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ABSTRACT

We present numerical simulations of dust clumping and planetesimal formation initiated by the streaming instability (SI) with
self-gravity. We examine the variability in the planetesimal formation process by employing simulation domains with large radial
and azimuthal extents and a novel approach of re-running otherwise identical simulations with different random initializations of
the dust density field. We find that the planetesimal mass distribution and the total mass of dust that is converted into planetesimals
can vary substantially between individual small simulations and within the domains of larger simulations. Our results show that
the non-linear nature of the developed SI introduces substantial variability in the planetesimal formation process that has not
been previously considered and suggests larger scale dynamics may affect the process.
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1 INTRODUCTION

Planet formation requires solid growth over a dozen orders of mag-
nitude, from micron-sized grains embedded in protostellar clouds
to centimetre- or 10-cm-sized dust pebbles in protoplanetary discs
to terrestrial planets and planetary cores thousands of kilometres
across. It is widely accepted that the first stage of growth, from
micron-sized grains to centimetre-sized pebbles, is achieved by
collisions. Similarly, once a large population of kilometre and tens of
kilometre-sized planetesimals are present, these objects will interact
gravitationally to build protoplanets and the final planetary system
(Armitage 2013). The intermediate growth phase, from centimetre-
sized pebbles to kilometre-sized planetesimals, however, faces two
key constraints known as the metre-barrier.

The first barrier is rapid radial drift. All solid material feels a
headwind as it orbits through the gaseous component of the disc. The
gas orbits at sub-Keplerian speeds due to a radial pressure gradient,
while dust attempts to orbit at the Keplerian speed. This headwind
removes angular momentum from the dust, so that the dust orbit
decays towards the star with a net inward radial drift. This effect is
small for micron-sized dust grains that are tightly coupled to the gas,
as well as for kilometre-sized objects. However, for intermediate-
sized objects, near 1 m, the radial drift time-scale can be as short as
a few hundred years (Weidenschilling 1977).

The second barrier is related to collisional growth. Relative
velocities in collisions between dust grains are strongly dependent
on their size. When the objects approach 1 m in size, the combination
of turbulence and lower drag leads to fast collisions that are always
destructive, resulting in net mass-loss for both objects (Zsom et al.
2010; Windmark et al. 2012).

These barriers act to exclude metre-sized objects from the disc.
The formation of kilometre-sized planetesimals thus requires a
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specific mechanism that is capable of rapidly concentrating solid
mass without relying on collisions between dust grains.

1.1 The streaming instability and planetesimal formation

The streaming instability (SI; Youdin & Goodman 2005) provides
a promising mechanism to enhance dust concentrations. The SI is
always present in shearing, dust-gas mixtures. It is one of a class
of resonant drag instabilities (RDI) present in protoplanetary discs
(Squire & Hopkins 2018, 2020). At high dust-to-gas ratios, it can
operate faster than radial drift time-scales (Youdin & Goodman 2005;
Youdin & Johansen 2007).

The formation of planetesimals via the SI requires local dust
densities that exceed the Roche density (Li, Youdin & Simon 2019),
so that they can condense under their own gravity. Localized collapse
occurs at local dust surface densities two to three orders of magnitude
larger than the local average in the disc. This represents a non-linear,
evolved state of the SI that must be treated numerically (Youdin &
Johansen 2007; Bai & Stone 2010a). Prior work has established that
the non-linear phase consistently produces azimuthally oriented (i.e.
globally ring-like) dust filaments (Johansen et al. 2007; Bai & Stone
2010b; Yang & Johansen 2014; Simon et al. 2016, 2017; Li, Youdin
& Simon 2018).

In an influential paper, Johansen et al. (2007) showed that these
filaments can produce local dust densities high enough to initiate
gravitational collapse and planetesimal formation. The time-scale
for this process is just tens of orbits. This result highlighted the
promise of SI for overcoming the metre-barrier. 3D hydrodynamical
simulations of shearing patches of protoplanetary discs are now well
established as a way to predict the properties of planetesimals formed
by the non-linear SI (Johansen, Youdin & Mac Low 2009a; Johansen,
Youdin & Lithwick 2012; Johansen et al. 2015; Simon et al. 2016,
2017; Schifer, Yang & Johansen 2017; Abod et al. 2019; Li et al.
2019; Nesvorny et al. 2019; Gole et al. 2020). These studies have
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explored how this process depends on parameters such as the dust
mass (Johansen et al. 2009a; Simon et al. 2017), dust grain size
(Simon et al. 2017), radial pressure gradient (Abod et al. 2019), and
local gas turbulence (Gole et al. 2020).

Ideally, the SI would operate directly within simple (e.g. smooth,
axisymmetric) models based on observations of protoplanetary discs.
However, achieving growth rates relevant to planetesimal formation
may require local dust-to-gas mass density ratios greater than
unity (Youdin & Goodman 2005; Youdin & Johansen 2007). In
simulations of local patches of protoplanetary discs this translates
to a requirement of supersolar dust-to-gas surface densities in
order to achieve sufficient dust clumping for gravitational collapse
(Johansen, Youdin & Mac Low 2009b; Bai & Stone 2010b,c). Local
concentrations of dust in the disc would circumvent this issue. Large-
scale gas structures such as pressure bumps and vortices could create
large-scale dust traps with enhanced local dust-to-gas mass surface
density ratios (see Birnstiel, Fang & Johansen 2016, for a review).
Observations show protoplanetary discs in nature can have non-
uniform dust distributions, including rings (e.g. Dullemond et al.
2018) and non-axisymmetric bumps (van der Marel et al. 2013,
2015)." Drazkowska & Dullemond (2014) and Drazkowska, Alibert
& Moore (2016) presented global models of dust in protoplanetary
discs using semi-analytic prescriptions for planetesimal formation
via the SI, and conclude that planetesimal formation via the SI is
most efficient in regions with enhanced solid abundances such as
beyond the snow line, or where dust pebbles can accumulate due to
radial drift pile-up.

Planetesimals formed by the SI are sand-piles and initially lack
cohesion other than their own self-gravity. This fits the emerging con-
sensus that asteroids are rubble piles and represent somewhat evolved
planetesimals (Walsh 2018). For example, data from the recent fly-by
of the New Horizon’s space mission of Kuiper Belt object 486958,
Arrokoth, support the gravitational collapse scenario. McKinnon
et al. (2020) and Grishin et al. (2020) report that this object, which
is characterized by two distinct lobes, was likely formed by a low-
velocity impact resulting from the slow decay of a binary orbit of
two smaller Kuiper Belt objects. Additionally, Nesvorny et al. (2019)
compared the observed distribution of prograde versus retrograde
binary orbits in trans-Neptunian objects with similar, planetesimal-
sized objects formed via the SI in local simulations of patches of
protoplanetary discs, and find that the observed data agree with
the simulation. Earlier work (Morbidelli et al. 2009) modelled the
gravitational interactions within a population of planetesimals and
planetary embryos and finds that to produce a final size distribution
consistent with the present-day asteroid belt, the initial planetesimal
size distribution was dominated by bodies with a minimum size of
approximately 100 km, suggesting smaller objects were not present
to build planetesimals hierarchically.

Prior models for planetesimal formation usually assume the hier-
archical build-up of kilometre-sized objects from smaller objects via
collisions (Kataoka et al. 2013). However, this build-up phase would
have to occur incredibly efficiently to avoid the aforementioned
metre-barrier constraints. Thus, the mechanism of planetesimal
formation via the gravitational collapse of overdense clouds of dust
pebbles that were generated by the non-linear phase of the SI has
become a leading model for this phase of the process of planet
formation.

!Note: Features in the dust surface density formed directly by the non-linear
SI are much too small to be observed directly.

Planetesimal mass distribution variability 521

1.2 Simulating the planetesimal mass distribution

A primary objective of many studies of planetesimal formation via
the SI is to characterize the mass and size distribution of the formed
planetesimals (Johansen et al. 2015; Simon et al. 2016, 2017; Schifer
etal. 2017; Abod et al. 2019; Li et al. 2019; Gole et al. 2020). Such
results are useful inputs for models of the evolution protoplanets and
planetary cores in the presence of planetesimal discs (e.g. Pollack
et al. 1996). However, there is still much about simulations of the SI
in protoplanetary discs that remains to be understood.

The SI operates on scales that are a tiny fraction of a protoplanetary
disc (< 0.01 AU), as might be expected of a process that can make
~100-km-sized bodies. Thus, published 3D numerical simulations
have focused on tiny patches in protoplanetary discs. As might be
expected, prior work has also focused on regions of parameter space
with favourable growth rates, which greatly limits the computational
expense. In addition, the ubiquitous turbulence and large stopping
distance of dust grains makes the phase space of the dust very
complex and difficult to model. This precludes simple adaptive
strategies and explains the use of fixed meshes with the associated
limits on dynamical range. Thus, it is an expensive and ongoing
process to explore the full parameter space of dust grain sizes, dust
mass, total disc mass, global gas pressure gradient, and the role of
disc structures. Global disc simulations which resolve the key scales
for SI are still far out of reach.

Key questions remain regarding numerical convergence, for ex-
ample, establishing a minimum planetesimal mass, the detailed
properties of the dust density distribution, and the turbulent velocity
field. We would also like to investigate the non-linear interactions
between the non-linear SI and the full, evolving distribution of grain
sizes. Generally, there is much work to be done in characterizing
the non-linear SI, including perturbation growth rates, characteristic
length scales, the interaction between newly collapsed planetesimals
and dust, the amount of dust converted to planetesimals, the collapse
process for individual planetesimals, their resultant properties, and
the roles of mergers and collisions.

Due to these challenges and the associated computational expense,
most studies using 3D simulations to study the planetesimal mass
distribution from the SI considered a numerical domain size that was
at most 0.2 gas scale heights on a side (~ 0.02 AU). Thus, the impact
of larger domains is relatively unstudied. Yang & Johansen (2014)
and Lietal. (2018) used larger domains in a study of the non-linear SI,
but their simulations did not consider gravitational forces between the
dust mass, and thus did not follow the development of the non-linear
SI all the way to planetesimal formation. Schifer et al. (2017) used
larger domains that were twice and four times as large in the radial
and azimuthal directions and studied the population of planetesimals
in the full domain. They constrain parameters of the planetesimal
mass distribution in the full domain of the simulation, and they find
disagreement in some parameters for the simulations of different
sizes, and agreement in other parameters. Carrera et al. (2020) used
domains with large radial extents to study planetesimal formation
via the SI within large-scale, background pressure bumps associated
with axisymmetric rings in protoplanetary discs. Larger domains
permit new dynamical modes which may impact the planetesimal
formation process, but not much research has been done in exploring
this impact.

In this paper, we confirm the basic results of Schifer et al.
(2017), with a different code and hydrodynamical treatment, using
similarly large domains. We expand on their results by running
multiple simulations with parameters that are identical but for
different random perturbations in initial dust density. We also briefly

MNRAS 500, 520-530 (2021)

202 1dy /| U0 1sanb Aq 0612£65/02S/1/00G/2101HE/SEIUW/WOD dNO"DILSPEDE//:SANY WOI) POPEOJUMOQ



522 J. J. Rucska and J. W. Wadsley

examine convergence via enhanced resolution in the largest domain
simulation. Through a novel analytical approach, we probe the spatial
variability in the planetesimal mass distribution and conversion rate
of the dust mass to planetesimals throughout the larger domains. We
also consider the mass distributions on the scale of the full domain
to compare to prior work.

This paper is organized as follows. In Section 2, we outline
our methods and parameters of our simulations. In Section 3, we
describe our methods for analysing our simulation data and our
results. Sections 3.1 and 3.2 focus on the properties of the mass
distributions, and Section 3.3 focuses on the quantifying the total
amount of dust that is converted into planetesimals. In Section 4, we
summarize and discuss our results and their impact on the field, as
well as future work.

2 METHODS AND INITIAL CONDITIONS

We model the dynamics of localized portion of a protoplanetary disc,
using the shearing sheet approximation (Goldreich & Lynden-Bell
1965) to simulate a local portion of a near-Keplerian, protoplanetary
disc with a co-rotating Cartesian frame (x, y, z). Relative to the central
star, the box centre is at (r, 0, z¢) in cylindrical coordinates. The box
is centred on the mid-plane so that zy = 0. Points within the box are
at global coordinates (r + x, 8y + y, z). This approximation neglects
the effects of azimuthal curvature in the orbit.

The equations that describe the gas and dust evolution in this
non-inertial reference frame are

0p
ETg V- (pgut) =0, M
0pgut
+ V- (pguu) = —VP,
ot
A PR v—u
+ pe —252><u+2q§2xx—§2zz+ut , (2)
stop
d,’ [
Yo xR42g k- Q- U LR, 3)
d[ tslop

where p, denotes the gas mass volume density, P, is the gas pressure,
and = pq/pg is the ratio of the local dust mass density to the gas
mass density. The velocity of the gas is represented by u, and the
velocity of an individual dust particle is v;, where the subscript i
identifies the ith dust particle. We use an isothermal equation of
state, Py = pgcf, where ¢y is the sound speed.

The gas and the dust are coupled together by the terms u(v —
u)/tsop and —(v; — u)/1gep in the gas and dust momentum equations,
respectively. The notation v represents the mass-weighted average
velocity of the dust particles in the gas cell (though in our simulations,
all dust particles have the same mass). The stopping time of the dust
particle, fyop, iS a time-scale that characterizes the rate at which
momentum is exchanged between the gas and dust. In the Epstein
drag regime (Epstein 1924), where the particle size is smaller than
the mean-free path of the gas, this parameter is given by

PsS
)
PgCs

tsmp = (4)
where py is the bulk solid density of the particles (approximately
2.6gcm*3 for silicates; Moore & Rose 1973) and s is the radius
of the dust grains if we assume they can be approximated with a
spherical shape. In protoplanetary discs, the Epstein drag regime
applies to dust particles everywhere except the very inner part of the
disc (Birnstiel et al. 2016), so we use this drag formalism.

In the local frame described by (x, y, z), which rotates with the
Keplerian rotation with the disc, there is a background velocity
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flow due to differential rotation in the radial direction. The angular
velocity is a power law in the disc radius, Qor~9, and we model
Keplerian rotation, where ¢ = 3/2. In our co-ordinates, the rotation
vector is oriented along the z-axis, & = 2, which leads to a
background velocity flow given by (¢€2x)y, where x is the local radial
co-ordinate.

2.1 Numerical methods

We simulate this system with the public C-version of the ATHENA
hydrodynamics grid code (Stone et al. 2008). We employ the HLLC
Riemann solver to compute the numerical fluxes and the cornered
transport upwind (CTU) integrator to evolve the equations in time
(Stone et al. 2008; Stone & Gardiner 2009). Dust is modelled follow-
ing ATHENA (Bai & Stone 2010a) with the semi-implicit integrator
and the triangular-shaped cloud (TSC) scheme to interpolate particle
properties to and from the gas grid. The gravity solver was modified
to include dust self-gravity. Otherwise, what follows are standard
ATHENA options.

The orbital advection scheme separates the background flow
velocity from the fluctuations, leading to a more computationally
expedient and accurate algorithm (Masset 2000; Johnson, Guan
& Gammie 2008; Stone & Gardiner 2010). Thus, the momentum
equation for the dust particles, which is integrated in our simulations,
has the background shear flow subtracted, and is of the form
dv; v, —u

—L =2 (v}, — nux) Q& — 2 — @, Qy — Q%22 — - + Fy,
dr i Lsiop

where v/ = v — (¢gQx)y and ' = u — (¢Q2x)¥y.

To maintain this shear flow at the radial boundary, our simulations
employ shearing box boundary conditions, where the azimuthal
(y-direction) and vertical (z-direction) hydrodynamic boundary
conditions? are purely periodic, and the radial (x-direction) boundary
conditions are shear periodic (see Hawley, Gammie & Balbus
1995; Stone & Gardiner 2010). The radial periodic zones move
along the y-direction with velocities of magnitude g$2L,. Once the
periodic zones have moved beyond the extent of the computational
domain in the y-direction, the motion resets and the shear periodic
boundary conditions become momentarily purely periodic. The time
period for this is given by t, = nL,/(g2L.), where for each n
=0, 1, 2, ..., the radial boundary conditions are purely periodic,
and for all intermediate times, the boundaries are not perfectly
aligned, according to the shear periodic scheme. Here, L, and
L, are the extent of the box in the x-direction and y-direction,
respectively.

Another essential component of the SI is large-scale, radial
pressure gradients in the gas disc, which has a surface density profile
that decreases with radius. This pressure gradient is responsible for
maintaining a persistent difference between the radial component
of the velocity of the dust and the velocity of the gas. Only the
gas feels the radially-outward pointing hydrodynamic force due
to this pressure gradient, which causes the gas to orbit at slightly
sub-Keplerian speeds (Armitage 2013). The dust does not feel this
force, and orbits at the Keplerian speed. The difference in these
radial velocities is small, but it is persistent, which means there is
a persistent momentum exchange between the dust and gas via the

2The boundary conditions are slightly different for the gravity solver; see
Section 2.1.1.
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drag force, hence why this gradient is a key component of the SI
(Youdin & Goodman 2005).

Including this radial pressure gradient directly in the gas phase
within the simulations would create a discontinuity between the inner
and outer radial boundaries of the domain. Hence, when including
this effect in ATHENA, Bai & Stone (2010a) approximate the effect
of the pressure gradient as a constant force within the shearing box.
However, instead of applying an outward radial (positive x) force to
the gas, a constant inward radial (negative x) force is added to the
particles. This is the Fy,q = —2nv; Q% term in equation (5). The
factor nvy measures the amount by which the azimuthal component
of the dust and gas is modified from the Keplerian velocity. Given a
disc model with a radial pressure profile P;ocr™" and an isothermal
equation of state,

(6)

n=n

rcm‘wqw

With the gas scale height defined as H, = ¢,/$2, then n ~ O(Hy/r)?,
and in many models of PPDs, e.g. minimum mass solar nebula
(Hayashi 1981), Hy/r ~ 0.05, and a typical value for 7 is ~0.003. In
ATHENA (Bai & Stone 2010a), this factor 7 in the radial pressure gra-
dient force Fyrog = —2nv QX is parameterized via the dimensionless
factor nuy/cs, and the simulations in this study use a value of nuy/cq
= 0.05 (see Section 2.2).

2.1.1 Particle self-gravity

Exploring the creation of bound clumps requires the gravitational
acceleration due to dust particles,

Fy= -V, @)

where the potential due to dust, @y, is the solution of Poisson’s
equation,

Vid, = 471G pq, (8)

where G is the gravitational constant. The TSC interpolation
scheme is used to compute the dust density, pq (used for drag and
gravity).

Following prior work (e.g. Simon et al. 2016), we neglect the self-
gravity of the gas whose local density perturbations are relatively
small and also the effect of gravity on gas, which is small compared
to other forces. These assumptions can be justified by examining the
gaseous Toomre (1964) parameter, Q = ¢;Q2/(rGX) ~ 32 for our
simulations and thus the gas disc is very gravitationally stable (see
also equation 13 and associated discussion).

We use the Poisson solver implemented in the public (C-version)
of ATHENA by Kim (Kim & Ostriker 2017), with shear-periodic
horizontal boundary conditions (Gammie 2001) and vacuum (open)
boundary conditions in the vertical direction (Koyama & Ostriker
2009). We show tests confirming the correct behaviour of dust with
self-gravity in our simulations in Appendix A.

2.2 Initial conditions and parameters

Our choice for the parameters that control the dust mass, dust grain
size, radial pressure gradient, and ratio of gravitational and rotational
shear strength are either identical or very similar to choices from
previous work (Johansen et al. 2012; Simon et al. 2016; Schifer
et al. 2017; Li et al. 2018; Gole et al. 2020). These parameters are
summarized in the bottom row in Table 1 and are defined in this
section.
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Table 1. Simulation parameters.

Run name Domain size Grid resolution
(Ly x Ly x L;)/Hg Neelt =Ny x Ny x N;
L02a 0.2x02x0.2 120 x 120 x 120
L02b 0.2x02x02 120 x 120 x 120
L02c 0.2x02x0.2 120 x 120 x 120
L02d 0.2x02x02 120 x 120 x 120
L04a 04 x04x0.2 240 x 240 x 120
L04b 0.4 x 04 x 0.2 240 x 240 x 120
L08 0.8 x 0.8 x0.2 480 x 480 x 120
Npar/Ncell Ts Z 6 1
1 0.314 0.02 0.05 0.05

The gas is initialized with a Gaussian profile in the vertical
direction:

2
Pg(2) = pg.0€Xp (—ﬁ) , 9)
g

where p, ¢ is the gas density in the mid-plane and H, is the gas scale
height. We set the units of our model so that p, ¢ = Hy = Q = ¢, =
1. The dust particle positions are initialized with a random number
generator based on a uniform distribution in the x—y plane, and a
Gaussian profile in the z-direction with a scale height Hy = 0.02H,.
The number of particle resolution elements in each simulation is
equal to the number of grid resolution elements in the domain. As
seen in Table 1, we ran multiple simulations with identical domain
sizes and resolutions, each of which labelled with a letter a, b,
c, or d. The dust particles in these otherwise identical simulations
were initialized with different random number seeds, changing the
individual particle positions. This leads to different outcomes in the
planetesimal formation process during the non-linear evolution of
the SI (explored in Section 3).

The size of the dust grains, s, controls the strength of the drag
coupling between dust and gas. This sets the dimensionless stopping
time,

Ty = laop - (10)

In all our simulations, we choose 7, = 0.314. In terms of orbital
periods, Ty, = 27/S2, we have tyop/Ton, A 0.05. The mass of the dust
particles is controlled by the ratio of dust mass surface X4 density to
the gas mass surface X, density,

Y
2y

Zz

; (1)

and we use Z = 0.02, a slightly supersolar solid mass ratio. The radial
pressure gradient parameter 1 (see equation 6) is parametrized via

m= "% (12)

Cs

and for this parameter, we choose IT = 0.05. Lastly, the strength of
gas self-gravity versus tidal shear is captured by

= ——. (13)

The value of this parameter sets the relative importance of self-
gravity versus tidal shear. Varying G is equivalent to moving
through different radial portions of the disc. For our simulations,
as in the fiducial simulation from Simon et al. (2016), we set
G = 0.05, equivalent to a Toomre Q of 32. For a disc model where
these quantities are power laws in the disc radius r, i.e. T 007,
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HgO(rh, Qocr~4, then G oc r=a=b+24 For g = 1, ¢ = 3/2, and, as in
the minimum mass solar nebula (MMSN) model (Hayashi 1981),
b = 5/4, then G o r*/* and varies with radial position within the
disc.

2.3 Simulation domain

In our study, we consider simulation domains of various sizes, as well
as multiple runs of simulations with identical physical parameters to
investigate the variance planetesimal formation process via the SI
The domain sizes are summarized in Table 1.

We employ simulations with L, =L, =L, =0.2,aswellas L, =L,
=04,L,=02and L, =L, =0.8,L; = 0.2, where all above lengths
are in units of the gas scale height, H,. We introduce a shorthand
for the simulations with the previously described domain sizes, and
refer to them as 102, 1,04, and LO08, respectively.

We maintain an equivalent numerical resolution (in terms of cells
per length) between runs. In our smallest domains, the LO2 runs,
which matches the size of the domains from Simon et al. (2016), we
use a moderate resolution of (Ny, Ny, N;) = (120, 120, 120). This
results in cubic resolution elements in our simulation grids, with a
side length of 0.2H,/120 ~ 0.00167H,. We maintain this resolution
in our larger simulations, hence the L.04 runs have (N, N,, N,) =
(240, 240, 120) and the L08 runs have (N, Ny, N;) = (480, 480,
120).

We note that, according to Simon et al. (2016), for these dust
parameters, our resolution of ~0.001667H, is sufficient to ade-
quately sample the planetesimal distribution, typically providing
several planetesimals per L02 sized box. At higher resolutions, the
dust particles can collapse to smaller length scales because gravity is
discretized at the grid cell scale, and thus smaller mass planetesimals
can be formed, and a greater number of planetesimals overall. At
lower resolutions, only a few planetesimals per LO2 box can form.

While the ratio of the dust-to-gas mass surface density is Z = 0.02,
the ratio of the mid-plane dust mass density and dust gas density,
given by

-1
¥4 H H
@EJJ22<J> , (14)
Pgo Xy Hy H,

is actually rather high once the dust settles to the mid-plane. The ratio
Hy/H, approaches ~0.05, which gives pg,o/pg, 0 ~ 0.4, approaching
unity. Also, as shown in the next section, the relationship between
the total dust mass and the total gas mass in the simulation domain
is Myus, T = 0.25My 1. This is because the vertical extent of the
box is 0.2H,, which excludes a significant portion of the gas mass in
this small patch of the protoplanetary disc, while all the dust mass in
the vertical dimension is included within the domain (recall Hy ¢ =
0.02H,).

2.4 Physical unit conversion

Following Simon et al. (2016) and Johansen et al. (2012), we convert
into physical units by considering a mass unit given by My = pg oH. 3,
and then use the MMSN model (Hayashi 1981) for the gas scale
height as a function of disc radius, Hy(r) ~ 0.033(+/AU)**. With
r = 3 AU, we have My, = 6.7 x 10%° g. For our smallest (L.02)
boxes, the total amount of gas in the box is Mg, 1t ~ 0.008M).
With By = v27pe0He, T = Maus, /(LiLy), We have Mgy 1 =
«/E(LX/Hg)(Ly/Hg)ZMO. Again, for the 102 boxes, this gives
Mg, T &~ 0.002M( = 0.25M gy 7 and with the conversion for M, to
physical units, assuming a global disc radius of » = 3 AU, the total
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mass of dust in the 02 boxes under these assumptions is Mqus, 1 =
1.34 x 10** g &~ 1.5Mceres.

With the same MMSN prescription for Hy(r) as above, 0.2H,
(the side length of our smallest domain) converts into ~0.025 AU
if we place the simulation box at » = 3 AU. At the same radius,
our resolution unit of ~0.00167H, converts into ~2 x 10~* AU, or
32000 km.

2.5 Computational resources

Every simulation in this study was integrated to at least t = 200!
in ATHENA. The number of CPU hours used to integrate to t =
200Q~! was ~3500 for each 1,02 simulation, ~8200 for each L04
simulation, and 27 400 for the L.08 simulation. All simulations were
run on the ComputeCanada Niagara cluster.

2.6 Planetesimal mass distribution characterization

In this section, we describe the methods we used to quantify the
mass distribution of planetesimals formed in our simulations. The
cumulative mass distribution, N (1m,), is the number N is the number
of planetesimals of greater or equal mass than m,. Following Simon
et al. (2017), we estimate the differential mass distribution via

dN 2

T =, 5)
dmy, Mpit1 — Mpi—]

where i denotes the ith planetesimal ranked in increasing mass. We
use the maximum likelihood estimator (MLE) of Clauset, Shalizi
& Newman (2009) to estimate the power-law index p such that
dN/dmy ocm P This gives

n —1

P

p=1+n[21n<i>] : (16)
i1 Mp,min

where n is the number of planetesimals in the set of planetesimal

masses, {my, ;}, and my miy is the minimum planetesimal mass in the

set. The error in the estimate for p is
p—1
Vo
Other studies (Schéfer et al. 2017; Li et al. 2019) characterized
the mass distribution with a variety of functions that contain more
parameters, including some that combined a power-law fit with an
exponential cut-off. Since we use only moderate resolution and
thus have lower planetesimal numbers than the high-resolution

simulations from Simon et al. (2016), we choose to only fit our
data with a single power law.

an

2.7 Group finding

We employ the group finding algorithm SKID (Stadel 2001) to
identify gravitationally bound clumps in our particle data, which
we refer to as planetesimals in our study.

The Hill radius, Ry, characterizes the roughly spherical region
where a planetesimal’s gravity dominates over shear (Armitage
2013). This radius can be expressed as

1/3
m,G
Ry = (7392 ) ) (18)
which gives the Hill density for a planetesimal with mass m1,,
3 Q?
pH=— 2 —9 (19)
47 Ry 4nG
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Figure 1. Dust surface density in the x—y plane for each of the seven simulations. The colour represents the logarithm of the dust surface density normalized
by the mean dust surface density. Bound planetesimals identified by the group finder are highlighted by the white circles, where the radii of the circles is equal
to the Hill radius (equation 18). Each snapshot represents the simulation at time 7 = 80 in units of the inverse orbital frequency, Q.

The SKID algorithm computes a mass density estimate on the dust
particle data, and we consider any clumps with densities above py
and with a sufficiently large mass m,, so that the Hill radius for that
clump is greater than the width of the hydrodynamic grid cell, Ax
= L,/N,. These are the same conditions used in Li et al. (2019) and
Gole et al. (2020), who likewise employed a clump finding algorithm
on the dust particle data to identify planetesimals. We note that the
results of our study are not sensitive to these cut-offs as most of
the identified planetesimals are massive enough that their Hill radius
Ry is much larger than Ax, and the densities of the particles in
these clumps are well clear of py, confirming that these particles are
unambiguously gravitationally bound.

3 PLANETESIMAL MASS DISTRIBUTION

In this section, we examine the variability in the formation of
planetesimal via the SI. We explore this via simulations with domains
of varying sizes and re-runs of otherwise identical simulations with
different random seeds used to distribute the dust particles (see
Section 2.2).

Fig. 1 shows the dust surface density in the x—y plane for each
of our simulations at + = 80Q2~'. We choose to present the dust
surface density and perform our mass distribution analyses at ¢t =
80Q~! because at this time, enough planetesimals have formed to
sample the distribution well, but this is also before planetesimals have
grown substantially.? The planetesimals in Fig. 1 are highlighted with
white circles. Visually, it is clear that the distribution of dust varies
significantly amongst the simulations with the same domain size
and different random seeds. For the larger domain runs (such as
L.08), regions that have the same area as an entire LO2 run may
contain many more or many fewer planetesimals at the same state of
evolution.

31n Section 4, we discuss how the cross-sections of the bound dust objects in
the simulations in this study (and all similar studies) are unrealistically large,
and how this impacts the mass distribution over time.

3.1 Cumulative number distributions

For these data, we subdivide the larger simulations (L04a, L04Db,
L.08) into regions with the same area as the 1,02 runs. The cumulative
number distributions for each subregion are shown as separate lines
in Fig. 2. Explicitly, there are four such subdomains for each L.04
run and 16 for L.08.

Fig. 2 demonstrates the large variability in the cumulative number
distribution for the planetesimal masses at r = 80Q~! in these equal
area regions. At the mass m,/M; ¢, = 0.03, the spread in the number
of planetesimals within the different L02 simulations is 14-22, in
the 1,04 simulations, the spread is 6-14, and in the L.08, the spread
is 6-29. This spread — most easily seen in the L08 simulation,
which represents largest total area with 16 L02-sized boxes —
demonstrates the variable behaviour in the planetesimal formation
process via the SI that is not represented well by even a few L02
simulations.

There is also variation in how these planetesimals are distributed
in mass. There are many planetesimals between 0.02 Mceres and
0.03 Mceres in the L02a run and between 0.01 Mceres and 0.02 Mcees
in the LO2c run, but the other LO2 runs do not have many
planetesimals at these masses. This trend is observed in the samples
of L.02-sized domains within the larger boxes as well.

3.2 Differential number distributions

Fig. 3 shows the differential mass distributions, estimated as de-
scribed in 2.6. Each symbol in the top panel represents dN/dM for
just one of the four L02 simulations. However, the indicated power-
law index p was computed with all four runs. The same procedure
was used for the 104 runs in the middle panel.

We find power-law indices of pp, = 1.73 £ 0.09, pos = 1.64 £ 0.07,
pos = 1.60 == 0.04 for the different domain sizes. The decreasing un-
certainty reflect the larger total area. Within this modest uncertainty,
the different cases agree with each other and are also generally in
agreement with values reported in Simon et al. (2016, 2017) and
Johansen et al. (2015).
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1072 10!

Figure 2. Cumulative number distributions of the planetesimal mass at
time ¢ = 802~!. For the 1,04 and .08 data, the simulation domains have
been subdivided into smaller boxes equivalent in size to the L02 domains
(see Section 3.1). The data represent the planetesimal distribution at the
simulation time r = 80Q~!, the same snapshot considered in Figs 1 and 3.
The planetesimal masses are given in units of the total mass of the dust in
an L02-sized domain on the bottom x-axis and the mass of Ceres on the top
x-axis (see Section 2.4 for physical unit conversions).

The mass distribution of the planetesimals changes over the course
of the simulations and this is reflected in the indices as shown in
Fig. 4. When considering the small domain simulations individually,
as in the top panel, there is a lot of variance in the value of p, typically
ranging from 1.5 to 2.0, and upper and lower limits exceeding that.
This partly reflects the total numbers in each sample being in the
range of 10-30 at the chosen resolution. There is a general trend to
less variation at later times and smaller p-values.

In the bottom panel, when the larger domains are considered and
the planetesimal populations from the multiple L.02 and L.04 runs
are combined, there is much less variance in the value for p. The
steady, decreasing trend with time is readily apparent. At r = 50Q~",
when enough planetesimals have formed to compute a reliable value
for p, the values range between 1.6 and 2.0 across the different sized
simulations, and well after planetesimals have formed, att = 150Q~",
the values are between 1.4 and 1.6. A decrease in p represents a shift
towards fewer and more massive planetesimals at late times.
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Figure 3. Differential number distributions of the planetesimal mass, com-
puted according to equation (15). The data for each of the seven simulations
are plotted individually. The grey dashed lines show power-law fits, where
the slopes are calculated according to equation (16). The calculation for the
fit in the L0O2 panel includes every data point for all four simulations, and
the fit in the L04 panel includes every data point in the two simulations. The
data represent the planetesimal distribution at the simulation time r = 80Q ",
the same snapshot considered in Figs 1 and 2. The planetesimal masses are
given in units of the total mass of the dust in an L.02-sized domain on the
bottom x-axis and the mass of Ceres on the top x-axis. See Section 2.4 for
details on the conversion to physical units (see Section 2.4 for physical unit
conversions).

A trend toward larger masses with time is somewhat expected.
However, a clear demonstration of this trend has not been demon-
strated in previous studies. In fig. 3 from Simon et al. (2017), the
authors show data for p over time in their simulations, but only
over a relatively narrow range of time.* Similarly, Schifer et al.
(2017) show how the values of their fit parameters change over time,
but also only for a narrow window. This decrease in distribution fit
parameters emphasizes that care is needed when attempting to extract
a single value for the power-law index or a single set of parameters
that describes the mass distribution of planetesimals formed by the
SI. The mass distribution is transient and should be expected to

4Our physical dust parameters very closely match the simulation from the
middle panel of their fig. 3.
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Figure 4. The slope of the power-law fit to the dN/dm; mass distributions
over time. The power-law index p is calculated according to equation (16).
Top panel: the data for the L.02 simulations. Bottom panel: the data for all
seven simulations. As in Fig. 3, when computing the power-law index, every
data point in all of the 1,02 simulations is included in the calculation for p, and
the same goes for the 1.04 data. Both panels: The shaded region represents
o, the error in p, calculated according to equation (17).

evolve indefinitely, albeit as a slowing rate, particularly when a larger
simulation domain provides for more material as shown in the next
section.

3.3 Total mass of dust in planetesimals and the onset of
planetesimal formation

Fig. 5 shows the total mass of the planetesimals in the simulations
over time. As in Fig. 2, the larger domain simulations are divided into
smaller subdomains with the same area as the L02 runs. The 1.0 8 run
shows the largest variance in these data. After t = 40Q~!, the spread
in the total dust mass in planetesimals in any of the subdomains from
the 1,08 run spans 5—45 per cent of the total mass of dust in a single
subdomain. The data from the L02 and L.04 runs generally fit within
the maximum-minimum bounds of the 1,08 run. Once again we note
that simply re-running these simulations with a different random
seed leads to significantly different consequences for planetesimals
formation, shown here directly by the wide spread denoted by the red
shaded region that is quite similar to the region-to-region variation
in the larger domains.

Fig. 6 shows the maximum value of the dust surface density,
max(X4), in the x—y plane over the course of all seven simulations.
Before approximately ¢ ~ 107!, all simulations evolve quite
similarly, however, between about # ~ 10 and 20Q7!, the larger
domain simulations have the highest values of max(Xy). After this
time, highly turbulent motions are present in the dust dynamics
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Figure S. The total mass of the planetesimals M}, in the simulations over
time. For the 1,04 and L.08 data, the simulation domains have been divided
into smaller boxes equivalent in size to the L02 domains (see Section 3.1).
For the 102 data, all four of the small domain simulations are considered
simultaneously, and the L04 data consider both of the intermediate sized
simulations. The solid line represents the average mass of planetesimals for
all the 102 or L02-sized boxes, and the shaded region is bounded by the
maximum and minimum values in this set. The planetesimal masses are
given in units of the total mass of the dust in an 1.0 2-sized domain on the left
y-axis and the mass of Ceres on the right y-axis. See Section 2.4 for details
on the conversion to physical units.
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Figure 6. Maximum value for the dust surface density in the x—y plane of the
seven simulations over time, normalized by the mean dust surface density.
The circles represent the point in time where each simulation first formed
planetesimals.

and the chaotic evolution of the dust density leads to diverging
tracks.

The point where planetesimals first form in each simulation
(denoted by the circles in Fig. 6) spans a range of t = 15-35Q7".
This is another representation of the non-linear nature of the SI:
Even among nearly identical simulations, the dust surface density
can evolve differently, which affects the timing for planetesimal
formation. Also, the first formation of planetesimals tends to occur
earlier in the bigger domains. This is likely related to the observation
that the value of max(X,) is higher in the larger domains from ¢ ~
10 to 20Q2~". Planetesimal formation requires large overdensities,
and the simulations that first reach dust densities sufficient for
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gravitational collapse will be the first to form planetesimals. The large
domain simulations can more quickly reach high dust overdensities
because large-scale dynamical modes can enable a faster growth to
more extreme local density maxima. The influence of these large-
scale modes can also be seen in the variation in the spatial distribution
of the planetesimals at = 80Q~" in Figs 1 and 2. The smaller .02
domains cannot represent the large-scale modes available in the .08
domains. We will quantify and discuss the presence of these large-
scale modes in an upcoming paper in this series.

4 SUMMARY AND DISCUSSION

In this study, we used 3D simulations of patches of protoplanetary
discs to study the formation of planetesimals from the gravitational
collapse of dust overdensities generated by the SI. We employ
simulations that use larger domains than most studies and higher
resolution than a study that used similar sized domains. Also, we
re-run simulations with identical physical parameters except for
the randomized placement of the dust particles — a novel approach
for these kinds of simulations. Both the larger domains and re-run
simulations allow us to probe the variability in the population of
planetesimals, which is caused by the non-linear nature of the SI.
Our main results are as follows:

(i) The cumulative number distribution for the planetesimal mass
in any of the single L.02 domains (which represent the maximum
domain size used by most similar studies) or L02-sized subdomains
within the larger simulations exhibits large variability. The re-run
L02 simulations exhibit a spread in the total number of planetesimals
that ranges from 14 to 22, and this spread is 6-29 in the subdomains
within the 1,08 simulation. That is, there is greater variability in the
planetesimal distribution in the larger domain simulations than the
smaller domains. The number of planetesimals at specific masses is
also highly varied within the different 1,02 or L02-sized domains.

(ii) Variability in the planetesimal formation process can also be
seen in the total mass of dust converted into planetesimals within
these domains. In the case of re-run 102 simulations, the mass
conversion rate to planetesimals varies between 5 and 25 per cent,
and within the domain of the L08 simulation, this conversion is
between 5 and 45 per cent. Spatial variability in the planetesimal
formation process has not previously been reported in other studies.

(iii) In our study, we characterize the differential number mass
distribution of planetesimals with a single parameter: a power-law
index. The value of this parameter is consistent across our three
different choices of domain size when all planetesimals for each
domain size are considered together, and our values as consistent
with the index measured by other studies. However, we find these
indices decrease over time, by as much as ~ 10 per cent over the
course of several orbits. This is representative of the planetesimal
population becoming more top-heavy, i.e. the largest planetesimals
disproportionately increase in mass over the course of the simulation.
Thus, identifying a single choice of parameters that describes the
mass distribution may be intrinsically difficult in our simulations
and similar set-ups.

(iv) The dust surface density in the radial-azimuthal plane in
the LO8 simulation displays box-scale structure in the azimuthally
oriented filaments. In this large domain, the filaments do not span
the full azimuthal extent as in the smaller domain simulations. The
distribution of planetesimals is also clearly unevenly distributed in
the azimuthal directions. This implies large-scale dynamical modes
that are not present in the small domains are contributing to the
highly variable planetesimal formation process observed in the L08
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simulation. In subsequent work, we intend to quantify these larger
scale modes and their role.

(v) The maximum surface density grows quicker and planetesi-
mals form earlier in larger domains simulations. This suggests an
active role for larger scale dynamical modes that exists in the larger
domains but cannot be represented by the smaller domains. Again, we
defer a detailed exploration of large-scale modes to a upcoming work
where we will consider filament evolution leading up to planetesimal
formation.

4.1 Ongoing challenges and future work

When characterizing the planetesimal mass distribution in our
simulation, and in all studies that employ similar techniques, a
fundamental issue arises due to limited computational power. At the
resolution in our study, the minimum length scale that is resolved, i.e.
the cell-size, converts into approximately ~ 30000 km in physical
units (see Section 2.4). The gravitational force is discretized at
this length scale, meaning this is the smallest sized bound object
that can represented in our simulation. We should aim to probe
kilometre and tens of kilometres length scales: the true length scale
of planetesimals, extrapolated from observations of asteroids and
Kuiper Belt objects. If we kept the same domain sizes from this
study, we would require some 1000 times better resolution, or
1000 times more grid points in each dimension. This is beyond
the reach of current computational capabilities. Our conclusion then
is the smallest planetesimals in our study (and all studies of this
variety) do not accurately represent what we would expect to be
the true smallest planetesimal mass in nature. Simon et al. (2016)
use higher resolution simulations in their study and the minimum
planetesimal mass in that study is not converged. This means that the
low-mass end of the planetesimal mass distribution in such studies is
still an open question. The minimum size of the planetesimals is an
important parameter in studies that model the interior evolution of
the planetesimals to constrain the planetesimal formation time-scales
in the early Solar system (Lichtenberg et al. 2018).

A second effect of the large grid cell size is the enhancement
of planetesimal-planetesimal interactions such as mergers and
planetesimal—disc interactions such as the accumulation of dust
material post-formation, compared to what would occur in nature.
As mentioned in our summary point (iii) above, we observe that
the mass distributions become increasingly top-heavy over time, but
this phenomenon is likely more pronounced in this and all similar
work due to artificially large interaction cross-sections. Planetesimals
could accrete mass after formation, but not with effective collisional
cross-sections of ~ 1 billion km?. To combat this issue, Gole et al.
(2020) use a clump-tracking algorithm to identify planetesimal
masses at the moment they are formed in their simulation. This probes
the ‘birth’ mass distribution, and avoids including planetesimals
that may have grown artificially large. Johansen et al. (2015) and
Schifer et al. (2017) replace bound dust objects with sink particles
but find this does not substantially change the mass distribution.
The objective of our study, which used moderate resolution, was
not to definitely explore the planetesimal mass distribution itself,
so we do not employ these more advanced techniques. Instead, we
study how these outcomes vary due to larger domain simulations and
across a sample of re-run simulations. Our methods are sufficiently
accurate for those purposes and illustrate the impact of domain size
and intrinsic variation.

Characterizing the azimuthally oriented dust filaments formed by
the non-linear SI (readily visible in Fig. 1) will be essential for
establishing a broader understanding of planetesimal formation via
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the SI. These filaments are where dust over-densities become large
enough to gravitationally collapse, hence they comprise the material
reservoirs for planetesimal formation. Key characteristics include
their radial width, and radial separation. The non-linear physics that
produces these filaments makes a priori predictions from analytical
theory difficult. A few studies have empirically investigated these
length scales (Yang & Johansen 2014; Gerbig et al. 2020). Of
particular interest is whether scales significantly larger than typical
simulation boxes could affect filaments and consequent planetesimal
formation. In a subsequent paper in this series, we will explore the
origin and impact of characteristic dust filament lengths scales and
the role of large-scale dynamical modes.
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APPENDIX A: SELF-GRAVITATING SHEARING
WAVE TEST

To test our implementation of self-gravity applied to the dust
particles, we used the shearing wave test from section 2.2.2 of Simon
etal. (2016) and section 1.3.1 of the Supplementary Information from
Johansen et al. (2007), which is based on methods from Goldreich
& Lynden-Bell (1965). In this set-up, the initial condition is a plane
wave perturbation in the x—y (radial-azimuthal) plane and uniform
properties in the z-direction, and the amplitude of the wave is
small compared to the background follows so that the evolution
of the amplitude can be described by a linear approximations to the
hydrodynamic equations. As in Simon et al. (2016) and Johansen
et al. (2007), we compare the evolution of the amplitudes from
the numerical integration in ATHENA to a semi-analytical Runge—
Kautta integration of the amplitudes computed using the solve_ivp
routine from the scipy.integrate module of SCIPY ver. 1.1.0
(Virtanen et al. 2020).

The numerical integration used the shearing box configuration
in ATHENA with purely periodic boundary conditions in y and z
and shear-periodic boundaries conditions in x. Also, to isolate the
influence of the self-gravity forces on the wave, we eliminate the
back-reaction of the aerodynamic drag of the dust particles on the
gas, which is akin to considering a dust-gas mixture with a very
low dust-to-gas mass ratio, u (see equation 2). The equations that
describe the full self-gravitating dust fluid in this case are thus

dpq

o —pg(V - v), (Ala)
d Q

Lo vo-Lw-mn), (Alb)
dr T
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V2d = 471G py, (Alc)

where u is the background gas velocity, but going forward we will
set this velocity to zero, placing the integration in the frame of
the background gas fluid, leaving the drag term above proportional
only the to dust fluid velocity with respect to to this background,
stationary gas fluid.The other symbols represent the same quantities
as Section 2.1. In the frame of the shearing flow, given by ((3/2)Q2x)y,
we have

dpa 3 _ Opa

ot = Vv, A2
o 2 3y paV - v (A2a)
dv 3 _ 0 1 Q

2 aor % —0Quk - - Qu - VO — oo, (A2b)
dr 2 oy 2 Ts

Vi® = 4G pq. (A2c)

Now, following Goldreich & Lynden-Bell (1965), we transform to
sheared axes, which we denote with a ":

¥ =x, (A3a)
Yy =y +G3/2)Qut, (A3b)
t'=t, (A3c)

and the derivatives in terms of these axes are

9_2 +@3/2)Qt 9 , (Ada)
ox  ox’ 9y’

9_0 (Adb)
oy ay’

d_d +(3/2)Qx' o (Adc)
dedr a9y’

The linear perturbations to the fluid properties are of the form
pa = paoll + dpql, (A5)

v =710+ dv, (A6)

thus, we note that §p4 is a dimensionless quantity. The functional
form the perturbations is a plane wave in the sheared axes,

8f(\y) = fexplitkex’ +kyy' = wi)]. (A7)
Lastly, still following Goldreich & Lynden-Bell (1965), we denote a
dimensionless shear time parameter,

T = (3/2)Q1 — k, /k,. (A8)

and we will track the temporal evolution of the wave according to this
parameter 7. Returning to the shearing-frame fluid equations from
equation (A2), applying the linear, small-amplitude perturbations
and discarding non-linear terms, we have the equations that describe
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Figure Al. Evolution of the amplitudes of the self-gravitating dust fluid
from the shearing wave test. The solid lines represent the evolution from a
semi-analytical Runge—Kutta integration, and the dots represent the evolution
from the numerical (ATHENA) integration. The time axis is units of the
dimensionless shearing time parameter 7.

the evolution of the amplitudes of the wave with the dimensionless
time 7:

Wou _ 2Ky 50 7 4 50)) (A%)

—— = —i — (v, T vy), a

dr 30 y

dsv, 4 .2 4nG 2, (A%h)
= —8vy +io—T———5 0a000a — s—8Vx,

dr 30 TR (4 )P0 T 3y

dév, 1 2 4nG 2
i 08pa — —— 5. A9

de 3 Qg )0 T 3 (A9)

We choose the following parameters for the numerical (ATHENA) and
semi-analytic integrations: T, = pg 0 = k, = G = 1.0, and the initial
conditions: 7o = —2, §v(to) = Sv,(79) =0, §pa(t0) = 107%. The
domain in ATHENA is set-up with (L, L,, L;) = (27, 27, 0.2) and
(Ny, Ny, N;) = (256,256,2).

The evolution of the amplitudes of the sheared wave is shown in
Fig. Al. The numerical and semi-analytic solutions agree strongly
until T ~ 4, when the 8p4/pq 0 amplitude approaches 0.1, and
the perturbation becomes non-linear. At this point, the linearized
equations no longer describe the non-linear behaviour captured in
the numerical integration. This confirms that our implementation of
self-gravity for the dust particles follows the expected behaviour.
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