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ABSTRACT
We study the effects of inelastic dark matter (DM) self-interactions on the internal structure of a simulated Milky Way (MW)-size
halo. Self-interacting dark matter (SIDM) is an alternative to collisionless cold dark matter (CDM) which offers a unique solution
to the problems encountered with CDM on sub-galactic scales. Although previous SIDM simulations have mainly considered
elastic collisions, theoretical considerations motivate the existence of multistate DM where transitions from the excited to
the ground state are exothermic. In this work, we consider a self-interacting, two-state DM model with inelastic collisions,
implemented in the AREPO code. We find that energy injection from inelastic self-interactions reduces the central density of the
MW halo in a shorter time-scale relative to the elastic scale, resulting in a larger core size. Inelastic collisions also isotropize
the orbits, resulting in an overall lower velocity anisotropy for the inelastic MW halo. In the inner halo, the inelastic SIDM case
(minor-to-major axial ratio s ≡ c/a ≈ 0.65) is more spherical than the CDM (s ≈ 0.4), but less spherical than the elastic SIDM
case (s ≈ 0.75). The speed distribution f(v) of DM particles at the location of the Sun in the inelastic SIDM model shows a
significant departure from the CDM model, with f(v) falling more steeply at high speeds. In addition, the velocity kicks imparted
during inelastic collisions produce unbound high-speed particles with velocities up to 500 km s−1 throughout the halo. This
implies that inelastic SIDM can potentially leave distinct signatures in direct detection experiments, relative to elastic SIDM and
CDM.
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1 IN T RO D U C T I O N

The standard cold dark matter (CDM) model has been successful
in describing several properties of the Universe, such as the Cosmic
Microwave Background, and the formation and evolution of large-
scale structure in the distribution of galaxies throughout the Universe
(e.g. Spergel et al. 2003; Springel et al. 2005). On the other
hand, relevant discrepancies have been uncovered between CDM
and observations at sub-galactic scales. Some of these include: (i)
the cusp–core problem, arising from a disagreement between the
predicted dark matter (DM) density profiles of low-mass galaxies
and their observed density profiles (e.g. de Blok & McGaugh 1997;
Walker & Peñarrubia 2011); (ii) the missing satellites problem,
arising from a discrepancy between the abundance of low-mass
galaxies in the Milky Way (MW) and that ‘naively’ predicted by
CDM simulations (e.g. Moore et al. 1999; a similar problem appears
in field galaxies, e.g. Zavala et al. 2009; Klypin et al. 2015); (iii)
the too-big-to-fail problem highlighted by Boylan-Kolchin, Bullock
& Kaplinghat (2011), which arises from the fact that low-mass
CDM (sub)haloes, which are expected to host low-mass galaxies,
are seemingly too dense to explain the observed stellar kinematics of
these systems; (iv) the dwarf rotation curve diversity problem, where
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the rotation curves of simulated dwarf galaxies at a fixed mass do
not show the large variety/diversity observed in real galaxies (Oman
et al. 2015);1 and (v) conflicting expectations of the DM halo shape,
where CDM simulations predict average shapes far less spherical
than those derived from tidal stream observations (e.g. Ibata et al.
2001; Law & Majewski 2010; Vera-Ciro & Helmi 2013; Bovy et al.
2016).

It is important to remark that these small-scale disagreements
are only firmly established from the results of N-body simulations,
which include only the effects of DM gravity. Recent efforts have
accelerated the development of hydrodynamics simulations, e.g.
Illustris (Vogelsberger et al. 2014), EAGLE (Crain et al. 2015),
and Illustris-TNG (Pillepich et al. 2018), where the incorporation of
galaxy formation processes allows the complex modelling of galaxies
to occur in a full cosmological context. Due to the coupling between
DM and baryons through gravity, it has been suggested that baryonic
effects in hydrodynamic simulations can alleviate some, if not all, of
the CDM challenges. For example, energy from supernova feedback
can inject energy into the inner DM halo, alleviating the cusp–core
problem (Navarro, Eke & Frenk 1996; Governato et al. 2012; Oñorbe

1We note that with recent observations of ultrafaint galaxies, the too-big-to-
fail problem also becomes a diversity problem for the broad distribution of
stellar kinematics in dwarf spheroidals in the MW (Zavala et al. 2019).
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et al. 2015; Read, Agertz & Collins 2016), as well as the too-big-to-
fail problem (Zolotov et al. 2012; Brook & Di Cintio 2015; Sawala
et al. 2016; Wetzel et al. 2016). It has also been found that while a
combination of supernova and active galactic nuclei (AGN) feedback
can reduce the central densities of haloes (e.g. Duffy et al. 2010), the
condensation of baryons in halo centres conversely increases the halo
concentration through adiabatic contraction (Blumenthal et al. 1986;
Gnedin et al. 2004). The condensation of baryons can also affect
halo shapes, leading to more spherical DM haloes in hydrodynamic
simulations compared to N-body simulations (e.g. Katz & Gunn
1991; Dubinski 1994; Abadi et al. 2010; Tissera et al. 2010; Bryan
et al. 2013; Butsky et al. 2016; Chisari et al. 2017; Chua et al. 2019).
The impact of all of these baryonic processes certainly reduces the
tension between the CDM model and observations of the dwarf
galaxy population. However, it is important to note that a wide variety
of physics implementations exist, resulting in uncertain predictions.
If these uncertainties in baryonic physics must be taken into account,
we argue that is also prudent to consider another uncertainty in
the physics of galaxies, which is the nature of the DM particle.
Alternatives to DM models can arise by relaxing the key assumptions
of CDM – that DM is both cold and collisionless. For a recent review
on different DM models and their impact on structure formation, see
Zavala & Frenk (2019); for a review of the CDM challenges and
possible solutions, see Bullock & Boylan-Kolchin (2017).

Relaxing the assumption that DM is cold for the purposes of
galaxy formation implies that the primordial power spectrum has
deviations over CDM at galactic scales. This can happen for example
in models such as warm dark matter (WDM), in which DM particles
undergo free-streaming in the early Universe (Colı́n, Avila-Reese
& Valenzuela 2000; Bode, Ostriker & Turok 2001), as well as
interacting DM, in which DM particles interact with relativistic
particles in the early Universe (Bœhm et al. 2002; Buckley et al.
2014). The cut-off in the linear power spectrum reduces the severity
of the missing satellite problem (Bœhm et al. 2014), the too-big-
to-fail problem and the dwarf rotation curve diversity problem
(Vogelsberger et al. 2016; Zavala et al. 2019). However, observations
of the Ly α forest constrain the mass of thermal WDM to mWDM �
3.5 keV (Viel et al. 2013; Iršič et al. 2017; although see Garzilli
et al. 2019). Although WDM also naturally predicts central density
cores due to the upper bound on the phase space density set by the
primordial thermal velocity dispersion (Dalcanton & Hogan 2001),
allowed WDM models cannot create large DM cores without severely
underpredicting the abundance of low-mass galaxies (Macciò et al.
2012). Similarly, the interacting DM model does not alleviate the
cusp–core problem since the interactions between DM and the
relativistic particles decouple long before the onset of DM haloes.

Alternatively, models in which DM particles interact with each
other are known as self-interacting dark matter (SIDM; Spergel &
Steinhardt 2000) models. SIDM has self-interaction cross-sections
with an amplitude near that of strong nucleon–nucleon elastic
scattering, which are sufficient to reduce the central densities of DM
haloes and alleviate the CDM challenges (for a review, see Tulin &
Yu 2018). For example, by transferring energy from the outer regions
of the halo to the inner regions, SIDM models can create cores on kpc
scales (Colı́n et al. 2002). This alleviates both the cusp–core and the
too-big-to-fail problems (Vogelsberger, Zavala & Loeb 2012; Rocha
et al. 2013; Zavala, Vogelsberger & Walker 2013), and also the dwarf
rotation curve diversity problem (Kamada et al. 2017; although see
Santos-Santos et al. 2020).

Most SIDM simulations thus far have assumed that the scattering
process between two SIDM particles is elastic, i.e. kinetic energy is
conserved during the collision. In these purely elastic SIDM models,

elastic scattering leads to a redistribution of DM particles within the
halo, which has been found to modify DM haloes in terms of their
phase-space structure (Vogelsberger & Zavala 2013) and halo shapes
(Peter et al. 2013; Brinckmann et al. 2018). However, self-scattering
interactions can also be inelastic and occur in theoretical models
which contain multistate DM (Arkani-Hamed et al. 2009; Schutz
& Slatyer 2015). For the case of a two-state scenario, a transition
from the ground (χ1) to the excited (χ2) state (up-scattering) is an
endothermic process, while the reverse process (down scattering)
is exothermic. Inelastic SIDM is especially interesting from a core-
formation perspective, since a down-scattering event produces a kick
in the velocities of the ground state particles. For example, Todoroki
& Medvedev (2019a,b, 2020) performed SIDM simulations using a
multistate DM model and concluded that elastic scattering and energy
injection are independently sufficient to create isothermal cores in
haloes of mass ≈5 × 1011 M�. The energy injected into the halo
from exothermic down scattering can be of the order of 100 million
Type II supernovae, which not only results in higher core formation
efficiencies than a purely elastic model, but also reduces the amount
of substructure present in the halo (Vogelsberger et al. 2019, hereafter
V19). As such, inelastic SIDM can increase the allowed parameter
space of self-interaction cross-sections in SIDM models. So far, the
impact of energy injection due to inelastic self-interactions on the
DM properties of galactic haloes remains largely unexplored.

In this paper, we examine the effects of inelastic SIDM on halo
structure and assembly using high-resolution DM-only simulations
of an MW-size halo. The study is based on a comparative analysis
between a CDM model, an elastic SIDM model, and an inelastic
SIDM model. By using DM-only simulations, we focus solely on the
impact of SIDM in the absence of gas physics and galaxy formation.
The paper is structured as follows: Section 2 describes the numerical
simulations, including a description of the two-state inelastic SIDM
model and its implementation. We then present the results of the
simulations, focusing on the effects of inelastic SIDM on the structure
of the simulated halo at z = 0 in Section 3, as well as its assembly
history in Section 4. Finally, we present our conclusions in Section 5.

2 ME T H O D S

Since the haloes analysed in this paper were previously introduced
in V19, we refer the reader there for a full description of the model
and methods. We give a brief overview of the relevant points here.

2.1 Inelastic SIDM model

Our SIDM simulations are based on the two-state model presented by
Schutz & Slatyer (2015), where the excited state is nearly degenerate
with the ground state, and analytical expressions for the elastic and
inelastic s-wave cross-sections have been derived. Although other
inelastic SIDM models exist, this model is currently the only one
in which an analytical description of scattering has proven to be
feasible at dwarf galaxy velocity scales. The model is described by
the following parameters: the mass splitting δ between the ground
(χ1) and excited (χ2) states, the coupling constant α between the DM
particle and the force mediator, the mass mχ of the DM particle, and
the mass mφ of the force mediator. In this work, these parameters
have the values δ = 10 keV, α = 0.1, mχ = 10 GeV, and mφ =
30 MeV. While these values represent an arbitrary point within
the entire parameter space, they have been chosen to lie within
the range for interesting cross-sections for velocities of the order
of 10 km s−1 (Schutz & Slatyer 2015). At the scale of the MW
halo, the corresponding elastic cross-section per unit mass is a

MNRAS 500, 1531–1546 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/1/1531/5942669 by guest on 10 April 2024



Impact of inelastic SIDM on an MW halo 1533

few cm2 g−1. Such cross-sections have previously been found to
be capable of creating cores of size O(kpc) (e.g. Vogelsberger et al.
2012; Brinckmann et al. 2018).

There are five possible interactions in this two-state SIDM model,
namely:

(i) elastic scattering of two ground state particles (χ1 + χ1 → χ1

+ χ1),
(ii) elastic scattering of two excited state particles (χ2 + χ2 →

χ2 + χ2),
(iii) elastic Yukawa scattering (χ1 + χ2 → χ1 + χ2),
(iv) inelastic endothermic up-scattering in which two ground state

particles transition to the excited state (χ1 + χ1 → χ2 + χ2), and
(v) inelastic exothermic down scattering in which two excited

particles transition to the ground state (χ2 + χ2 → χ1 + χ1).

During down scattering, our chosen model produces a velocity kick
vkick = √

2δ/mχc � 424 km s−1. Up-scattering can only occur for
relative velocities vrel > 2vkick � 848 km s−1. For typical DM
velocities in a MW-size halo (≈200 km s−1), inelastic endothermic
scattering is essentially forbidden since the energy splitting δ is too
large for this interaction to occur frequently.

An additional parameter that must be specified in the simulations is
the primordial fraction of DM in each of the ground and excited states.
A primordial excitation fraction χ2

init = 100 per cent corresponds to
having all particles being in the excited state, and leads to the
maximum possible energy release during structure formation and
hence the maximum possible effect on halo structure. Conversely, an
inelastic system with all particles initially in the ground state behaves
essentially like purely elastic SIDM, since inelastic up-scattering is
suppressed at galactic halo velocities. In this paper, we examine
two initial configurations: (i) χ2

init = 100 per cent, where all SIDM
particles begin in the excited state, and (ii) χ2

init = 50 per cent, where
only half of the SIDM particles begin in the excited state. For possible
theoretical justifications for the large primordial fraction of excited
states, we refer the reader to V19.

2.2 Numerical implementation

The two-state inelastic SIDM model is implemented within a general
multistate DM framework in the AREPO code (Springel 2010). This
framework is a generalization of the probabilistic approach presented
in Vogelsberger et al. (2012, 2016), and is able to handle an arbitrary
number of states with non-degenerate energy level splitting and
all possible reactions between them, each with any given velocity-
dependent cross-section.

Each DM particle i is assumed to be in a specific state α. The
simulation volume is populated by DM particles in various states (α,
β, γ , and δ) with possible two-body scatterings

χα
i + χ

β

j → χ
γ

i + χδ
j . (1)

Equation (1) represents the scattering of particles i and j from states
α and β into states γ and δ. A DM particle in state ε ∈ (α, β, γ ,
δ) has mass mχε . The scattering rates for the possible reactions are
given by

Rαβ→γ δ = ρβ

mχβ

〈
σ

αβ→γ δ

T (vαβ )vαβ
〉

, (2)

where ρβ is the local mass density of particles in state β, σαβ→γ δ

T (vαβ )
is the velocity-dependent transfer cross-section for the reaction,
and vαβ is the magnitude of the relative velocity between the
interacting particles. Since the differential cross-section has no

angular dependence in this model, the transfer cross-section is also
the same as the total cross-section for the reaction.

The scattering of particles i and j in states α and β with masses mα
i

and m
β

j is performed in the centre-of-mass frame, and new velocities
are assigned to each particle

vi = mα
i + m

β

j

m
γ

i + mδ
j

vcm + mδ
j

m
γ

i + mδ
j

Aij vij ê, (3)

vj = mα
i + m

β

j

m
γ

i + mδ
j

vcm − m
γ

i

m
γ

i + mδ
j

Aij vij ê, (4)

where vcm is the velocity of the centre of mass, ê is a random vector
on the unit sphere, and Aij(αβ → γ δ) is a dimensionless velocity
scale factor that depends on the energy splitting of the reaction

0 ≤ Aij

⎧⎪⎪⎨
⎪⎪⎩

= 1 elastic

< 1 inelastic: endothermic

> 1 inelastic: exothermic

(5)

For inelastic scattering, each particle in the reaction gains or loses the
same amount of energy. The endothermic case has as a lower limit
the completely inelastic collision, in which both particles move at
the centre-of-mass velocity. On the other hand, the exothermic case
has no upper limit – the amount of energy injected into the system
in the exothermic case is determined by the mass splitting δ between
the two states.

2.3 Numerical simulations

We perform five high resolution DM-only simulations of a single
MW-size halo in a cosmological context. In addition to simulating
the halo with the inelastic SIDM model, simulations with an elastic
SIDM model as well as standard CDM are also performed for
comparison. For each SIDM model, we examine cases with the
two primordial excited fractions χ2

init = 100 per cent, and χ2
init =

50 per cent.
The elastic SIDM model we examine is obtained by neglecting

energy changes for the inelastic up and down-scattering reactions
i.e. keeping Aij = 1 in equation (4). The resulting elastic SIDM
model is otherwise identical to inelastic SIDM, which enables us to
isolate the effects of energy injection into the halo.

Our simulations used cosmological parameters consistent with
Planck (�m = 0.302, � = 0.698, �b = 0.046, h = 0.69, σ 8 = 0.839,
ns = 0.967, Planck Collaboration XVI 2014; Spergel, Flauger &
Hložek 2015). The gravitational softening length is fixed in comoving
coordinates until z = 9 and then fixed in physical units until z = 0,
resulting in a Plummer-equivalent softening length of 72.4 pc at z

= 0. The DM particles have a mass resolution of 2.756 × 104 M�.
Haloes are identified using a friends-of-friends (FoF) algorithm with
a linking length of 0.2 (Davis et al. 1985), and the SUBFIND algorithm
is subsequently used to identify gravitationally self-bound subhaloes
(Springel et al. 2001; Dolag et al. 2009). In the CDM simulation, the
virial mass of the halo at z = 0 is M200 = 1.6 × 1012 M� and the
virial radius is R200 = 243 kpc.2

2R200 is the radius within which the average density is ρ̄ = 200ρcrit, where
ρcrit is the critical density of the universe. Other properties for the CDM and
SIDM haloes can be found in table 1 of V19.
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3 H A L O ST RU C T U R E

In this section, we focus on the effect of inelastic SIDM on the
structure of the DM halo at z = 0, particularly in terms of the density
profile, velocity profile, phase-space structure, and halo shape.

3.1 Density profile

We begin by examining the spherically averaged DM density profile
ρ(r) of the MW-size halo. The particles are binned into 30 shells
spaced in logarithmic intervals in the range 1 kpc < r < 300 kpc.
The results are shown in the upper panels of Fig. 1, with black, blue,
and red lines representing the CDM, elastic SIDM, and inelastic
SIDM models, respectively. The columns distinguish between the
primordial excitation fractions χ2

init = 100 per cent (left-hand pan-
els), and χ2

init = 50 per cent (right-hand panels). In addition to the
total mass density (solid lines), we also show the individual profiles
for the ground (dotted lines) and excited states (dashed lines). To
avoid shells with low number counts, shells containing less than 20
particles are ignored. This affects primarily the inelastic model with
χ2

init = 100 per cent (left-hand panel, dotted red lines). We note that
the density profiles were previously also presented in fig. 8 of V19.

The upper row of Fig. 1 shows that both elastic and inelastic
SIDM models produce lower densities and extended cores near the
halo centre compared to CDM. At r = 1 kpc, elastic SIDM reduces
the total density by a factor of ∼10 relative to CDM. Defining the
core size Rcore as the radius below which the SIDM density profiles
deviate from CDM, we estimate the elastic SIDM haloes to have
density cores of size Rcore ∼ 9 kpc.

Inelastic self-interactions further increase the core size and de-
crease the central density compared to elastic SIDM. For the
χ2

init = 100 per cent excitation fraction (upper left panel), the total
density at r = 1 kpc is approximately 20 times smaller than that
of the CDM halo, with a core size of Rcore ∼ 20 kpc. Furthermore,
the ground state densities (dotted lines) exhibit a large difference
between the inelastic and elastic SIDM models: the ground state
density of the inelastic halo is significantly lower compared than that
of the elastic counterpart, with a difference of approximately two
orders of magnitude near the halo centre. For the lower excitation
fraction χ2

init = 50 per cent, the ground state density is only slightly
above that of the excited state, since the de-excited particles only
constitute a small fraction of the total ground state population.

For each SIDM case, we further plot the ratio of the SIDM profiles
compared to CDM (ρSIDM/ρCDM) in the narrow plot at the bottom
of each panel. At intermediate radii (10 kpc � r � 100 kpc), we
note that the density of the inelastic SIDM haloes actually exceed
that of the CDM counterpart. This is due to the redistribution of
particles from the inner regions during the elastic scattering process.
However, the particles remain bound to the halo in the absence of an
energy-injection mechanism. In contrast, the density profile of the
inelastic χ2

init = 100 per cent case does not exceed that of CDM at the
same radii. Here, the down-scattering process imparts velocity kicks,
which enable the de-excited ground state particles to travel further
and even escape from the inelastic halo completely. As a result, in
addition to a redistribution of particles, there is a removal of particles
from the halo (halo evaporation) which decreases its overall density
and equivalently, mass. These velocity kicks inject energy equivalent
to hundreds of millions of SNII into the halo (V19), which further
explains the more efficient core formation with the inelastic SIDM
model. The slight elevation of the inelastic density profile at r ≈
130 kpc compared to CDM, also reflects down-scattered particles on
their way out towards the outskirts of the halo.

The bottom panels of Fig. 1 show the slopes �(r) ≡ −dln ρ/dln r
of the logarithmic density profiles. The slopes are calculated from
the density profiles ρ(r) using a central difference scheme, such that
for the n-th bin, we have

�(rn) = − ln(ρ(rn+1)) − ln(ρ(rn−1))

ln(rn+1) − ln(rn−1)
. (6)

For the first and last radial bins, forward and backward schemes
are used, respectively, to estimate the slopes. In the CDM case, the
Navarro–Frenk–White (NFW) profile (Navarro et al. 1996), with a
cusp (� ≈ 1) at small radii and � ≈ 3 near the virial radius, is a good
fit to the halo density profile. On the other hand, in all SIDM models,
we find that at small radii (1 kpc < r � 3 kpc), the central slope is
� ≈ 0, revealing the presence of density cores. The overall slopes of
the inelastic models beyond the density cores remain below that of
the elastic model, up to intermediate radii of r � 20 kpc. This effect
is stronger and persists to a larger radius for the larger primordial
excitation fraction.

Another key difference between the elastic and inelastic models
lies in the slopes of the ground state particles for χ2

init = 100 per cent
(lower left panel). In the elastic model, the ground state density
profile is steeper (larger �) compared to the excited state beyond
the density core. The opposite trend occurs for the inelastic model,
where the ground state density profile is shallower (smaller �) than
that of the excited state.

In general, it is clear that the impact of inelastic SIDM depends
strongly on the initial fraction of excited particles: a higher primordial
excited fraction results in larger modifications to the density profile,
a result of the larger amount of energy injected into the halo.

3.2 Velocity dispersion and anisotropy

The velocity dispersion and anisotropy are useful in providing
insights into the orbital structure of haloes since the collision
of DM particles can affect their velocity distributions due to the
thermalization of the halo (Vogelsberger & Zavala 2013; Brinckmann
et al. 2018). We calculate the velocity dispersion σ 2 as

σ 2(r) = 〈|v − v̄|2〉 = 1

Np

Np∑
i=1

|vi − v̄|2 , (7)

where Np is the number of particles and v̄ is the mean velocity of
particles in a given spherical shell. The velocity anisotropy parameter
is defined as

β(r) = 1 − σ 2
t (r)

2σ 2
r (r)

(8)

where σ 2
t and σ 2

r are the tangential and radial velocity dispersions
averaged over spherical shells, calculated similarly to equation (7).
Haloes with β = 0 are considered isotropic, while β > 0 and β <

0 correspond to radially and tangentially biased haloes, respectively.
We ignore substructure in calculating the velocity anisotropy in order
to concentrate on the smooth component of the halo.

Fig. 2 shows both the radial profiles of the velocity dispersion
σ 2(r) (top row) and the velocity anisotropy parameter β(r) (bottom
row), with the columns distinguishing between the two primordial
excitation fractions. The velocity dispersion of the CDM halo exhibits
the well-known temperature inversion in the central region, where the
velocity dispersion drops towards the centre, consistent with previous
CDM simulations (e.g. Navarro et al. 2010; Tissera et al. 2010). By
transporting energy into the centre, self-interactions substantially
affect the DM velocities, erasing the temperature inversion in the
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Figure 1. Spherically averaged radial density profile (top panels) and its logarithmic slope (bottom panels) for the MW-size halo. The columns are for
different primordial fractions of the excited states, χ2

init = 100 per cent (left) and χ2
init = 50 per cent (right). We show the results for CDM (black), elastic SIDM

(blue), and inelastic SIDM (red), with the narrow plot at the bottom of each panel showing the ratio of each quantity relative to CDM. The dotted (dashed)
lines show the profiles for only the ground (excited) state. Top panels: In the central regions, both SIDM models lead to the formation of density cores, with
central densities depleted compared to CDM. Inelastic SIDM produces larger and lower density cores than elastic SIDM, since the exothermic down-scattering
reactions lead to an expulsion of ground state particles from the halo. At intermediate radii, the elastic density profile exceeds that of CDM while the inelastic
profile almost never does so. This is because particles are only redistributed from the central regions to the intermediate regions in the elastic case and are
not removed as in the inelastic case. For the excitation fraction χ2

init = 100 per cent, the removal of down-scattered ground state particles leads to a significant
suppression of the ground state inelastic density profile (blue dotted lines) relative to elastic SIDM. Bottom panels: Radial profiles of the logarithmic density
slope �(r) = −dln ρ/dln r. In all SIDM cases, the slope reaches a value of zero, indicating clearly the presence of density cores.

SIDM models. Thus, the SIDM velocity dispersions flatten and
become fairly constant (isothermal) towards the inner halo. Inelastic
down scattering further reduces the velocity dispersions compared
to the elastic counterparts, since kinetic energy is carried away by
escaping down-scattered particles. At intermediate radii, the velocity
dispersion of the inelastic χ2

init = 100 per cent halo (red curve, left-
hand panel) is ≈10 per cent lower than the CDM counterpart, a
difference which persists for a substantial fraction of the halo, up to
r ≈ 100 kpc.

An additional impact of inelastic self-interaction can also be
observed from the ground state velocity dispersions. For the higher
primordial excitation fraction χ2

init = 100 per cent (Fig. 7, left-hand
panel), velocity kicks received by the ground state particles in the
inelastic SIDM model increase the inelastic velocity dispersion
of the ground state (dotted line) over that of the excited state
particles (dashed line). Conversely, for elastic SIDM, the velocity
dispersion of ground state particles is lower than of the excited state.
In this case, ground state particles are only ever the products of
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Figure 2. Velocity dispersion (top panels) and velocity anisotropy profiles (bottom panels) for the MW-size halo. The narrow plot at the bottom of each
panel shows the ratio of the SIDM quantity relative to CDM. Top panels: The SIDM velocity dispersion profiles are flat (isothermal) in the inner regions,
exceeding that of CDM which exhibits the well-known temperature inversion. Inelastic scattering results in a suppression of the velocity dispersion compared
to elastic SIDM, a difference which is most apparent with a primordial excited fraction of χ2

init = 100 per cent. Bottom panels: The velocity anisotropy β of the
SIDM haloes is closer to β = 0 (more isotropic) compared to the CDM counterpart. Although the difference between SIDM and CDM decreases in general
towards the virial radius, the inelastic SIDM halo with excitation fraction χ2

init = 100 per cent remains significantly more isotropic than the CDM halo even at
the virial radius.

elastic interactions, and are therefore more limited in their allowed
velocities.

The bottom panels of Fig. 2 present the radial profiles of the
velocity anisotropy parameter β(r). In general, self-interactions
isotropize the orbits (β closer to zero) compared to CDM, especially
in the inner and intermediate regions of the halo. Near the halo
centre, β approaches zero more rapidly in the SIDM models than in
CDM, due to collisional relaxation driving the core region isothermal
(Colı́n et al. 2002). Whereas elastic SIDM differs from CDM only
in the inner and intermediate regions, the effects of inelastic SIDM
persist up to and even beyond the virial radius, especially for the
χ2

init = 100 per cent excitation fraction. This result confirms once

again that energy injection from inelastic down scattering plays an
important role in the structure of the halo far from the halo centre.

The effect of SIDM on halo structure is also evident when plotting
the anisotropy parameter β against the logarithmic slope of the
density profile (dln ρ/dln r ≡ −�), shown in Fig. 3. A relation
between these two quantities were first identified by Hansen & Moore
(2006) (hereafter HM06) in CDM simulations. This relation is shown
as black dashed lines in Fig. 3. Our CDM results (black dots) is in
good agreement with the HM06 relation, which predicts a central
velocity anisotropy and slope of (β(0), −�(0)) = (0, −1).

In the following, we focus on results that include both DM states
(i.e. the filled circles). For steep slopes (dln ρ/dln r � −1), the SIDM
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Impact of inelastic SIDM on an MW halo 1537

Figure 3. Velocity anisotropy parameter versus logarithmic slope of the density profile for the MW-size halo. The dashed black line represents the linear
relation proposed by Hansen & Moore (2006). The CDM halo agrees with the HM06 relation whereas the SIDM haloes diverge from this linear relation. The
difference is particularly significant for dln ρ/dln r � −1, which corresponds to the core region in the SIDM haloes. In this region, a simple extrapolation of the
CDM result leads to an underprediction of the velocity anisotropy since the flattening of the density profile is not taken into account.

results are close to, but lie slightly below the HM06 relation. This
is due to the increased velocity isotropy (smaller β) at intermediate
radii in the SIDM runs. In the core region, (dln ρ/dln r � −1), a
simple extrapolation of the HM06 relation underpredicts the velocity
anisotropy compared to the SIDM run since the CDM results do not
account for the flattening of the density profile. The contrary to CDM,
both SIDM models predict a central velocity anisotropy and slope
of (β(0), −�(0)) ≈ (0, 0), regardless of the primordial fraction of
excited states.

3.3 Phase-space structure

In CDM N-body simulations, Taylor & Navarro (2001) discovered
that the DM density and velocity dispersion of any halo can be
combined to form a pseudo-phase-space density Q(r) ≡ ρ(r)/σ 3(r),
a quantity which is inversely proportional to the local entropy. Q(r)
is essentially universal for all haloes, and can be approximated by a
power law Q(r)∝r−α . The value of α obtained (α ≈ 1.875) was also
predicted by the analytical spherical infall solution of Bertschinger
(1985).

In Fig. 4, we present the pseudo-phase space density profiles
Q(r) of the main halo for the CDM and SIDM models. The CDM
case obeys and confirms the power law seen in previous N-body
simulations (e.g. Taylor & Navarro 2001; Ludlow et al. 2011).
With SIDM, however, the power-law behaviour is broken since self-
scattering leads to a flattening in Q(r) for r < 10 kpc. This is due to
the central flattening of the individual density and velocity profiles
by self-interactions discussed in the previous sections. Inelastic
interactions further modify the pseudo-phase-space profile, resulting
in a decrease in Q(r) in the inner halo compared to the elastic
case, most notably for the higher primordial excitation fraction
χ2

init = 100 per cent.
To further illustrate the differences in the SIDM models, we plot

the radial phase-space distributions in Fig. 5. Here, the pixel colour

represents the particle count in each (r, vr) bin, with dark points
representing low counts, enhancements representing high particle
counts and uncoloured portions representing unoccupied regions
of phase-space. For ground state particles, we distinguish between
particles bound to the central subhalo (leftmost column, as identified
by SUBFIND), and all particles within the FoF group (middle column),
which includes both unbound particles as well as substructure. In
Fig. 5, CDM particles are considered as ground-state particles. For
the SIDM models, we include also the phase-space distribution of all
excited state particles in the FoF group (rightmost column).

We first note that for a primordial excitation fraction of χ2
init =

100 per cent, the phase-space distributions show a clear deficit of
the ground state abundances in the inelastic SIDM model (third
row) compared to the elastic model (second row), which agrees
with our previous results for the halo density profiles (Fig. 1). In
the radial phase-space distributions, satellite subhaloes appear as
enhancements in the number counts localized at particular radii
and radial velocities. The deficiency of ground state particles in
the inelastic χ2

init = 100 per cent case carries over to the subhalo
structure, which is noticeably absent in the ground state phase-space
histogram of the FoF halo (third row, middle column). Due to the
small potential wells of low-mass satellite subhaloes, the ground
state particles formed from exothermic down scattering can easily
escape due to the imparted velocity kicks. In the inelastic model, we
find most of the resolved subhaloes3 do not contain any ground state
particles: only 49 out of 3304 resolved subhaloes have a non-zero
ground state fraction. In comparison, most of the subhaloes (4298
out of 4306) in the elastic model with the same primordial excitation
fraction host ground state particles. It is also important to note that
subhaloes might not correspond exactly between the various runs for
two reasons: (i) inelastic self-interactions lead to the evaporation of

3We consider a subhalo to be resolved if it contains at least 100 particles in
total.
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1538 K. T. E. Chua et al.

Figure 4. Pseudo phase-space density as a function of radius for the MW-size halo. Whereas the CDM profile agrees with the power-law profile (ρ/σ 3 ∝
r−1.875) found by Taylor & Navarro (2001), both elastic and inelastic SIDM lead to a flattening of the pseudo-phase-space density profile towards the centre,
due to a combination of core formation and flattening of the velocity dispersion.

subhaloes and thus a reduction in subhalo abundance (V19), and (ii)
the temporal evolution of the counterparts deviate progressively as
time goes by, since subhalo accretion histories and orbits are affected
by dynamical changes generated by self-interactions.

For both inelastic SIDM cases, Fig. 5 shows a population of ground
state particles moving outwards with high radial velocities of up to
≈500 km s−1. These high-speed ground state particles, noticeably
absent in CDM and the elastic SIDM model, reflect the velocity kicks
they received during inelastic down-scattering. Although the majority
of these kicks result in outward-moving (vr > 0) particles, they can
occasionally result in inward-moving (vr < 0) particles, as evidenced
from the smaller population of particles with high-speed negative
radial velocities in the inelastic ground state phase-space distributions
(third and bottom rows). For the inelastic χ2

init = 100 per cent case,
we find that 80 per cent of these inward moving particles originate
from accreted subhaloes, and the remaining one-fifth from the central
halo.

3.4 Velocity distribution at the solar circle

The local distribution of DM velocities is important for DM direct
detection experiments, which depend on the shape of the local
velocity distribution f(v). We measure f(v) within cubes of side
length 2 kpc, sampled at a distance of r = 8 kpc (the solar circle)
for 1000 randomly selected observers.4 For each cube, we calculate
the histogram in v for all particles (ground + excited states), as
well as the individual particle states, normalizing each histogram

4The cubes are oriented aligned with the simulation box. Changing the
orientation e.g. by rotating the cubes is not found to affect the overall result.

such that
∫

f(v)dv = 1. The resulting velocity distributions are shown
in Fig. 6, with lines representing the median distributions over the
1000 random observers, and shaded regions denoting the 25th–75th
percentile for the total (ground + excited state) distribution. For
comparison, we plot also a Maxwellian distribution (dot–dashed
curve) with mean speed equal to that of the CDM halo (187.3 km s−1).
Table 1 reports the mean and median speeds of the total distributions
for the five cases.

For CDM, our results are similar to previous work, where the
velocity distribution is close to Maxwellian, with features that can
be traced to the halo assembly history, as well as a tail of high-
speed particles in excess of the best-fitting Maxwellian distribution
(e.g. Vogelsberger et al. 2009; Kuhlen et al. 2010; Pillepich et al.
2014; Butsky et al. 2016). In the SIDM models, the total velocity
distributions are noticeably shifted to lower speeds compared to
CDM. This is related to the mass redistribution within the inner
regions of the halo, especially in the core region (see Fig. 2). The
largest suppression occurs for the inelastic SIDM model with χ2

init =
100 per cent: compared to CDM, the mean speed decreases from
187.3 to 168.5 km s−1, while the median speed decreases from 179.4
to 159.4 km s−1 (see Table 1). Smaller changes are observed for
elastic SIDM as well as for the cases with the smaller primordial
excited fraction.

At higher velocities (v � 200 km s−1), the SIDM models suppress
the high-speed tail and result in a more steeply falling distribution,
similar to that observed in some hydrodynamic simulations with
baryonic physics (e.g. Pillepich et al. 2014; Butsky et al. 2016). While
the elastic SIDM halo has a velocity distribution close to Maxwellian
at the solar radius, the inelastic halo distribution deviates more
significantly from Maxwellian. This results from the lower number of
scattering events in the inelastic SIDM model compared to the elastic
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Impact of inelastic SIDM on an MW halo 1539

Figure 5. Radial phase-space histograms of all models for the MW-size halo. The pixel colour represents the particle count in each (r, vr) bin, with dark
points representing low counts, enhancements representing high particle counts and uncoloured portions representing unoccupied regions of phase space. We
distinguish between bound ground state particles in the main subhalo (leftmost column), all ground state particles within the FoF halo (middle column), and
excited state particles within the FoF halo (rightmost column). Results for the FoF halo consider all substructures as well as unbound particles. Inelastic SIDM
(third and fifth rows) results in a population of ground-state particles with radial speeds up to 500 km s−1 throughout the halo. For a primordial excitation
fraction of χ2

init = 100 per cent, the inelastic SIDM model strongly suppresses substructure in the ground state (third row, middle column).
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1540 K. T. E. Chua et al.

Figure 6. Top panels: Local DM velocity distribution for the MW-size halo at the solar circle. We measure f(v) within cubes of side length 2 kpc, sampled
at a distance of r = 8 kpc for 1000 randomly selected observers. For each cube, we calculate the histogram in v of all particles (ground + excited states), as well
as for the ground and excited states separately. The curves show the median distribution, while the shading denotes the 25th–75th percentile across the 1000
random observers. The dot–dashed line in each panel represents a Maxwellian distribution with mean velocity 187.3 km s−1. At the bottom of each panel, we
show the ratio of each SIDM case relative to CDM. Compared to CDM, the SIDM models decrease the overall peak velocity of the distribution and suppress
the fraction of particles with velocities v > 200 km s−1. In the SIDM models, self-interactions cause the velocity distribution to become closer to Maxwellian.
In the inelastic model with primordial excitation fraction χ2

init = 100 per cent (left-hand panel), the down scattering of particles into the ground state results in
population of high-speed ground state particles with speeds v � 400 km s−1. Such a feature is absent in the velocity distribution of the excited particles and for
the elastic SIDM model.

Table 1. Mean and median of the (total) DM velocity distributions shown in
Fig. 6.

Model Mean v Median v

(km s−1) (km s−1)

CDM 187.3 179.4
Elastic SIDM (χ2

init = 100 per cent) 185.9 176.0
Elastic SIDM (χ2

init = 50 per cent) 183.3 172.7
Inelastic SIDM (χ2

init = 100 per cent) 168.5 159.4
Inelastic SIDM (χ2

init = 50 per cent) 177.1 166.7

model: within the inner 10 kpc, there are twice (1.2 times) as many
scattering events in the elastic model relative to the inelastic model
with primordial excitation fraction χ2

init = 100 per cent (50 per cent)
(see the lower panels of fig. 7 of V19).

The distributions of individual particle states generally follow
that of the overall distribution, with the exception of the inelastic
model with primordial excited fraction χ2

init = 100 per cent (left-
hand panel). In this particular case, the model predicts a substantial
fraction of ground state particles (red dotted line) with high speeds up
to v ∼ 500 km s−1 at the solar radius. This result is coherent with the
radial phase-space histogram (Fig. 5), where the presence of these
high-speed particles previously been noted. For the lower primordial
excited fraction χ2

init = 50 per cent, the phase-space histogram sug-
gests the presence of similar high-speed ground state particles, but
these are suppressed in the velocity distribution since such particles

only constitute a tiny fraction of the ground state population (see
Fig. 1).

3.5 Halo shape

Hierarchical structure formation theory and CDM simulations predict
that DM haloes are triaxial, due to the anisotropic accretion of
matter during halo growth (Dubinski & Carlberg 1991; Warren et al.
1992; Bullock 2002; Jing & Suto 2002; Bailin & Steinmetz 2005;
Allgood et al. 2006; Macciò, Dutton & van den Bosch 2008). Since
self-interactions isotropise the velocities of the DM particles (see
Section 3.2), we expect SIDM to have an impact on halo shapes as
well. The non-spherical nature of the DM halo is illustrated in Fig. 7,
which visualizes the DM density of the inelastic SIDM halo with
primordial excitation fraction χ2

init = 100 per cent, for r < 50 kpc.
We also include three isodensity contours for the same model (solid
lines), as well as for the elastic SIDM counterpart (dotted lines) to
help elucidate the halo shape.

To quantify and compare the departure from spherical symmetry,
we calculate the halo shape profiles using an iterative algorithm
(Allgood et al. 2006; Zemp et al. 2011), which we briefly describe
as follows. We assume that the isodensity surfaces can be described
by ellipsoidal shells, and are interested in determining the halo shape
at a particular radius through the axis ratios b/a and c/a, where a >

b > c are the lengths of the principal axes of the shell. For a set of
particles with mass mk within a particular ellipsoidal shell, we define
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Impact of inelastic SIDM on an MW halo 1541

Figure 7. DM density of the MW-size halo simulated with inelastic SIDM
for a primordial excitation fraction of χ2

init = 100 per cent, within a 20 kpc-
thick slice. To better elucidate the shape of the DM density, we show in
solid lines three isodensity contours, which correspond to three halo-centric
distances. For comparison, the corresponding isodensity contours for the
elastic SIDM halo with the same excitation fraction are also shown as dotted
lines. The isodensity contours show that the inelastic halo is less spherical
than the elastic counterpart at these radii.

the components of the shape tensor as

Sij =
∑Np

k=1 mkx
(i)
k x

(j )
k∑Np

k=1 mk

, (9)

where Np is the number of particles within the shell and x
(i)
k refers

to the ith component of the kth particle. Note that the shape tensor is
directly proportional to the second moment of the mass distribution.
For each iteration, we compute the eigenvalues and eigenvectors
of the shape tensor Sij. The eigenvectors denote the orientation of
the principal frame, while the eigenvalues (λ1 > λ2 > λ3) give the
axis ratios q ≡ b/a = √

λ2/λ1 and s ≡ c/a = √
λ3/λ1. In the next

iteration, we deform the ellipsoidal shell using the new values of q and
s while keeping the length of the major axis constant. This means that
only particles with elliptical radius rell =

√
x2 + y2/q2 + z2/s2 that

fall within the bin width are used to calculate the new shape tensor.
For a given elliptical radius rell = R, we define the shell to be 0.85R
< rell < 1.15R, thus shells are allowed to overlap and particles can
belong to multiple shells simultaneously. This procedure has been
shown to produce reliable estimates of the halo shape (e.g. Zemp
et al. 2011; Brinckmann et al. 2018; Chua et al. 2019), although it
differs slightly from other methods which keep the enclosed volume
of the shell constant, or calculate shapes using the entire enclosed
mass within the ellipsoidal volume.

We calculate the axial ratio profiles in 30 ellipsoidal shells spaced
logarithmically between 1 kpc <r < 300 kpc. To begin the algorithm,
we start with spherical shells i.e. q = s = 1. The iterations are

performed until convergence is obtained, when successive values of
q and s differ by less than one per cent.

Previous convergence studies have shown that convergence in the
DM halo shapes is more demanding that for the DM density profiles.
Within a halo, κ(r), the ratio of the two-body relaxation time-scale
to the circular orbit time-scale at the virial radius, can be expressed
as

κ(r) ≡
√

200

8

N (r)

ln N (r)

[
ρ̄(r)

ρcrit

]−1/2

, (10)

where N(r) is the number of particles enclosed within radius r and
ρ̄(r) is the mean density within radius r (Power et al. 2003). The
analysis of MW-size haloes from the Aquarius simulation (Springel
et al. 2008; Vera-Ciro et al. 2011) as well as haloes from the
Illustris project (Chua et al. 2019) have found that the convergence
radius rconv, defined by κ(rconv) = 7, gives a good indication of the
minimum radius where the shape profiles remain reliable in N-body
simulations. This choice of rconv is larger than the power radius rp,
defined by κ(rp) = 1, which is traditionally applied to halo circular
velocity profiles. In addition, we also consider only shells containing
at least 1000 particles, which has been found to be approximately
the minimum number of particles required for the iterative shape
algorithm to be reliable (e.g. Tenneti et al. 2014).

We show the obtained shape profiles q(r) and s(r) from our
simulations in Fig. 8. For each profile, only the converged region (r
> rconv) is shown. From q and s (top and middle rows respectively),
we find a clear separation between the SIDM cases and CDM for
r � 50 kpc: all the SIDM cases result in DM haloes that are more
spherical (larger q and s) than the CDM model. For the primordial
excited fraction χ2

init = 50 per cent, the elastic and inelastic SIDM
models both have q ≈ 0.75, s ≈ 0.7 at a radius of r = 10 kpc, much
higher than the values q = 0.55, s = 0.45 for CDM. Self-interactions
tend to isotropise particle orbits, making haloes more spherical. This
effect is strongest near the centre and decreases towards the viral
radius where the SIDM shapes are very similar to that of CDM.

Interestingly, the inelastic SIDM model results in haloes that are
less spherical than their elastic counterparts. For χ2

init = 100 per cent,
Fig. 8 shows that s = 0.75 for the elastic halo, compared to s = 0.6
for the inelastic halo at r = 10 kpc. Visually, this result can also be
observed by comparing the isodensity contours of the two models
shown in Fig. 7. This separation in the halo shape profiles persists
up to 200 kpc, and provides an additional diagnostic which can
potentially be used to distinguish between the elastic and inelastic
SIDM models. The larger sphericity in the elastic SIDM case can be
explained by its larger number of scattering events compared to the
inelastic halo (see section 3.4 and fig. 7. of V19).

For elastic SIDM, DM halo shapes have been previously studied by
Peter et al. (2013) and Brinckmann et al. (2018). Our elastic results
are qualitatively similar to the median results of the galaxy-size
haloes studied by Peter et al. (2013), when compared to the largest
self-interaction cross-section they considered (σ/m = 1 cm2 g−1).

For the MW, estimates of the shape of the inner halo (r � 30 kpc)
can be inferred observationally. For example, stellar kinematics
together with equilibrium modelling with the Jeans equations has
suggested that s = 0.47 ± 0.14 (Loebman et al. 2012). Tidal stellar
streams are also widely used to model the MW halo shape, providing
estimates of: s > 0.7 (Ibata et al. 2001), s = 0.72 (Law & Majewski
2010), s = 0.8 (Vera-Ciro & Helmi 2013), and s = 1.05 ± 0.14
(Bovy et al. 2016). All the SIDM haloes, being more spherical, are in
better agreement with the observational values compared to CDM.
While the observations appear to favour the more spherical elastic
model, it is important to note that an exact comparison with the MW
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1542 K. T. E. Chua et al.

Figure 8. Halo shape profiles for the MW-size halo, showing q ≡ b/a (top row) and s ≡ c/a (bottom) as a function of radius. The bottom plots attached to
each panel show the ratio of the SIDM profiles relative to CDM. All SIDM models lead to more spherical haloes (larger q and s) than CDM for a significant
fraction of the halo. This increase in sphericity is strongest in the inner regions and decreases towards the virial radius. In the elastic models, the halo with
χ2

init = 100 per cent (left-hand panels) is more spherical than its counterpart with χ2
init = 50 per cent (right-hand panels). The inelastic SIDM models lead to a

less spherical halo compared to their elastic SIDM counterparts, especially for χ2
init = 100 per cent.

halo shape must necessarily incorporate the dynamical impact of the
assembly of the luminous galaxy, which is not taken into account in
our simulations.

4 A SSEMBLY HISTORY

So far, we have discussed the structural characteristics of inelastic
SIDM haloes only at redshift z = 0. It is also relevant to consider how
these characteristics change as the haloes evolve from high redshift
to the present epoch.

For a CDM halo, the density profile is well-described by an NFW
profile (Navarro et al. 1996)

ρNFW(r)

ρcrit
= δc

(r/rs) (1 + r/rs)
2 , (11)

where δc is a characteristic density contrast and the scale radius rs is
the radius where the logarithmic density slope is dln ρ/dln r = −2.
Due to the presence of the constant density core in the SIDM haloes,
the SIDM density profiles are not well-described by the NFW profile
(see Section 3.1 and also Todoroki & Medvedev 2019b). Thus, we
only calculate δc and the scale radius rs,CDM for the CDM halo using
a two-parameter least-squares fit. At redshifts z = 0 and z = 10,
the comoving scale radii for the CDM halo are rs,CDM = 24.0 and
14.8 kpc, respectively.

We first examine the evolution of the average inner density
within 0.25rs,CDM and 0.5rs,CDM. This results in the two measures:
(i) ρ̄0.25 ≡ ρ̄(r < 0.25rs,CDM), and (ii) ρ̄0.5 ≡ ρ̄(r < 0.5rs,CDM). For
each of the five models, we trace the main halo from the final
snapshot at z = 0 back to z = 10, picking in each snapshot its
progenitor based on mass and distance. Subsequently, ρ̄0.25 and ρ̄0.5

are calculated for each redshift using the scale radius of the CDM
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Impact of inelastic SIDM on an MW halo 1543

Figure 9. Average inner density (in physical units) as a function of redshift for the MW-like halo, within 0.25rs,CDM and 0.5rs,CDM. At each redshift, the
scale radius of the CDM halo (rs,CDM) is used across the models for consistency. The bottom plots attached to each panel show the ratio of the SIDM quantities
relative to CDM. For a fixed primordial excitation fraction, the inner densities are decreased in a shorter time-scale in the inelastic SIDM model compared to
the elastic model, thus the inelastic halo has the lowest density at each redshift. At z = 10, ρ̄0.5 is suppressed relative to CDM only in the inelastic model with
χ2

init = 100 per cent, due to the larger enclosed mass within 0.5rs,CDM,.

counterpart. The standardization of the radius (i.e. using rs,CDM)
at each redshift ensures that the inner densities calculated can be
compared consistently across the models.

Fig. 9 shows the evolution of ρ̄0.25 and ρ̄0.5 in physical units for
CDM and the SIDM models, with the bottom attached plots showing
the ratio of the inner densities to that of the CDM model. For ρ̄0.25,
the effect of DM self-interactions manifests with time (decreasing
redshift), and increasingly suppresses the inner density relative to
CDM with time. Relative to the CDM halo, ρ̄0.25 is suppressed by 15–
45 per cent at z = 10 across the SIDM models. By z = 0, this number
has increased to 50–80 per cent. At fixed primordial excitation
fraction χ2

init, the inelastic halo has the lowest inner density at each
redshift. Thus, we conclude that energy injection from inelastic down
scattering reduces the inner density in a shorter time-scale compared
to the elastic scale.

The effects of self-interactions are weaker on ρ̄0.5 compared to
ρ̄0.25, due to the larger enclosed mass within 0.5rs,CDM. At z = 0,
ρ̄0.5 is only suppressed by 15–55 per cent relative to CDM. At high
redshifts, due to the smaller cumulative number of scattering events,
only an inelastic model with high primordial excitation fraction
injects sufficient energy through inelastic interactions to evacuate
DM from within 0.5rs,CDM. As a result, only the inelastic SIDM
model with χ2

init = 100 per cent (left-hand panel, red curve) shows a
substantial decrease in ρ̄0.5 relative to CDM (−14 per cent).

Finally, we examine the inner slope of the logarithmic density
profile, which provides more information about the growth of the
constant density core. Here, we measure the inner slope γ by fitting
the density profile in the region r < 0.25rs,CDM to a power law
ρ(r)∝r−γ . We emphasize again that at each redshift, the scale radius
for the CDM halo is used for consistency across the models. The
resulting evolution of the inner slope γ with redshift is shown in
Fig. 10. In the CDM model, we find the inner slope is approximately

constant across redshift, with a value of γ ≈ 1.25. This value is
consistent with the NFW profile,5 for which the local slope is �(r =
0) = 1 at the centre and �(rs) = 2 at the scale radius.

In the SIDM models, both elastic and inelastic self-interactions
already flatten the density profiles at redshift z = 10 compared to the
CDM model. Between z = 10 and z = 0, γ decreases from γ ≈ 1
to γ ≈ 0.25 in the SIDM cases. As the halo grows, self-interactions
cause the inner core to grow, which leads to a shallower inner slope.
At low redshifts, the inner slopes in the inelastic cases are slightly
smaller (i.e. the density profiles are flatter) than the elastic cases, due
to more efficient core formation associated with inelastic SIDM.

Comparing these inner slopes with the central densities from Fig. 9,
we note that at high redshifts, elastic self-interactions alone have only
a small effect on the average inner densities ρ̄0.5 and ρ̄0.25 relative to
CDM. However, the effect of elastic and inelastic self-interactions
on the inner slope is already considerable even at z = 10.

5 C O N C L U S I O N S

We have examined the results of high resolution simulations of a
MW-size DM halo composed of inelastic self-interacting DM. Our
inelastic SIDM model consists of nearly degenerate two-state DM
particles with an energy level splitting of δ = 10 keV, which we
implemented and simulated using AREPO. During the exothermic
down-scattering process, the model results in velocity kicks of
approximately 424 km s−1. To understand the effects of such
energy injection, we have examined and compared inelastic SIDM
simulations of an MW-size halo against an elastic SIDM model and

5For the NFW profile, the local slope of the logarithmic density profile is
�(r) ≡ −dln ρ/dln r = 1 + 2r/(r + rs).
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Figure 10. Inner slope as a function of redshift for the MW-like halo. At each snapshot, the inner slope γ is obtained from fitting the density profile ρ(r)
within 1/4 of the NFW scale radius of the CDM halo counterpart to a power law r−γ . For the CDM case, γ is approximately constant across redshift, remaining
at γ ≈ 1.25. In all the SIDM cases, self-interactions already result in a flattened density profile at redshift z = 10 compared to the CDM counterpart. Between z

= 10 and z = 0, the inner slope becomes less steep due to the increasing impact of self-interactions, with γ decreasing roughly from 1 to 0.25 in all the SIDM
cases. At low redshifts, the inelastic halo is slightly less steep than the elastic counterpart, due to the larger core formation efficiency in the former.

the conventional CDM model. The elastic SIDM model simulated
in this work suppresses the energy change during down scattering
and up scattering but is otherwise identical to inelastic SIDM. In
addition, we have also distinguished between the configurations
where the simulation begins with all DM particles in the excited
state (χ2

init = 100 per cent) and where only half begin in the excited
state (χ2

init = 50 per cent). Using these five cases, we examined the
effects of elastic and inelastic SIDM on the internal structure and
assembly of DM haloes. In the following, we summarize our main
findings, concentrating on the case with primordial excited fraction
χ2

init = 100 per cent:

(i) Energy injection resulting from inelastic self-interactions re-
duces the central density of the inelastic SIDM halo in the inner
regions of the halo and results in a larger core compared to the elastic
counterpart (Fig. 1). In the χ2

init = 100 per cent configuration, inelas-
tic SIDM reduces the density by a factor of approximately 20 relative
to CDM, compared to a factor of 10 for elastic SIDM, at a radius r
= 1 kpc. Although the density profiles in the inner 3 kpc are flat for
both elastic and inelastic SIDM, the logarithmic slope in the elastic
models approaches that of CDM more rapidly with increasing radius.

(ii) At intermediate radii, the inelastic SIDM radial density profiles
are suppressed relative to CDM, because the velocity kicks from
inelastic down-scattering unbind and eject particles from the MW
halo. In contrast, the density profiles of the elastic SIDM models
are slightly raised compared to CDM since particles are solely
transferred from the inner regions to the intermediate regions of
the halo. The density of the ground state particles in the inelastic
model is around two orders of magnitude lower in the core region
compared to the elastic model, reflecting the characteristic particle
ejection unique to inelastic SIDM.

(iii) We found that self-interactions flatten the velocity dispersion
in the inner regions (Fig. 2, top panels), causing the halo to become

isothermal, in contrast to the ‘temperature inversion’ observed in
the CDM case. Inelastic self-interactions leads to lower velocity
dispersions compared to elastic interactions, due to the expulsion of
high-speed particles from the inelastic halo.

(iv) Inelastic scattering results in an inelastic halo which is more
isotropic (β ≈ 0) than the CDM and elastic SIDM counterparts
(Fig. 2, lower panels). Although elastic SIDM results in a similar
isotropization in the inner and intermediate regions of the halo, it does
not modify the velocity anisotropy substantially in the outer regions.
This implies the energy released in the exothermic interactions could
be important in modifying particle orbits near the halo outskirts.

(v) Self-interactions flatten the pseudo-phase-space density
(Fig. 4) in the inner regions, resulting in a profile substantially
different from the universal power law followed by CDM haloes.
Further analysis of the radial phase-space distributions (Fig. 5)
reveals a substantial population of ground state particles with radial
velocities of up to 500 km s−1 which is uniquely present in the
inelastic models. These particles are unbound from the central
subhalo and reflect the velocity kicks associated with inelastic down
scattering.

(vi) The local velocity distribution f(v) of DM particles at the
solar circle (Fig. 6) shows that the inelastic SIDM models predict the
presence of high-speed ground state particles which have received
velocity kicks. The decreased core density in the inelastic models
results in a total f(v) that differs from both CDM and elastic SIDM.
In the SIDM haloes, f(v) is shifted to lower velocities, together a
suppression of the high-speed tail (v � 200 km s−1). For inelastic
SIDM, we also found that the ground state particles show a distinct
population of high-speed particles (v � 400 km s−1). These particles
are not present in the velocity distribution of the excited state particles
or in the elastic SIDM counterpart. The unique presence of high-
speed particles in velocity distribution f(v) of the inelastic SIDM
halo is a potential signature for direct detection experiments.
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(vii) DM self-interactions result in haloes that are more spherical
than the CDM counterpart (Fig. 8), and are thus in better agreement
with observational estimates of the MW halo shape. Interestingly,
we found that our simulated halo was more spherical with elastic
SIDM than with inelastic SIDM. For example, the minor-to-major
axis s ratio at r = 10 kpc is s = 0.6 for the inelastic halo, compared
to s = 0.75 for the elastic halo and s = 0.45 for the CDM halo. The
larger number of scattering events in the elastic halo drives the shape
to more spherical compared to the inelastic counterpart.

(viii) Tracing the halo assembly history, we found that inelastic
self-interactions reduce the inner density of the MW halo in a shorter
time-scale relative to the elastic scale (Fig. 9), and also result in a
shallower inner slope at low redshifts (Fig. 10). As such, inelastic
self-interactions affect significantly the innermost region of the halo
(r � 0.25rs) at high redshifts (z � 5). We found that both elastic and
inelastic self-interactions already result in a substantial flattening of
the central density profile, even at a redshift as high as z = 10.

For simulations carried out with the lower primordial excitation
fraction (χ2

init = 50 per cent), the results are in general similar to that
observed for χ2

init = 100 per cent. With a lower χ2
init, the differences

relative to CDM were more subdued because: (i) less energy is
injected into the halo when less particles start out in the excited
state, and (ii) the down scattered ground state particles form only a
small fraction of the total ground state particles in the halo. While
energy injection from inelastic self-interactions drives many of the
differences between the inelastic and elastic haloes, the number
of scattering events appears to be the primary factor for certain
situations. For example, the latter factor is responsible for the local
velocity distribution f(v) of the elastic SIDM haloes being closer to
Maxwellian than their inelastic counterparts, and also for the elastic
haloes being more spherical.

In conclusion, we have found that inelastic self-interactions can
significantly impact DM haloes, causing the structure of inelastic
SIDM haloes to exhibit distinct differences with respect to their
elastic SIDM and CDM counterparts. By performing simulations
with only DM particles, we have focused on the effects of elastic
and inelastic scattering through comparisons to the CDM model.
Although we explored two primordial excitation fractions, we remark
that our results presented in this work correspond to a single choice
for the parameters δ, α, mχ , and mφ in the Schutz & Slatyer (2015)
model. In future work, we plan to expand the study by exploring
different choices in the parameter space. At the same time, it is well
known that hydrodynamics simulations with CDM and baryons have
predicted that baryonic physics associated with galaxy assembly
e.g. gas cooling, stellar feedback, black hole feedback etc. has a
relevant impact on the structure of DM haloes. Future simulations
incorporating both inelastic SIDM and galaxy formation physics
could prove to be helpful in understanding their combined effects on
both the DM halo as well as the luminous galaxy.
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Loebman S. R., Ivezić Ž., Quinn T. R., Governato F., Brooks A. M.,

Christensen C. R., Jurić M., 2012, ApJ, 758, L23
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