractions. Redshifts on the bottom axis are converted using the mean relation of the entire volume.
The deviations are compared with the analytic predictions of Barkana & Loeb (2004), which are shown as dashed lines.
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A P P E N D I X : A D D I T I O NA L C A L I B R AT I O N S O F
T H E PA R K I N S O N A L G O R I T H M

In Section 2.2.1, we do not employ any weights for different mass and
redshift ranges in the cost function for calibrating the Parkinson et al.
(2008) algorithm. In this appendix, we present two additional calibra-
tions of the algorithm to show the potential bias of this treatment. In
Fig. A1, the calibration results that use z = 5.5 data only and z = 10.1
data only are shown as yellow and purple empty circles, respectively.
The corresponding parameters are listed in Table A1. The result
that uses z = 5.5 data only is improved at z = 5.5 but becomes
significantly poorer at higher redshifts. In terms of the purple empty
circles, the fitting is improved at M2 = 1010.5 h−1 M�, z = 10.1 and
is similar or slightly poorer at other mass and redshift ranges. These
results suggest that the employment of weighting may only provide
moderate improvements on the calibration of the Parkinson et al.
(2008) algorithm, which, however, is purely artificial. Therefore, we
do not employ any weights on the calibration and adopt the param-
eters obtained in Section 2.2.1 as the fiducial model in this work.

Table A1. Results of two additional calibrations for the Parkinson et al.
(2008) algorithm.

Symbol All z = 5.5 only z = 10.1 only

G0 1.0 0.7 0.6
γ 1 0.2 0.2 0.5
γ 2 − 0.4 0.4 − 0.1

Figure A1. Fitting results of two additional calibrations for the Parkinson et al. (2008) algorithm. The CMFs are defined by dfCMF/dln M1. Black dots are the
fitting data, which are estimated using L35N2650. Red empty circles are the same as those in Fig. 1. Yellow and purple empty circles are the results that use z =
5.5 data only and z = 10.1 data only, respectively. Their corresponding parameters are listed in Table A1.
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