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ABSTRACT
The orbit eccentricities of the Solar system planets are unusually low compared to the average of known exoplanetary systems.
A power-law correlation has previously been found between the multiplicity of a planetary system and the orbital eccentricities
of its components, for systems with multiplicities above two. In this study we investigate the correlation for an expanded data
sample by focusing on planetary systems as units (unlike previous studies that have focused on individual planets). Our full
data sample contains 1171 exoplanets, in 895 systems, and the correlation between eccentricity and multiplicity is found to
follow a clear power law for all multiplicities above one. We discuss the correlation for several individual subsamples and find
that all samples consistently follow the same basic trend regardless of e.g. planet types and detection methods. We find that
the eccentricities of the Solar system fit the general trend and suggest that the Solar system might not show uncommonly low
eccentricities (as often speculated) but rather uncommonly many planets compared to a ‘standard’ planetary system. The only
outlier from the power-law correlation is, consistently in all the samples, the one-planet systems. It has previously been suggested
that this may be due to additional unseen exoplanets in the observed one-planet systems. Based on this assumption and the
power-law correlation, we estimate that the probability of a system having eight planets or more is of the order of 1 per cent, in
good agreement with recent predictions from analyses based on independent arguments.

Key words: astrobiology – methods: data analysis – planets and satellites: fundamental parameters – planets and satellites:
general – planets and satellites: dynamical evolution and stability.

1 IN T RO D U C T I O N

Extrasolar planets reveal orbital eccentricities much higher than those
found among the planets of the Solar system, a deviation that in the
beginning was considered so strange that it even lead some people
to doubt whether the radial-velocity (RV) exoplanet measurements
actually showed real planets. In this study we will show that the
eccentricity of the Solar system planets actually follow the same
trend as all other known planetary systems, but belong to the tail of
a continuous distribution. When searching for extraterrestrial life we
often focus on Earth-like planets and Solar-system-like systems, and
so low eccentricities are included in our search criteria. But exactly
how the habitability of a planet might be affected by the eccentricity
of its orbit is yet unknown. A planet on a high-eccentricity orbit
can undergo drastic seasonal changes in surface temperature due to
the difference in stellar radiation from perihelion to aphelion. These
seasonal changes could lead to periods of time without liquid water
on the surface, which would greatly limit the habitability of the
planet (Bolmont et al. 2016). However, a series of studies (reviewed
in Kopparapu, Wolf & Meadows 2019) have found that often the
atmosphere and oceans of a planet can act like a buffer to the
temperature variations, in which case the surface climate will be
determined by the average stellar radiation rather than the seasonal
extremes. In other cases large seasonal variability was found to
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expand the habitable zone for the planet, by allowing water to remain
liquid at larger semimajor axes (Linsenmeier, Pascale & Lucarini
2015). Since it is still uncertain how orbit eccentricities affect the
habitability of a planet, it is critical for us to study and understand
the eccentricities in the existing exoplanet sample and how they
might deviate from those in the Solar system.

From previous investigations (Chatterjee et al. 2008; Ford &
Rasio 2008; Jurić & Tremaine 2008a,b; Carrera, Raymond &
Davies 2019), planet–planet interaction has been suggested as the
dominating mechanism determining orbital eccentricities of planets,
either through dynamical relaxation or planet–planet scattering. The
dynamical interactions of planetary systems are reviewed in Davies
et al. (2014). As a conclusion of this, a correlation between orbital
eccentricity and multiplicity (number of planets) is predicted. This
prediction has been tested empirically by Limbach & Turner (2015)
based on 403 exoplanets detected by the RV method and listed in
the Exoplanet Orbit Database, exoplanets.org, (Han et al. (2014)). A
strong anticorrelation between eccentricity (e) and multiplicity (M)
was found, and for multiplicities above two the correlation could be
described by a power law: e(M) ≈ 0.584 · M−1.20. The eccentricity–
multiplicity correlation has later been investigated by Zinzi & Turrini
(2017), who found a similar correlation for multiplicities above one
based on 258 selected RV and transit planets from NASA Exoplanet
Archive. Both of the previous investigations have based their analyses
on individual planets rather than treating the systems as units.
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The main motivation for this article is to further the investigations
by Limbach & Turner (2015) and Zinzi & Turrini (2017) using
the expanded planet sample known to date, comparing search
methods, population groups, and data bases, and aiming to set the
results in perspective to our own Solar system and habitability. Our
planet sample contains planets found by several detection methods
including RV, transiting planet (transit), microlensing (ML), and
others. By including all planets, regardless of detection method, we
will be able to comment on whether there is an observational bias
related to the specific methods, and the large data set available today
makes it possible to exclude more planets that might potentially
introduce unwanted bias into the correlation. Unlike the previous
investigations we will treat each system as a unit by conducting the
analysis based on the average orbital eccentricities in the systems
rather than the eccentricity of each individual planet. This is done
since both the multiplicity and potential planet–planet interactions
are properties of the planetary system as a whole rather than the
individual planets.

From the resulting eccentricity–multiplicity correlation an esti-
mate of the mean multiplicity of a planetary system can be obtained
in addition to a probability distribution of the multiplicity of planetary
systems. From this we wish to set our Solar system in perspective
against a ‘standard’ planetary system. We envision that planetesimals
are formed in relatively circular orbits, then gravitationally scatter
one another into higher eccentricity, before they over longer time-
scales collide to build up solid planets or the planetary cores of giants.
After the evaporation of the gas disc, planet–planet interaction would
be the dominating mechanism determining the final eccentricities, in
such a way that the more planets there end up being in the system
the more circular the orbits become. This is a logic scenario to
provide an image of the physical process behind the correlation we
investigate in this paper, but we stress that this is only an image
that helps us (and hopefully the reader, too) to imagine the process.
Our study is empirical, and hence has no a priori assumption about
which exact mechanisms cause the correlation. In order to further
the development of the theoretical understanding, we take advantage
of the large sample now available to also analyse whether different
populations of exoplanets show different correlations.

A major concern when investigating extrasolar planets is that
we are highly constrained by limitations in our detection methods.
When using RV the detection probability of a planet is biased
towards large masses, and when using transit it is biased towards
ultrashort periods. That leaves a large parameter space where planets
go mainly undetected, and thereby bias conclusions about standard
planetary systems drawn from the limited sample. Today the two
most abundant detection methods (RV and transit) basically have
shown us that exoplanetary systems very different from our own
Solar system are abundant. Direct observational estimates of how
abundant exoplanetary systems resembling our own Solar system are,
may most likely come from future extensive microlensing surveys
from space [perhaps from a dedicated microlensing satellite (Bennett
& Rhie 2002) or from WFIRST (Penny et al. 2019)] or from the
ground [perhaps from GravityCam-like instruments (Mackay et al.
2018)], and they will give us the full set of orbital parameters of Solar-
system-like exoplanets (Gaudi 2012; Ryu et al. 2018), as opposed
to today where orbital eccentricity has been obtained for only one
microlensing exoplanet (Gaudi et al. 2008). Until then it can be useful
to look at indirect evidences for what a standard exoplanetary system
looks like. A motivation for this article is to go beyond the data sample
by finding a general theory for all systems (including those with
planets yet undetected), and from this estimate the characteristics of
standard planetary systems. This may give us some insight into the

Table 1. Planets included in data samples. Retrieved from exoplanet.eu.
Planets are sorted for detection method. Rightmost column show the number
of systems present in each multiplicity bin, whereas columns 2-5 show number
of individual planets.

Multiplicity Total RV Transit Other Systems

M1 667 408 234 23 667
M2 274 215 52 5 151
M3 121 65 50 6 45
M4 63 43 17 3 20
≥M5 46 34 10 2 12

Total 1171 765 363 39 895

standard formation mechanism of planetary systems and how they
develop into the most common configurations of planets, give hints
about what to look for and thereby which instruments to develop, and
maybe contribute to give us a more realistic view on how abundant
truly Earth-like exoplanets might be. One such indirect method is
the study of the eccentricity distribution among known exoplanets,
as presented here.

In Section 2, the data set is discussed. In Section 3, the correlation
between eccentricity and multiplicity is examined, both for the full
data samples from two different data bases, for subsamples sorted
for detection methods and for population groups, and for a high-
eccentricity subsample in which we attempt to exclude most systems
containing undiscovered planets. Based on the correlation a power
law is found. In Section 4, some of the potential implications of
the power-law correlation are explored. A probability distribution
of the multiplicity is found, and from this a mean multiplicity of
planetary systems is estimated. In Section 5, the results and theories
are discussed. Finally in Section 6, the conclusions are summarized.

2 TH E DATA SET

Our data from The Extrasolar Planets Encyclopaedia, exoplanet.eu,
(Schneider et al. (2011)) were retrieved in August 2019. All con-
firmed planets regardless of detection method are included. We are
aware that exoplanet.eu, like most other data bases, might be subject
to errors in their data listing. For the sake of this study we mostly try
not to question the validity of the data found on the website. Planets
without listed eccentricities or where the eccentricity is falsely listed
as zero (i.e. without listed uncertainties) are excluded from the
sample. Of the 4103 planets listed on exoplanet.eu a total of 1171
planets remain in the sample, 2932 are excluded due to unknown
eccentricities and 60 of these have eccentricities listed as zero with
unknown uncertainties. In Table 11 the number of planets sorted by
multiplicity can be seen for each of the included detection methods.

Because no multiplicities are listed on exoplanet.eu each planet
has been given a multiplicity based on the number of confirmed
planets orbiting the same star listed in the data base. Since some
of the systems might contain yet undiscovered planets the known
companions in these systems will initially be sorted into the wrong
multiplicity bins, and the actual distribution might differ from
Table 1. Due to the small number of systems with high multiplicities,
all systems with more than 5 known planets have been combined
in one bin. The multiplicity of this bin is calculated as the mean
multiplicity of the included systems. Note that the number of planets
in each bin is not necessarily a multiple of the multiplicity. This is

1All planets and systems with a multiplicity of X will henceforth be referred
to as MX-planets or MX-systems
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Figure 1. Mean and median values of the eccentricity for each multiplicity.
The mean eccentricity of the Solar system is plotted with a black ×. The
multiplicity of the ≥M5 multiplicity-bin is plotted as M = 5.7.

caused by the fact that not all planets in each system are included,
mainly because their eccentricities are unknown. Our data set is three
to four times larger than any of the previous analyses [1171 in this
study, compared to 403 in Limbach & Turner (2015) and 258 in Zinzi
& Turrini (2017)]. We have not accounted for the uncertainties listed
for each of the eccentricities in the data base in this analysis, which
will be discussed further in Section 5.

3 ECCEN TRIC ITY AND MULTIPLICITY

Each system is assigned an eccentricity found as the mean eccentric-
ity of the planets in the system. This differs from previous studies,
where the planets were not sorted into systems, and the authors
looked at the eccentricities of the individual planets. The final results
from the two methods do not differ greatly, but we find that sorting
the planets into systems is more meaningful, since the effects we
observe might be caused by planet–planet interactions within the
systems and will change the system as a whole. These assigned
system eccentricities are then used to calculate overall mean and
median eccentricities within each multiplicity bin. In Fig. 1, mean and
median values of the system eccentricities are plotted for each of the
multiplicity bins, together with our Solar system with a multiplicity
of eight.

The errors are calculated using the following methods: Mean;
As the standard deviation of system means found by the Bootstrap
method. Median; As the one-third and two-third quantiles from a
Cumulative Distribution Function divided by

√
N − 1, where N is

the number of systems in the multiplicity bin. Notice that the errors
indicate the uncertainties of the mean and median eccentricities
of each multiplicity bin, and not the spread of the eccentricities
among the individual planets, which is significantly larger than the
errors shown. Fig. 1 suggests a trend of decreasing eccentricity for
increasing multiplicity. As can be seen the Solar system too follows
this trend indicating that our system does not deviate from the norm.
An exception for this trend, is the M1 systems. Whereas the other
data points seems to approximately follow a power law (seemingly
linear because of the logarithmic axes), the eccentricities for M1
deviate from the trend by being too low to follow the power law. This
deviation will be discussed later.

Table 2. Distribution of the systems in Table. 1 where in addition to the
eccentricity, also the mass or msin(i) is known, such that they can be divided
into the groups: hot-Jupiters (HJ), cold-Jupiters (CJ), super-Earths (SE), and
plotted in Fig. 2. Last column shows the number of systems (Number). A
total of 849 systems are included.

Multiplicity HJ (per cent) CJ (per cent) SE (per cent) Number

M1 39.2 51.3 9.4 637
M2 22.9 57.6 19.4 144
M3 25.6 20.5 53.8 39
M4 21.1 26.3 52.6 19
≥M5 10.0 30.0 60.0 10

3.1 Planet populations

A potential uncertainty related to the study of an eccentricity–
multiplicity correlation is the dependence of the correlation on
factors such as planet mass and semimajor axis. Turrini, Zinzi &
Belinchon (2020) and Laskar & Petit (2017) therefore looked at the
correlation of multiplicity and angular momentum deficit (AMD),
rather than multiplicity and eccentricity. The AMD does depend
on the eccentricity, but also on the semimajor axis and the mass
of the planets, and Turrini et al. (2020) found an anticorrelation
between the normalized angular momentum deficit (NAMD) and
the multiplicity. Turrini et al. (2020) argues that the eccentricity–
multiplicity correlation found by other studies is a reflection of
the underlying NAMD–multiplicity correlation. The study of the
NAMD–multiplicity is complicated by the fact that few planets
have both their masses, eccentricity and semimajor axis well-known,
and as such the data set is smaller. The larger sample in our data
set compared to previous data sets, allows us to study directly
the correlation of eccentricity and multiplicity for a number of
different subsamples, in order to test how the planet mass (mp)
and semimajor axis (or period, P) might affect the eccentricity–
multiplicity correlation.

To test the impact of mass and period, we have divided the systems
into three different populations: (1) Systems containing a hot-Jupiter
(mp > 0.1MJ and P < 100 d). (2) Systems containing a cold-Jupiter
(mp > 0.1MJ and P > 100 d), and no hot-Jupiters. (3) Systems
dominated by super-Earths (mp < 0.1MJ) with no giant planets. In
order to increase the data sample, planets with no listed mass in
the data base, have been sorted based on their mass · sin(i) value,
when this is known, and a total of 849 systems are sorted into the
population categories. The distribution of systems in each population
category can be seen in Table 2. It should be noted, that the observed
planet sample does not represent the true planet population since
some planet types are more easily observed than others, but the
differences between the populations, as shown here, might still give
us an insight into the uncertainties of the eccentricity–multiplicity
correlation. Research in the actual occurrence rate of different planet
types is reviewed in e.g. Winn & Fabrycky (2015).

Table 2 shows that different multiplicities are dominated by
different populations of planets, such that most of the M1 systems
are giant-planet systems, whereas the larger multiplicity systems are
dominated by super-Earths. A priori one could expect that since
the cold-Jupiters dominate the M1 systems, we could seek the
explanation for the deviation from the power law followed by the
M > 1 systems in the cold-Jupiter population. However, we find that
this is not the case, when we look at the mean eccentricities plotted
as a function of multiplicity in Fig. 2.

Fig. 2 shows the mean eccentricities plotted for the full sample
(equivalent to the mean values from Fig. 1) together with the three
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Figure 2. Mean values of eccentricities for each multiplicity for four
subsamples. Full red line: The full sample from exoplanet.eu identical to the
mean values from Fig. 1. Dashed: Subsample of systems containing a hot-
Jupiter (HJ). Dotted: Subsample of systems containing a cold-Jupiter (CJ).
Dot–dashed: Subsample of systems only containing smaller planets. Mean
value of the Solar system (SS) is plotted in black. Power laws (PL) have been
fitted to all four samples for multiplicities above one; this is discussed in
Section 3.1.

different populations introduced above. A power law has been fitted
to all samples for multiplicities above one, not including the Solar
system, i.e. 1 < M < 8. The power law has been fitted to the
overall mean eccentricities for all systems in each multiplicity bin,
corresponding to the data points seen in the figure. Due to the small
sample of Jupiter-systems with four or more planets, the M4 and
≥M5 bins have been combined for the hot-Jupiter and cold-Jupiter
systems. The multiplicities for these bins are the mean multiplicities
among the systems combined in the bins. The main conclusion from
Fig. 2 is that all three populations follow similar power law trends to
the one for the full sample (although of course with larger scatter of
the individual points due to the smaller data sample). We notice that
the cold-Jupiter population is not the cause of the low eccentricities of
the M1 systems, but on the contrary displays the highest eccentricities
of the M1 systems among all populations.

3.2 The undiscovered planets in the systems

To get further understanding of the uncertainties of the power-law
correlation, Fig. 3 shows the mean eccentricities plotted as a function
of multiplicities for three additional subsamples: Beside the full
system sample from exoplanet.eu, are shown a high-eccentricity
subsample consisting of only the 75 per cent systems with high-
est eccentricities, a subsample consisting of RV planets listed on
exoplanets.org before 2014 (L&T) equivalent to the sample used by
Limbach & Turner (2015), and a full sample of the 704 planets with
known eccentricities from the data base exoplanets.org. Power laws
have been fitted to all samples for multiplicities above one.

The high-eccentricity subsample has been created to exclude
systems containing undiscovered planets. According to the trend
visible in Fig. 1 larger systems have lower eccentricities, and systems
with additional, undiscovered, planets should therefore have eccen-
tricities below what is appropriate for their given multiplicity. We
might therefore expect, that the systems showing the lowest orbital
eccentricities, could have extra undiscovered planets. Removing
these systems from the fit does change the relation a bit (obviously

Figure 3. Mean values of eccentricities for each multiplicity for four
subsamples. Full red line: The full sample from exoplanet.eu identical to the
mean values from Fig. 1. Dashed: High-eccentricity subsample consisting of
75 per cent systems with highest eccentricities. Dotted: Subsample of RV
planets detected before 2014 equivalent to the sample used by Limbach &
Turner (2015). Dot–dashed: Full sample from exoplanets.org. Mean value of
the Solar system (SS) is plotted in black. Power laws (PL) have been fitted to
all samples for multiplicities above one; this will be discussed in Section 4.

shifting the line to somewhat higher eccentricities), but do keep the
same trend of a fine linear fit to the systems with M > 1 and a
substantially lower average eccentricity for the M1 systems than
expected from the power law.

Since both of the dominating detection methods (the RV method
and the transit method) depend on the size of the planets, smaller
planets are more difficult to detect, and only few planets with a
size comparable to Mercury or Mars have been found. Mars and
Mercury represent one fourth of the (known) planets in the Solar
system, and following this line of argument a first attempt of a
qualified guess on a typical number of undetected planets could
be, that a minimum of 25 per cent of the planets in exoplanet systems
remain undiscovered. By removing the 25 per cent systems with
the lowest eccentricities in each multiplicity-bin we hope to lower
the bias in the correlations by ‘contamination’ due to systems with
unknown planets. No systems are removed from the M8 bin, since
this only consist of the Solar system. We see from Fig. 3 that the
high-multiplicity systems are less affected than the low-multiplicity
systems when removing the 25 per cent lowest eccentricity systems,
indicating that high-multiplicity systems could be more completely
surveyed.

The L&T subsample has been plotted to compare the power-law
correlation found in this study with one found using a data sample
similar to the one used in the original study by Limbach & Turner
(2015). Notice that whereas the mean eccentricities for the full, high-
eccentricity, and exoplanets.org subsamples are found as the mean of
the system eccentricities for each multiplicity, the mean eccentricities
of the L&T subsample are found as the mean of all planets in each
multiplicity-bin (to stay consistent with the analysis methods used
by Limbach & Turner (2015) as explained previously).

In order to further constrain potential uncertainties related to our
data, we repeated the entire analysis using data from the data base
exoplanets.org. It should be remembered that our main data base,
exoplanet.eu, is more complete and up to date than exoplanets.org,
but that the planets listed on exoplanets.org have undergone a more
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Figure 4. Mean values of eccentricities for each multiplicity for three
subsamples. Full red line: The full sample. Dashed: Subsample consisting
of planets discovered by the transit method. Dotted: Subsample consisting
of planets discovered by RV. Mean value of the Solar system (SS) is plotted
in black. Power laws (PL) have been fitted to all samples for multiplicities
above one.

strict selection process in regard to peer-review (Han et al. (2014),
Schneider et al. (2011), and personal communication with Jason
Wright and Françoise Roques). Although the two data bases therefore
will not contain the exact same data sample, comparison of the
results based on both data bases gives more clear impression of the
uncertainties.

Fig. 3 shows that all the subsamples, display the same general
tendency of a power-law correlation between eccentricity and multi-
plicity for M > 1 as the full sample, and a lower eccentricity of the M1
systems not following the power-law trend of the higher multiplicity
systems. The slopes, however, vary for the different samples.

3.3 Detection methods

Whereas the L&T subsample consists only of RV planets our sample
contains planets found by all detection methods. To test how this
difference might affect the eccentricity–multiplicity correlation, and
to better understand whether the behaviour of the correlation could
be dominated by a bias effect related to the detection method, a plot
for the transit and RV subsamples together with the full sample can
be seen in Fig. 4. It should be noted that the eccentricities listed for
planets discovered with the transit method are often determined from
follow-up RV observations, so the two populations are not completely
separated. Fig. 4 shows that both the transit and the RV subsamples
have eccentricity–multiplicity correlations similar to that of the full
sample, and the trend of the M1 systems falling below the M > 1
relation is identical.

We also see that the transit systems show lower eccentricities at
all multiplicities compared to the RV systems. This bias, that transit
planets generally have lower eccentricities, is in correspondence with
a study by Van Eylen & Albrecht (2015) who found high-multiplicity
Kepler planets to generally have lower eccentricities than the RV
planet sample. This tendency might be caused by the bias, that there
are more low-mass planets in the transit subsample than in the RV
sample, and that lower mass planets are more easily circularized by
planet–planet interaction (Kane et al. 2012). We see a hint of the same
tendency in Fig. 2 where the super-Earth subsample shows lower

Table 3. Test result for the Kolmogorov–Smirnov test.

M1 M2 M3 M4 ≥M5 M8 (SS)

M1 1
M2 <0.01 1
M3 0.04 0.01 1
M4 0.01 <0.01 0.15 1
≥M5 0.04 <0.01 0.06 0.31 1
M8 (SS) 0.01 <0.01 0.05 0.38 0.65 1

eccentricities than the full sample, and the important conclusion
is that independent of the shift and its potential explanation in an
observational bias, the same tendencies discussed above applies to
both of the subsamples.

It is also possible that planet–planet scattering could cause a spread
in the orbital inclinations (Chatterjee et al. 2008) in addition to
lowering the multiplicity of the system. The spread in inclination
could lead to a higher number of undiscovered planets in the transit
systems and thereby a higher number systems with eccentricities too
low to fit their assigned multiplicity. This trend would be strongest
for low-multiplicity systems, as seen in Fig. 4, if these are formed
due to severe planet–planet scattering. It can be seen from the error
bars given in Fig. 4 that the listed eccentricities of the transit planets
have a greater variation than the RV planets, possibly caused by a
larger uncertainty in their determination (Kane et al. 2012; Van Eylen
& Albrecht 2015).

3.4 Kolmogorov–Smirnov test

To statistically test the correlation between multiplicity and eccen-
tricity, a two-sample Kolmogorov–Smirnov is conducted on the full
system sample. The test compares the multiplicity-bins one and one
to test the difference in the eccentricity distributions of the systems.
The test results can be seen in Table 3. Notice that the distribution of
eccentricities for the individual planets is used for the Solar system,
whereas the distributions of the systems are used for the rest.

It can be seen that the eccentricities of most of the multiplicity-
combinations show significant differences, on a 5 per cent sig-
nificance level. This indicates that the difference in eccentricity
for systems of different multiplicity is caused by a connection
between the two factors and not by coincidence. The higher p-
values seen for high-multiplicity combinations might be caused by
the small number of systems in these multiplicity-bins. Altogether the
statistical test supports, that there is a correlation between multiplicity
and eccentricity.

3.5 Quantification of the multiplicity-eccentricity correlation

In the standard core-accretion model for the formation of planetary
systems, the dust component of the disc relatively quickly clumps
together (via simple condensation or even faster via streaming
instability) to form many objects of planetesimal sizes (Johansen
& Lambrechts 2017). Over a longer time-scale the planetesimals
then excite one another’s orbits by gravitational interaction, leading
to collisions and hence growth to planet size. After the dissipation of
the protoplanetary disc the orbits of the planets are largely determined
by planet–planet interactions, indicating a correlation between the
orbital eccentricity and the number of interactions and hence planets.
The numerical simulations by Chatterjee et al. (2008) and Jurić
& Tremaine (2008a) confirms that this expectation is correct, by
showing that the final architecture of a system is almost independent
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of the assumed starting conditions of planetesimals, and suggesting
that planet–planet interaction is the dominating mechanism for
changing the average orbital eccentricity. The simulations do not
in themselves predict a specific analytical correspondence between
eccentricity and multiplicity, which, however, can be done by fitting
the corresponding observational data. In Fig. 3, it was indicated that
the high-multiplicity systems seemed to have fewer undiscovered
planets, and in Figs 2–4 we quantified the relation by fitting the
mean eccentricities for M > 1 to a power law. Our best fit to the full
set of data (as shown in red in the figures) can be expressed as

e(M) = 0.429 · M−0.93, (1)

where e is the eccentricity and M is the multiplicity. Figs 2–4 further
demonstrate that this fit also agrees with the Solar system despite
the fact that the M = 8 was not included in the fit. This adds
extra confidence in believing that the quantification is universal, and
two fits, with and without the Solar system, showed the following
correlation coefficient; R2 = 0.98 for M = [2; 7] and R2 = 0.99 for
M = [2; 8].

Since the physical cause behind the relation is thought to be planet–
planet gravitational interaction, one should expect the decreasing
tendency to range all the way from M1 systems to a maximum
number of planets, Mmax, for which the systems can still remain stable
(Papaloizou & Terquem 2001; Jurić & Tremaine 2008b), with the M1
systems having the largest average eccentricity. Observationally, the
M1 planets, obviously, do not show the high eccentricity expected
from the correlation, and therefore the observed M1 systems must
be affected differently from the multiplanet populations. In the
following section, Section 4, we will elaborate on one potential
explanation for the deviation of the M1 systems from the trend,
namely the idea that the low M1 eccentricity is caused by a
combination of mechanisms other than the general planet–planet
interaction, lowering the eccentricities, plus an observational bias.
When correcting for these two effects, the remaining M1 systems
are made to follow the same trend as the rest of the systems, and
potential implications for the trend are explored.

An alternative explanation for the discrepancy between the M1 and
multiplanet systems could be that they are dominated by different
planet populations. To analyse if any specific population dominates
the lowering of the M1 eccentricities, we investigated, in Section 3.1,
whether the population of large planets (which observationally
dominates the M1 and M2 systems) and the population of smaller
planets (that have a more dominating role in the higher multiplicity
systems), show different observational trends. We concluded that all
of the populations follow the same general trend between eccentricity
and multiplicity, indicating that the same general mechanism is
responsible for all the observed populations of exoplanets from M1 to
M8 (and is likely to be planet–planet interaction with some correction
for the M1 systems).

In all cases, it is obvious from Figs 1–4 that the observed M1
systems do not follow the trend expressed in equation (1). If a
reasonable transformation from the observed abundance of M1
systems to intrinsic M1 system abundances can be obtained, it will be
possible from equation (1) to give an estimate of the true probability
distribution of multiplicities among the observed systems.

4 PER SPEC TIV E AND IMPLICATIONS:
CONVER SION O F O BSERVED MULTIPLICITY
DISTR IBU TION TO ACTUA L D ISTRIBUTIO N

Figs 1–4 demonstrate that the observed average eccentricity of
one-planet systems (M1) falls below the relation for multiplanet

systems. The main assumption in this further analysis is that the
M1 systems intrinsically follow the same eccentricity correlation as
the other multiplicities. This assumption is supported by a series
of studies by He, Ford & Ragozzine (2019), He et al. (2020), who
recreated the multiplicity distribution of the Kepler observations, by
forward-modelling multiplanet systems at the AMD-stability limit
[introduced in Laskar & Petit (2017) and Petit, Laskar & Boué
(2017)]. He et al. (2020) found that all multiplicities from one to ten
followed the same eccentricity–multiplicity power-law correlation,
with the intrinsic M1 systems having higher eccentricities than the
multiplanet systems, and they found that most observed M1 systems
contain yet undiscovered planets. In this section we will try to identify
these systems with undiscovered planets, and redistribute them to the
multiplicity bin appropriate to their multiplicities.

We will first investigate whether some of the low eccentricity M1
planets can have got their low eccentricity due to other mechanisms
than the general planet–planet interaction assumed to be responsible
for equation (1).

Exoplanets in ultrasmall orbits are often tidally locked to the
host star, which could lead to circularization of the planetary orbit
(Jackson, Greenberg & Barnes 2008). By looking at the eccentricity
damping time-scale (Ogilvie 2014), the eccentricity damping from
these planet-star interactions can be approximated by

ė ∝ m∗
mp

1

a5
, (2)

where ė is the change in eccentricity, a is the semimajor axis of
the planet, and mp and m∗ are the masses of the planet and the star
respectively.

In order to distinguish systems that have low eccentricities due to
planet-star interactions from those that may have low eccentricities
for other reasons, all planets for which the value from equation (2)
exceeds a certain threshold are excluded. The threshold was chosen
to 6.77 × 105, and 191 M1 planets, and 100 planets among the other
multiplicities, were excluded on this basis. These planets will be
excluded in the following probability analysis, but were not excluded
in the making of equation (1) (which would have very small effect
as described below). The chosen threshold is the value of Mercury,
and even though Mercury is far from being circularized (it holds the
highest eccentricity in the Solar system), it is ‘almost’ tidally locked
(in a 2/3 orbital/rotational resonance), and is the planet in the Solar
system that has the highest potential for tidal circularization. In an
analysis of hot-Jupiters with known obliquities, Hjort (2019) was able
to divide the planets into two distinct groups, with 15 per cent of the
planets having extremely low obliquity (and hence low eccentricity)
and 85 per cent having a continuous obliquity distribution. Hjort
(2019) ascribed the former group to planet migration in the disc and
the latter to migration due to planet–planet interaction (scattering).
It is therefore likely that also a fraction of the M1 systems will have
much lower eccentricities than expected from equation (1) due to
disc migration.

Next, we pursue the idea that some of the remaining systems may
contain yet undiscovered planets, and that these systems will lower
the mean eccentricity of their multiplicity bins, since systems with
more planets are expected to have lower eccentricities. Those of
the observed systems that have had their eccentricity determined by
planet–planet interactions (as opposed to the systems excluded above
due to a potential star–planet circularization) are to first approx-
imation expected to follow the planet–planet eccentricity relation
expressed in equation (1). We align the mean eccentricities of the
multiplicity bins with the power-law correlation by moving the lowest
eccentricity systems of the multiplicity bins to an M corresponding
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Table 4. Redistribution of systems. Left: the observed multiplicity distribution of systems from exoplanet.eu. Right: the
multiplicity distribution of systems after the M1 systems have been redistributed according to their eccentricities as described
in the text. The rightmost column indicates the probability of a system having a given multiplicity according to equation (3).

Multiplicity Observed distribution Redistribution

Number of systems Percentage
(per cent)

Number of systems Percentage
(per cent)

Probability
(per cent)

M1 667 75 262 41 41
M2 151 17 149 24 24
M3 45 5 90 14 14
M4 20 2 53 8 8
M5 4 <1 25 4 5
M6 6 <1 21 3 3
M7 1 <1 12 2 2
M8 1 <1 7 1 1
M9 5 <1 <1
M10 9 2 <1

Total 895 633

to their observed eccentricity (i.e. assuming undiscovered planets
in those systems). During this exercise it was found that the best
alignment occurred when 55 per cent of the M1 systems and all
of the M > 1 systems were assumed not to contain undiscovered
planets and the rest had new multiplicities estimated based on their
eccentricity.

Of the M1 systems 50 (i.e. roughly 10 per cent of the
667 − 191 = 476 M1 systems that remained after the exclusion of
planets that might have experienced planet-star circularization) have
such low eccentricities that they should be moved to multiplicities
that might exceed Mmax (in some cases more than 50 planets). It was
therefore assumed that these systems might not contain undiscovered
planets, but that other physical mechanisms were responsible for
circularizing these 10 per cent. For the proceeding estimates, have in
mind that the effect of keeping these 50 planets would be to slightly
increase the estimated abundance of M1 systems and decrease
correspondingly the abundance of high multiplicity systems like our
own Solar system. Non-planet–planet interacting mechanisms that
could be responsible for circularization of a fraction of this amount
of M1 systems could include migration of a single large planet to
small orbit while substantial amount of the protoplanetary disc was
still in place (Hjort 2019).

For those of the remaining group of (667 − 191 − 50 = 426) M1
systems with eccentricities that potentially could be attributed to yet
undiscovered planets, we attempted a redistribution of the systems
by artificially counting them as belonging to higher values of M.
The new multiplicity, Mnew, was determined from the eccentricity
of the planet using equation (1). A total of 164 M1 systems were
redistributed and the new multiplicity distribution can be seen in
Table 4.

In addition to the number of systems within each multiplicity bin,
Table 4 also shows the percentage and probability distributions for
the redistributed planets. The probability distribution is found by
fitting an exponential fit to the percentage distribution as shows in
Fig. 2 and explained later.

The redistribution of the M1 systems has been made such that
the mean eccentricity of the remaining 262 systems falls on the
same relation as the rest of the multiplicity systems described
by equation (1). For the sake of this experiment, we assume that
these remaining M1 systems would be the intrinsic M1 population
among the observed systems, with no additional undiscovered planets
and whose eccentricity is determined by the same planet–planet
interactions as the multiplanet systems. In this sense one can think

Figure 5. Percentage of systems with given multiplicity, corresponding to
values from Table 4. Probability function found as exponential fit. Mean
multiplicity estimated to ∼2.5.

of the relation given by equation (1) applied to all the systems from
M1 to Mmax as giving a minimum abundance of M1 systems and
corresponding maximum abundance of high multiplicity systems.
We stress this fact because it for many might seem intuitively (for
example based on the antropic principle) surprising that our Solar
system belongs to such a relatively rare type of planetary systems
as predicted from equation (1) and shown in Fig. 5; without the
redistribution suggested above, the Solar system would be predicted
to be of an even more rare type of planetary system.

We therefore suggest that the Mnew distribution in Table 3 is a
reasonable first qualified guess of the relative distribution of the
number of planets in planetary systems, whose average eccentric-
ity distribution is determined by planet–planet interactions. This
probability distribution is shown in Fig. 5 and has been fitted to
an exponential function described as

P (M) = 0.72 · e−0.54M, (3)

where P(M) indicates the probability of a system having M planets.
This relation has been found by normalizing the exponential fit seen
in Fig. 5, such that

∑10
M=1 P (M) = 1.
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The average number of planets in planetary systems, according
to the distribution in Table 4, is 〈M〉 = 2.48, and is marked by a
diamond in the figure. Based on the discrete probability distribution
in equation (3) the probability of a system having eight planets
is P (8) ≈ 1 per cent, indicating that systems the size of the Solar
system are rare but not exceptionally so. In this interpretation the
Solar system is in the tail of a distribution of multiplicity, and
corresponding orbital eccentricities, near the maximum possible
from stability considerations. We have in the above summation
assumed that the maximum cut-off is near to Mmax = 10 planets,
but we note that the exact value of Mmax is unimportant for the
conclusion, since the integral of equation (3) from 8 to infinity is
very small. Remark also that the number 1 per cent refers to the
fraction of the systems that have had their eccentricities determined
by planet–planet interaction, or a similar process that is responsible
for equations (1) and (3). If one is counting also the M1 planets that
were excluded in deriving equation (3), then the probability of finding
8 planets would be slightly lower. It should be noted that all results in
this analysis rely on the assumption that the power law in equation (1)
describes the true intrinsic correlation between eccentricity and
multiplicity. The redistribution was based on a correlation fitted to the
observed multiplanet systems. The fact that some of these multiplanet
systems might host yet undiscovered planets could therefore pose a
uncertainty to the analysis. However, theoretical studies have found
that the observed M1 population is the only one that differ greatly
from the theoretical predictions (Johansen et al. 2012). As mentioned
previously, some have suggested that this is caused by the fact
that the observed M1 systems are especially prone to containing
undiscovered planets (He et al. 2020). As such, the analysis should
not be affected greatly by undiscovered planets in the multiplanet
systems. As mentioned previously planet-star interaction has not
been taken into account when making equation (1). If the planets
from the multiplanet systems that might have experienced planet-star
interaction had been excluded in equation (1), the mean multiplicity
would have been 2.6 rather than 2.5 planets per system.

It is encouraging to note that Jurić & Tremaine (2008b) found the
average number of planets to be between 1.8 and 3.0 planets per
system from a series of individual simulations with different initial
planetesimal conditions, and that Raymond, Izidoro & Morbidelli
(2018) found the probability of forming planetary systems with a
number of planets similar to our own to be ∼1 per cent based on
dynamical arguments. Both results are very similar to our result but
based on completely different and independent arguments.

5 D ISCUSSION

We find an anticorrelation between orbital eccentricity and multi-
plicity of known exoplanet systems similar to the reports by previous
studies (Limbach & Turner 2015; Zinzi & Turrini 2017). Our planet
sample and method differ from the investigation by Limbach &
Turner (2015) by including planets discovered by all detection
methods, not just RV, and from both studies by including a much
larger data set and by comparing the results obtained based on
different data bases with different selection criteria. In addition
we have chosen to consider systems as units unlike the previous
studies, which treated each planet separately. When comparing our
investigation to the previous ones, it should be noted that we, of
course, share a great part of our data sample, and although the larger
data set in our analysis has allowed for a more restrictive debias
process, all our analyses are biased by the basic limitation by the RV
technique (biased towards larger planets), and the transit technique
(biased towards ultrasmall orbits).

The fact that we include all planets regardless of detection methods
has shown us that similar eccentricity–multiplicity correlations can
be found for the full sample, and RV- and transit subsamples
respectively, though with slightly different fits as discussed above.
Explicitly, we also studied the eccentricity–multiplicity correlation
for subsamples of hot-Jupiters, cold-Jupiters, and super-Earths sep-
arately, and found that also these subsamples followed the same
general tendency. This shows that the correlation is not solely caused
by the giant planets, that currently dominate our observations, or by
planets at very short periods, but might also apply to the population
of planets that have yet to be observed, with smaller masses and at
larger periods.

A correlation between orbit eccentricity and multiplicity is sup-
ported by several other studies. Surveys conducted by Howard (2013)
and Wright et al. (2009) found lower orbit eccentricities among
planets in multiplanet systems compared to single planets. Howard
(2013) suggests that the trend could be due to severe planet–planet
scattering in the existing single-planet systems where giant planets
have excited the eccentricities of its previous companions before
ejecting them. Multiplanet systems have had fewer scattering events
(otherwise they would no longer be multiplanet) and have thereby
been allowed to stay in stable low-eccentricity orbits. Wright et al.
(2009) argues that multiplanet systems will naturally favour low-
eccentricity orbits because of the need for high orbital stability in
the system. The stability of multiplanet systems was studied further
by Huang, Petrovich & Deibert (2017), who found that a single
outer high-eccentricity giant planet would greatly affect the stability
of an inner system, by reducing the multiplicity and exciting the
eccentricities of the remaining planets. Both Wright et al. (2009)
and Chatterjee et al. (2008) support the theory of single high-
eccentric planets as a result of ejecting companions. The ejection
of planets from planetary systems have been confirmed by Mróz
et al. (2017), who from analysis of short-duration events in 6 yr of
microlensing data have found free floating planets of both Jupiter-
and Earth-size, although they also conclude that the abundance of
free floating planets is small, and can therefore only account for the
eccentricity of a small fraction of the M1 systems. A study by Xie
et al. (2016) have also reported lower eccentricities in multiplanet
systems. This study measured the eccentricity distribution of a
sample of transit planets using transit duration statistics, and found
that single-planets in general show eccentricities of e ≈ 0.3, whereas
their multiplanet counterparts have average eccentricities of e ≈
0.04. Xie et al. (2016) found all planets from multiplanet systems
to follow similar eccentricity distributions, and so, found no general
correlation between eccentricity and multiplicity.

Several studies have suggested that the correlation between ec-
centricity and multiplicity originates in an underlying correlation
between multiplicity on the stability of the system, or the AMD
(Laskar & Petit 2017; He et al. 2020; Turrini et al. 2020). In their
study, He et al. (2020) recreate the multiplicity distribution observed
at the Kepler data, using a forward model, by looking at the AMD-
stability limit. They find that the median eccentricities as a function of
multiplicity follow a power-law correlation for all multiplicities from
one to ten. Their model predicts that intrinsic single-planet systems
have higher eccentricities than multiplanet systems, whereas most
observed single-planet systems contain yet undiscovered planets,
similar to our assumptions in Section 4. Like previous studies He
et al. (2020) argued that the correlation between intrinsic multiplicity
and the eccentricity of the systems was caused by the fact that the
AMD-stability criteria puts strong demands on the total system AMD
and minimum system period ratio, in order for no planet orbits to
cross, and thereby destabilizing the system.
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The eccentricity–multiplicity anticorrelation is opposed by Bryan
et al. (2016) and Dong, Katz & Socrates (2014), who found lower
eccentricities among single planets compared to planets with outer
companions. Both surveys mainly focus on jovian planets, Dong et al.
solely on warm-Jupiters with jovian companions. Dong et al. (2014)
suggest that their results indicate that planet–planet interactions
are not the dominating mechanism for creating short-period jovian
planets, as opposed to the suggestions by several other studies (Rasio
& Ford 1996; Marzari & Weidenschilling 2002; Chatterjee et al.
2008; Nagasawa, Ida & Bessho 2008).

As argued by Bryan et al. (2016) a significant uncertainty is
involved with the investigation by Limbach & Turner (2015) and
some of this apply to our study as well. Many planets included
have small semimajor axes (the majority within 1 AU), and the low
eccentricities found in high-multiplicity systems might reflect the
fact that systems this closely packed would not be able to remain
stable at higher eccentricities. With our larger data sample we have
found similar correlations between RV- and transit subsamples which
lowers the probability that the correlation is caused by observational
biases. Bryan et al. (2016) further emphasize the uncertainty related
to the fact that Limbach & Turner (2015) do not account for the
individual errors of each of the listed eccentricities, which could also
pose an uncertainty for this study.

Since we have not included the listed uncertainties to the ec-
centricities of each individual planet, we have not accounted for
the uncertainty involved with the estimation of orbit eccentricity
of exoplanets. In addition to this, previous studies have found that
many eccentricities are systematically overestimated (Shen & Turner
2008), and that some seemingly high-eccentricity single planets can
turn out to have an unknown outer companion that artificially increase
their estimated eccentricity (Fischer et al. 2001). The latter, fits our
eccentricity–multiplicity correlation, with a decrease in eccentricity
for an increasing number of known planets, it does however represent
an uncertainty to our calculated model.

Unlike this study, the study by Zinzi & Turrini (2017) did account
for the uncertainties related to the eccentricity measurements. When
calculating the mean eccentricities, Zinzi & Turrini (2017) weighted
their data with one over the listed uncertainties, which resulted in a
steeper curve for the power-law correlation compared to unweighted
data. Especially the M2 systems seemed to differ between the
weighted and unweighted data by having a significantly higher mean
eccentricity in the weighted sample. They did not give an explanation
as to why the low-eccentricity M2 planets should have generally
higher uncertainties. In this study we find that the M2 systems have
eccentricities that fit the general eccentricity multiplicity correlation
for M > 1 without correction for the uncertainties. In our analysis
only the M1 systems falls substantially below the power-law fit, but
since no M1 systems were included in the analysis by Zinzi & Turrini
(2017) we are not able to compare this trend to their results.

6 C O N C L U S I O N

During this study we have investigated the correlation between orbital
eccentricity and multiplicity for 1171 planets distributed in 895
systems listed in the data base exoplanet.eu. We found a strong
correlation between average eccentricity and multiplicity for all
systems with two or more planets, which could be expressed as
e(M) = 0.429 · M−0.93 (equation 1). The Solar system fits this trend,
without being included in the making of the power law, whereas
the average eccentricity of the observed M1 systems were markedly
lower than predicted from equation (1). It is not unexpected from
standard core accretion theory that the M2 to Mmax systems fit

the same power-law distribution, but it is surprising that the M1
systems fall substantially below the correlation. The eccentricity–
multiplicity correlation is investigated for the number of different
subsamples, in order to explore the stability of the power-law
correlation, and investigate possible explanations for the deviating
M1 average eccentricity. All subsamples show the same general
pattern, with all multiplicities fitting a power-law correlation well,
except the M1 systems having consistently lower eccentricities. The
analysed subsamples include: different planet populations (divided
into hot-Jupiter-, cold-Jupiter-, and super-Earth systems), planets
detected by the RV- or transit method respectively, etc.

In order to investigate some of the implications of the power-law
trend, we speculated on the potential consequences, if the trend that
was found for M > 1, in reality applies to all multiplicities. Following
the idea that equation (1) describes the true eccentricity–multiplicity
correlation, we assumed that the seemingly low eccentricities of
the M1 systems were caused by a combination of some systems
having been circularized through planet-star interactions, and others
containing yet undiscovered planets. Correcting for these assump-
tions, a probability distribution over the different multiplicities was
expressed by equation (3), and based on this the mean multiplicity
among the observed systems was estimated to 〈M〉 ≈ 2.5, while the
probability of a system having eight planets was ∼1 per cent.

It is not surprising that the probability of finding high-multiplicity
systems comes out this low, after all there are very few known
exoplanetary systems with more than six planets, but it is assuring that
the average number of planets in a ‘standard’ exoplanet system in our
Galaxy comes out very close to the number predicted independently
from numerical simulations of planetesimal collisions (Jurić &
Tremaine 2008b) and that the probability of finding Solar-system-
like multiplanet systems comes out close to recent independent
predictions from dynamical simulations (Raymond et al. 2018). This
indicates that the orbit eccentricities of the Solar system planets are
not unusually low, when the multiplicity of the system is taking into
account, but rather that the number of planets in our Solar system is
unusually high. The rarity of the large number of planets in our Solar
system, and the corresponding low value of the orbital eccentricities,
raise the simple and central, but speculative, question ‘Is there a
connection between the high number of planets in our Solar system
and the fact that we are here?’.
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