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ABSTRACT
We consider intensity mapping (IM) of neutral hydrogen (H I) in the redshift range 0 � z � 3 employing a halo model approach
where H I is assumed to follow the distribution of dark matter (DM) haloes. If a portion of the DM is composed of ultralight
axions, then the abundance of haloes is changed compared to cold DM below the axion Jeans mass. With fixed total H I density,
�H I, assumed to reside entirely in haloes, this effect introduces a scale-independent increase in the H I power spectrum on
scales above the axion Jeans scale, which our model predicts consistent with N-body simulations. Lighter axions introduce a
scale-dependent feature even on linear scales due to its suppression of the matter power spectrum near the Jeans scale. We use
the Fisher matrix formalism to forecast the ability of future H I surveys to constrain the axion fraction of DM and marginalize
over astrophysical and model uncertainties. We find that a HIRAX-like survey is a very reliable IM survey configuration, being
affected minimally by uncertainties due to non-linear scales, while the SKA1MID configuration is the most constraining as
it is sensitive to non-linear scales. Including non-linear scales and combining a SKA1MID-like IM survey with the Simons
Observatory CMB, the benchmark ‘fuzzy DM’ model with ma = 10−22 eV can be constrained at few per cent. This is almost an
order of magnitude improvement over current limits from the Ly α forest. For lighter ULAs, this limit improves below 1 per cent,
and allows the possibility to test the connection between axion models and the grand unification scale across a wide range of
masses.

Key words: elementary particles – dark matter – large-scale structure of Universe – cosmology: observations – cosmology:
theory – radio lines: general.

1 IN T RO D U C T I O N

Measurements of the power spectrum of the cosmic microwave
background (CMB) anisotropies establish the precision cosmological
standard model (Planck Collaboration XI 2016; Planck Collaboration
VI 2020). Intensity mapping (IM) of spectral lines has great potential
as a future cosmological probe (Loeb & Wyithe 2008; Bull et al.
2015; Kovetz et al. 2017, 2019; Bernal et al. 2019; Padmanabhan,
Refregier & Amara 2019; Parsons et al. 2019), since the frequency
dependence due to redshift gives a tomographic three-dimensional
map, vastly increasing the number of accessible modes compared to
the CMB (Mao et al. 2008).

Hydrogen is the most abundant element in the Universe: According
to measurements and the standard theory of big bang nucleosynthesis,
it makes up approximately 75 per cent of all ordinary matter (Planck
Collaboration VI 2020). In the intergalactic medium at z � 6,
hydrogen is ionized by UV radiation from galaxies, while neutral
hydrogen (H I) resides to great extent (about 80–90 per cent) in
comparatively dense clouds, which shields them from ionizing UV
radiation. These clouds are known as damped Ly α (DLA) systems

� E-mail: jurek.bauer@uni-goettingen.de (JBB); david.marsh@uni-
goettingen.de (DJEM)

and are confined to galaxies (Prochaska, Herbert-Fort & Wolfe 2005;
Zwaan et al. 2005; Lah et al. 2007, 2009). Also, simulations have
repeatedly found that > 90 per cent of the neutral gas is in haloes (see
Villaescusa-Navarro et al. 2018, and references therein). Therefore,
H I traces the structure of galaxies and their host dark matter (DM)
haloes, and IM of the hyperfine, or 21-cm, H I transition is a probe
of DM clustering. An empirical (data-driven) framework for the H I

power spectrum is provided by the H I halo model (Padmanabhan
& Refregier 2017; Padmanabhan, Refregier & Amara 2017), which
maps between the theoretical DM halo mass function (e.g Sheth
& Tormen 2002), and the H I haloes that trace it (see e.g. Bagla,
Khandai & Datta 2010; Marı́n et al. 2010, for other H I halo
prescriptions).

DM is a key ingredient in the cosmological standard model, yet its
nature is a mystery. The only DM candidate in the standard model of
particle physics is the neutrino, which is known to make up less than
1 per cent (but more than 0.5 per cent) of the total DM abundance
because the relativistic velocity of the neutrino background make
it too ‘hot’ to account for observed structure formation (Alam
et al. 2017; Planck Collaboration VI 2020; Tanabashi et al. 2018).
Observations are consistent with the majority of the remaining DM
being composed of a single species of cold, collisionless DM (CDM).
Of relevance to this study, CMB anisotropies constrain the density
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parameter of ultralight axions (ULAs) to be �ah2 � 0.003 over the
mass range 10−32 ≤ ma ≤ 10−25 eV (Hložek, Marsh & Grin 2018).

The existence of multiple species of light axions is a generic
and well-established prediction of string/M-theory (Conlon 2006;
Svrcek & Witten 2006; Acharya, Bobkov & Kumar 2010; Arvanitaki
et al. 2010; Demirtas et al. 2018) and many other extensions of the
standard model (e.g Peccei & Quinn 1977; Weinberg 1978; Wilczek
1978; Banks, Dine & Graesser 2003; Kim & Marsh 2016). The axion
density parameter is determined by the axion mass, ma, and symmetry
breaking scale (or ‘decay constant’), fa, as well as a single random
number, |θ i| ∈ [0, π ], related to the initial conditions (see Marsh
2016, for a review). In the mass range of interest to cosmology,
the decay constant is constrained to be in the range 109 � fa �
1018 GeV, with some models preferring the grand unified scale, fa ∼
1016 GeV. Taking θi ∼ O(1), it is thus predicted that ULAs with ma

� 10−22 eV contribute subdominantly to the DM density (consistent
with observations). On the other hand, those with ma ∼ 10−22 eV,
known as ‘fuzzy DM’ (Hu, Barkana & Gruzinov 2000), can make
up a significant fraction of the DM, and furthermore have a host of
interesting phenomenological consequences on galaxy formation and
other astrophysical systems (see e.g. Arvanitaki et al. 2010; Schive,
Chiueh & Broadhurst 2014; Marsh 2016; Hui et al. 2017; Niemeyer
2019).

In this work, we use the H I halo model to explore the effects of a
ULA subspecies of DM in the mass range 10−32 ≤ ma ≤ 10−22 eV
on the H I power spectrum at z ≤ 6. Due to the large ULA de Broglie
wavelength, small-scale structure formation is suppressed relative to
CDM, which manifests in an increase in the H I power on large scales
(see Section 2.3). We show that, due to this effect, future IM surveys
in conjunction with the CMB are sensitive to a per-cent-level ULA
component of DM, and can thus be used as a precision test of the
predictions related to fuzzy DM and the grand unified scale for fa.

This paper is organized as follows: First, we introduce the
formalism in Section 2. This includes a description of the axion
physics at play (Section 2.1) and the H I halo model and how axions
are accommodated to it (Section 2.2). We present the results on the H I

power spectrum and compare them to those of pure ULA numerical
simulations in Section 2.3. In Section 2.4, the configurations for the
IM surveys are described, and in Section 2.5, the Fisher forecast
formalism is introduced. We proceed by presenting the main results
and constraints gained within this framework in Section 3 and discuss
our main findings in Section 4.

2 TH E H I POWER SPECTRU M

21-cm IM measures the integrated intensity of the spin-flip transition
of neutral hydrogen across the sky and redshift (see e.g. Bull et al.
2015, and references therein). The redshifted 21-cm radiation is well
into the radio regime, which means that matter along the line of
sight does not interfere with the signal. The redshifted signal can be
detected from the ‘Dark Ages’, through the epoch of reionization
(EoR) and the post-reionization Universe. After reionization, the
remaining neutral hydrogen is expected to reside to great extent
in galactic haloes. Thus, neutral hydrogen is expected to trace
the galaxy distribution in the current, post-reionization epoch (z
� 6). Over recent years, it became apparent that using IM to
measure the large-scale structure in the late-time Universe is a
promising cosmological probe (Bharadwaj & Sethi 2001; Chang
et al. 2010; Battye et al. 2013; Bull et al. 2015; Villaescusa-
Navarro, Bull & Viel 2015). In this work, we especially focus on
the prospect of these surveys to constrain cosmologies including

ULAs. To do this, we employ and modify an empirical framework
to describe the 21-cm signal conceived and further constrained by
Padmanabhan et al. (Padmanabhan, Choudhury & Refregier 2015,
2016; Padmanabhan & Refregier 2017; Padmanabhan et al. 2017).
This formalism effectively treats the neutral hydrogen as a biased
tracer of the underlying matter distribution and the model parameters
are entirely constrained by the compilation of the latest observations
on neutral hydrogen systems over z ∼ 0–5. The astrophysical priors
thus obtained are realistic since they are grounded in present-day
observations. The advantages of using such an empirical model
are manifold: Due to the computational simplicity, it allows us to
consider many models, vary physics easily, and it can be conveniently
implemented within a Fisher matrix analysis. Furthermore, our model
reproduces the qualitative features of simulations with ULA DM by
Carucci, Corasaniti & Viel (2017).

2.1 Axion physics

In this section, we shortly recapitulate the relevant linear physics of
axions. It is included in axioncamb1 (Hložek et al. 2015), which
we use to perform the calculations. ULAs are described as a pseudo-
scalar field obeying the Klein–Gordon equation for temperatures
below the global symmetry breaking and non-perturbative scales.2

This classical treatment of the axion field is justified due to huge
occupation number of a condensate with cosmological density.

Axion DM is produced by vacuum realignment of the classical
field (Abbott & Sikivie 1983; Dine & Fischler 1983; Preskill, Wise &
Wilczek 1983). The axion field at early times in the Universe, shortly
after inflation, is overdamped and therefore mimics the vacuum
energy with equation-of-state parameter w = −1. Later, when ma

∼ H (with H := ȧ/a and a being the scale factor in the FLRW
metric) the axion field starts to oscillate, defining aosc. From that
time on, the energy density scales as ρa ∼ a−3, just as ordinary
matter (and the pressure pa and wa = pa/ρa oscillate rapidly around
zero). This makes the axion field a suitable candidate for CDM. The
axion density parameter depends on the value of the axion energy
density at aosc, i.e. �a = ρa(aosc)a3

osc/ρcrit (Marsh & Ferreira 2010),
with ρcrit being the cosmological critical energy density today. A
useful approximate formula for the axion density parameter is given
by (Hložek et al. 2015)

�a ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3.3 × 10−3
(

�m
0.3

3600
1+zeq

)3/4

×
(

ma
10−22 eV

69 km
s Mpc

H0

)1/2 (
φi

1016 GeV

)2
, if aosc < aeq

7.6 × 10−6
(

�m
0.3

) (
φi

1016 GeV

)2
, if aeq < aosc < 1.

(1)

In the following, we will parametrize the axion abundance relative
to the total DM density parameter with �a/�d and �d = �c + �a.

Perturbation in this axion field can be solved with help of a WKB-
like ansatz, once the scalar field is in its oscillary phase. One finds3

(Hwang & Noh 2009) that 〈w〉 = 〈w′ 〉 = 0 with a non-negligible
sound speed arising from the large de Broglie wavelength of the

1Publicly available at https://github.com/dgrin1/axionCAMB.
2In summary, we treat the axions with potential V = m2

aφ
2/2, time-

independent mass ma, and no interactions, e.g. axion-photon conversion in the
presence of a magnetic field (e.g. see Creque-Sarbinowski & Kamionkowski
2018, for the impact on IM surveys of a possible two-photon decay of axion).
3Primes denote derivatives with respect to the conformal time.
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axion:

c2
s =

k2

4m2
aa2

1 + k2

4m2
aa2

. (2)

Thus, perturbations in the axion field are subject to a pressure induced
by the uncertainty principle (relevant at cosmological scales due to
the tiny mass of the axion). The equations of motion in synchronous
gauge for the perturbed axion energy density is that of a general fluid
with the above parameters (when a 
 aosc) (Marsh 2016)

:

δ′
a = −kua − h′

2
− 3Hc2

s δa − 9H2c2
s ua/k, (3)

u′
a = −Hua + c2

s kδa + 3c2
sHua. (4)

Here, H denotes the conformal Hubble rate and ua the dimensionless
perturbed heat flux. The additional non-canonical terms on the right-
hand side of equations (3) and (4) account for equation (2) applying
only in the axion comoving gauge (Hložek et al. 2015).

From equations (3) and (4), it is evident that for large scales
the pressure terms go to zero, c2

s → 0, and the dynamics of the
axion equations of motion match those for CDM. For smaller scales,
however, the sound speed term becomes relevant, giving rise to a
scale-dependent, oscillating solution, ultimately responsible for the
suppression of structure when compared to CDM.

To get an idea how this scale- and time-dependent sound speed
term affects the evolution of axion density perturbations, let us first
define the scale at horizon crossing,

kc = aH, (5)

and the scale where oscillations roughly start, kr ∼ maa. Modes with
k > kr are thus relativistic modes with c2

s ≈ 1, while modes with k <

kr are non-relativistic with c2
s → k2/(4m2

aa
2). As kr increases with

time, more and more modes become non-relativistic.
If a mode is already non-relativistic when it enters the horizon (kc <

kr⇔H < ma), the sound speed term is negligibly small and the mode
will behave as ordinary DM (‘long modes’). If, however, the mode
is relativistic when entering the horizon (ma > H) and becomes non-
relativistic later on, the sound speed term cannot be neglected and
the axions ‘free-stream’ (‘short modes’). These modes will decay
until some later time (when the gravitational pull is dominant),
given by the comoving Jeans wavenumber kJ = a

√
Hm (Khlopov,

Malomed & Zeldovich 1985). The comoving Jeans wavenumber
is time-independent in a radiation-dominated epoch. So, relativistic
modes entering the horizon when radiation dominates will decay
until after matter–radiation equality. Let us define the minimal scale
km at which suppression, i.e. no growth of modes, sets in for given
mass ma (cf. Fig. 1). The axions therefore introduce a step-like feature
to the matter transfer function, which is due to its scale-dependent
sound speed term (Arvanitaki et al. 2010). The width of the step is
given by km and kJ. The different scales at play are shown in Fig. 1
for an axion of mass ma = 10−28 eV.

Finally, note that this behaviour is conceptually similar to that of
massive neutrinos. Due to their large thermal velocities, massive neu-
trinos also introduce an effective sound speed term cs = T 0

ν /(mνa)
for a � T 0

ν /mν , where T 0
ν is the neutrino temperature today and mν

the neutrino mass (e.g. Amendola & Barbieri 2006; Marsh et al.
2012). This, equivalently to km and kJ for axions, defines a ‘free-
streaming’ scale below which the pressure term dominates and
clustering is prohibited. Analogous to axions, this also introduces
a step-like feature to the transfer function, i.e. a suppression of the
matter power spectrum above km when compared to CDM.

Figure 1. Evolution of the relevant scales for axion perturbations for an axion
mass of ma = 10−28 eV and other parameters as given in Table 1. The hatched
region shows the scales inside the Hubble horizon (equation 5) and the purple-
shaded region indicates non-relativistic modes (where c2

s ≈ k2/(4m2
aa

2)).

2.2 Modelling H I

In the following, we introduce the H I halo model exploited for this
study (Section 2.2.1) and specifically comment on the inclusion of
ULAs in Section 2.2.2. Halo models are concerned about amplitudes
of matter fluctuations larger than one (Cooray & Sheth 2002)
and matter components with small variance can approximated as
not bound within haloes. For axions, the latter statement is mass
dependent as we will show in Section 2.2.2.

2.2.1 The halo model and angular power spectrum

We exploit spherical harmonic tomography to analyse the two-point
correlation of the H I fluctuation. This choice circumvents the need
to assume a specific comoving distance relation r(z) and, therefore, a
specific cosmology when analysing the data. Spherical harmonic
tomography discretizes the redshift range and decomposes the
signal in each redshift bin with spherical harmonics. The measured
brightness temperature δT (x, z) is projected on the sky with the
commonly used projection kernel (Battye et al. 2013):

Wi(z) =
{

1
�z

, if zi − �z
2 ≤ z ≤ zi + �z

2

0, otherwise.
(6)

The dimensionless 2D angular power spectrum (dividing by the mean
brightness temperature) is ultimately given by

C�(zi, zj ) = 2

π

∫
dz Wi(z)

∫
dz′ Wj (z′)

×
∫

k2 dk PH I(k, z, z′)j�(kr(z′))j�(kr(z)), (7)

where j�(x) is the spherical Bessel function of the first kind, and
PH I(k, z, z′) denotes the unequal-time H I power spectrum.4 The
comoving distance to redshift z is given by (with c being the speed
of light)

r(z) = c

∫ z

0

dz′

H (z′)
. (8)

4Note that this quantity is without further considerations not purely express-
ible in terms of the equal-time H I power spectrum as defined above (cf. the
discussion after equation 18 of Camera & Padmanabhan 2019).
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In the Limber approximation (Limber 1953), the spheri-
cal Bessel function of the first kind is approximated by
j�(x) → √

π/(2� + 1)δD(x − (� + 1/2)), and correlations between
different redshift bins cancel. Thus, we calculate the dimensionless
angular power spectrum by

C�(zi) � 1

c

∫
dz

W 2
i (z)H (z)

r2(z)
PH I

(
� + 1

2

r(z)
, z

)
, (9)

where PH I(k, z) denotes the Cartesian H I power spectrum. LoVerde
& Afshordi (2008) showed that in the case of narrow redshift bins,
the approximation is expected to be accurate within 1 per cent
above � ∼ 10 for P(k, z) = P(k)D2(z). In this study, similar narrow
redshift bins are used (see below). If the above factorization of
wavenumber k and redshift z does not hold, second-order corrections
to the Limber approximation arise. However, this factorization does
hold in the redshift range considered presently for ULAs with mass
> 10−32 eV. Out of this reason and given that ULAs leave the matter
power spectrum unchanged on large scales exactly where the Limber
approximation is known to be less accurate, we do not expect that the
accuracy changes significantly for C� in the present case (except for
the marginal case ma ∼ 10−32 eV). Moreover, Olivari et al. (2017)
showed that the difference between the exact formula and the Limber
approximation is small: The loss in information from the cross-
correlation of different redshift bins is roughly compensated in the
enhancement of the autocorrelation.

Note that in deriving equations (7) and (9) the effect of peculiar
velocities was neglected (Battye et al. 2013). The latter will lead to
redshift-space distortions (RSDs), which manifest themselves e.g. in
the Kaiser effect (Kaiser 1987) and the Sachs–Wolfe effects (for a
thorough discussion, see e.g. Bonvin & Durrer 2011). Seehars et al.
(2016) showed by a seminumerical approach (i.e. taking an N-body
simulation and populating the haloes with neutral hydrogen via H I–
halo mass relation) that the RSDs may be significant for large scales
(�� 200). None the less, we choose to neglect the RSDs in this paper.
Ignoring the RSDs is a conservative assumption in that including
them would provide additional cosmological constraints (Bull et al.
2015) and increase the 21-cm signal (cf. Seehars et al. 2016).
Likewise, including RSDs leads to significantly larger theoretical
uncertainties, due to the complexity of modelling non-linear scales.

It should be noted that they also increase the complexity of
modelling non-linear scales, leading to significantly larger theoretical
uncertainties.

To calculate the H I power spectrum, we exploit the neutral
hydrogen halo model, elaborated on in several papers (Padmanabhan
et al. 2016; Padmanabhan & Refregier 2017; Padmanabhan et al.
2017). The authors constrained it with the combination of all existing
low-redshift 21-cm observations, DLA data, and H I galaxy surveys
(e.g. Switzer et al. 2013; Zafar et al. 2013; Martin et al. 2012,
respectively). Specifically, the halo model assumes that a halo of
mass M at redshift z contains a number of galaxies that, in total,
host neutral hydrogen of mass MH I. Compactly, this statement is
condensed in the deterministic function ,

MH I(M, z) = αfH,cM

(
M

1011 h−1 M�

)β

exp

[
−
(

vc0

vc(M, z)

)3
]

.

(10)

This relation features three free parameters. α is the overall nor-
malization, β is the slope of the H I–halo mass relation, and vc, 0 is
the physical, lower virial velocity cut-off, above which a halo can
host neutral hydrogen. fH, c is the cosmic hydrogen fraction: fH, c =
�b/�m(1 − Yp), where Yp = 0.24 is the helium abundance.

Figure 2. The H I–halo mass relation from Padmanabhan et al. (2017).
The normalization α was fixed to match the neutral hydrogen density for
a cosmology with ma = 10−24 eV and other cosmological parameters given
in Table 1 at redshift 0. Red lines denote the fiducial values from the best-
fitting model in Padmanabhan et al. (2017) and the grey-shaded regions show
the effect upon varying the H I model parameters.

The virial velocity of the halo, vc(M, z), is related to its mass M
by

vc(M, z) =
√

GM

Rvir
, (11)

where the virial radius in physical coordinates is

Rvir =
(

3

4π

M

�hρ0

)1/3 1

1 + z
. (12)

ρ0 = �0ρcrit is the background density, also used to calculate
the halo mass function and bias (this choice will be discussed in
Section 2.2.2). The virial parameter �h takes the following form
(Bryan & Norman 1998)

:
�h = 18π2 + 82d − 39d2, (13)

d := �m(1 + z)3

E(z)2
− 1, (14)

where E(z) is given by H(z) = H0E(z). The H I–halo mass relation is
shown in Fig. 2, where the normalization α was fixed to match the
neutral hydrogen density for a cosmology with ma = 10−24 eV and
other cosmological parameters as given in Table 1.

Furthermore, to make fully use of the halo model, an exponential
profile for the H I is assumed, which is well motivated and commonly
used (e.g. Binney & Tremaine 1987; Cormier et al. 2016):

�H I(r,M) = �H I,0e−r/rs , (15)

where rs = Rvir(M, z)/cH I(M, z). �H I,0 is fixed such that integrating
the radial profile over a sphere of radius Rvir matches MH I(M, z).
Rvir is the virial radius given in equation (12) and cH I(M, z) is the H I

concentration parameter given by (Padmanabhan et al. 2017)

cH I(M, z) = cH I,0

(
M

1011 M�

)−0.109 4

(1 + z)γ
. (16)

The radial profile, therefore, has two free parameters, cH I,0 and γ .
H I IM constrains these parameters only poorly, since the specific
profile is only relevant at very small scales (for a halo of mass M =
1013 M� h−1 at redshift z = 2, one finds that 1/rs � 25 h Mpc−1)
and IM is mostly sensitive to larger scales (Padmanabhan et al.
2019). Thus, these parameters are assumed to be fixed throughout
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Table 1. Fiducial cosmological and astrophysical parameters
and step size for calculating the Fisher derivatives.

Parameter Fiducial value Step size

h 0.69 0.01
�d 0.251 42 0.004
�b 0.046 67 0.004
�a/�d 0.02 0.005
∑

mν (eV) 0.06 Fixed
Neff 3.046 Fixed
As 2.1955 × 10−9 10−13

ns 0.9655 0.0005
kpiv (Mpc−1) 0.05 Fixed
ma (eV) 10−32 < ma < 10−22 Fixed per run

vc, 0

(km s−1)
36.3 0.01

β −0.58 0.003
γ 1.45 Fixed
cH I,0 28.65 Fixed
�H Ih 2.45 × 10−4 Fixed

Notes. The cosmological parameters are the same as in the
forecast by Hložek et al. (2017) and are within current CMB
data constraints in Hložek et al. (2018). The astrophysical
parameters have been adopted from Padmanabhan et al. (2019)
and are the best-fitting values found in Padmanabhan et al.
(2017).

this study. The form of the concentration parameter assumes the same
halo mass dependence for CDM as for neutral hydrogen. This choice
is discussed in more detail in Section 2.2.2.

Ultimately, the Fourier transform of the radial density profile will
be of importance and is given by

uH I(k|M) = 4π

MH I(M)

∫ Rv

0
�H I(r,M)

sin kr

kr
r2 dr. (17)

For large cH I, it is well approximated by

uH I(k|M) � 1

(1 + (krs)2)2
. (18)

All quantities in the present model are given in comoving coordinates
(with exception of the virial velocity in equation 10). So, rs must
be in comoving coordinates too and the physical virial radius in
equation (12) has to be converted, which, in effect, cancels the
redshift dependence in the virial radius.

With this at hand, the Cartesian power spectrum is expressed by a
one-halo term and two-halo term:

PH I(k, z) = P1h, H I + P2h, H I, (19)

with

P1h,H I(k, z) = 1

ρ2
H I

∫
dM n(M, z)M2

H I(M, z)|uH I(k|M)|2 (20)

and

P2h,H I(k, z) = b2
H I(k, z)Plin(k, z). (21)

The H I bias relates to the halo bias b(M, z) and the halo mass function
(HMF) n(M, z) via

bH I(k, z) = 1

ρH I

∫
dM MH I(M, z)n(M, z)b(M, z)|uH I(k|M)| (22)

and

ρH I =
∫

dM MH I(M, z)n(M, z). (23)

Assuring ρH I = �H Iρcrit can be accomplished by fixing the normal-
ization α. Note however that this normalization cancels for the above
quantities and fixing ρH I = �H Iρcrit is computationally unnecessary.
For the calculation of the above quantities, we used the Sheth–
Tormen HMF and bias (Cooray & Sheth 2002). Both (HMF, n, and
halo bias, b) are computed from the variance of matter fluctuations:

σ 2(R, z) = 1

2π2

∫ ∞

0
Plin(k, z)W (k|R)2k2 dk. (24)

For a spherical top-hat window function in real space, mass and
radius are related by M = 4πρ0R3/3 and the Fourier transform of
that top-hat function is given by

W (k|R) = 3

(kR)3
(sin(kR) − kR cos(kR)) . (25)

The linear (matter) power spectra explicitly appearing in equations
(21) and (24) were obtained from AXIONCAMB.

2.2.2 Axions and H I

In the previous sections, the modelling of the 21-cm signal was
discussed in rather general terms. In this section, we describe the
way ULAs are accommodated in this formalism. In principle, to
model their impact, we have to consider its influence on the large-
scale structure (i.e. specifically the HMF and halo bias), on small
scales where they could influence the H I density profile as well as
on to the MH I(M) relation:

(i) For the LSS, the main idea we employ is to treat ULAs below
a certain mass similarly to massive neutrinos. For massive neutrinos,
considerable effort has been put into investigating their influence on
the HMF and bias: Large N-body simulations were employed and
analysed in a series of papers (e.g. Costanzi et al. 2013; Castorina
et al. 2014; Villaescusa-Navarro et al. 2014) and the spherical, top-
hat collapse model was revisited for massive neutrinos in Ichiki
& Takada (2012). Both studies found the halo mass function and
halo bias are better fit if one considers only the baryon and CDM
field, instead of the total matter field including neutrinos for their
computation. Consequently, to model the H I signal, one should take
the H I as a tracer of the CDM and baryon field, but not the total matter
field including massive neutrinos. Note that neutrinos and axions are
included in the dynamics of the perturbations and the background,
and so affect the CDM + baryon fluid indirectly.

Villaescusa-Navarro et al. (2015) included massive neutrinos in
modelling the H I signal for low redshifts (z < 3) in such a way
and could show that constraints on the sum of the neutrino masses
from late-time 21-cm observations are possible. To be precise, ρ0 =
ρcrit(�CDM + �b) was set throughout the calculation of the HMF and
halo bias and for the computation of the variance (equation 24) and
the two-halo term (equation 21), the power spectrum of the CDM
and baryon component, PCDM + b(k, z), was used. Furthermore, in the
present case, ρ0 was also considered for the calculation of the virial
radius (equation 12). The choice on ρ0 affects the H I density profile
(which is not significant as we will argue below) and the cut-off in
the MH I(M) relation.

To relate axions of mass ma to massive neutrinos, we choose to
compare the axion field variance to the neutrino field variance (see
Fig. 3): For massive neutrinos, this is much lower than unity and,
therefore, does not contribute significantly to the collapse of a halo.
This justifies the linear approximation for neutrinos as not bound
within haloes, as discussed. Based on this observation, we choose to
approximate ULAs in the same way as massive neutrinos whenever
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Figure 3. The variance with Pax/ν with parameters given in Table 1 and for
the neutrino calculation for �a/�d = 0. Halo masses are given with respect
to the total matter background density. For axion masses ma < 10−27 eV, the
variance is much smaller than 1, comparable to high neutrino masses, and as
such, we treat such ULAs linearly, and do not include them into haloes.

the variance is less than unity. In Fig. 3, we observe that this is true
for ma < 10−27 eV at z = 0. For axions heavier than this boundary
mass, ma � 10−27 eV, we choose to treat them as usual CDM (i.e.
collapsed into haloes following the Sheth–Tormen model for the
mass function), setting ρ0 = ρcrit(�CDM + �b + �a) and P(k, z) =
Pb + CDM + a(k, z).

(ii) The H I–halo mass relation is subject to several (astro-)physical
effects and absorbs those with a deterministic function of a few
parameters. It can be constrained empirically (fairly immune to the
HMF and cosmology) and – although not specifically including the
possible impact of axions to it – allowing it to vary with respect
to its parameters. A subtle issue is the choice of ρ0 mentioned
above, which affects the cut-off of H I in equation (10). To make
the background density (and redshift) dependence on that cut-off
clear, the exponential in equation (10) can be rewritten in terms of
the halo mass M as exp [ − Mmin(ρ0, z)/M] with

Mmin = 2.45 × 1010 M� h−1

(
vc,0

36.3 km s−1

)3 (0.3

�0

)1/2

(1 + z)−3/2.

(26)

In effect, taking only the CDM+baryon component increases the
cut-off mass when translating the exponential in the MH I(M) relation
(equation 10) to halo masses compared to the case where ρ0 includes
the axions in addition. This is so because of the fixed lower virial
velocity vc, 0. Note, however, that this shift in the cut-off mass is
small (for small axion and neutrino contributions) and a minor effect
compared to the general impact of axions on to the H I halo model and
the overall uncertainty of vc, 0. The fact that we marginalize over it in
the Fisher forecast analysis should account for potential modelling
uncertainties this choice introduces.

(iii) The H I profile is affected by axions in its specific shape (e.g.
axions will alter the H I profile on scales of order the de Broglie wave-
length, where the ULA condenses into a soliton; Veltmaat, Schwabe
& Niemeyer 2019). Furthermore, the concentration parameter of H I

is assumed to be identical to that for CDM and, thus, the specific value
of it also might depend weakly on axions. We note, however, that this
form has a universal applicability in the description of low-z surface
density profiles and high-z DLA observations (Padmanabhan et al.
2019). Generally, the H I profile becomes relevant only at small scales
(cf. Section 2.2.1). Since typically H I IM surveys are concerned
about larger scales, they are mostly insensitive to the specific H I

Figure 4. Sheth–Tormen halo mass function for ma = 10−28 and 10−24 eV
and different axion fractions at z = 0.

density profile and the instrumental noise is typically larger than the
signal on those scales. Therefore, we neglect the specific impact of
axions on to the H I profile.

Generally, we expect that the H I halo model becomes less accurate
on smaller, non-linear scales. To account for this potential shortcom-
ing, it is expedient to compare the results with a computation where
the wavenumbers above a cut-off scale, knl, are not considered. We
adopt the redshift scaling as in Bull et al. (2015):

knl = 0.14 Mpc−1(1 + z)2/(2+ns), (27)

where ns is the scalar spectral index.

2.3 Results on the H I power spectrum for ULAs

The HMF, the H I bias, and the H I power spectrum calculated with
the current model are shown in Figs 4–6, respectively. We restrict
ourselves to two exemplary axion masses, each exhibiting the typical
imprint on the H I power spectrum in a certain range: first, a heavier
axion, ma = 10−24 eV, treated as a CDM-like component, which is
in its phenomenology similar to the fuzzy DM benchmark (ma ∼
10−22 eV), and, secondly, a lighter axion ma = 10−28 eV, which is in
its impact similar to massive neutrinos (cf. Sections 2.1 and 2.2.2)
and, thus, is treated as a massive neutrino-like component.

Heavier ULAs, ma ∼ 10−24 eV, suppress the formation of haloes
below their Jeans mass as shown in Fig. 4. Due to the reduced
number of low-mass haloes, assuming a fixed H I density parameter,
the H I has to reside in more massive haloes that are more strongly
biased. Thus, the suppression of low-mass haloes effectively leads
to an enhancement in the H I bias, which increases at higher redshift
(cf. Fig. 5). This explains the main impact of axions in that mass
range on to the H I power spectrum (Fig. 6): The suppression of the
matter power spectrum is present only at small, non-linear scales
for ULAs in that mass range. Hence, when considering the two-halo
term (equation 21) dominant on large scales, the main impact is the
boost in the H I bias. This makes their imprint possibly degenerate
with the astrophysical parameters controlling the H I bias and �H I in
general, which we discuss in more detail in Sections 3.2 and 4.

In contrast, when ma = 10−28 eV an enhancement of power is seen
on large scales but a suppression on small scales is present compared
to the �CDM case (cf. Fig. 6). These low-mass ULAs act dark
energy (DE)-like, in the sense that they suppress matter fluctuations
on almost all relevant scales. This shifts the HMF towards lighter
halo masses, which leads to a significant decrease of intermediate
halo masses (� 1011 M� h−1 at z = 0.5). Thus, more H I needs to
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3168 J. B. Bauer et al.

Figure 5. The left-hand panel shows the H I bias as a function of comoving
wavenumber k at redshifts 0 and 3. The dashed, vertical line indicates k0 =
10−2 h Mpc−1. The right-hand panel shows the H I bias as a function of z at
k0. Dashed (dotted) lines refer to a cosmology with a ULA of ma = 10−24 eV
and �a/�d = 0.02 (�a/�d = 0.25), whereas solid lines indicate the �CDM
case.

reside in each halo (similar to the effect of heavier ULAs) and the
halo bias is also increased, leading to an enhancement in the H I bias.
This increase competes with the overall suppression of the linear
power spectrum, which appears on already linear scales and reaches
its saturation at the Jeans scale kJ (cf. Section 2.1). This gives rise to
the scale-dependent imprint of lighter ULAs.

To summarize, we find that axions of all masses increase the
H I bias, albeit lighter ones out of a qualitatively different reason
than heavier, fuzzy DM benchmark axions. For lighter axions
(ma � 10−25 eV), the suppression of the matter power spectrum
competes with the boost in the H I bias on already linear scales for
the considered redshift range (i.e. 0–3 for realistic surveys), while
for heavier ones, the suppression is ‘hidden’ by the dominant one-
halo term. Physically, this distinct behaviour can be qualitatively
understood by their different de Broglie wavelength. Lighter axions
have a larger de Broglie wavelength and, therefore, smooth out matter
power fluctuations on larger scales, ultimately given by km and kJ (cf.
Fig. 1).

Lastly, we compare our present findings with Carucci et al. (2015),
who investigated the impact of warm dark matter (WDM) on the 21-
cm power spectrum with the help of N-body simulations (similar to
Seehars et al. 2016). A subsequent paper with similar methodology
from Carucci et al. (2017) considers the impact of ULAs, when they
are the only component in the DM sector. Although we consider a
mixed DM sector in this work, their findings are useful as they give
guidance to what one should expect for high ULA density parameters
for the fuzzy DM benchmark. Reassuringly, similarly an overall
increase of the 21-cm power spectrum for these heavier ULAs is
found by Carucci et al. (2017) due to the fact that the formation of
low-mass haloes is suppressed and the H I has to reside in the more
massive haloes that are more strongly biased.

Fig. 7 shows the relative difference between �CDM and ULA
only DM models at redshifts z = 1 and compares to Carucci
et al. (2017, Fig. 7). While we observe a similar trend along k
and axion mass (not shown), our model underestimates the relative
difference by a factor of a few relative to Carucci et al. (2017).
Note that the k range is already in the non-linear regime as
given by equation (27). The increase of the relative difference for
larger k in our model comes about because of the one-halo term,
which is dominant at those scales. Since for this term MH I(M)

goes in squared, the effect of ULAs is more pronounced. It is
reassuring that the one-halo and two-halo term seem to capture
the trend observed by the simulation even in the mild non-linear
regime. On the other hand, we underestimate the relative difference
between �CDM by a factor of a few. Differences from our model
are a different H I–halo mass relation MH I(M) (which is redshift
independent in the case of Carucci et al. 2017), slightly different
cosmological parameters and the inclusion of RSDs. Fig. 7 shows
how the relative difference varies in our model for different vc, 0.
It increases upon decreasing vc, 0 such that the suppression of low-
mass haloes becomes more important and might well explain some
discrepancies between Carucci et al. (2017) and our model. In short,
the results are broadly consistent, given the overall methodological
differences and that the simulations may have ingredients that are
not necessarily tuned to match all the relevant data. Since our
model underestimates the impact of ULAs compared to that of
Carucci et al. (2017), our forecasted constraints on the parameters
are conservative.

2.4 IM observations

In recent years, several radio telescopes have been designed, planned
(and constructed) to conduct 21-cm IM surveys. In this work, we
specifically consider the future Square Kilometer Array (SKA;
Dewdney 2013) telescope, its already built precursor, the MeerKAT
telescope (Jonas 2009), as well as the HIRAX (Newburgh et al. 2016)
and BINGO (Battye et al. 2013) telescopes. The important survey
specifications for this work are listed in Table 2.

A significant advantage of radio antennas compared to receivers in
the optical range is that they can measure the phase of the incoming
electromagnetic (EM) wave. Modern radio telescopes make heavily
use of that and, therefore, typically consist of multiple dishes.
Broadly, these can be run in two different modes:

(i) Single dish: One can autocorrelate the signal for each individual
dish. This, effectively, increases the observation time for each pixel
by the number of dishes (and number of beams).

(ii) Interferometer: The signal for each antenna is cross-correlated
with another antenna, separated by a given baseline d. This, in result,
increases the effective dish size for the antennas run in interferometric
mode by the baseline, such that a much higher angular resolution is
obtained.

The radio telescopes are subject to thermal noise depending on the
mode in which they are run. The equations used for the noise power
spectrum of both modes are summarized shortly hereafter. Important
specifications to calculate the noise of a radio telescope are the dish
diameter of a single dish Dd, the number of dishes Nd, the number
of beams Nb (which includes the number of different polarization
channels npol, which generally equals two), the frequency channel
width (here corresponding to the redshift bin width) �ν, the solid
angle sky coverage of the survey �surv, and the observed wavelength
of the incoming EM wave λ. Furthermore, the total system temper-
ature is taken Tsys = Tsky + Tinst, with Tsky = 60 K (350 MHz/ν)2.5

(Padmanabhan et al. 2019).

2.4.1 Single-dish mode

For the single-dish mode, we used the noise expression given in Knox
(1995). Together with the beam smearing term, the dimensionless
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Figure 6. The 21-cm power spectrum (equation 19) for ma = 10−28 and 10−24 eV and different axion fractions at redshift 0. For higher axion masses, an overall
enhancement is seen, whereas for lower axion masses power is suppressed at small scales due to the larger de Broglie wavelength (cf. 2.1). The enhancement
can be understood from the H I bias in Fig. 5. The dotted lines show the non-linear scale (knl = 0.14 Mpc−1 as defined in equation 27). The relative difference
between the �CDM scenario and axion fractions at the 2σ exclusion limits obtained by the SKA1MID+CMB-SO surveys is on the per cent level.

Figure 7. Relative difference in the H I (21-cm) power spectrum given in per
cent between �CDM and pure axion DM with ma = 10−22 eV upon varying
vc, 0. The red shaded region marks the ±3σ confidence region around the
best-fitting vc, 0 found in Padmanabhan et al. (2017). Other cosmological
parameters are used as in Table 1. The dotted vertical line refers to the non-
linear cut-off wavenumber defined in equation (27).

noise power spectrum is given by

N� = 1

T̄ 2
b

�pixσ
2
pix exp

[
�2θ2

B

8 ln 2

]
, (28)

where θB is the beam full width at half-maximum θB ≈ λ/Dd, �pix is
the solid angle beam area, and T̄b is the mean brightness temperature
of expected H I signal given by (Villaescusa-Navarro, Alonso & Viel

2016)

T̄b � 190 �H Ih
(1 + z)2

E(z)
mK. (29)

The thermal noise per pixel is given by the radiometer equation. For
a perfect receiver, one has (Battye et al. 2013)

σpix = Tsys√
tpix�ν

. (30)

The time of observation for each pixel depends on the total observa-
tion time divided by the number of pixels in the map and multiplied
by the number of dishes and beams (if the radio telescope is run in
an autocorrelation mode). Therefore, it is

tpix = tobsNdNb
�pix

�surv
. (31)

Note that this noise expression equals the noise expression given
in Bull et al. (2015) upon converting into angular scales except of
a different prefactor ∼3 due to the inclusion of the effective dish
area (cf. Appendix A for more details on the conversion and their
similarity).

2.4.2 Interferometric mode

The interferometric noise expression is subject to several technical
uncertainties and different expressions are used in the literature
for upcoming radio telescopes. Specifically, Jalilvand et al. (2020)
discusses the thermal noise properties for the HIRAX survey, where
an ‘optimistic’ expression was compared to and ‘pessimistic’ one.
Furthermore, an expression is included which they note as ‘realistic’
since it matches recent simulations for the HIRAX interferometer
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Table 2. Instrumental parameters for different surveys from Bull et al. (2015) and for HIRAX from Alonso et al. (2017).

Experiment Tinst Dd Dmin Dmax Nb Nd νmax νmin �surv

(K) (m) (m) (m) (dual pol.) (MHz) (MHz) (deg2)

BINGO 50 25 – – 50 × 2 1 1260 960 2000
(0.13) (0.48)

MeerKAT (B1) 29 13.5 – – 1 × 2 64 1015 580 25 000
(0.4) (1.45)

SKA1-MID (B1+B2) 28 15 – – 1 × 2 190 1420 350 20 000
(0) (3.1)

HIRAX 50 6 6 300 1 × 2 1024 800 400 15 000
(0.78) (2.55)

Notes. The numbers below in parenthesis in columns 6 and 7 (for νmax and νmin) are the corresponding redshifts. We
have combined band 1 and 2 of SKA1-MID as in Padmanabhan et al. (2019). The total observation time is set to ttot =
10 000 h for all surveys.

noise. According to Jalilvand et al. (2020), the difference between
the optimistic and pessimistic scenarios arises due to the assumption
of how the survey area is scanned: at once (instantaneous) or
sequentially. We choose the interferometric noise expression to be
identical to the optimistic case of Jalilvand et al. (2020), since the
S/N seems to align more for the optimistic and realistic scenarios.5

It is given by (Pourtsidou et al. 2016)

N interf.
� = T 2

sysFOV2

T̄ 2
b npol�νttotn(u = �/2π)

, (32)

with the field of view, FOV ≈ λ2/D2
d , and the baseline distribution in

the uv-plane n(u) is taken from Bull et al. (2015) if available for the
specific survey. If no baseline distribution is available, the following
approximate formula is used (Bull et al. 2015):

n(u) = Nd(Nd − 1)

2π(u2
max − u2

min)
, (33)

where umax/min = Dmax/min/λ and Dmax/min is the maximum/minimum
diameter of the array. For u = �/(2π ) above or below umax/min, the
noise is set to infinity.

The overall dimensionless angular noise power spectra are shown
in Fig. 8, together with the 21-cm angular power spectrum for the
SKA1MID configuration at redshift z = 0.5.

2.4.3 Foregrounds

It is expected that foregrounds are the leading systematic effect for
H I IM surveys. However, it is possible to remove them from the
overall signal because of their spectrum, i.e. foregrounds depend
differently on frequency than the H I signal. This removal procedure
effectively renders some modes in the radial direction, k�, useless to
the analysis, but ‘cleans’ the signal from foregrounds.

For our forecasts, foregrounds have been neglected and a perfect
foreground removal has been assumed. However, to get an idea
on their influence and importance, we considered the foreground
components for the equal-ν power spectrum (Santos, Cooray & Knox
2005) with an effective foreground residual amplitude εfg (which is
related to the number of modes in radial direction for the foreground
removal, k‖ < k

fg
‖ ) as in Bull et al. (2015):

F� = ε2
fg

∑
X

AX (�∗/�)βX (ν∗/ν)2αX , (34)

5Note that, in the code published along with this paper, both ‘optimistic’ and
‘pessimistic’ modes are implemented.

Figure 8. Dimensionless angular power spectrum of the 21-cm signal, the
residual foreground and of the noise with different expressions. For the
interferometric mode, both pessimistic and optimistic cases for the noise
are shown, while the optimistic expression was used throughout this study
as discussed in Section 2.4.2. The signal power spectrum is calculated for
ma = 10−24 eV and fiducial parameters as in Table 1.

with �∗ = 1000 and ν∗ = 130 MHz and parameters AX, αX, and βX

as in Santos et al. (2005, table 1).
In Fig. 8, the dimensionless residual power spectrum can be

seen for the different components. For efficient foreground removal
with εfg � 10−5, the foreground contamination is subdominant to
the thermal noise for large �. We conclude that in this case, the
results of the forecasts would not change qualitatively. However, this
conclusion changes drastically if less efficient foreground removal is
assumed, when the foreground residuals dominate the cosmological
signal and noise altogether. Note that these considerations did not
include the removal of foreground-contaminated modes in the radial
direction (k‖ < k

fg
‖ ) or the ‘foreground wedge’ (Alonso et al. 2017).

Therefore, Fig. 8 simply highlights the importance of effective
foreground removal, requiring εfg � 10−5 (from the requirement
F� � N�).

2.5 Fisher matrix forecasts

To assess the viability of future 21-cm IM surveys to constrain
the cosmological parameters in general and the fractional axion
density parameter �a/�d in particular, we develop Fisher matrix
forecasts. The inverse Fisher matrix F−1 is the covariance matrix of
the probability distribution of the parameter and gives an estimate on
the best possible, minimal error on the parameters (Tegmark 1997).

MNRAS 500, 3162–3177 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/3/3162/5942670 by guest on 17 April 2024



Intensity mapping as a probe of axion dark matter 3171

Assuming a Gaussian likelihood with covariance matrix C, one
can show that the Fisher information matrix takes the following form
(Tegmark 1997):

Fij = 1

2
tr

[
C−1 ∂C

∂pi

C−1 ∂C

∂pj

]
+ ∂μT

∂pi

C−1 ∂μ

∂pj

, (35)

where p denote the model parameters, and μ = 〈x〉. In the
present case, x are the temperature fluctuations expanded in
spherical harmonics and the forecasted model parameters are
p = {ln As, ns,�b, �c, �a/�d, h, vc,0, β}. We assume isotropy
such that

μ = 0, (36)

Cij = δij [C� + N�] . (37)

With that at hand, the Fisher matrix is given by

Fij =
∑

�

1

(�C�)2

∂C�

∂pi

∂C�

∂pj

, (38)

(�C�)2 = 2

(2� + 1)fsky
(C� + N�)2, (39)

where the factor fsky is included to account for the fact the survey
is scanning only a fraction of the sky fsky = �surv/(4π ). In the
above expression, it was assumed that the noise N� does not
depend on any parameters that shall be constrained/forecasted. This
is not strictly true in the dimensionless framework as the mean
brightness temperature depends weakly on cosmological parameters
(cf. equation 29). We will, however, assume that the mean brightness
temperature is fixed, e.g. determined from other surveys/probes and
neglect its information to the Fisher matrix in the present analysis
(cf. Padmanabhan et al. 2019; Chen et al. 2019).

As mentioned above, the redshift range will be divided into
several bins. For each bin i, a Fisher matrix F(i) is obtained. In the
Limber approximation, cross-correlations between different redshift
bins have been effectively neglected. In this picture, one can then
simply add the Fisher matrices from each redshift bin to obtain the
cumulative Fisher matrix, containing all the information that can be
gained from the survey in the current formalism:

Fcumul =
Nbin∑
i=1

F(i). (40)

We take equal-sized redshift bin width of �z = 0.05 and calculate
the C�s in equation (9) at the mid-points of each. Furthermore, we
restrict ourselves to � ≤ 1000 when forecasting.

The partial derivatives in equation (39) have been calculated
numerically by using the central finite difference,

∂f (x)

∂x
= f (x + �x) − f (x − �x)

2�x
. (41)

The step sizes for calculating the derivatives have been carefully
chosen such that a sufficient level of convergence was reached.
The fiducial values for the forecasted parameters, as well as the
step size for calculating the derivatives, are listed in Table 1. The
general outline of the code written for this analysis is based on the
code presented in Bull et al. (2015).6 We conclude by listing the
main assumptions taken into account for the model presented in this
section:

6The adapted version for this analysis is publicly available at https://github.c
om/JurekBauer/axion21cmIM.git.

(i) All angular power spectra are calculated using the Limber
approximation.

(ii) No peculiar velocities, i.e. RSDs, are included in the calcula-
tion for the H I angular power spectrum.

(iii) �H I is supposed to be fixed and redshift-independent.
(iv) Foregrounds can be removed efficiently and do not intercept

with the H I signal.
(v) Axions can be modeled like massive neutrinos for ma <

10−27 eV and as a CDM-like component for ma � 10−27 eV.
(vi) No cosmological information gained from T̄b.
(vii) Cosmological information can be obtained from bH I (the H I

bias is not treated as model-independent or a ‘nuisance’ parameter).
(viii) Axions do not change the neutral hydrogen profile.
(ix) No further inclusion of nuisance parameters, which are

marginalized over, than those given in above and listed in Table 1.

3 R ESULTS

3.1 Survey comparison

To compare different surveys, we look at how they constrain
ma = 10−26 and 10−24 eV on the axion fraction. We choose the
first mass since it is the most constrained bin in the CMB analyses
(Hložek et al. 2018) and the second to highlight the mass-dependent
impact discussed in Section 2.3. The estimated marginal error on
�a/�d is shown for different configurations in Fig. 9.7 CV1 and
CV2 denote cosmic variance limited surveys (the noise is set to
zero) for redshift ranges [0,3] and [0,5], respectively, and fsky =
1. Depending on the instrumental noise properties, CV2 might be
comparable to PUMA (Bandura et al. 2019). We also consider the
case of making each survey in turn ‘cosmic variance limited’ by
switching off instrumental noise. The different surveys are then only
distinguished by the redshift range and sky coverage.

The filled markers in Fig. 9 include all scales accessible by the
survey, while the empty ones use the non-linear cut-off scale in
equation (27): The instrumental noise is set to infinity for � > knlr(z).
In this way, the non-linear scales are excluded and do not pass any
information to the Fisher matrix. Commonly, radio telescopes run in
the interferometric mode are more constraining on the axion fraction
and come close to cosmic variance limited surveys when non-linear
scales are included (this, however, might change when allowing for �

> 1000). Specifically, SKA1MID is much more effective if run in the
interferometric mode (cosmic variance limited) than in the single-
dish mode. This is even more marked for MeerKAT. Generally and
in realistic instrumental noise scenarios, HIRAX and SKA1MID run
in the interferometric mode are the most constraining surveys.

As shown in Fig. 8, radio telescopes, run in an interferometric
mode, typically scan smaller and, thus, potentially non-linear scales.
Evidently, excluding non-linear scales leads to an increase for the
error on the axion fraction for all experiments and both axion
masses. However, the magnitude strongly depends on the axion mass:
While constraints for ma = 10−26 eV are barely affected, constraints
for ma = 10−24 eV increase significantly upon excluding non-linear
scales. This can be understood by the fact that degeneracies with
other parameters are already broken on linear scales for the lighter

7Note that marginal errors larger than the fiducial value imply �a/�d < 0
within the Fisher forecast analysis, which is unphysical. Since we generally
observed that the bounds do not change significantly with the fiducial axion
fraction, we do not expect that the bounds are affected strongly by the
inclusion of the physical prior �a/�d > 0.
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Figure 9. Scan over all surveys and noises including all scales (full markers) and when only linear scales are included (empty markers). ‘cosmic variance’
denotes cosmic variance limited surveys by switching off instrumental noise. The different surveys are then only distinguished by the redshift range and sky
coverage. On the y-axis, the marginal error obtained from the cumulative Fisher matrix is shown. The dashed line indicates the axion fraction obtained at the
GUT scale and the dotted line indicates the fiducial axion abundance. The left-hand panel considers an axion of mass ma = 10−26 eV and the right-hand panel
ma = 10−24 eV. CV1 and CV2 are mock surveys with fsky = 1 and for a redshift range of [0,3] and [0,5], respectively. For lighter axions ma � 10−25 eV, the
scale-dependent imprint takes place on linear scales. Thus, degeneracies are already broken on those scales and the exclusion of non-linear scales does not alter
the constraints significantly (left-hand panel). This stands in contrast to heavier axions ma � 10−24 eV (right-hand panel) where non-linear scales are crucial to
break degeneracies with the astrophysical parameters and As.

Figure 10. Normed Fisher derivatives (equation 42) for ma = 10−24 eV and
�a/�d = 0.02 at z = 0.5. The black, dashed line indicates � corresponding
to knl (equation 27), the non-linear cut-off scale. Note that the curves
As, �a/�d, vc,0, and β are all coincident in this figure.

ULAs. Interestingly, the HIRAX survey is an exception to that
observation, such that we conclude that the HIRAX survey is only
mildly sensitive to non-linear scales. To shed more light on to the
degeneracy structure, it is discussed in the next section for heavy
mass ULAs in more detail.

3.2 Degeneracy structure

To study the degeneracy structure of the H I IM survey with ULAs,
the derivatives ∂pi

C�(:= C ′
� here) in the definition of the Fisher

matrix (equation 39) are of importance. Fig. 10 shows the normed
derivatives defined by

(C ′
�)norm = C ′

� ·
{

max�(C ′
�)−1 if | max�(C ′

�)| > | min�(C ′
�)|

min�(C ′
�)−1 else

, (42)

for ma = 10−24 eV and �a/�d = 0.02 at z = 0.5. While the derivative
with respect to parameters �d, �b, h, and ns have distinct shapes,
the four parameters As, �a/�d, β, and vc,0 resemble each other
closely. These degeneracies are expected: The astrophysical param-

eters β and vc, 0 dictate the specific value of bH I (and for large scales
less importantly the one-halo term). Similarly for ma � 10−24 eV
and on the considered scales, �a/�d engenders a scale-independent
enhancement in the 21-cm signal because of the boost in bH I (cf.
Fig. 5 and the discussion in Section 2.3). As does alter bH I and the
matter power spectrum linearly, and thus an increase in As also results
in a scale-independent increase in the 21-cm signal. Subsequently, all
these parameters induce – if one is only concerned about large, linear
scales – a scale-independent imprint and the normed derivatives are
similar.

There are several ways to break these degeneracies: (i) Providing
a prior from other observations for the cosmological parameters
(e.g. the CMB fluctuations for As and �a/�d), (ii) including RSDs
(isolating As; Chen et al. 2019, and possibly �a/�d, depending on the
influence of axions on to RSDs), (iii) probing non-linear scales (i.e.
the one-halo term), (iv) the different redshift scaling of the impact
of each parameter, or (v) independent observations to constrain
vc,0 and β tightly. Probing non-linear scales breaks the degeneracy
because, on smaller scales, the one-halo term becomes relevant
which is affected differently for the parameters (e.g. the magnitude
in increase is larger for As and �a/�d than for the astrophysical
parameters) and depending on the axion mass and abundance the
suppression at the Jeans scale in the two-halo term is visible. Since
RSDs are not included at present, degeneracies between those four
parameters are (partly) broken by (i), (iii), (iv), and (v) in what
follows.

Note that Fig. 10 also shows that degeneracies with other parame-
ters are likely, although less marked: For example, a degeneracy with
�b is present if one is only concerned about smaller scales and the
BAOs are washed out.

The degeneracy of axions with CDM is relevant for other cosmo-
logical probes (e.g. the CMB; Amendola & Barbieri 2006; Hložek
et al. 2015) and also has an interesting structure for H I IM. For
axions of high-mass ma � 10−24 eV, a degeneracy with �CDM (if
varied along with ��) is expected on large, linear scales. Fig. 11
shows the error ellipses for two different masses and surveys: in
the left-hand panel, for a mass of ma = 10−28 eV, and in the right-
hand panel, a high mass of ma = 10−24 eV for SKA1MID run in the
interferometric and in the single-dish mode. SKA1MID in the single-
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Figure 11. Error ellipses for ma = 10−28 (left-hand panel) and 10−24 eV
(right-hand panel), obtained from the cumulative Fisher matrix for the
interferometric SKA1MID configuration (and the single-dish mode using
the noise expression adapted from Knox 1995).

dish mode probes smaller � and, thus, larger scales. SKA1MID in
the interferometric mode, on the other hand, probes smaller, mostly
non-linear scales. The error ellipses for a mass ma = 10−24 eV show
that, indeed, a degeneracy if run in the single-dish mode and in
the interferometric mode when only linear scales are included. For
the full interferometric SKA1MID survey, the overall error on the
axion fraction reduces significantly because degeneracies are broken
with other parameters as mentioned above and additional scales are
included to the Fisher analysis.

For an axion of mass ma = 10−28 eV, a degeneracy with CDM is
also observed, but in the opposite direction. This can be understood
from the H I power spectra in Fig. 6. For ma = 10−28 eV on the range
of scales where there is good signal-to-noise ratio, the axion just
suppresses power, so it has the opposite degeneracy with CDM as for
the heavier case. This suppression is due to the suppression of matter
fluctuations on already linear scales and relates to the lower Jeans
wavenumber compared to higher axion masses. The degeneracy is
less prominent for the full interferometric SKA1MID survey.

3.3 Constraints on the axion fraction

This section presents exclusion limits of the axion fraction by the
IM surveys. They are estimated by the minimum axion fraction that
one is able to resolve with its nσ marginal error. Explicitly, the nσ -
exclusion limit on �a/�d is obtained by the highest fiducial value of
�a/�d satisfying nσ (�a/�d) = �a/�d.

Furthermore, we combined the Fisher matrix from the IM sur-
veys with those of future CMB measurements, namely from the
Simons Observatory (Ade et al. 2019), obtained from Hložek et al.
(2017), where ULAs were included in the analysis. This breaks
the degeneracy between As and the astrophysical parameters. When
combining CMB and IM surveys, it was necessary for most axion
masses to extrapolate the marginal error to obtain the exclusion limits.
However, the constraints are roughly constant, independent of the
fiducial axion fraction, such that these exclusion limits should not be
affected dominantly by the extrapolation.

Fig. 12 shows the effect of combining an IM survey with the CMB.
Upon combination of the surveys, a marked decrease (by a factor
of ∼10) on the fractional axion density is observed for axions of
mass below 10−24 eV for the HIRAX survey. CMB-SO and HIRAX
surveys are highly complementary for this configuration: While the
CMB Fisher matrix strongly constrains the cosmological parameters

Figure 12. Error ellipses of the cosmological parameters from the HIRAX,
CMB-SO surveys, and when combined. Fiducial parameters were used as in
Table 1 with ma = 10−23 eV and fiducial axion fraction �a/�d = 0.9.

Figure 13. The expected axion fraction �a/�d as a function of axion mass
ma and initial field value φi according to equation (1). The grey region shows
the forecasted 2σ exclusion limits from SKA1MID (B1 + B2) run in the
interferometric mode and the CMB-SO, while the blue and red line indicate
those for CMB-SO and SKA1MID alone, respectively. The white shaded
band shows the expectation for the GUT scale (∼ 1016 GeV).

other than the axion fraction, the HIRAX survey is able to probe the
axion fraction to greater accuracy. Combining both Fisher matrices,
therefore, results in a marked reduction of the marginal error on
�a/�d. This is exemplary shown for �b and �a/�d in Fig. 12 for
ma = 10−23 eV and fiducial axion fraction �a/�d = 0.9. The CMB
provides a precision measurement of �b, breaking the axion-baryon
degeneracy in the HIRAX IM survey and significantly tightening the
IM constraint on axion fraction, despite the CMB being insensitive
to the axion fraction at this mass.

Since degeneracies are broken between �a/�d and the astrophys-
ical parameters upon inclusion of non-linear scales, the SKA1MID
survey is highly constraining. The obtained 2σ exclusion limits for
this survey in the interferometric mode, the CMB-SO survey and
when combined are shown in Fig. 13, expressed in terms of the
axion initial field value, which is related to the scale of spontaneous
symmetry breaking, fa.8 Excitingly, these forecasts within the present
framework show that it is possible to probe the axion fraction to

8To relate the initial field value φi to �a, we neglected the error on �d

and correlations between these two, since the error on �d is generally much
smaller than for the axion density parameter (and we expect corrections by
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high precision for most masses. Even more, for intermediate and
large axion masses, the exclusion limits are close to the GUT scale
expectations. Fig. 14 summarizes the findings for the SKA1MID and
the HIRAX surveys.

It should be possible to further reduce the exclusion limits by
fixing the astrophysical parameters. This assumption is supported by
the upcoming of current Ly α surveys (and future data releases), such
as HETDEX (Hill et al. 2008). These surveys should, in principle, be
able to constrain the MH I(M) relation and therefore astrophysical
parameters further. The results upon fixing the MH I(M) relation
for the HIRAX and SKA1MID survey are shown in Fig. 14. As
expected, the constraints from the HIRAX survey improve slightly
for ULAs with the scale-dependent imprint and significantly for
heavier ULAs where the influence in the bias are highly degenerate
with the astrophysical parameters. Overall, probing the axion fraction
on the sub-per-cent level is possible and the region near the GUT scale
can be tested for axion masses � 10−27 eV.

4 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we have investigated the imprint of ULAs on late-time
21-cm IM surveys in a mixed DM scenario. To do so we exploited the
accurate, data-driven halo model introduced by Padmanabhan et al.
(2015). Axions were accommodated to this model by reference to
massive neutrinos. Both were compared by looking at their variances.
Thereby, a critical axion mass of 10−27 eV was identified below which
ULAs are treated similar to neutrinos (H I as a tracer of the CDM
and baryon field, but not the total matter field) and above which
they are incorporated as a CDM-like component. The halo model
was roughly checked against numerical results for heavier ULAs
from Carucci et al. (2017). The present model adequately captures
their main findings, providing further confidence for the proposed
framework. In contrast to the earlier work by Carucci et al. (2017),
this study allows the axion fraction to be a free parameter (which
is, to our knowledge, not studied in the literature at present). This is
important because it is predicted that these ULAs depending on their
mass occur in subdominant abundances related to the GUT scale.

Heavier ULAs, ma � 10−24 eV, suppress the formation of small-
mass haloes below the Jeans mass. Assuming a fixed amount of
neutral hydrogen, more H I needs to reside in heavier haloes that
are more strongly biased too than their low-mass counterparts. This
leads to an increase in the H I bias compared to �CDM. Note that
Fig. 7 shows that at least some knowledge on the cut-off mass in the
H I–halo mass relation is necessary to constrain those ULAs: If the
cut-off mass is larger than the Jeans mass of the ULA, the suppression
of haloes below the Jeans mass does not leave a ‘fingerprint’.

For lighter ULAs, ma ∼ 10−28 eV, an increase in the H I bias is
also observed, albeit out of different reasons: These ULAs suppress
structure on almost all relevant scales (when compared to CDM),
which makes their influence DE-like. The halo bias is increased for
most halo masses and intermediate sized haloes are suppressed.

For ULAs with ma � 10−25 eV, the suppression in the power
spectrum starting at scale km and saturating at the Jeans scale kJ

becomes relevant even at large, linear scales in the H I power spectrum
(cf. equation 21), leading to a salient scale-dependent imprint of
those ULAs. For heavier ULAs, the increase in the H I bias is the
main imprint on large, linear scales. The scale-dependence is partly
‘hidden’: The suppression in the matter power spectrum happens at

it to be subdominant, given the overall uncertainty upon extrapolating the
results).

non-linear scales and for ma � 10−23 eV at scales where the one-halo
term is dominant.

The scale-independent impact for ULAs of ma � 10−24 eV is
degenerate with the astrophysical parameters, vc, 0 and β, which
effectively control the H I bias, and As. When only probing large,
linear scales at a single redshift, this degeneracy cannot be broken.
Disentangling these parameters should be possible by (i) providing
priors from other observations, (ii) including RSDs, (iii) probing
non-linear scales, or (iv) the different redshift scalings of the impact
of each parameter (cf. Section 3.2).

Forecasts for different surveys were run with help of a Fisher
matrix analysis. Degeneracies were partly broken by priors (CMB
or fixing astrophysics), the different redshift scaling of the impact
of different parameters and for HIRAX only mildly probing non-
linear scales (cf. Fig. 9). The results give an exciting and promising
impression: within this framework combined future CMB and IM
observations should be able to test axion fractions to the per cent
level or even below. It is possible to probe the interesting region
near the GUT scale in the mass region where the ULA imprint
the scale-dependent feature on to the 21-cm signal. Including non-
linear scales and combining a SKA1MID-like IM survey with the
Simons Observatory CMB, the benchmark fuzzy DM model with
ma = 10−22 eV can be constrained at few per cent. This is almost an
order of magnitude improvement over current limits from the Ly α

forest (Kobayashi et al. 2017). For the HIRAX survey, which probes
only mildly the non-linear regime, astrophysics need to be known
precisely such that current and future constraints could be greatly
improved for fuzzy DM.

These exciting results call for other studies to check the robustness
of the present results, which includes calibrating the halo model
in the mixed ULA-CDM scenario. The following list includes the
most important assumptions with respect to H I IM, which could be
checked in more detail and give guidance to future studies:

(i) fixed and redshift-independent �H I;
(ii) no foreground contamination;
(iii) cosmological information from bH I;
(iv) no inclusion of RSDs;
(v) no specific impact of axions on to the neutral hydrogen profile;
(vi) use of Limber approximation.

First, given the current poor constraints on �H I, this is an optimistic
assumption at the present day. Also, H I IM surveys alone measuring
the large, linear scales can only estimate the quantity �H IbH I.
Because the main effect of ULAs with ma � 10−24 eV is the increase
in H I bias, it is necessary to know the precise value of �H I. A
possible resolution is to determine �H I with other observations or to
break this degeneracy by the inclusion of RSDs into our analysis. The
latter requires a model of RSDs which includes axions and also might
provide by itself additional information on the axion fraction. Hence,
the inclusion of RSDs to the analysis is an important extension.

Secondly, foregrounds have been neglected and a perfect fore-
ground removal has been assumed. Given that foregrounds are
expected to be the leading systematic factor for H I IM surveys,
we discussed the influence of foreground residuals on the angular
power spectrum briefly in Section 2.4.3. We concluded that efficient
foreground removal is necessary and a more rigorous treatment (with
the inclusion of the foreground wedge) within the forecasts is a
relevant next step.

Thirdly, the information from modelling the bias parameter have
been included in the analysis. This touches a central point for any
large-scale structure survey: it is necessary to have a sufficient
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Figure 14. 2σ exclusion limits for the HIRAX and SKA1MID survey run in the interferometric mode. Dotted lines indicate the IM survey alone, while solid
ones are for those combined with the forecasted CMB-SO constraints. The shaded regions indicate the expectation from the GUT scale. Depending on the
precision of the astrophysical parameters, SKA1MID and HIRAX probe the interesting region near the GUT scale for ULAs with ma � 10−27 eV. While axions
with ma � 10−25 eV leave a salient, scale-dependent imprint on linear scales due to their large de Broglie wavelength, heavier ones are degenerate with the
astrophysical parameters on those scales. Breaking this degeneracy is possible by including smaller non-linear scales or by a more precise knowledge of the
astrophysical parameters. With SKA1MID being more sensitive to smaller, non-linear scales than HIRAX, it is able to constrain the heavy fuzzy DM axions
more strongly.

knowledge on the exact behaviour and modelling of the bias
parameter to rely on the results. If not, deviations from an expected
(�CDM) signal of LSS survey could be alleviated by an inaccurate
modelling of the bias. This works also the other way round: A
deviation from �CDM could be hidden by an inaccurate model
of the bias, giving rise to a potential psychological confirmation
bias. Two of such potential pitfalls when modelling the bias shall
be stated. First, it could be expected that the neutrino-like ULAs
introduce a slight scale dependence to the bias as simulations show
for massive neutrinos (Villaescusa-Navarro et al. 2014), which the
present model does not capture. Note, however, that this effect
is reduced by our choice to only consider the CDM and baryon
field. Secondly, to what extent it can be expected that the bias
parameter is scale-independent on large scales even for the �CDM
case, is an ongoing question and large simulations are employed to
investigate the H I bias relation further (Villaescusa-Navarro et al.
2018). To give an idea on the needed accuracy in the modelling
of the H I bias in the present case for the heavier ULAs (ma �
10−24 eV), Fig. 5 gives a rough estimate: The H I bias changes at
∼ 10 per cent level for axion fractions at ma = 10−24 eV on the
∼ 1 per cent. Thus, precision in H I bias modelling needs to be below
the 10 per cent ballpark for constraints on the per cent level (and
in that mass region) to be robust. A more conservative approach
could relax the assumption of precise modelling knowledge of the

H I bias, e.g. by introducing nuisance parameters in the redshift
dependence.

Also, this model is partly ignorant of the influence of axions to the
exact H I radial profile. Some clear deviations from pure CDM could
be expected (Veltmaat et al. 2019) and modeled more accurately.
This would also provide additional information on the axion fraction,
although the inclusion of highly non-linear scales is necessary. Apart
from that, the effect of the Limber approximation could be checked
against more accurate calculations of the angular power spectrum.
This study could also include a thorough investigation of the effect
of (un)equal-time correlators (which might become important).

In short, all of the above points are of importance to adequatly
capture future 21-cm IM data and while relaxing the assumptions (i)
to (iii) will likely weaken the present constraints, the opposite will
be true for a more accurate modelling of (iv) and (v). An important
future step is to investigate the HMF and halo bias in the mixed CDM-
axion DM scenario with simulations and calibrating the model. We
leave these extensions and simulations to future work.
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APPENDIX A : C OMPARISON TO SINGLE-DI SH
NOISE G IVEN IN BU LL ET AL. (2 0 1 5 )

In appendix D of Bull et al. (2015), a formula for the temperature
noise is given by the Gaussian root mean square width

σT ≈ Tsys√
npol�νtobs

λ2

θ2
BAe

√
�surv/θ

2
B

√
1

NdNb
.

If one ignores the beam responses for the moment, the 3D power
spectrum is given by PN = σ 2

TVpix, where Vpix = (rθB)2 × (rνδν/ν21)
is the 3D volume of each volume element with rν = c(1 + z)2/H (z).

To convert PN into N�, we take

N�(zi, zj ) = 2

π

∫
dz Wi(z)

∫
dz′ Wj (z′)

×
∫

dk k2PN (k, z, z′)j�(kr(z))j�(kr(z′)), (A1)

where Wi and Wj are the window function for the redshift bins zi and
zj, j� denotes the spherical Bessel function of rank �, and r(z) is the
comoving distance.

The expression above in equation (A1) can be simplified upon
assuming the instrumental noise power spectrum is k-independent:

N� =
∫

dz
H (z)

c

W 2
i (z)

r2(z)
PN (zi)

≈ �zW 2(z)
H (z)

cr2(z)
Vpixσ

2
T

≈ θ2
Bσ 2

T .

This yields

N� = T 2
sys�surv

npol�νtobs

λ4

θ4
BA2

e

1

NdNb
.

The beam frequency and angular responses is given by

B−1 = B−2
⊥ B−1

‖ , (A2)

with

B‖ = exp

[
− (k‖rνδν/ν21)2

16 ln 2

]
and

B⊥ = exp

[
− (k⊥rθB)2

16 ln 2

]
.

Assuming k� to be small, one can take � + (1/2) = rk⊥ such that
for large � ,

B−1 ≈ exp

[
�2θ2

B

8 ln 2

]
.

We conclude for the dimensionless noise expression:

N� = T 2
sys�surv

T̄ 2
b npol�νttot

λ4

θ4
BA2

e

1

NdNb
exp

[
�2θ2

B

8 ln 2

]
. (A3)

Upon redefining the number of beams in the upper expression to
include the number of polarization modes, the difference between
this expression and the expression adapted from Knox (1995) in
equation (28) resides in the inclusion of the effective area of the dish.
This results in a different prefactor of ∼3.
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