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ABSTRACT
Ellipsoidal variables present light-curve modulations caused by stellar distortion, induced by tidal interaction with their
companions. An analytical approximated model of the ellipsoidal modulation is given as a discrete Fourier series by Morris &
Naftilan. Based on numerical simulations using the PHOEBE code, we present here updated amplitudes of the first three harmonics
of the model. The expected amplitudes are given as a function of the mass ratio and inclination of the binary system and the
fillout factor of the primary – the ratio between the stellar radius and that of its Roche lobe. The corrections can get up to
30 per cent relative to the Morris & Naftilan model for fillout factors close to unity. The updated model can be instrumental in
searching for short-period binaries with compact-object secondaries in large data sets of photometric light curves. As shown in
one OGLE light-curve example, the minimum mass ratio can be obtained by using only the amplitudes of the three harmonics
and an estimation of the stellar temperature. High enough amplitudes can help to identify binaries with mass ratios larger than
unity, some of which might have compact companions.
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1 IN T RO D U C T I O N

In recent years, a few ground-based and space-mission surveys,
such as OGLE (Udalski, Szymański & Szymański 2015), HATNet
(Hartman et al. 2004), HATSouth (Bakos et al. 2013), WASP
(Pollacco et al. 2006), Kepler (Borucki et al. 2010; Koch et al. 2010),
Gaia (Gaia Collaboration et al. 2016), TESS (Ricker et al. 2015),
Pan-STARRS (Kaiser et al. 2010), and Catalina (Drake et al. 2014),
have obtained millions of stellar light curves with many data points
of high precision. These data give the opportunity to discover a large
number of non-eclipsing close binaries (e.g. Soszyński et al. 2004;
Faigler et al. 2012; Soszyński et al. 2016; Shporer 2017), based on
their ellipsoidal modulation, caused by stellar distortion induced by
tidal interaction with their companions.

In most of the close systems, the unseen companions are faint
main-sequence stars with small masses (e.g. Raghavan et al.
2010; Moe & Di Stefano 2017). However, some binaries have
unseen compact companions which are more massive than the
observed components, black hole (BH) companions in particular.
For example, some 20 dynamically confirmed stellar BHs are known
to reside in close binary systems with low-mass stellar companions.
These are, along with Cyg X-1 and several other high-mass binary
candidates, the only confirmed stellar-mass BHs in the Galaxy (see
e.g. Corral-Santana et al. 2016). All stellar-mass BHs known so far
have been discovered by their X-ray emission, due to either mass
transfer from a low-mass (mostly K–F star) companion overflowing
its Roche lobe (BH-LMXBs), or accretion from a stellar wind
coming from a high-mass (O–B star) companion (BH-HMXBs, e.g.
Fabian et al. 1989; Remillard & McClintock 2006; Orosz et al. 2007;
Ziolkowski 2014). According to the commonly accepted model,
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the BH-LMXB outbursts are due to some disc instabilities (Lasota
2001) that modulate the accretion rates on to the BH. Between
eruptions, these systems are barely detectable, because a substantial
part of the energy generated by the small mass flow is not radiated
but stored as thermal energy in their discs. Thus, many BH-LMXB
remained undetected, because they have been in their quiescent
state when observed by the X-ray surveys (e.g. Ritter & King 2002;
Cackett et al. 2005; Knevitt et al. 2014).

A much larger fraction of BHs with low-mass stellar companions
are not detected yet because their optical counterparts are well within
their Roche lobes, so mass is not transferred and X-rays are not
generated, making these systems dormant BHs (see discussion on
the frequency of such systems by Breivik, Chatterjee & Larson 2017;
Mashian & Loeb 2017; Yamaguchi et al. 2018; Shao & Li 2019; Yi,
Sun & Gu 2019; Wiktorowicz et al. 2019; Shikauchi et al. 2020). We
are aiming to discover some of the short-period dormant systems by
their ellipsoidal modulations.

To identify the ellipsoidal variables and distinguish between them
and other stellar variables (e.g. Pojmański 2002; Soszyński et al.
2011a, b, 2013), and to identify the systems with massive companions
in particular, one needs a reliable approximation of the expected
ellipsoidal modulation that can be applied to large data sets and yield
sound estimate of the companion mass. Morris & Naftilan (1993,
MN93) classical work, based on Kopal (1959) approach (see also
Russell 1945), derived an analytical approximation of the ellipsoidal
modulation for circular orbits (see a very recent extension by Engel
et al. 2020, to eccentric orbits). Their work was based on an expansion
of the tidal interaction between the primary and the secondary in a
power series of R1/a, where R1 was the mean radius of the primary
and a was the semimajor axis of the system.

The resulting model of the ellipsoidal modulation was presented by
MN93 in harmonics of the orbital phase, each of which was given by a
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power series of R1/a, up to the fifth power. MN93 gave closed formu-
lae for the amplitudes of the first four harmonics as a function of the
mass ratio, orbital inclination, and R1/a of the binary. Indeed, MN93
was used successfully in many studies (e.g. Zucker, Mazeh & Alexan-
der 2007; Mazeh & Faigler 2010; Faigler et al. 2015; Sullivan et al.
2015; Parsons et al. 2017; Masuda & Hotokezaka 2019). MN93 ap-
proximation works well for cases for which R1/a has a small value, but
becomes inaccurate for cases with R1 close to the Roche lobe radius.
In such cases, the oval shapes of the stars have to be calculated numer-
ically by equipotential surfaces inside, but close, to the Roche-surface
limit.

With the advance of computational power, a few numerical
codes have been developed (e.g. Hill & Hutchings 1970; Wilson
& Devinney 1971; Bochkarev, Karitskaia & Shakura 1979; Orosz
& Hauschildt 2000) to simulate the ellipsoidal modulation of
close binary systems. The basic idea is to derive numerically the
stellar equipotential surface, divide this surface to small discrete
elements, derive the luminosity of each element, and obtain the total
luminosity by summing up the light coming from the whole stellar
surface. These simulated light curves yield a better approximation
of the ellipsoidal modulation (e.g. McClintock & Remillard 1986;
Casares et al. 1993; Shahbaz, Naylor & Charles 1993), provided the
assumptions behind the codes about stellar structure and atmosphere
are accurate enough. However, the calculation of each light curve
requires considerable CPU time, and therefore these codes are inap-
plicable for analysing millions of light curves with unknown periods
and orbital elements, even with the growing speed of nowadays
computers.

As a first step of the search for dormant BHs in close binaries,
we present here easy-to-use pre-calculated amplitudes of the first
three harmonics of the ellipsoidal modulation as a function of the
stellar mass, radius, and effective temperature of the primary, the
orbital period and inclination, and the mass ratio of the binary.
This was done by applying the PHOEBE 2.1 (PHysics Of Eclipsing
BinariEs) software package (Prša & Zwitter 2005; Prša et al. 2016;
Horvat et al. 2018; Jones et al. 2019), that was successfully used in
many studies (e.g. Torres 2010; Prša et al. 2011; Eastman, Gaudi
& Agol 2013; Jones & Boffin 2017; Shporer 2017). We applied
PHOEBE to systems chosen from a dense grid of the parameter
space, presenting our results as a correction factor to the MN93
approximation for the amplitudes of the first three harmonics of the
modulation.

A key parameter that determines the ellipsoidal modulation is
the fillout factor of the primary – the primary volume-averaged
radius divided by the Roche lobe volume-averaged radius (Kopal
1959; Paczyński 1971; Eggleton 1983). Therefore, the corrections
are presented here for a grid of values of the fillout factor, the mass
ratio, and the orbital inclination. Finally, based on our grid points we
have found approximate simple expressions for the correction factor
of the amplitudes of the second and third harmonics for any given
system. For the first harmonic, we present a PYTHON code to obtain
the corrected amplitudes based on a linear interpolation between
the grid points for different main-sequence primaries and optical
bands.

Section 2 presents the MN93 approximation and its limitations,
Section 3 derives the correction terms relative to MN93 expressions,
Section 4 considers one example, demonstrating how our analysis
can work for one specific OGLE system, and Section 5 summarizes
our results.

2 TH E M O R R I S A N D NA F T I L A N
APPROX IMATION

Let us consider a binary system of two stars, with masses M1 and
M2, for which we observe the light coming from the primary M1

star only. We are interested in the relative ellipsoidal modulation in
some known optical band, caused by the tidal interaction with the
secondary.

The approximation for the primary-star ellipsoidal modulations of
the first three harmonics is given by MN93, assuming tidally locked
ellipsoidal variables in circular orbits and R1/a � 1, and adopting
linear limb- and gravity-darkening laws. Their equation is
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where φ is the orbital angle, with φ=0 defined to be at superior
conjunction. Here, the binary mass ratio is q = M2/M1, the ellipsoidal
coefficients are defined by
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with L0 being the stellar brightness with no secondary at all. In the
above equations R1 is the volume-averaged radius of the primary, a is
the binary semimajor axis, i is the orbital inclination, and u and τ are
the linear limb- and gravity-darkening coefficients of the primary.

Using the linear limb- and gravity-darkening coefficients of Claret
& Bloemen (2011) for stars with an effective temperature between
4000–7000 K, Sun-like gravity and zero metallicity, we find that the
α2 coefficient is typically between 1–2 and α1, β2 are in the range
0–0.4.

Under this simple model of circular, synchronous and aligned
components, the distorted surface of the primary star is symmetrical
with respect to orbital angles φ = 0 and π for any inclination. Thus,
the light curve of the ellipsoidal has to be symmetric around these
angles and contain only cosine terms in its Fourier expansion.

As can be seen in the equations above, the leading term in the
expansion is (R1/a)3, which appears in the expression of the second-
harmonic amplitude only. The amplitude is therefore approximately
proportional to R3

1 , everything else being equal. The dependence of
q is more subtle. All three amplitudes depend linearly on q, if a is
known. However, if one uses the orbital period and the primary mass
of the binary as the known parameters, which is often the case, then
the q dependence is hidden, because for a given period and primary
mass a3∝1 + q.

The expressions for the amplitudes of the first and third harmonics
have R1/a to the fourth power, one factor higher than in the second-
harmonic expression. In most cases R1/a is much smaller than 1.
Furthermore, the α2 coefficient is typically larger than α1. Thus,
the second-harmonic amplitude is typically an order of magnitude
larger than the other two terms of equation (1), which gives the
characteristic double-peaked appearance to the light curve.
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Note that equation (3) indicates that L �= L0 even when the
secondary’s mass tends to zero. This is explained by the factor 2 + 5q
which is, in fact, a sum of two effects. The first effect, which is
proportional to 2(1 + q), is the outcome of the centrifugal force that
distorts the stellar shape. This effect comes from the fact that the
primary is at rest in the rotating frame and therefore at work even
for q → 0. The second effect, which is proportional to 3q, is due to
distortion of the stellar shape by the secondary-star tidal forces, thus
vanishing at q → 0.

2.1 The dependence on the fillout factor

Equation (1) can be expressed by the Roche lobe radius as
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with the Roche lobe fillout factor and the average luminosity defined
by
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Using the Eggleton (1983) approximation for the volume-averaged
Roche lobe radius, which is accurate to 1 per cent over the entire q
range,

E(q) ≡ 0.49q−2/3

0.6q−2/3 + ln(1 + q−1/3)
≈ RRoche,1

a
, (6)

we get
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The (semi-)amplitudes of the {cos nφ; n = 1, 2, 3} harmonics in
equation (7) will be denoted by An, MN.

In the new expressions, the dependence on the stellar radius is
through the fillout factor, as f∝R1. The dependence on q is through
the Eggleton expression E(q), which is less apparent.

As pointed out above, MN93 analysis assumes R1/a is small
and therefore f has a small value. For f near unity the MN93
approximation can significantly deviate, up to ∼50 per cent, from
the actual ellipsoidal variability (e.g. Bochkarev et al. 1979). It is
therefore important to numerically derive the correct value of the
harmonic amplitudes, as done in the next section.

3 C O R R E C T I N G TH E M N 9 3 A M P L I T U D E

3.1 Comparing the PHOEBE models with the MN93
approximation

To better estimate the ellipsoidal effect we used the PHOEBE1 software
package (Prša & Zwitter 2005; Prša et al. 2016; Horvat et al. 2018;
Jones et al. 2019) to simulate light curves of close binaries with
the ellipsoidal modulation only, assuming a circular orbit, with an
aligned and synchronous rotation of the primary.

The simulations were run for a Sun-like primary (see below a
discussion for an extension of the model to different stars) and a
compact-object secondary, so we set Teff = 0 and R = 10−4 R
 for the
secondary. In addition, we disabled the beaming (sometimes called
Doppler boosting) effect of the two components in the simulated
light curve, as this paper focuses on the ellipsoidal effect only. The
light curves were simulated in the V band using the Castelli & Kurucz
(2003) atmospheric models for the primary star. In the simulation,
the primary star was divided into 2 × 105 surface elements.

The bolometric gravity-darkening exponent β1 used by PHOEBE

was taken from Claret (2004) and the linear limb-darkening coeffi-
cient from Claret & Bloemen (2011) for the same stellar parameters.
PHOEBE light curves simulated with different limb-darkening laws
for the primary presented a scatter of a few percent in the Fourier
coefficients of the first three harmonics, but a change in the gravity-
darkening exponent value may introduce more significant variations.

After normalizing the PHOEBE light curve to an average value
of 1, we fitted the modulation with three harmonics, with φ =
0 at superior conjunction, resulting in three Fourier coefficients,
{An,PH ; n = 1, 2, 3}.

To compare the PHOEBE results with the MN93 formulae, we used
equation (7) to obtain the first three harmonics, {An,MN ; n = 1, 2, 3}
for the same binary parameters, using the linear limb- and gravity-
darkening coefficients of a Sun-like star with Teff of 5780 K from
Claret & Bloemen (2011). Here again, the result is more sensitive to
the value of the gravity-darkening coefficient (see α2 in equation 2).

One possible comparison is presented in Fig. 1, where we plot
the expected second-harmonic amplitudes of the MN93 (left-hand
panel) and PHOEBE (right-hand panel) models side by side. This is
done by 2D surfaces as a function of the Roche lobe fillout factor f
and the binary mass-ratio q for sin i = 1.

One can see in both panels that the amplitude is of the order of
50 parts-per-thousand (ppt), or ∼5 per cent, for a binary of q ∼
1 and f ∼ 0.75. The amplitude is rising monotonically with f and
q, and can reach, in extreme cases, up to ∼140 ppt in the MN93
approximation and ∼180 ppt in the PHOEBE model. This indicates
that the difference between the two models can reach, for high q and
f, up to ∼30 per cent. As we are interested in this part of the parameter
space, an easy-to-use correction factor of the MN93 approximation
can be of much use.

The essential role of such correction factor is emphasized by the
amplitude derived for the second-harmonic of OGLE-BLG-ELL-
007730 of Fig. 4, A2, obs � 0.14, which clearly put OGLE-BLG-
ELL-007730 in the upper right corner of the amplitude plots. This
example will be discussed further later.

3.2 Presenting the correction with simple expressions

In order to study the correction factor needed to be applied to the
MN93 approximation, we calculated the correction factor on a linear

1http://phoebe-project.org
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Corrected amplitudes of ellipsoidal modulation 2825

Figure 1. Left: expected V amplitude of the second harmonic according to MN93 approximation, as a function of the Roche lobe fillout factor of the primary
f and the binary mass-ratio q. This was derived for a binary with Sun-like star and sin i = 1, with no contribution from the secondary and no beaming effect.
Contour lines with equally spaced amplitudes are drawn with solid lines from 15 ppt upwards in steps of 15 ppt. Right: expected second-harmonic amplitude
derived by PHOEBE. Its maximum can reach up to ∼180 ppt, ∼ 30 per cent larger than the approximated values.

3D grid in log q (−1.4 to 2.0 with step 0.2), f (0.3 to 0.95 with
step 0.05) and sin 2i (0.1 to 1 with step 0.1). For each point on the
grid we calculated the three amplitudes of the MN93 and PHOEBE

models, {An,MN ; n = 1, 2, 3} and {An,PH ; n = 1, 2, 3}, and derived
the correction factor

Cn (q, f , i) = An,PH

An,MN

(9)

as a function of q, f, and sin i.
To present the 3D correction factors we searched for a simple

approximated expression for {Cn (q, f , i) ; n = 1, 2, 3}, using the
EUREQA2 software package (Schmidt & Lipson 2009, 2014). Within
EUREQA, we searched for a separable expression of the form

C̃n (q, f , i) = 1 + F0(q)F1(f )F2(i) , (10)

that minimizes the relative error between the numerical ratio Cn and
C̃n. For the dominant second harmonic we found that

C̃2 (q, f ) = 1 +
(

b2 + c2

d2 + q

)(
f

a2 − f

)
, (11)

where

a2 = 1.0909 , b2 = 0.0379 , c2 = 0.0050 , d2 = 0.0446 .

The resulting approximation, with a maximum relative error of
2.4 per cent, is independent of the inclination, which means that
the ellipsoidal amplitude maintains its proportionality to sin 2i for
systems with a large fillout factor.

For the third harmonic, we found a non-separable expression that
resulted in a maximum relative error of 2.2 per cent within 0.1 ≤ q
≤ 10 and f ≤ 0.9,

C̃3 (q, f , i) = 1 + (1 + a3q sin2 i)f 6 + b3f
2

(c3 + d3 ln q)f + sin4 i
, (12)

where

a3 = 0.0698 , b3 = 0.2075 , c3 = 2.0223 , d3 = 0.3880 .

Obviously, the two expressions yield a correction factor for every
possible value of f, q, and sin i. As expected, they converge to unity
when the fillout factor approaches zero.

2https://www.nutonian.com/products/eureqa/

We could not find any simple expression for the correction of the
first-harmonic amplitude, so we give (see Appendix A) the corrected
numerical values as a linear interpolation between the calculated grid
points through a PYTHON code, available on GITHUB.

The resulting amplitudes are presented in Fig. 2 as a function of
the fillout factor, for two inclinations and three mass-ratio values
per inclination. The middle (lower) panel illustrates A2, PH (A3, PH)
and its analytic approximation, given by A2,MN · C̃2 (A3,MN · C̃3).
The behaviour of the first harmonic coefficient A1, PH is shown in the
upper panel of the figure.

The amplitudes of all three harmonics rise monotonically with the
fillout factor f. As can be seen in the figure, the second-harmonic
amplitude is much larger than the other two. For large enough values
of f and sin i, its amplitude reaches a hundred ppts. The amplitude of
the other two harmonics is an order of magnitude smaller.

Fig. 2 shows that the analytical expression we derived for the
second- and third-harmonic fits quite well the PHOEBE amplitudes.
The derived correction factors themselves are shown in Fig. 3. The
middle (lower) panel shows the correction factor C2 (C3) and its
approximations with the same grid used before. The correction factor
starts at 1 for f = 0 (no correction), as expected, and rises monoton-
ically as f → 1, obtaining a maximum value of ∼ 1.5 at f � 0.90.

The residual part of each panel shows the relative residuals of the
correction factor according to the derived expression compared to the
measured one. As stated, the residual panels show a typical relative
error < 1 per cent. The maximum error, of ∼ 2 per cent, is obtained
for the case of C2, when the fillout factor is large.

The top panel of Fig. 3 presents the correction factor C1, which
behaves differently than C2 and C3. For edge-on binary, C1 rises
monotonically up to ∼ 3 at f = 0.95, but decreases as a function of f
for sin i = 0.4, down to a value of 0.5.

3.3 Extension of the approximated correction

So far, the correction factor C1 and the approximated expressions,
C̃2 and C̃3, were calculated for V-band light curves of a Sun-like
primary system. To explore our approach on systems with different
primaries and different observational bands we tested them for main-
sequence stars of 0.8, 1, 2, and 5 M
, over the Johnson B, V, and R,
and Cousins-I bands, with different f, q, and sin i values.
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Figure 2. Amplitudes of the PHOEBE model as a function of fillout factor for a Sun-like star. Amplitudes are given for two inclinations and three mass-ratio
values. Top panel shows the amplitudes for the first harmonic. The two lower panels present the second- and third-harmonic amplitudes (points) and their
approximations (solid line).

We found that the correction factor of the first harmonic C1 changes
dramatically for binary systems of different primaries and different
observational bands. Therefore, the first-harmonic amplitudes were
calculated numerically over a grid of f, q, and sin i, for different
main-sequence stars and optical bands, using PHOEBE. These can
be extracted by the PYTHON module described in Appendix A. The
module derives the estimated amplitudes for any binary parameters
by interpolating between the grid points.

Even better, in all our tests the approximated expressions C̃2 and
C̃3 fitted well, by up to ∼7 per cent (∼17 per cent) for C̃2 (C̃3).
These results show that our approximation for the second and third
harmonic is reliable and robust, and can be used for different stars
and different bands.

3.4 Limits on the use of the correction factors

The above analysis and the resulting correction factors were based
on a few assumptions, such as a circular, aligned, and synchronous

orbit, and our knowledge of the limb- and gravity-darkening
coefficients. In addition, the focus of the analysis on the ellipsoidal
effect ignores the reflection of the primary light by the secondary
surface, and stellar spot modulations, for example. Here, we try
to estimate and quantify the limits on physical parameters within
which this analysis is still valid.

(i) An eccentric orbit: from equation (1) we see that for a small-
eccentricity orbit the ellipsoidal leading amplitude A2 will deviate
from its circular-orbit value by a factor of ∼(1 + e)3 � 1 + 3e, where
e is the eccentricity (Engel et al. 2020). This means that our analysis
and the resulting corrections factors are valid as long as 3e � 1.

(ii) Limb- and gravity-darkening coefficients: Our analysis is
based on estimation of the limb- and gravity-darkening coefficients,
both expected to be in the 0–1 range. From the α2 formula in equation
(2) we see that A2 is mainly sensitive to the gravity-darkening
parameter τ , so that A2∝(1 + τ ). Due to uncertainties in Teff, log g,
and stellar models, we expect the uncertainty in the gravity-darkening

MNRAS 501, 2822–2832 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/2/2822/6055674 by guest on 09 April 2024



Corrected amplitudes of ellipsoidal modulation 2827

Figure 3. PHOEBE correction factors for the MN93 amplitudes. The two lower panels show second- and third-harmonic correction factors (points) and their
approximations (solid lines) as a function of fillout factor for two inclinations and three mass-ratio values per inclination for a Sun-like star, with their relative
residuals. Top panel shows first-harmonic correction factors for the same grid. Approximations (and residuals) are not available for the first harmonic; see the
text.

coefficient, �τ , to be �τ /τ � 0.1. Thus, we suggest that our analysis
is almost not effected by �τ , since �A2/A2 � �τ /(1 + τ ) � 1.

The reflection contribution can be estimated as
∼ −pgeo

(
R2
a

)2
sin i cos φ, where R2 is the secondary radius

and pgeo is the geometric albedo, expected to be in the 0–0.5 range
(e.g. Faigler & Mazeh 2011). Thus, the reflection modulation
is negligible relative to the first-harmonic amplitude A1, if

pgeo

(
R2
a

)2
sin i � |A1|.

4 O N E E X A M P L E : O G L E - B L G - E L L - 0 0 7 7 3 0

4.1 The observed ellipsoidal modulation

As an example of an observed ellipsoidal modulation, we show in
Fig. 4 the V and I OGLE-IV light curves of OGLE-BLG-ELL-007730
(Soszyński et al. 2016), folded with the OGLE derived orbital period
P = 24.558264 d and φ = 0 at a T0 = HJD 2457019.8283. The system

was chosen from the public OGLE Collection of Variable Stars3 by
searching for a system with a large relative ellipsoidal modulation
and a significant difference between the two minima, as seen in the
figure.

Overplotted in the figures are three-harmonic models with am-
plitudes of A1 = 0.0374 ± 0.0025, A2 = 0.1368 ± 0.0025, and
A3 = 0.0249 ± 0.0024 for V and A1 = 0.02251 ± 0.00018, A2 =
0.10140 ± 0.00018, and A3 = 0.01310 ± 0.00018 for the I band.
The residuals are plotted in the lower panels.

4.2 Estimating the mass ratio

Equipped with our corrected estimation for the ellipsoidal modula-
tion, we now use OGLE-BLG-ELL-007730 as an example of how
our search for dormant BH might work.

3http://ogledb.astrouw.edu.pl/∼ogle/OCVS/
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Figure 4. Folded OGLE-IV light curve of OGLE-BLG-ELL-007730 in the I (left-hand panel) and V (right-hand panel) bands. The orbital phase is calculated
with a period of 24.558264 d and zero phase at HJD 2457019.8283. A three harmonics model is plotted with a solid line and the fitted coefficients are given in
the top part of the figure. The predominant A2 coefficient gives the characteristic double-peaked appearance to the light curve, while A1 and A3 contribute to the
difference between the minima. The residuals are plotted in the lower panels.

According to Gaia DR2 (Gaia Collaboration et al. 2018), the stellar
parallax is 0.213 ± 0.052, its G magnitude is 14.7300 ± 0.0066,
with an extinction of AG � 2.4 ± 0.2, BP−RP =2.641 ± 0.033, and
reddening of E(BP−RP) � 1.19 ± 0.12. We use all these values to
locate the star on the colour–magnitude diagram (CMD) in Fig. 5,
indicating that OGLE-BLG-ELL-007730 is either on the ascending
giant branch or maybe an asymptotic giant branch star.

The TIC4 (Stassun et al. 2019) stellar values are Teff of 4200K
and stellar radius of 26 R
, consistent with the CMD position. If we
assume a typical giant mass of ∼ 1.5 M
, we obtain log g ∼ 1.8.

With these stellar details, we can now plot the corrected amplitudes
of the second harmonic expected for the ellipsoidal modulations in
the V and the I bands of OGLE-BLG-ELL-007730. This is done in
Fig. 6 as a function of the Roche lobe fillout factor of the primary
f and the binary mass-ratio q . The figure was derived for sin i =
1, with no contribution from the secondary and no beaming effect,
using the linear limb- and gravity-darkening coefficients of Claret &
Bloemen (2011), u = 0.638 (0.845) and τ = 0.400 (0.567) for the I
(V) band, and assuming zero metallicity.

The combination of the two loci suggests a range of mass ratios of
2.4 ≤ q ≤ 100, indicating a binary with a mass ratio larger than unity.
This conclusion is based only on the light-curve modulation and the
estimation of the stellar temperature. We propose that the actual mass
ratio of OGLE-BLG-ELL-007730 is close to the small end of this
range, 2.5 � q, not untypical of an Algol binary, for which the less
massive star is the evolved one, like here (e.g. Nelson & Eggleton
2001). For such a mass-ratio value, Fig. 6 suggests that f ∼ 0.9,
indicating that the evolved star is close to filling its Roche lobe. In
such a case, the amplitudes of the third harmonic are expected to be
∼20 and ∼10 ppt for the V and I bands, similar to the values derived
from the OGLE light curves. Obviously, solving the system requires
a detailed analysis of the light curves in both bands, given the stellar
radius and its mass.

4https://tess.mit.edu/science/tess-input-catalogue/

5 SUMMARY AND DI SCUSSI ON

This study presents a correction to the MN93 analytical approxima-
tion of the ellipsoidal modulation, based on the PHOEBE numerical
code. We derived corrections for the amplitudes of the first three
harmonics of the modulation for a 3D grid, as a function of the
mass ratio, the inclination of the binary and the fillout factor of the
primary – the ratio between the stellar radius and the radius of its
Roche lobe. The correction can get up to a factor of ∼1.5 when the
star is close to filling its Roche lobe. We present simple expressions
for the correction of the second and third harmonics. A PYTHON code
to extract the three-harmonics coefficients is given.

The combination of the MN93 approximation and our correction
can be used to obtain the expected ellipsoidal modulation for a close
binary system, provided some simplified assumptions of the model
are fulfilled. These include that the star is stationary in the rotating
frame, with no differential rotation, and that the stellar atmospheric
models apply to distorted stars, to mention two examples.

Note that we consider here only the ellipsoidal modulation of
the primary induced by the secondary, and ignore the other well-
known two effects: reflection/emission and beaming. The reflection
(emission) modulation is the result of light coming from one
component and reflected (absorbed and thermally emitted) by the
other one (e.g. Vaz 1985; Maxted et al. 2002; For et al. 2010; Faigler
& Mazeh 2011). The relativistic beaming effect causes the intensity
of a light source to increase (decrease) when the source is moving
towards (away from) the observer (e.g. Rybicki & Lightman 1979;
Loeb & Gaudi 2003; Zucker et al. 2007; Mazeh & Faigler 2010;
Bloemen et al. 2011; Eigmüller et al. 2018). Obviously, any complete
analysis of a light curve has to account for the other two modulations
too.

Fortunately, whereas most of the variability of the ellipsoidal
modulation appears in the cosine function of the second harmonic, the
beaming modulation for a circular orbit appears in the sine function
of the first harmonic, and most of the variability of the reflection
effect is concentrated at the cosine function of the first harmonic.
Therefore, in principle, the reflection and beaming effects can be
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Figure 5. OGLE-BLG-ELL-007730 on the Gaia CMD; see text. As a background, we plotted a grey-scale density map of Hipparcos stars, used as a proxy for
the expected CMD in the solar neighbourhood, as done, for example, by Shahaf & Mazeh (2019).

Figure 6. I (left) and V (right) amplitudes of the second harmonic of the ellipsoidal effect as a function of q and f, based on the derived corrections (see above).
Contour lines with equally spaced amplitudes are drawn with solid lines from 15 ppt upwards in steps of 15 ppt. The locus of OGLE-BLG-ELL-007730 is
plotted in both panels, and its crossing points with both axes are given.

separated from the ellipsoidal modulation in the analysis of the light
curves.

The separation between the ellipsoidal effect on one hand and the
beaming and reflection modulations, on the other hand, is not possible
for a binary with an eccentric orbit. First, the shape and amplitude
of the ellipsoidal effect depend on the eccentricity and argument of
periastron of the orbit, and its power is not necessarily concentrated
in the second harmonic. Second, the beaming and reflection effects
have power in all three first harmonics, with the sine and cosine
functions alike [see Engel et al. 2020, for a detailed model, eBEER

(BEaming Ellipsoidal and Reflection), for eccentric orbit]. Therefore,
the corrections presented here can be applied for circular or nearly
circular orbits only. Furthermore, our analysis assumes that the binary
is in a tidal equilibrium state, so the system has reached not only
circularization but also synchronization and alignment of the stellar
rotation with the binary orbital angular momentum.

However, as shown by many studies (e.g. Mayor & Mermilliod
1984; Mathieu & Mazeh 1988; Mazeh 2008), most of the short-
period binaries have reached tidal equilibrium, and the orbits have
small eccentricities only. In fact, tidal equilibrium is probably reached
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for any binary with a large fillout factor of the primary. This is
relevant here, as this search for dormant BHs targets short-period
binaries with a primary with a large fillout factor, because only
such systems display large enough ellipsoidal modulation to be
detected and identified as such. For those systems the corrections we
developed here are relevant. Furthermore, our analysis is applicable
also for binaries that have reached tidal equilibrium.

We note in passing that we are participating in an effort to extend
the BEER approximation for which the ellipsoidal model uses MN93
to eccentric orbits. A paper (Engel et al. 2020) summarizing this work
has been published in MNRAS. The next stage, out of the scope of
the current paper, is to combine the present analysis with the Engel
et al. approach to construct a modified model for eccentric binaries,
even for large fillout factor systems.

Using the corrected amplitudes of the harmonics of the ellipsoidal
modulation of a short-period binary can help to reach a reliable
estimate of the binary mass ratio. At the first stage, one obtains a
constrain on the binary mass ratio, fillout factor and inclination.
In some cases, like OGLE-BLG-ELL-007730, one can obtain a
minimum mass ratio that is larger than unity. Provided the mass
and radius of the primary and the binary period are known, one can
solve for the three unknowns.

Obviously, when analysing a specific light curve one has to
estimate the contribution of the secondary star to the brightness
of the system. A good candidate for having a compact secondary
is a system that the analysis suggests the secondary is faint and is
more massive than the primary. Then, of course, one has to show
that the secondary is not a main-sequence star. This is especially
true for systems with giant or subgiant primaries, as is OGLE-BLG-
ELL-007730, for which the obvious conjecture is that the system is
an Algol-type binary. In such systems, which are relatively frequent
(e.g. Budding et al. 2004), the main-sequence star is indeed more
massive that the optical primary.

The analysis proposed here can be instrumental in searching,
identifying, and analysing ellipsoidal variables in large data sets
which are available already, and the ones coming us soon, like the
light curves collected by LSST, which will start operating in the near
future (LSST Science Collaboration et al. 2009; Ivezić et al. 2019).
As will be demonstrated in the future papers of this series, to confirm
the binarity of a system and its large mass ratio, such a system
has to be followed by radial-velocity (RV) observations. Existing
and coming up multi-object spectrographs: VIMOS (Le Fèvre et al.
2003); FMOS (Maihara et al. 2000); GIRMOS (Wright et al. 2000);
OSMOS (Stoll et al. 2010); GMACS (DePoy et al. 2012); DEIMOS
(Faber et al. 2003); LAMOST (Su et al. 1998); 4MOST (de Jong
2011); can be used to follow up many candidates, as was done, for
example, by, Tal-Or, Faigler & Mazeh (2015), Romani et al. (2015),
and Rebassa-Mansergas et al. (2017).

The photometric modulation is not the only approach to discover
dormant BHs in binaries. Single-lined spectroscopic binaries present
RV variations, induced by their unseen companions. Given the orbital
parameters, one can derive the binary mass function, and obtain a
minimum of the secondary mass, provided the primary mass can
be estimated. This is a simple way to identify massive companions,
some of which can be dormant BHs.

The ellipsoidal technique is sensitive to systems with a primary
that fills most of its Roche lobe, and therefore is limited to short-
period binaries, depending on the stellar radius. The RV technique, on
the other hand, can be applied to longer period binaries. Indeed, two
studies claimed recently finding dormant BHs in such spectroscopic
binaries. Liu et al. (2019) announced the discovery of a B-type
primary star with a BH companion of 68 M
, moving in a relatively

long orbital period of ∼79 d. This system has been found in the
RV monitoring campaign of LAMOST (Cui et al. 2012) to discover
and study spectroscopic binaries. Another work, by Thompson et al.
(2019), reported the discovery of a BH candidate of 3.3 M
 and a
giant-star binary system, with an orbital period of ∼83 d, found while
searching for binary systems with massive unseen companions in the
APOGEE spectroscopic data (Majewski et al. 2017).

However, there are still some doubts about at least one of these
detections. El-Badry & Quataert (2020) showed that the Hα line in
LB-1, the binary reported to contain a BH companion of 68 M
, has
non-significant RV variability. This undermines the derived mass
ratio of the system and thus the reported unprecedentedly high-
mass companion. Instead, a normal-mass BH seems more plausible.
Eldridge et al. (2019) and Irrgang et al. (2020) proposed that the
luminous star could be a ∼ 1 M
 pre-subdwarf in a short-lived
evolutionary phase. In this scenario, the companion would have a
significantly lower mass and could even be a neutron star.

One should note that the BH binaries are probably quite rare. As
long as we examine relatively small samples, of the order of ∼105

stars, like the LAMOST or APOGEE ones, the chances of finding
in their binary samples (e.g. Yi et al. 2019; Price-Whelan et al.
2020) a real BH binary is small. On the other hand, the ellipsoidal
technique can survey very large samples, of the order of ∼108 stars
with precise enough light curves, and therefore might have a better
chance of finding BH binaries. This depends, of course, on how the
frequency of the BH binaries varies as a function of binary period, an
unknown statistical feature that depends on the evolutionary tracks
of the binaries that led to the formation of the BH binaries (e.g.
Wiktorowicz et al. 2019).

One obvious major step to understand the population of the
BH binaries will occur when Gaia will release their astrometric
measurements. These data will allow identifying BH binaries with
a preference for binaries with longer periods (e.g. Andrews, Breivik
& Chatterjee 2019), on the order of a few years, with an approach
outlines by Shahaf et al. (2019) and Belokurov et al. (2020), for
example. The combination of the three techniques, using ellipsoidal
effect, RV modulation, and astrometric motion, will finally give us
the information needed to obtain the BH binaries frequency and its
dependence on the binary period.
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especially Andrej Prša and Kyle Conroy, for their endless effort to
help us run the software. We could not have completed this work
without their prompt and kind support. We thank Michael Engel for
his kind assistance in building our binary model in PHOEBE and Sahar
Shahaf, Laurent Eyer, Pierre Maxted, Igor Soszyński, and Michał
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Budding E., Erdem A., Çiçek C., Bulut I., Soydugan F., Soydugan E., Bakiș

V., Demircan O., 2004, A&A, 417, 263
Cackett E. M. et al., 2005, ApJ, 620, 922
Casares J., Charles P. A., Naylor T., Pavlenko E. P., 1993, MNRAS, 265,

834
Castelli F., Kurucz R. L., 2003, in Piskunov N., Weiss W. W., Gray D. F., eds,

IAU Symp. 210, Modelling of Stellar Atmospheres, Astron. Soc. Pac.,
San Francisco, p. A20

Claret A., 2004, A&A, 424, 919
Claret A., Bloemen S., 2011, A&A, 529, A75
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Soszyński I. et al., 2011b, Acta Astron., 61, 285
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APPENDIX A : P H Y T H O N M O D U L E TO D E R I V E D
THE C ORRECTED ELLIPSOIDAL AMPLITUDES

We composed an online PYTHON module5 that calculates the ex-
pected semi amplitudes of the first three harmonics, based on the
PHOEBE simulated light curves. The code interpolates the amplitudes
values for the first harmonic using the grid we prepared and uses
equations (11)–(12) for the second and third harmonics.

5https://github.com/roygomel/EllipsoidalAmplitudes

The code inputs are the estimated effective temperature, log
gravity, metallicity and the Roche lobe fillout factor of the primary
star, the inclination and mass ratio of the binary and the observing
band. The code range is given in Table A1.

Table A1. The PYTHON module range of operation.

A1 A2 A3

Fillout factor f ≤0.9 f ≤0.95 f ≤0.9
Mass ratio 0.05 ≤ q ≤10 0.05 ≤ q ≤100 0.1 ≤ q ≤10
Orbital inclination 0.2 ≤ sin 2i ≤ 1 No limitation No limitation
Primary mass [M
] 0.8 ≤ M1 ≤ 5 No limitation No limitation
Evolutionary state Main sequence No limitation No limitation
Band B, V, R, I ∗ ∗
Note: ∗All available bands in Claret & Bloemen (2011).
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