
MNRAS 500, 976–985 (2021) doi:10.1093/mnras/staa3292
Advance Access publication 2020 October 23

Combining ILC and moment expansion techniques for extracting
average-sky signals and CMB anisotropies

Aditya Rotti ‹ and Jens Chluba ‹

Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK

Accepted 2020 October 19. Received 2020 October 17; in original form 2019 November 26

ABSTRACT
The method of weighted addition of multifrequency maps, more commonly referred to as Internal Linear Combination
(ILC), has been extensively employed in the measurement of cosmic microwave background (CMB) anisotropies and its
secondaries along with similar application in 21cm data analysis. Here, we argue and demonstrate that ILC methods can also
be applied to data from absolutely calibrated CMB experiments to extract average-sky signals in addition to the conventional
CMB anisotropies. The performance of the simple ILC method is, however, limited, but can be significantly improved by
adding constraints informed by physics and existing empirical information. In recent work, a moment description has been
introduced as a technique of carrying out high precision modelling of foregrounds in the presence of inevitable averaging
effects. We combine these two approaches to construct a heavily constrained form of the ILC, dubbed MILC, which can
be used to recover tiny monopolar spectral distortion signals in the presence of realistic foregrounds and instrumental noise.
This is a first demonstration for measurements of the monopolar and anisotropic spectral distortion signals using ILC and
extended moment methods. We also show that CMB anisotropy measurements can be improved, reducing foreground biases and
signal uncertainties when using the MILC. While here we focus on CMB spectral distortions, the scope extends to the 21 cm
monopole signal and B-mode analysis. We briefly discuss augmentations that need further study to reach the full potential of the
method.
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1 IN T RO D U C T I O N

The anisotropies of the cosmic microwave background (CMB),
beyond doubt, have greatly helped in establishing the standard
�CDM concordance model, with the key cosmological parameters
being known to percent-level precision or better (Bennett et al. 2003;
Planck Collaboration XVI 2014b; Planck Collaboration XIII 2016c).
To reach this unprecedented precision, many obstacles had to be
overcome, including an extreme control of systematic, calibration
uncertainties and foreground separation (Planck Collaboration X
2016a; Planck Collaboration XI 2016b; Planck Collaboration XLVI
2016e). To mitigate foregrounds, many independent methods have
been developed (e.g. Delabrouille, Cardoso & Patanchon 2003;
Tegmark, de Oliveira-Costa & Hamilton 2003; Eriksen et al. 2008;
Remazeilles, Delabrouille & Cardoso 2011). One of them is the
Internal Linear Combination (ILC; Tegmark et al. 2003), which
has proven highly successful in extracting foreground-cleaned CMB
maps with current (e.g. Planck Collaboration XII 2014a; Planck
Collaboration X 2016a; Planck Collaboration XXII 2016d) and
future experiments (e.g. Remazeilles et al. 2016, 2018).

In this work, we are mainly interested in studying spectral distor-
tions of the CMB. While the CMB energy spectrum has been shown
to be extremely close to that of a blackbody (Mather et al. 1994;
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Fixsen et al. 1996), minor deviations from this spectrum are expected
even within standard �CDM (e.g. Chluba 2016). The largest spectral
distortions are present in the monopole sky. These signals are created
through energy exchange and photon production in the early phases
of cosmic history (Zeldovich & Sunyaev 1969; Sunyaev & Zeldovich
1970a; Illarionov & Sunyaev 1974; Burigana, Danese & de Zotti
1991; Hu & Silk 1993; Sunyaev & Chluba 2009; Chluba & Sunyaev
2012; Chluba 2015). A distortion dipole is furthermore induced due
to our motion with respect to the CMB rest-frame, very much like the
CMB temperature dipole (Danese & de Zotti 1981; Balashev et al.
2015; Burigana et al. 2018).

Spectral distortion require absolutely calibrated measurements of
the CMB spectrum. Building on the heritage of COBE/FIRAS, this
can be achieved with instrument concepts similar to PIXIE (Kogut
et al. 2011a, 2016, 2019). This could allow constraining many
standard and non-standard processes occuring in the early Universe,
at phases inaccessible by any other means (for recent overview,
see Chluba et al. 2019). While ILC techniques have been used to
measure components with spatial anisotropies, so far they have not
been applied to average-sky (i.e. monopolar) signals, a generalization
we explore here.

In this paper, we will demonstrate that ILC methods can be
directly applied to absolutely calibrated maps, allowing an extraction
of the average-sky signal. The simple (i.e. blind) ILC method is,
however, limited and has to be augmented by moment expansion
methods (Chluba, Hill & Abitbol 2017) to capture the inevitable
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The moment ILC method 977

foreground averaging effects, yielding the Moment ILC method
(MILC, see Section 2). Without this extension, large biases and
enhanced uncertainties in the recovered signals remain (see Fig. 3).
This conclusion extends to anisotropic signals, as we demonstrate
here (see Fig. 1).

We focus on a proof-of-concept study, demonstrating the main
aspects of the MILC and how it can be applied. Further studies are
required for providing concrete CMB distortion forecasts, extending
first studies (Desjacques et al. 2015; Sathyanarayana Rao et al. 2015;
Abitbol et al. 2017), which largely neglected spatial information.
These first studies are simplistic and the demonstrations we make in
this work will pave the way for more realistic forecasts in the near
future. In addition, we can already anticipate that the MILC method
can be applied more broadly, e.g. to the extraction of global 21 cm
signals (e.g. Pritchard & Loeb 2010) and CMB polarization B modes,
as we briefly discuss.

2 ME T H O D S

Before diving into details of the analysis, we provide a brief
introduction to the methods we employ in this work. In particular, we
present some details of standard ILC methods in Section 2.1 and the
preliminaries of the methods of moment modelling of foregrounds
in Section 2.2 needed for the MILC.

2.1 Standard ILC methods

ILC methods have been extensively used in the analysis on multifre-
quency microwave maps originally to extract maps of the CMB
temperature and polarization anisotropies (Tegmark et al. 2003;
Adam et al. 2016) and more recently for the measurement of y-
distortions (Planck Collaboration XXI 2014c; Remazeilles & Chluba
2020). The multifrequency maps, dνi, can be expressed as,

dνi =
∑

c

sc
ντ

c
i + nνi , (1)

where ν denotes the observing frequency and index ‘i’ denotes the
pixel index; τ c denote spatial map of the component ‘c’, which has
the spectral energy distribution (SED) sc

ν ; n denotes the measurement
noise. Note that this equation is not written in any particular basis
and hence the index ‘i’ can either be interpreted as the address of a
pixel in real or in harmonic space.

Using some prior information on the spectral components of the
data, and given that the data is measured with sufficient frequency
sampling, we can solve for the map of each component of interest as
follows:

τ̂
c0
i =

∑
ν

wc0
ν dνi = wT

c0
· d. (2)

This can be achieved by constructing suitable weights wc0
ν such that,

they have unit response to the SED of the component of interest:∑
ν wc0

ν sc0
ν = wT

c0
· sc0 = 1. Note that we have introduced the hat

notation to distinguish the separated component map τ̂ c from the
true component map τ c. On using these weights it is easy to see that
equation (2) reduces to the following form:

τ̂ c0 = τ c0 +
c �=c0∑

c

(
wT

c · scτ c + wT
c n

) = τ c0 + Bc0 + nc0 , (3)

where we have suppressed the spectral and spatial indices for brevity.
It is important to note that the solution generally has an additive bias
Bc0 , and one can understand this as originating from the existence
of non-zero projections of the SED of c0 on the SEDs of other

Figure 1. This figure depicts the component-separated signal maps returned
by the MILC algorithm, for a varying number of SEDs passed to it. The
annotations to the left of the image detail the set of SED vectors passed to
MILC. These solutions are found for simulations with 50 Jy sr−1 px−1 noise
RMS. The input component maps are shown in the last row.
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978 A. Rotti and J. Chluba

spectral components of the map. It is also important to note that the
excess variance on the reconstructed map has contributions from the
bias, the measurement noise and the chance correlation between the
two. Therefore, it is important to realize that an assessment on the
precision of the reconstructed map necessarily requires a thorough
understanding of the interplay between the additive bias and the
variance in the map and their relative amplitudes.

One can optimize the solution of the component map by demand-
ing that the weights must minimize the variance of the reconstructed
component map, leading to the standard ILC solution (Tegmark et al.
2003). One can further optimize the solution by demanding that the
weights in addition to having unit response to sc0 and minimizing the
variance, must simultaneously show zero response to the SEDs of
selected components in the map. This can be concisely written using
a vector matrix formulation as follows:

wT
c0

· [sc0 , sc1 , sc2 · · · scn ] = [1, 0, 0 · · · 0],

↔ wT
c0

V = eT
c0

. (4)

This generalized minimization problem can be solved using the
method of Lagrange multipliers and it can be shown that the weights
are given by the following compact expression:

wT
c0

= eT
c0

[VT C−1V ]−1V T C−1, (5)

where C denotes the data covariance matrix and all other symbols
have the same meaning as before. Since these are matrix operators
it is important to note that the order in which the elements appear is
critical. Equation (5) presents a more general form of the ILC referred
to as the constrained ILC (cILC) and was introduced in Remazeilles
et al. (2011) and has been used to construct Sunyaev–Zeldovich (SZ)
free CMB maps and vice versa. More recently this method has been
shown to allow measuring the relativistic electron temperature of
galaxy clusters, introducing semiblind1 constraints on the dust SED
(Remazeilles & Chluba 2020).

The general solution for the weights given in equation (5) reduces
to the simple ILC when V = sc0 and ec0 = 1. The solution written
in the form given in equation (5), gives the impression that it is only
possible to solve for one component at a time. Presenting the solution
in the following form:

[τ̂ c0 , τ̂ c1 , τ̂ c2 · · · τ̂ cn ] = [VT C−1V ] V T C−1d, (6a)

↔ τ̂ = wT d, (6b)

makes it clear that the filter actually returns a vector â of mini-
mum variance maps with mutually orthogonal SEDs, the projection
operator being defined with respect to the data covariance matrix.

2.2 Moment modelling of the observed sky

The moment method can be used to efficiently model the effect of
averaging (i.e. along the line of sight, in the beam and averaging
operations in the data processing) for known fundamental SEDs
(Stolyarov et al. 2005; Chluba et al. 2017). The limitations in
our ability to model the foregrounds to arbitrary precision is a
consequence of the limited sensitivity and frequency coverage of
observations and, additionally, our ignorance about the presence
of totally ‘new’ foregrounds components, which one may discover

1Here, semiblind means that partial constraints on the dust have been used,
admitting that we only have incomplete knowledge of the true dust SED.

on making more refined measurements.2 In this section, we briefly
introduce the basic idea and refer the reader to Chluba et al. (2017)
for a more detailed and discussions specific to certain foregrounds
(dust, synchrotron, etc.) and the broader scope of the method.

Let us assume that we know that the emission from each volume
element along a given line of sight is described by an SED sν(p) with
some known functional form, parametrized by a vector of parameters:
p = [p0, p1, p2 . . . pn]. Assuming there are multiple elements emitting
along a given line of sight, n̂, the net observed intensity from that
direction is merely a sum of emission from each of the elements,

Iν(n̂) =
∫

A(n̂, l) sν( p(n̂, l)) dl, (7)

where pl(n̂) denotes that the parameters characterizing (defining the
spectral shape) the emission change along n̂ and Al sets the overall
amplitude of the emission. It is very likely that the emission from the
different elements is characterized by different vectors p. Given that
there are great number of emitting elements, one may, equivalently,
construct a statistical model for the observed intensity, in which
equation (7) can be re-cast in the following form:

Iν(n̂) = Aν0 (n̂)
∫

sν( p)P(n̂, p) d p, (8)

where P(n̂, p) denotes the multidimensional probability distribution
function of the component of p, and the parameter Aν0 (n̂) is amplitude
of the observed SED at some pivot frequency ν0, introduced to allow
for modelling the overall amplitude of the SED. In practice, we never
have access to this probability distribution, but we have a reasonable
idea about the variety of SEDs contributing to the observed sky.
One can now Taylor expand the emission law sν around some pivot
parameter vector p̄,

Iν (n̂) = Aν0 (n̂)
∫

P(n̂, p) d p
{

sν ( p̄)

+
∑

i

(pi − p̄i )

1!

∂sν

∂pi

∣∣∣
p̄
+

∑
i,j

(pi − p̄i )(pj − p̄j )

2!

∂2sν

∂pi∂pj

∣∣∣
p̄

+
∑
i,j ,k

(pi − p̄i )(pj − p̄j )(pk − p̄k)

3!

∂2sν

∂pi∂pj ∂pk

∣∣∣
p̄
+ · · ·

}
.

(9)

Since the SED and its derivatives are computed at the fixed pivot
parameters p̄, these spectral functions are constants and can be pulled
out3 of the integral and each of the integrals over the PDF can be
understood as the corresponding amplitude weighted moment η of
the distribution. This allows us to model the observed intensity in the
language of the moments of the parameter distribution,

Iν(n̂) = Aν0 (n̂) sν( p̄) +
∑

i

ηi(n̂) si
ν( p̄)

+ 1

2!

∑
ij

ηij (n̂) sij
ν ( p̄) + 1

3!

∑
ijk

ηijk(n̂) sijk
ν ( p̄) + · · · , (10)

where η denotes the ‘amplitude-weighted moments’ of the of the
parameter distribution characterizing the total SED. Here, it is

2The moments of currently known foreground might span a broader set of
SEDs but may not be optimal for these new components. So this can also be
cast as large increase in sensitivity and frequency coverage, if we wanted to
model new foregrounds into the existing set of SED basis functions.
3We neglect the effect of frequency-dependent beams, which can complicate
this step further (Chluba et al. 2017).
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important to mention that since the derivative operator with respect
to different parameters commute: sij

ν ≡ sji
ν , sijk

ν ≡ sikj
ν , ..., one needs

to appropriately take care of these degenerate SED vectors. One of
the beautiful aspect of equation (10) is that the spectral and spatial
parts are written in separable form unlike equation (7). A similar
language was previously applied to the modelling of the SZ effect,
also highlighting this aspect (Chluba et al. 2013). One can now think
of these moment maps, η(n̂), as direct astrophysical observables.
The simplest first-order moments inform us about how the parameter
along various lines of sight differ from the pivot parameter, while the
second-order moments inform us about the variance in the emission
characteristics and so on.

In the final step, the generalized foreground modelling presented
in equation (10) is cast into a form that can be easily incorporated
into the ILC machinery, yielding the MILC approach. By merely
introducing the various SED derivatives as spectral constraints (as
discussed in Section 2.1) one can then simultaneously solve for the
foreground moments maps as well as the cosmological observables
like the CMB temperature, y and μ distortion maps as we present in
the following sections.

Some of the benefits of this approach for anisotropic signals
were recently illustrated for the relativistic SZ temperature mapping
(Remazeilles & Chluba 2020) and the extraction of μ–T correlations
(Remazeilles & Chluba 2018). In this work, we unveil the real
potential of this method, extending it to the extraction of tiny
monopolar signals and also demonstrate that introducing many
moment constraints can ensure an unbiased recovery of components
while maintaining and even improving uncertainties. We note that
the standard ILC and constrained ILC are special cases of MILC.

3 SI M U L AT I O N S

In this section, we summarize the details of our simulations. We
assume a wide frequency coverage of 30–3000 GHz, with 30 loga-
rithmically spaced channels and assume that the measurements are
absolutely calibrated. Our multifrequency simulated maps consists
of the following components: blackbody, spectral distortion compo-
nents y and μ that characterize the deviation from the blackbody,
and foreground contamination in the maps and measurement noise.
Below we provide specific details of how each of these components
are injected in our simulations.

Blackbody: In our simulations we include the CMB monopole and
its anisotropies �T (n̂) = �T (n̂)/T0, characterized by the fiducial
CMB power spectrum. The CMB SED is given by

ICMB
ν (n̂) = [

�0
T + �T (n̂)

] ∂Bν

∂T
T

∣∣∣
T0

, (11)

where Bν denotes the Planck function. We assume that the electro-
magnetic spectrum of these fluctuations is described by a blackbody
at a temperature T0 = 2.7255 K ,4 set to the currently best-known
measurement (Fixsen et al. 1996, 2011). Note that we do not assume
the CMB temperature to be known to arbitrary precision and solve
for the monopole temperature �0

T which in our simulations is set to
a value of 10−4, about one order of magnitude below the error on the
current CMB monopole temperature measurement. A temperature
anisotropy map is constructed assuming a power spectrum for the
fiducial cosmological model. When analysing the simulations, we
assume no prior knowledge about anisotropies of the CMB.

4Since we assume that the temperature of 2.7255 K has been subtracted
from the data, only �0

T , the correction to this temperature, is included in our
simulations.

y-distortions: These distortions are sourced via inverse Compton
scattering of CMB photons off energetic electrons. The dominant
contribution to this signal is sourced at low redshifts, by scattering of
hot electron gas inside galaxy clusters (Zeldovich & Sunyaev 1969;
Mroczkowski et al. 2019). To inject y-distortions in our simulations,
we use the Compton y-map of Sehgal et al. (2010) available at
LAMBDA simulations. We only use the non-relativistic thermal SZ
spectrum for this work, as given by

I y
ν (n̂) = y(n̂)

[
x coth

(x

2

)
− 4

] ∂Bν

∂T
T

∣∣∣
T0

, (12)

where x = hν/kBT. We ignore the relativistic corrections to the
average SZ spectrum (Hill et al. 2015), however, for detailed forecasts
of the distortion sensitivities this should be included. The Compton-y
parameter field is a positive and non-Gaussian field and hence has
non-zero positive monopole. The ensemble averaged y parameter
has been predicted to be 〈y(n̂)〉 = ȳ � 2 × 10−6 in the fiducial
cosmological model (e.g. Refregier et al. 2000; Hill et al. 2015). On a
chosen patch, the sky averaged mean ȳ may not necessarily match the
ensemble-averaged mean. In our simulations we thus ensure that the
sky-averaged value is close to this expected monopole, by directly
adding/subtracting a monopole component to the y-map.

μ-distortions: The dissipation of acoustic modes in the early Uni-
verse ( z > 50, 000), introduces a μ-distortion in the CMB radiation
(Sunyaev & Zeldovich 1970b; Hu & Silk 1993; Chluba, Khatri
& Sunyaev 2012). While this signal also has spatial fluctuations,
these are usually significantly smaller than the monopole distortions,
in complete analogy with the CMB monopole temperature and
hundreds of micro Kelvin fluctuations as a function of direction.5 In
this work, we thus only include the spectral distortion to the monopole
spectrum in our simulations, while ignoring spatial fluctuations. The
spectrum of the μ-distortions is given by,

Iμ
ν = μ

[
1

2.1923
− 1

x

]
∂Bν

∂T
T

∣∣∣
T0

, (13)

where μ denotes the amplitude of the monopole signal and all the
symbols have the same meaning as before. Unlike the y-distortions,
for which we have measurements from Planck, we only have upper
limits on the μ distortions and upcoming experiments will aim at
improving these limits and potentially making a detection. For this
demonstration study we inject a μ-distortion monopole signal with
an amplitude of μ = 10−6, roughly two orders of magnitude below
the current best limit set by COBE/FIRAS (Fixsen et al. 1996).

Foregrounds: For our demonstration, we considered the following
foreground components: synchrotron, free–free and thermal dust
in our simulations, although we focus our discussion mainly on
dust-only simulations. We generate the foreground skies using the
Planck Sky Model (PYSM; Thorne et al. 2017). In particular, we use
the ‘d2’ model for thermal dust, ‘s2’ model for the synchrotron,
and the nominal free–free model in our simulations. The details
of these component models can be found in the original PYSM

paper. The skies simulated using PYSM include spectral parameters
variations across the sky as well as along different lines of sight,
that naturally lead to generation of moments. We emphasize that we
do not use any details relating to spectral parameter variations when
carrying out the component separation analysis on the simulated
maps.

5More significant μ-distortion anisotropies can be caused by primordial non-
Gaussianity (e.g. Ganc & Komatsu 2012; Pajer & Zaldarriaga 2012; Emami
et al. 2015; Ravenni et al. 2017).
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Finally, we include some simple instrumental effects in our
simulations: beam smoothing and measurement noise. For the
instrumental beam we assume a uniform FWHM = 30 arcmin for
all the channels. We take care to carry out the smoothing operation
after duly converting the anisotropy maps returned by PYSM from
Rayleigh–Jeans temperature units to intensity units of Jy sr−1. This
small detail is important when we want to properly propagate the
moments generated from this smoothing operation.6

We assume a constant noise RMS for all the channels, however,
we do carry out the analysis for different values7: [5000, 500, 50,
5] Jy sr−1 px−1. In our simulations, the pixel size is 13.74 arcmin.
We use this information to translate these noise RMS values into
all-sky sensitivities, yielding: [5.6, 0.56, 0.056, 0.0056] Jy sr−1, re-
spectively. Note that while 5 Jy sr−1 is representative of all-sky PIXIE
sensitivity (Kogut et al. 2011b, 2016), 0.56 Jy sr−1 is representative
of SuperPIXIE (Kogut et al. 2019) and finally 0.056 Jy sr−1 is a
little better than the full sky sensitivity for Voyage 2050 (Chluba
et al. 2019). Gains in angular resolution may be conceivable with
concepts like Millimetron8 or by combining traditional CMB imagers
with spectrometers (André et al. 2014; Delabrouille et al. 2019).
Since we use only a part of the sky, our effective sensitivity on
the sky patch is worse that the full sky sensitivity by roughly an
order of magnitude. A more detailed study covering more complex
sky models (e.g. including AME, CIB and CO emission) and
instrumental aspects (such as optimization of angular resolution and
spectral parameters) will be carried out elsewhere (Rotti et al., in
preparation).

3.1 Analysis strategy

For speedy analysis we evaluate the MILC algorithm on flat sky
patches, however, this method is easily extended to the full sky
analysis. All our simulations are generated at the HEALPIX (Gorski
et al. 2004) resolution of NSIDE = 256. From each of the frequency
maps, we then extract sky tiles of dimensions 25◦ × 25◦ centred on the
galactic coordinate (	, b) = (0◦, 30◦), using the HEALPIX gnomonic
projection functionality. We emphasize that identical analyses were
carried out on different sky locations and we found qualitatively
similar results, however here we choose to present results at this
randomly chosen sky location.

Our MILC filters are implemented in Fourier space and specifically
the covariance is estimated as,

C
kbin

νν′ = 1

(2π )2

∫
kbin

d̃ν(k)d̃ν′ (k)d2k, (14)

where d̃ν(k) denotes the Fourier coefficient of the multifrequency
data. The covariance is estimated by integrating over the complete
Fourier plane to minimize the ILC bias. Note that we do not remove
the monopole term from the Fourier coefficients when making the
binned frequency–frequency correlation matrix estimate.9 In a full
sky analysis, a global monopole subtraction does not guarantee a
local monopole subtraction, and we use this as the motivation for

6This aspect is not important when translating between antenna temperature
to Jy sr−1. However, the conversion between the commonly used μKCMB

units and intensity, strictly speaking, is a non-linear operation as it involves
the inversion of the Planck function and in this case the smoothing and unit
conversion operations do not commute, a detail that is potentially important.
7This denotes the standard deviation of the measured intensity in each pixel.
8www.millimetron.ru/
9It is important to bear in mind this detail when comparing the statistics
estimated from the recovered component maps to those analytically estimated.

making this analysis choice of not subtracting the monopole when
estimating the data covariance. We emphasize that the trends seen in
our results do depend on this analysis choice and we will return to
discussing these in the conclusions.

When constructing the moment SED vectors, one has to make
a choice for the pivot parameters p̄ and pivot frequencies ν0. In
principle, the solution to the pivot parameter changes for the simula-
tions with different sensitivities and frequency coverage, however, in
favour of simplicity we choose the pivot parameter from the highest
sensitivity simulations and thereafter keep them fixed. Furthermore,
the solution to the pivot parameters also changes when including
higher order moment SEDs to fit the sky SED and in principle would
require updates, however, this again is not essential. In our analysis,
to find reasonable pivot parameters we fit the base SED to the sky-
averaged spectrum and we choose the pivot frequency ν0 such that it
coincides with the peak of the dust emission. After this initial step,
p̄ is fixed and used to add higher order moments. It is important
to note that the construction of moment SEDs does not rely on
knowing precisely the parameters that characterize the foregrounds,
on the contrary, the moment maps(η) are part of the solution and these
inform us about the statistical properties of parameters characterizing
the foregrounds.

The multifrequency simulated data, along with a subset of SEDs,
are passed to the MILC algorithm, which then returns a set of
component-separated maps with a one to one correspondence to the
SEDs. At the first stage of the analysis, we progressively increase the
number of signal SEDs (i.e. CMB, y and μ) passed to MILC, which
then returns the respective signal component maps. At the second
stage, in addition to the signal SEDs we also pass the moment SEDs,
progressively increasing the number of foreground vectors that are
passed to the algorithm. MILC then returns all the signal maps along
with the moment maps. In summary, the very first iteration of MILC
only solves for the map of the CMB and at the final iteration the
algorithm returns maps of all the signals, [�T, y, μ], and multiple
foreground moment maps, η. This analysis procedure is repeated on
each set of multifrequency simulations, where the only variable is
the level of noise in the maps.

4 R ESULTS

In this section, we discuss the results of applying the MILC to
the simulated data. We restrict the presentation and most of the
discussion to results from analysis on simulations that only include
thermal dust emission as foregrounds, since our primary aim is to
demonstrate that MILC can not only be used to make robust (bias-
and noise-reduced) measurements of anisotropic signals but also to
extract tiny average-sky (monopolar) signals.

The thermal dust emission is characterized by a modified black-
body: Sd

ν = ναBν(1/β), where β is the inverse of the dust tempera-
ture. Following equation (10), the moment expansion is performed
by taking different order derivatives with respect to the parameters
(p = [α, β]) characterizing the SED. The SED vectors characterizing
the different moments are simply given by Sij

ν = Nij ∂
i
α∂

j
βSν , where10

Nij is some normalization and the moment order is given by: o = i
+ j. The moment maps corresponding to each of these moment SED
vectors are denoted by ηαiβj . Note that ηα0β0 refers to the amplitude
of dust emission and is denoted by AD. We include a maximum of 10

10This normalization only changes the overall amplitude of the moment
SED and not its shape and hence it is only important when we care about
the amplitude of the moment maps. Given some normalization there is no
ambiguity on the amplitude of the moment maps.
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The moment ILC method 981

moment SED vectors in our analysis which corresponds to maximum
moment order of o = 3.

Fig. 1 depicts the component-separated signal maps returned at
each evaluation of MILC on simulations that include noise at the level
of 50 Jy px−1. Recall that our simulations are absolutely calibrated
and hence retain information about the monopoles in the respective
component maps (unlike experiments like WMAP and Planck, which
carried out differential measurements). To diagnose the measurement
of the monopole signal we study the one-point probability distribu-
tion function (1PPDF) of the recovered component maps. Fig. 2
depicts the 1PPDF of a subset of these maps. Fig. 3 depicts the
evolution of the 1-point and 2-point statistics of maps, for varying
number of vectors passed to MILC and for different levels of noise
in the simulations. Fig. 4 depicts the first 6 foreground moments (i.e.
up to second order for dust) estimated on simulation with the lowest
noise. With the help of the visual aid provided by these figures we
now discuss the salient features of solutions delivered by different
iterations of the MILC.

The first row of Fig. 1 depicts a map of the recovered CMB, and
this iteration of the MILC corresponds to the standard ILC, which
only projects out the CMB and is completely blind to the presence
of other components in the map, subsuming these into the variance
minimization process. Comparing to the true CMB anisotropy map
(right-hand column of Fig. 1) one notes that many of the features
in the true CMB map are indeed recovered, however, there are
residuals, particularly noticeable as negative holes that coincide with
the position of the brightest galaxy clusters also seen in the injected
y-map. We also note from Figs 2 and 3 that the mean is consistent
with zero, in spite of a non-zero monopole in the simulation. This
recovered map of CMB anisotropies is also significantly noisier and
this can be understood (in hindsight) as the cost of not projecting
out other components in the map. The second row in Fig. 1 depicts
the simultaneous separation of the CMB and the Compton-y map,
constructed by mutually de-projecting the respective SEDs. This
iteration of the MILC now correspond to the standard cILC, which is
one of the methods used by the Planck collaboration. Note that this
achieves a reasonable recovery of both the CMB and the Compton-
y map. The SZ residuals in the CMB maps, seen in the previous
iteration of the MILC, have now disappeared. There are more subtle
biases in these maps that are not as visible in the considered
simulation but become more prominent at reduced experimental
sensitivity. The recovered component-separated maps continue to
have excess noise, which results from not de-projecting other map
components, namely, foregrounds. The means of both the recovered
fields are still consistent with zero as seen in Figs 2 and 3.

The third row in Fig. 1 depicts the simultaneous separation of
the CMB, y and the μ distortion map, constructed by mutually
de-projecting the respective SEDs. This iteration of the MILC
corresponds to the cILC, with three different but well-known SEDs.
Many of the large-scale features in the CMB, and y-maps at the
location of some of the brightest galaxy clusters are still recovered.
However, the recovery of the component maps has severely degraded
as compared to the previous two iterations of MILC. This is also
apparent from the increase in the variance of the CMB and y maps
as seen in Fig. 3. It is interesting to note that the peak of the 1PPDF
for the CMB and y-parameter maps start showing a shift towards the
input monopole values as seen in Fig. 2.

The subsequent rows of Fig. 1 depict the simultaneous separation
of the signal components, when projecting out an increasing number
of foreground moment vectors (1 in the fourth row, 3 in the fifth,
6 in the sixth, 8 in the seventh, and finally 10 in the eighth row).
With these iterations we are truly entering a new regime, where

Figure 2. This figure depicts the evolution of the 1PPDF of the estimated
component maps from analysis performed on simulations with a noise RMS
= 50 Jy sr−1 px−1. The dashed line indicates the value of the monopole
estimated directly from the input component maps.

foreground-averaging effects are gradually being captured. In fact,
the foreground along different lines of sight cannot be characterized
by a single SED, this is in stark contrast with the previous iterations
of the MILC, where all the passed signal SEDs nearly perfectly
characterize the respective components along different lines of sight.
The recovered component maps depicted in rows 4–6 show a slow
reduction in the residuals and then in rows 7 and 8 the recovery
of the components maps is nearly perfect and one cannot discern
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982 A. Rotti and J. Chluba

Figure 3. Evolution of the 1- and 2-point statics of the recovered component
maps, for varying number of vectors passed to the MILC at different noise
levels. The top panels depict the evolution of the detection significance
of the estimated monopole amplitude per pixel. The middle panels depict
evolution of the estimated bias(ζ ). The bottom panels depict the evolution
of the standard deviation of the map in units of the true monopole of the
respective component map. Here, the dashed black line marks the standard
deviation of the input component map.

Figure 4. This panel of images depicts the dust foreground moments up to
second order from analysis on simulations with a noise of 5 Jy sr−1 px−1.
Higher order moment maps are correlated but in detail exhibit slightly
different spatial morphologies.

the differences between the maps. This already shows that given
sufficient frequency coverage and sensitivity, addition of moment
terms does not come with unavoidable penalties in the recovery
of signals but has a more complicated behaviour. We can also use
the variance of the maps for a joint assessment of the quality of
the recovered components. Studying the bottom panel of Fig. 3
reveals a much clearer picture of the evolution: the variance of the

map increases until one includes the zeroth-order vector, thereafter
every additional foreground vector passed to the MILC results in an
improved recovery, reaching near ideal recovery once all foreground
moment vectors up to the second-order moment are projected out.
Even in rows 7 and 8, where it is hardly possible to discern map-level
differences, the variance statistics indicates that there is continual
improvement. It is also very important and exciting to note that on
including these higher order moments the peak of the 1PPDF of the
maps converges to the true monopole amplitude of the respective
components as seen in Fig. 2.

We note that a statistically significant detection of the monopole
amplitude only becomes possible on nearly including all the second-
order moment SED vectors and higher, however this trend also
depends on the sensitivity of the measurements as seen in the top row
of Fig. 3. For CMB and y fields, which are inherently anisotropic,
the σ estimated from the map receives significant contribution from
these intrinsic anisotropies. This is the reason for the saturation seen
in the SNR plots for these respective components. Therefore, when
measuring the monopoles of the CMB and y fields, it is essential to
accurately model and subtract the error arising from the intrinsic
variance of these fields, in order to fairly assess the statistical
significance of the monopole detections (our assessments of the SNR
for the monopole detection of these fields is biased low by roughly
a factor of ∼5 as we do not subtract the variance sourced by the
anisotropies in the field). On the other hand, since our simulations
included no anisotropic μ distortions, even though the μ distortions
signal is smaller it is detected at a higher statistical significance for
simulations with the lowest noise. The CMB and y signals being
intrinsically larger is reflected in the observation that a statistically
significant detection of the monopole amplitudes of these fields is
possible even at lower sensitivities.

The details of the evolution of these statistics with the number
of moment vectors passed to the MILC is of course not generic
and depends on the sensitivity and frequency coverage of the
experiment and the foregrounds model that is injected. Further these
details also depend on how the data correlation matrix is defined,
however a discussion on these details is beyond the scope of this
work and will be discussed in Rotti et al. (in preparation). It will
be superfluous and redundant to show the maps and 1PPDFs for
analysis carried out on each simulation set with different noise. The
evolution of the detection significance of the monopole amplitude,
its bias and variance of the recovered component maps from anal-
ysis on simulations with different noise are neatly summarized in
Fig. 3.

Here, we would like to highlight one generic trend that in the first
four iterations of the MILC (these are methods employed for various
work in current literature), the variance of the recovered component
map increases when adding constraints, as seen from the bottom
panel of Fig. 3. This gives rise to the misleading expectation that
adding constraints invariably comes with a noise penalty. However, as
the bottom panels of Fig. 3 demonstrate, this is a faulty extrapolation.
We generically find that after projecting out an optimal number of
foreground moment vectors, the variance of the recovered component
map reaches a minimum, which is below or comparable to the error
when these de-projections are not carried out (see Fig. 3).

It is also very interesting to note that, when considering the highest
sensitivity (RMS = 5 Jy sr−1 px−1, red line in Fig. 3), we find
the simple ILC or cILC (only CMB and CMB+y, respectively)
do perform on par with the MILC, indicating that signal SED
orthogonality is a direct function of sensitivity. However, for all
our lower sensitivity simulations, the MILC with inclusion of higher
order foreground moments has the best performance. In hindsight,
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this behaviour is easy to understand: when one does not project
out foregrounds, these are included in the noise budget of the
recovered component maps. By projecting out an ‘optimal number’
of foreground components, the noise budget of the component-
separated maps is reduced. The ‘optimal number’ of foreground
components can be assessed by studying when the variance of the
component maps begins to increase after reaching the minimum
(see the blue line for CMB variance and orange for y-map variance
in bottom panels of Fig. 3). To be able to make these projections,
one requires enough channels, and this diagnostic could be used to
optimize future CMB missions.

The foreground moment maps are themselves astrophysical ob-
servables and these can be used to gain deeper understanding of the
galactic foregrounds. These moment maps are naturally returned by
the MILC and an example set of the first measurement of foreground
moment maps on simulations and are shown in Fig. 4. These moment
maps are related to the spectral parameters characterizing the IGM,
but elucidating this connection requires more work. Current and
future analysis on multifrequency microwave data will deliver these
observables as by-products.

5 D I S C U S S I O N S A N D C O N C L U S I O N S

We have demonstrated that the scope of ILC approaches can be
significantly extended by using the language of moments, resulting
in the MILC method introduced here (Section 2). Using sky simu-
lations, we have demonstrated that the MILC can not only be used
to improve the recovery of anisotropic components but also allows
an extraction of monopole signals. This opens new ways of thinking
about mitigating foreground challenges that are essential to future
CMB spectral distortion studies.

Specifically, we have demonstrated that it is important to consider
higher order moments into account, without which both the monopole
and the anisotropy measurements can be significantly biased (see
Figs 1 and 2). Furthermore, we have clarified that increasing the
number of moments does not generically lead to more noise in the
recovered component maps (see Fig. 3). On the contrary, we have
demonstrated that projecting out an ‘optimal number’ of foreground
moments will invariably lead to a more robust and less noisy recovery
of the component maps.

Our study also shows that the MILC can have more optimal
performance as compared to simple ILC and cILC methods. Only
for very high sensitivity measurements are the performances of the
ILC and cILC on par with MILC. These lead to a revision in the
understanding of how to apply ILC methods. The variance of the
recovered component maps can be used to estimate the ‘optimal
number’ of foreground vectors to reach best performance. This
number can be directly translated into the requirement of the number
of frequency channels at some given sensitivity and has the potential
of being a quantitative metric for designing future CMB experiments
(under some assumptions about the sky foregrounds).

While the discussion presented in this work is focused on sim-
ulations which include only thermal dust as foregrounds, we have
also confirmed that this method works when all the foregrounds
(synchrotron, free–free and dust) are included. This turns into a
high-dimensional problem, and one has to worry about the most
relevant SED vectors and the order in which they are included.
This is an ongoing study (Rotti et al., in preparation), the details
of which are beyond the basic idea being presented in this work.
The foreground moment maps are a natural by-product of MILC
and we foresee these becoming an important measurable with future,
high-sensitivity multifrequency microwave measurements. MILC is

currently being applied to Planck maps and the measurement of
foreground moment maps from this analysis will be reported in
a future publication. However, several questions call for further
investigation.

Effect of un-accounted signals: The work presented here assumes
that the base SEDs, characterizing the all the foregrounds, are known
and can be supplied to the MILC. This allows MILC to capture
all the effects from averaging processes. We have shown that not
de-projecting the higher order moments can come at the cost of
excess noise and biases in the recovered component maps. This
aspect will become even more apparent as we work with higher
sensitivity data to target low signal-to-noise components like for
CMB spectral distortions and B modes. Encountering foregrounds
with unmodelled SEDs will lead to a poorer component separation.
However, having even an approximate SED for these components
can improve the signal recovery. Applied to real data, MILC should
thus be thought of as a semiblind component separation method.
Adding Synchrotron, CIB and free–free moments is straightforward
(Chluba et al. 2017), however, developing a moment description for
some of the other known foregrounds (e.g. anamolous microwave
emission, extragalactic CO) will be an important step in generalizing
MILC.

Low multipole leakage to monopole and sky-coverage: In this
work, we carried out the analysis on a flat-sky patch and implicitly
assumed that local patch monopole is the same as that of the global
monopole. For the CMB and y, which do have significant amount of
anisotropies, the local patch monopole can differ significantly from
the global monopole owing to contributions from large-scale (λ ≥
patch size) fluctuations. For this reason the local patch monopole
measurement of these components could be noticeably biased.
However, in standard cosmology the μ-distortions are expected to be
monopolar, and hence for this component, the amplitude of the local
monopole is expected to be the same as the global monopole. This
suggest that if one wants to measure μ distortion monopole, making
deep measurements on a flat-sky patch could be a viable strategy.
On the other hand, an ultimate test of isotropy of the primordial
distortion signal (e.g. also including the cosmological recombination
lines Sunyaev & Chluba 2009; Chluba & Ali-Haı̈moud 2016) will
require all-sky measurements. A detailed study with the goal to
optimize for CMB spectral distortion science goals will be presented
in a future publication.

Truncation and ordering of vectors: The variance of the recovered
component maps was seen to have a non-monotonic behaviour,
reaching a minimum at some optimal number of moment vectors
(see Fig. 3). It will be important to study if the moment ordering
could be altered to obtain a monotonic reduction in variance of the
component-separated maps. This will help in devising the optimal
strategies for taming this high-dimensional optimization problem.
Additional benefits could stem from orthogonalizing moment SEDs
(e.g. Gram–Schmidt or principle component analysis) prior to the
MILC analysis. This will enable us to more clearly rank the various
moment vectors according to their expected signal-to-noise levels.
Ultimately, a comparison of the target signal level (i.e. μ) to the level
of a moment SEDs has to be used to define truncation criteria for the
analysis. Other diagnostics, based on Bayesian evidence, Shannon
entropy or χ2-gains, could also be used for this purpose.

Optimality for monopole recovery: It is imperative to discuss
the subtle detail of covariance estimation which we have found
to be highly relevant to the question of optimality. As mentioned
in Section 3.5, the results presented here were derived under the
assumption that the local monopole cannot be subtracted accurately.
This was motivated by the fact that in a full sky analysis it is unlikely
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984 A. Rotti and J. Chluba

that all local monopoles are accurately subtracted, owing to highly
anisotropic and non-Gaussian nature of galactic foregrounds.11

However, were it possible to subtract the local monopole from the
multifrequency maps perfectly for the covariance estimation step,
then we find that the ILC forecasts are in fact more promising.
Notably, from analysis on the highest sensitivity simulations, we find
μ distortions to be measured at nearly six times higher significance
(i.e. �60σ ), without significant bias, that too without performing any
foreground moment de-projections.

Further it is important to note that MILC performs a pixel-by-
pixel recovery of the signal field. While this approach has been
(empirically) proven to be ‘optimal’ for anisotropic signal, it is not
immediately obvious that it is optimal for the recovery of monopole
signals. With single pixel sky-averaged SED measurements, one can
make significant gains (� √

Npix) in sensitivity, however, possibly
at the cost of increasing the foreground complexity due to generation
of moments, a natural consequence of the averaging process. In
principle this questions is relevant to measurements of all the long
wavelength modes on the sky (i.e. low-	 CMB anisotropies). Working
with full resolution maps, will invariably lead to lower sensitivity per
pixel but provides access to additional information about pixel–pixel
correlations for different foreground components and, possibly, a
lower foreground complexity in each pixel. It can be anticipated that
the answer lies somewhere in the middle. It will thus be essential
to compare and contrast the performance of these two analysis
approaches, to understand how to best combine them for extraction
of spectral distortion signals. Bearing all these details in mind, it is
therefore important to consider the results presented in this work as
being pessimistic estimates, of the monopole measurements.

Combination of data sets: High-sensitivity and high-resolution
anisotropy measurements of the CMB will soon become available.
The MILC method makes it clear how we can blend CMB anisotropy
measurement to help with cleaning of the absolutely calibrated
measurements planned for the future (e.g. Chluba et al. 2019;
Kogut et al. 2019). Increased frequency coverage at low frequencies
(ν � 10 GHz) has also been shown to be important for the recovery
of small μ-distortion signals (Abitbol et al. 2017). Again the MILC
method can be extended to include external information from low-
frequency data sets. This also means that a detailed study of how
to propagate of systematic effects when combining various data sets
will be required.

Application to other problems: The MILC method is not limited
to studies of primordial CMB distortion signals, but similarly can be
applied to the extraction of the global 21cm signal from the cosmic
dark ages (e.g. Pritchard & Loeb 2008; Fialkov, Barkana & Cohen
2018). At low frequencies, the dominant foregrounds are due to
radio sources and galactic synchrotron, which can both be modelled
using a power-law moment expansion (Chluba et al. 2017). In a
similar manner, it is straightforward to extend the MILC approach to
CMB B-mode searches, ensuring that foreground residuals caused
by averaging effects remain under control (Remazeilles, Rotti &
Chluba 2020). In this case, two moment hierarchies have to be
introduced, demanding high-sensitivity and broad spectral coverage.
De-correlation effects across frequency can also be modelled in this
way. Moment expansions at the power-spectrum level can provide
further insight and leverage (Mangilli et al. 2019). We plan to explore
these possibilities in future works.

11All currently planned spectral distortion measurement missions will mea-
sure the full sky.

The component-separated maps depicted in the third column of
Fig. 1 represents a study analogous to that presented in Remazeilles &
Chluba (2018). We see that there are significant biases at this iteration
of the MILC, hinting that one could make significant improvements
in forecasts for μ–T correlations by including higher order moments
into the analysis. Of course these studies will need to be repeated
with all the relevant foregrounds and the instrument configurations
considered in Remazeilles & Chluba (2018). The utility of MILC for
the extraction of y–T correlations to study primordial non-Gaussianty
(e.g. Ravenni et al. 2017) should also be carefully considered.

Finally, our study also indicates that even for the CMB temperature
recovery, the simple ILCs and cILCs are not fully optimal and may
have significant residuals. This could relate to some of the large-scale
anomalies seen by Planck and WMAP (namely lack of power and
isotropy violation on large-angular scales). Revisiting this question
using MILC on real data could thus prove highly instructive and may
also inform us about expected foreground complexities for future
B-mode searches, both questions we plan to address in the future.
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